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Abstract. Following Perelman’s solution to the Geometrisation Conjecture, a ‘generic’
closed 3-manifold is known to admit a hyperbolic structure. However, our understand-
ing of closed hyperbolic 3-manifolds is far from complete. In particular, the notorious
Virtually Haken Conjecture remains unresolved. This proposes that every closed hyper-
bolic 3-manifold has a finite cover that contains a closed embedded orientable π1-injective
surface with positive genus.

I will give a survey on the progress towards this conjecture and its variants. Along
the way, I will address other interesting questions, including: What are the main types
of finite covering space of a hyperbolic 3-manifold? How many are there, as a function of
the covering degree? What geometric, topological and algebraic properties do they have?
I will show how an understanding of various geometric and topological invariants (such
as the first eigenvalue of the Laplacian, the rank of mod p homology and the Heegaard
genus) can be used to deduce the existence of π1-injective surfaces, and more.
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1. Introduction

In recent years, there have been several huge leaps forward in 3-manifold theory.
Most notably, Perelman [50, 51, 52] has proved Thurston’s Geometrisation Conjec-
ture [62], and, as a consequence, a ‘generic’ closed orientable 3-manifold is known
to admit a hyperbolic structure. However, our understanding of closed hyper-
bolic 3-manifolds is far from complete. In particular, finite covers of hyperbolic
3-manifolds remain rather mysterious. Here, the primary goal is the search for
closed embedded orientable π1-injective surfaces (which are known as incompress-
ible). The following conjectures remain notoriously unresolved. Does every closed
hyperbolic 3-manifold have a finite cover that

1. is Haken, in other words, contains a closed embedded orientable incompress-
ible surface (other than a 2-sphere)?

2. has positive first Betti number?
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2 Marc Lackenby

3. fibres over the circle?

4. has arbitrarily large first Betti number?

5. has fundamental group with a non-abelian free quotient? (When a group
has a finite-index subgroup with a non-abelian free quotient, it is known as
large.)

The obvious relationships between these problems are shown in Figure 1. This
figure also includes the Surface Subgroup Conjecture, which proposes that a closed
hyperbolic 3-manifold contains a closed orientable π1-injective surface (other than
a 2-sphere), which need not be embedded. While this is not strictly a question
about finite covers, one might hope to lift this surface to an embedded one in some
finite cover of the 3-manifold.

Largeness
Conjecture

Infinite Virtual
b  Conjecture1

Positive Virtual
b  Conjecture1

Virtually Haken
Conjecture

Virtual Fibering
Conjecture

Surface Subgroup
Conjecture

Figure 1.

There are many reasons why these questions are interesting. One source of mo-
tivation is that Haken manifolds are very well-understood, and so one might hope
to use their highly-developed theory to probe general 3-manifolds. But the main
reason for studying these problems is an aesthetic one. Embedded surfaces, partic-
ularly those that are π1-injective, play a central role in low-dimensional topology
and these conjectures assert that they are ubiquitous. In addition, these problems
relate to many other interesting areas of mathematics, as we will see.

In order to tackle these conjectures, one is immediately led to the following
questions, which are also interesting in their own right. How many finite covers
does a hyperbolic 3-manifold have, as a function of the covering degree? How
do natural geometric, topological and algebraic invariants behave in finite-sheeted
covers, for example:

1. the spectrum of the Laplacian;

2. their Heegaard genus;

3. the rank of their fundamental group;

4. the order of their first homology, possibly with coefficients modulo a prime?

In this survey, we will outline some progress on these questions, and will partic-
ularly emphasise how an understanding of the geometric, topological and algebraic
invariants of finite covers can be used to deduce the existence of incompressible
surfaces, and more.
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Many of the methods that we will discuss work only in dimension 3. However,
many apply more generally to arbitrary finitely presented groups. We will also
explain some of these group-theoretic applications.

