Part III Hyperbolic Manifolds

Lent 1999

Examples Sheet 1

1. Show that the three interior angles of a triangle in the hyperbolic plane add up to less than π.
2. If α_{1} and α_{2} are disjoint geodesics in \mathbb{H}^{3} which do not share a point at infinity, show that there is a geodesic α_{3} which intersects both α_{1} and α_{2} orthogonally.
3. For an element $A \in P S L(2, \mathbb{C})$, let $\operatorname{tr}(A)$ denote its trace (which is defined up to sign). If $A \neq \pm \mathrm{id}$, show that the corresponding isometry of \mathbb{H}^{3} is
(i) parabolic if $\operatorname{tr}(A)= \pm 2$
(ii) elliptic if $\operatorname{tr}(A) \in(-2,2) \subset \mathbb{R}$,
(iii) loxodromic if $\operatorname{tr}(A) \in \mathbb{C}-[-2,2]$.

In cases (ii) and (iii), show that $\operatorname{tr}(A)$ determines the conjugacy class of the isometry. In these cases, show how the angle of rotation and the hyperbolic translation length along the invariant geodesic can be calculated from $\operatorname{tr}(A)$.
4. Show that any two non-degenerate ideal triangles in \mathbb{H}^{2} are isometric. Is the same true for ideal quadrilaterals? What about ideal tetrahedra in \mathbb{H}^{3} ?
5. Show that, for any knot K in $S^{3}, S^{3}-K$ admits an incomplete hyperbolic structure.
6. Let P be a non-degenerate hyperbolic polyhedron. Show that ∂P is the union of the facets of P and that P is the convex hull of its vertices.
7. Show that if P is non-degenerate polyhedron in \mathbb{H}^{3} and V is the vertices of P, then $\partial P-V$ inherits an (incomplete) hyperbolic structure. Does this extend to a hyperbolic structure on all of ∂P ? Show that if P^{\prime} is a non-degenerate ideal polyhedron in \mathbb{H}^{3}, then ∂P^{\prime} inherits a complete hyperbolic structure.
8. Let P be a dodecahedron, namely the polyhedron with twelve pentagonal faces, shown overleaf.

Let M be the space obtained by gluing each facet of P to the one opposite it, via a clockwise twist of $3 \pi / 5$. This is the Seifert-Weber dodecahedral space. Impose a hyperbolic structure on it. [This is necessarily complete and finite volume, and hence unique up to isometry, by Mostow Rigidity.]
9. Construct a complete hyperbolic structure on $S^{1} \times \mathbb{R}^{n-1}$.
10. Show that the thrice-punctured 2 -sphere S admits a complete hyperbolic structure, obtained by gluing two ideal triangles along their edges via isometries. [This is in fact the unique complete hyperbolic structure on S, up to isometry.] Show, however, that for 'most' ways of gluing the ideal triangles via isometries, the result is an incomplete hyperbolic structure on S.
11. [Hard] Generalise the technique for the construction of the hyperbolic structure on the figure-eight knot complement given in the lectures: construct a hyperbolic structure on the complements of the following links (which, if you do it correctly, will be complete and have finite volume):

