Part III Hyperbolic Manifolds Lent 1999 Examples Sheet 2

1. Let \tilde{M} be the universal cover of a Riemannian manifold M. Verify that a path $\alpha: I \to M$ is a geodesic if and only if some lift of α is a geodesic.

2. Show that if α is a closed geodesic in a complete hyperbolic manifold, then $\eta([\alpha])$ is loxodromic. Deduce that there are no simple closed geodesics in the hyperbolic structure on the thrice-punctured sphere given in Question 10 on Example Sheet 1. (A geodesic is *closed* if it factors through $\mathbb{R} \to S^1 \to M$. A non-closed geodesic $\alpha: \mathbb{R} \to M$ is simple if α is injective. A closed geodesic is simple if the associated map $S^1 \to M$ is injective.)

3. Show that each homotopically non-trivial closed curve α in a compact hyperbolic *n*-manifold is freely homotopic to a unique closed geodesic β . In the case n = 2, show that β is simple if α was simple. (A free homotopy between two closed curves $\alpha_0, \alpha_1: S^1 \to M$ is a homotopy $H: S^1 \times [0, 1] \to M$ such that $H|_{S^1 \times \{t\}} = \alpha_t$, for t = 0 and 1. The word 'free' is used to emphasise that no basepoints are involved.)

4. Construct a simple non-closed geodesic on each compact orientable hyperbolic 2-manifold.

5. Define a Euclidean *n*-manifold to be a Riemannian manifold, each point of which has an open neighbourhood isometric to an open subset of \mathbb{E}^n , where \mathbb{E}^n is \mathbb{R}^n with the standard Euclidean metric. Adapt the techniques of the lectures to show that the universal cover of any complete Euclidean *n*-manifold is isometric to \mathbb{E}^n . A theorem of Bieberbach asserts that any group of isometric covering transformations for \mathbb{E}^n contains a finite index subgroup consisting only of translations. Deduce that any compact Euclidean *n*-manifold is finitely covered by $S^1 \times \ldots \times S^1$. [One can also define a spherical *n*-manifold to be a Riemannian manifold locally modelled on S^n . Again, any complete spherical manifold has universal cover S^n . However, the techniques of the lectures do not immediately give this fact: where do they break down?]

6. If M is any open subset of \mathbb{H}^n and \tilde{M} is its universal cover, what are the

possible images for $D(\tilde{M})$, where D is a developing map for \tilde{M} ? [Hint: prove and use the fact that a local isometry $h: N \to N'$ between connected Riemannian manifolds is determined by h(x) and $(Th)_x$ for any $x \in N$.]

7. Recall the hyperbolic structure on the compact orientable surface F_k (k > 1) given in Theorem 3.2.2, obtained by gluing the facets of a hyperbolic 4k-gon P. Show that, for a suitable choice of basepoint, a fundamental domain for F_k is P.

8. Show that neither $S^1 \times S^1 \times (0,1)$ nor $S^1 \times (0,1) \times (0,1)$ admits a complete finite volume hyperbolic structure. Show however that they both admit an uncountable number of non-isometric complete (infinite volume) hyperbolic structures.

9. Show that if M is any complete hyperbolic 3-manifold, then $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is not a subgroup of $\pi_1(M)$.

10. For sufficiently small $\epsilon > 0$, determine $\operatorname{inj}^{-1}((0, \epsilon])$ for the complete hyperbolic structure on the figure-eight knot complement given in the lectures. Your description should be both topological and geometric.

11. Let Γ be the set of elements

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}(2,\mathbb{R})$$

such that a and d are odd integers, and b and c are even integers. Verify that Γ forms a subgroup of PSL(2, \mathbb{R}). Show that it is a group of isometric covering transformations and hence that \mathbb{H}^2/Γ inherits a complete hyperbolic structure. Show that this is isometric to the hyperbolic structure on the thrice-punctured sphere S given in Question 10 on Example Sheet 1. [Hint: $\pi_1(S)$ is a free group on two generators. Show that (a suitable choice of) η sends these generators to

$$\pm \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.

Hence, $\eta(\pi_1(S))$ is a subgroup of Γ . So, S covers \mathbb{H}^2/Γ . Since S has finite volume, this is a finite cover. Now show that this cover must be the identity.]

12. Construct, for each compact orientable surface F, a non-identity homeomorphism $h: F \to F$ such that $h \circ h$ is the identity. Let M be the result of $F \times [0, 1]$ after gluing $F \times \{0\}$ to $F \times \{1\}$ via h. Show that there is a cover $M \to M$ which has finite index greater than one. Deduce that M has zero Gromov norm and hence does not admit a hyperbolic structure. Why is M not a counter-example to the conjecture of Thurston given before the start of Section 1?