An outline of this paper is as follows. In Section 2, we will give a summary
of the progress to date (March 2010) towards the above conjectures. In Sections
3 and 4, we will explain the two main classes of covering space of a hyperbolic
3-manifold: congruence covers and abelian covers. In Section 5, we will give the
best known lower bounds on the number of covers of a hyperbolic 3-manifold. In
Sections 6 and 7, we will analyse the behaviour of various invariants in finite covers.
In Section 8, we will explain how an understanding of this behaviour may lead to
some approaches to the Virtually Haken Conjecture. In Section 9, we will examine
arithmetic 3-manifolds and hyperbolic 3-orbifolds with non-empty singular locus,
as these appear to be particularly tractable. In Section 10, we will consider some
group-theoretic generalisations. And finally in Section 11, we will briefly give some
other directions in theory of finite covers of 3-manifolds that have emerged recently.

2. The state of play

While the techniques developed to study finite covers of 3-manifolds are interesting
and important, they have not yet solved the Virtually Haken Conjecture or its
variants. In fact, our understanding of these conjectures is still quite limited.
We focus, in this section, on the known unconditional results, and the known
interconnections between the various conjectures.

The manifolds that are most well understood, but for which our knowledge is
still far from complete, are the arithmetic hyperbolic 3-manifolds. We will not
give their definition here, but instead refer the reader to Maclachlan and Reid’s
excellent book on the subject [48].

We start with the Surface Subgroup Conjecture. Here, we have the following
result, due to the author [33].

Theorem 2.1. Any arithmetic hyperbolic 3-manifold contains a closed orientable
immersed π1-injective surface with positive genus.

In fact, a proof of the Surface Subgroup Conjecture for all closed hyperbolic
3-manifolds has recently been announced by Kahn and Markovic [25]. The details
of this are still being checked. But the proof of Theorem 2.1 is still relevant because
it falls into a general programme of the author for proving the Virtually Haken
Conjecture.

The Virtually Haken Conjecture remains open at present, and is only known to
hold in certain situations. Several authors have examined the case where the man-
ifold is obtained by Dehn filling a one-cusped finite-volume hyperbolic 3-manifold.
The expectation is that all but finitely many Dehn fillings of this manifold should
be virtually Haken. This is not known at present. However, the following theorem,
which is an amalgamation of results due to Cooper and Long [16] and Cooper and
Walsh [19, 20], goes some way to establishing this.
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Theorem 2.2. Let X be a compact orientable 3-manifold with boundary a sin-
gle torus, and with interior admitting a finite-volume hyperbolic structure. Then,
infinitely many Dehn fillings of X are virtually Haken.

One might hope to use the existence of a closed orientable immersed π1-injective
surface in a hyperbolic 3-manifold to find a finite cover of the 3-manifold which
is Haken. However, the jump from the Surface Subgroup Conjecture to the Vir-
tually Haken Conjecture is a big one. Currently, the only known method is the
use of the group-theoretic condition called subgroup separability (see Section 11
for a definition). This is a powerful property, but not many 3-manifold groups
are known to have it (see [4] for some notable examples). Indeed, the condition
is so strong that when the fundamental group of a closed orientable 3-manifold
contains the fundamental group of a closed orientable surface with positive genus
that is separable, then this manifold virtually fibres over the circle or has large
fundamental group. Nevertheless, subgroup separability is a useful and interesting
property. For example, an early application of the condition is the following, due
to Long [38].

Theorem 2.3. Any finite-volume hyperbolic 3-manifold that contains a closed
immersed totally geodesic surface has large fundamental group.

The progress towards the Positive Virtual b1 Conjecture is also quite limited.
An experimental analysis [21] by Dunfield and Thurston of the 10986 manifolds in
the Hodgson-Weeks census has found, for each manifold, a finite cover with positive
b1. This is encouraging, but the only known general results apply to certain classes
of arithmetic 3-manifolds. The following is due to Clozel [15]. (We refer the reader
to [48] for the definitions of the various terms in this theorem.)

Theorem 2.4. Let M be an arithmetic hyperbolic 3-manifold, with invariant trace
field k and quaternion algebra B. Assume that for every finite place ν where B
ramifies, the completion kν contains no quadratic extension of Qp, where p is a
rational prime and ν divides p. Then M has a finite cover with positive b1.

Again, the jump from positive virtual b1 to infinite virtual b1 is not known in
general. However, it is known for arithmetic 3-manifolds, via the following result,
which was first proved by Cooper, Long and Reid [18], but shortly afterwards,
alternative proofs were given by Venkataramana [63] and Agol [2].

Theorem 2.5. Suppose that an arithmetic hyperbolic 3-manifold M has b1 > 0.
Then M has finite covers with arbitrarily large b1.

The step from infinite virtual b1 to largeness is known to hold in some circum-
stances. The following result is due to the author, Long and Reid [35].

Theorem 2.6. Let M be an arithmetic hyperbolic 3-manifold. Suppose that M
has a finite cover with b1 ≥ 4. Then π1(M) is large.

Thus, combining the above three theorems, many arithmetic hyperbolic 3-
manifolds are known to have large fundamental groups. And by Theorem 2.1, they
all contain closed orientable immersed π1-injective surfaces with positive genus.
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The remaining problem is the Virtual Fibering Conjecture. For a long time,
this seemed to be rather less likely than the others, simply because there were
very few manifolds that were known to be virtually fibred that were not already
fibred. (Examples were discovered by Reid [54], Leininger [37] and Agol-Boyer-
Zhang [3].) However, this situation changed recently, with work of Agol [1], which
gives a useful sufficient condition for a 3-manifold to be virtually fibred. It has the
following striking consequence.

Theorem 2.7. Let M be an arithmetic hyperbolic 3-manifold that contains a closed
immersed totally geodesic surface. Then M is virtually fibred.

These manifolds were already known to have large fundamental group, by The-
orem 2.3. However, virtual fibration was somewhat unexpected here.

Finally, we should mention that the Virtually Haken Conjecture and its variants
are mostly resolved in the case when M is a compact orientable irreducible 3-
manifold with non-empty boundary. Indeed it is a fundamental fact that b1(M) ≥
b1(∂M)/2. Hence, M trivially satisfies the Positive Virtual b1 Conjecture. In fact,
much more is true, by the following results of Cooper, Long and Reid [17].

Theorem 2.8. Let M be a compact orientable irreducible 3-manifold with non-
empty boundary, that is not an I-bundle over a disc, annulus, torus or Klein bottle.
Then π1(M) is large.

Theorem 2.9. Let M be a compact orientable irreducible 3-manifold with non-
empty boundary. Then π1(M) is trivial or free or contains the fundamental group
of a closed orientable surface with positive genus.

The main unsolved problem for 3-manifolds with non-empty boundary is there-
fore the Virtual Fibering Conjecture for finite-volume hyperbolic 3-manifolds.

3. Congruence covers

We start with some obvious questions. How can one construct finite covers of a
hyperbolic 3-manifold? Do they come in different ‘flavours’? Of course, any finite
regular cover of a 3-manifold M is associated with a surjective homomorphism
from π1(M) onto a finite group. But there is no systematic theory for such homo-
morphisms in general. There are currently just two classes of finite covering spaces
of general hyperbolic 3-manifolds which are at all well-understood: congruence
covers and abelian covers. We will examine these in more detail in this section and
the one that follows it.

If Γ is the fundamental group of an orientable hyperbolic 3-manifold M , then
the hyperbolic structure determines a faithful homomorphism Γ → Isom+(H3) ∼=
PSL(2, C). When M has finite volume, one may in fact arrange that the image
lies in PSL(2, R), where R is obtained from the ring of integers of a number field
by inverting finitely many prime ideals. This permits the use of number theory.
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Specifically, one can take any proper non-zero ideal I in R, and consider the com-
posite homomorphsim

Γ → PSL(2, R) → PSL(2, R/I)

which is termed the level I congruence homomorphism. We denote it by φI . The
kernel of such a homomorphism is called a principal congruence subgroup, and any
subgroup that contains a principal congruence subgroup is congruence. We term
the corresponding cover of M a congruence cover. Now, R/I is a finite ring, and
in fact if I is prime, then R/I is a finite field. Hence, congruence covers always
have finite degree.

There is an alternative approach to this theory, involving quaternion algebras,
which is in many ways superior. It leads to the same definition of a congruence
subgroup, but the congruence homomorphisms are a little different. However, we
do not follow this approach here because it requires too much extra terminology.

Congruence subgroups are extremely important. They are used to prove the
following foundational result.

Theorem 3.1. The fundamental group Γ of a finite-volume orientable hyperbolic
3-manifold is residually finite. In fact, for all primes p with at most finitely many
exceptions, Γ is virtually residually p-finite.

The residual finiteness of Γ is established as follows. Let γ be any non-trivial
element of Γ, and let γ̂ be an inverse image of γ in SL(2, R). Then neither γ̂ − 1
nor γ̂ + 1 is the zero matrix, and so each has a non-zero matrix entry. Let x
be the product of these entries. Since x is a non-zero element of R, it lies in
only finitely many ideals I. Therefore γ̂ − 1 and γ̂ + 1 both have non-zero image
in SL(2, R/I) for almost all ideals I. For each such I, the images of γ and the
identity in PSL(2, R/I) are distinct, which proves residual finiteness.

To establish virtual residual p-finiteness, for some integral prime p, one works
with the principal ideals (pn) in R, where n ∈ N. Provided p does not lie in any
of the prime ideals that were inverted in the definition of R, (pn) is a proper ideal
of R. Let Γ(pn) denote the kernel of the level (pn) congruence homomorphism.
Then, by the above argument, for any non-trivial element γ of Γ, γ does not lie
in Γ(pn) for all sufficiently large n. In particular, this is true of all non-trivial γ
in Γ(p). Now, the image of Γ(p) under the level (pn) congruence homomorphism
lies in the subgroup of PSL(2, R/(pn)) consisting of elements that are congruent
to the identity mod (p). This is a finite p-group. Hence, we have found, for each
non-trivial element γ of Γ(p), a homomorphism onto a finite p-group for which the
image of γ is non-trivial, thereby proving Theorem 3.1.

The conclusions of Theorem 3.1 in fact hold more generally for any finitely
generated group that is linear over a field of characteristic zero, with essentially
the same proof. In fact, when studying congruence homomorphisms, one is led
naturally to the extensive theory of linear groups. Here, the Strong Approximation
Theorem of Nori and Weisfeiler [64] is particularly important. This deals with the
images of the congruence homomorphisms φI : Γ → PSL(2, R/I), as I ranges over
all the proper non-zero ideals of R, simultaneously. We will not give the precise
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statement here, because it also requires too much extra terminology. However, we
note the following consequence, which has, in fact, a completely elementary proof.

Theorem 3.2. There is a finite set S of prime ideals I in R with following prop-
erties.

1. For each prime non-zero ideal I of R that is not in S, Im(φI) is isomorphic
to PSL(2, qn) or PGL(2, qn), where q is the characteristic of R/I and n > 0.

2. For any finite set of prime non-zero ideals I1, . . . , Im in R, none of which
lies in S, and for which the characteristics of the fields R/Ii are all distinct,
the product homomorphism

m
∏

i=1

φIi
: Γ →

m
∏

i=1

PSL(2, R/Ii)

has image equal to
m
∏

i=1

Im(φIi
).

This has the following important consequence for homology modulo a prime p,
due to Lubotzky [41]. Given any prime p and group or space X, let dp(X) denote
the dimension of H1(X; Fp), as a vector space over the field Fp.

Theorem 3.3. Let Γ be the fundamental group of a finite-volume orientable hy-
perbolic 3-manifold. Let p be any prime integer, and let m be any natural number.
Then Γ has a congruence subgroup Γ̃ such that dp(Γ̃) ≥ m.

The proof runs as follows. For almost all integral primes q, there is a prime
ideal I in R such that R/I is a field of characteristic q. Moreover, by Theorem
3.2, we may assume that Im(φI) is isomorphic to PSL(2, qn) or PGL(2, qn), where
n ≥ 1. Inside PSL(2, qn) or PGL(2, qn), there is the subgroup consisting of diagonal
matrices, which is abelian with order (qn−1)/2 or (qn−1). We now want to restrict
to certain primes q, and to do this, we use Dirichlet’s theorem, which asserts that
there are infinitely many primes q such that q ≡ 1 (mod p). When p = 2, we also
require that q ≡ 1 (mod 4). For these q, p divides the order of the subgroup of
diagonal matrices, and so there is a subgroup of order p. We may find a set of m
such primes q1, . . . , qm so that each qi is the characteristic of R/Ii, where Ii is a
prime ideal avoiding the finite set S described above. Then we have an inclusion
of groups

(Z/p)m ≤ Im(φI1
) × · · · × Im(φIm

).

Now, Γ surjects onto the right-hand group. Let Γ̃ be the inverse image of the
left-hand group. This is a congruence subgroup, and by construction, it surjects
onto (Z/p)m. Hence, dp(Γ̃) ≥ m, thereby proving Theorem 3.3.

Since dp(Γ̃) is positive, the covering space corresponding to Γ̃ has a non-trivial
regular cover with covering group that is an elementary abelian p-group (in other
words is isomorphic to (Z/p)m for some m). Thus, we are led to the following type
of covering space.
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4. Abelian covers

A covering map is abelian (respectively, cyclic) provided it is regular and the group
of covering transformations is abelian (respectively, cyclic). A large amount of
attention has been focused on the homology of abelian covers. Indeed, one of the
earliest topological invariants, the Alexander polynomial, can be interpreted this
way. However, the Alexander polynomial is only defined when the covering group
is free abelian, and so we leave the realm of finite covering spaces. We therefore
will not dwell too long on the Alexander polynomial, but to omit mention of it
entirely would be remiss, especially as it has consequences also for certain finite
cyclic covers, via the following result, due to Silver and Williams [60] (see also
[55, 22]).

Theorem 4.1. Let M be a compact orientable 3-manifold, let M̃ be an infinite
cyclic cover and let ∆(t) ∈ Z[t, t−1] be the resulting Alexander polynomial. Its
Mahler measure is defined by

M(∆) = |c|
∏

i

max{1, |αi|},

as αi ranges over all roots of ∆(t), and c is the coefficient of the highest order
term. Let Mn be the degree n cyclic cover of M that is covered by M̃ . Then

log |H1(Mn)tor|
n

→ log M(∆),

as n → ∞, where H1(Mn)tor denotes the torsion part of H1(Mn).

Thus, provided ∆(t) has at least one root off the unit circle, |H1(Mn)tor| has
exponential growth as a function of n.

There are more sophisticated versions of this result, dealing for example with
the case when M̃ is a regular cover with a free abelian group of covering transfor-
mations [60]. However, the theory only applies when b1(M) is positive, and so, in
the absence of the solution to the Positive Virtual b1 Conjecture, methods using
the Alexander polynomial are not yet universally applicable in 3-manifold theory.

There is another important direction in the theory of abelian covers, which deals
with homology modulo a prime p. Let Γ be the fundamental group of a compact
orientable 3-manifold, and suppose that Γ̃ is a normal subgroup such that Γ/Γ̃ is
an elementary abelian p-group. Then an important result of Shalen and Wagreich
[59] gives a lower bound for the mod p homology of Γ̃. For simplicity, we will deal
only with the case where Γ/Γ̃ is as big as possible, which is when Γ̃ = [Γ,Γ]Γp.

Theorem 4.2. Let Γ be the fundamental group of a compact orientable 3-manifold,
and let Γ̃ = [Γ,Γ]Γp. Then,

dp(Γ̃) ≥
(

dp(Γ)
2

)

.
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This has the consequence that when dp(Γ) ≥ 3, then also dp(Γ̃) ≥ 3. Hence, we

may repeat the argument with Γ̃ in place of Γ. It is therefore natural to consider the
derived p-series of Γ, which is defined by setting Γ0 = Γ, and Γi+1 = [Γi,Γi](Γi)

p

for i ≥ 0. We deduce that when dp(Γ) ≥ 3, then the derived p-series is always
strictly descending. Moreover, when dp(Γ) > 3, then dp(Γi) tends to infinity. Note
that dp(Γi) need not tend to infinity when dp(Γ) = 3, as the example of the 3-torus
demonstrates.

The original proof of Theorem 4.2 by Shalen and Wagreich used the following
exact sequence of Stallings:

H2(Γ; Fp) → H2(Γ/Γ̃; Fp) →
Γ̃

[Γ̃,Γ](Γ̃)p
→ H1(Γ; Fp) → H1(Γ/Γ̃; Fp) → 0.

Let d = dp(Γ/Γ̃) = dp(Γ). Then, H2(Γ/Γ̃; Fp) is an elementary abelian p-group of
rank d(d+1)/2 by the Künneth formula. However, by Poincaré duality, H2(Γ; Fp)
is an elementary abelian p-group of rank at most d. Thus, by exactness of the
above sequence, Γ̃/([Γ̃,Γ](Γ̃)p) has rank at least d(d− 1)/2. But this is a quotient
of Γ̃/([Γ̃, Γ̃](Γ̃)p), which equals H1(Γ̃; Fp). Hence, one obtains the required lower

bound on dp(Γ̃).

Although this argument is short, it is not an easy one for a geometric topologist
to digest. In an attempt to try to understand it, the author found an alternative
topological proof, which then led to a considerable strengthening of the theorem.
The proof runs roughly as follows, focusing on the case p = 2 for simplicity.

Pick a generating set {x1, . . . , xn} for Γ such that the first d elements x1, . . . , xd

form a basis for H1(Γ; F2), and so that each xi is trivial in H1(Γ; F2) for i >
d. Let K be a 2-complex with fundamental group Γ, with a single 0-cell and
with 1-cells corresponding to the above generating set. Let K̃ be the covering
space corresponding to Γ̃. We are trying to find a lower bound on d2(Γ̃), which
is the rank of the cohomology group H1(K̃; F2). Now, H1(K̃; F2) is equal to
{1-cocycles on K̃}/{1-coboundaries on K̃}. Each 1-cocycle is, by definition, a 1-
cochain that evaluates to zero on the boundary of each 2-cell of K̃. However,
instead of examining all cochains, we only consider special ones, which are defined
as follows. For each integer 1 ≤ j ≤ d, each vertex of K̃ has a well-defined xj-
value, which is an integer mod 2. For 1 ≤ i ≤ j ≤ d, define the cochain xi ∧ xj to
have support equal to the xi-labelled edges which start (and end) at vertices with
xj-value 1. The space spanned by these cochains clearly has dimension d(d+1)/2.

These cochains have the key property that if two closed loops in K̃ differ by
a covering transformation, then their evaluations under one of these cochains are
equal. Hence, when we consider the space spanned by these cochains, and deter-
mine whether any element of this space is a cocycle, we only need to consider one
copy of each defining relation of Γ. It turns out that none of the cocycles in this
space is a coboundary, except the zero cocycle, and so d2(Γ̃) ≥ d(d + 1)/2 − r,
where r is the number of 2-cells of K. In fact, by modifying these cocycles a little,
the number of conditions that we must check can be reduced from r to b2(Γ; F2).
So, we deduce that, if Γ is any finitely presented group and Γ̃ = [Γ,Γ]Γ2 and
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d = d2(Γ), then
d2(Γ̃) ≥ d(d + 1)/2 − b2(Γ; F2).

And when Γ is the fundamental group of a compact orientable 3-manifold, Poincaré
duality again gives that b2(Γ; F2) ≤ d, proving Theorem 4.2.

This is not the end of the story, because it turns out that these cochains are
just the first in a whole series of cochains, each with an associated integer, which
is its ‘level’ ℓ. The ones above are those with level ℓ = 1. An example of a level 2
cochain has support equal to the x1-labelled edges which start at the vertices for
which the x2-value and x3-value are both 1. By considering cochains at different
levels, we can considerably strengthen Theorem 4.2, as follows. Again, there are
more general versions which deal with the general case where Γ/Γ̃ is an elementary
abelian p-group, but we focus on the case where Γ̃ = [Γ,Γ]Γ2.

Theorem 4.3. Let Γ be the fundamental group of a compact orientable 3-manifold,
and let Γ̃ = [Γ,Γ]Γ2. Then, for each integer ℓ between 1 and d2(Γ),

d2(Γ̃) ≥ d2(Γ)

(

d2(Γ)
ℓ

)

−
ℓ+1
∑

j=1

(

d2(Γ)
j

)

.

Setting ℓ = ⌊d2(Γ)/2⌋ and using Stirling’s formula to estimate factorials, we
deduce the following [31].

Theorem 4.4. Let Γ be the fundamental group of a compact orientable 3-manifold
such that d2(Γ) > 3. Let {Γi} be the derived 2-series of Γ. Then, for each λ <
√

2/π,

d2(Γi+1) ≥ λ2d2(Γi)
√

d2(Γi),

for all sufficiently large i.

This is not far off the fastest possible growth of homology of a finitely generated
group. By comparison, when {Γi} is the derived 2-series of a non-abelian free
group, then

d2(Γi+1) = 2d2(Γi)(d2(Γi) − 1) + 1.

Theorem 4.4 can be used to produce strong lower bounds on the number of covering
spaces of a hyperbolic 3-manifold, as we will see in the following section.

5. Counting finite covers

How many finite covers does a 3-manifold have? This question lies in the field of
subgroup growth [45], which deals with the behaviour of the following function.
For a finitely generated group Γ and positive integer n, let sn(Γ) be the number
of subgroups of Γ with index at most n.

The fastest possible growth rate of sn(Γ), as a function of n, is clearly achieved
when Γ is a non-abelian free group. In this case, sn(Γ) grows slightly faster than



Finite covering spaces of 3-manifolds 11

exponentially: it grows like 2n log n. More generally, any large finitely generated
group has this rate of subgroup growth.

By comparison, the subgroup growth of the fundamental group of a hyperbolic
3-manifold group has a lower bound that grows slightly slower than exponentially,
as the following result [31] of the author demonstrates.

Theorem 5.1. Let Γ be the fundamental group of a finite-volume hyperbolic 3-
manifold. Then,

sn(Γ) > 2n/(
√

log(n) log log n)

for infinitely many n.

The proof is a rapid consequence of Theorems 4.4 and 3.3. Theorem 3.3 gives
a finite index subgroup Γ̃ of Γ with d2(Γ̃) > 3. Then Theorem 4.4 implies that the
mod 2 homology of the derived 2-series of Γ̃ grows rapidly. And if Γi is a subgroup
of Γ with index n, then clearly

s2n(Γ) ≥ 2d2(Γi).

Thus, in the landscape of finite covers of a hyperbolic 3-manifold, abelian covers
appear to play a major role. Certainly, there are far more of them than there are
congruence covers, by the following result of Lubotzky [43], which estimates cn(Γ),
which is the number of congruence subgroups of Γ with index at most n.

Theorem 5.2. Let Γ be the fundamental group of an orientable finite-volume
hyperbolic 3-manifold. Then, there are positive constants a and b such that

na log n/ log log n ≤ cn(Γ) ≤ nb log n/ log log n,

for all n.

The lower bound provided by Theorem 5.1 is not sharp in general, because there
are many examples where Γ is large. Indeed, the Largeness Conjecture asserts that
this should always be the case.

There is another important situation when we know that the lower bound of
Theorem 5.1 can be improved upon, due to the following result of the author [30].

Theorem 5.3. Let Γ be the fundamental group of either an arithmetic hyperbolic
3-manifold or a finite-volume hyperbolic 3-orbifold with non-empty singular locus.
Then, there is a real number c > 1 such that sn(Γ) ≥ cn for infinitely many n.

Like Theorem 5.1, this is proved by finding lower bounds on the rank of the mod
p homology of certain finite covers. We will give more details in Section 9, where
the covering spaces of 3-orbifolds and arithmetic 3-manifolds will be examined
more systematically.
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6. The behaviour of algebraic invariants in finite

covers

As we have seen, it is important to understand how the homology groups can grow
in a tower of finite covers. Thus, we are led to the following related invariants of
a group Γ:

1. the first Betti number b1(Γ),

2. the torsion part H1(Γ)tor of first homology,

3. the rank dp(Γ) of mod p homology,

4. the rank of Γ, denoted d(Γ), which is the minimal number of generators.

For each of these invariants, it is natural to consider its growth rate in a nested
sequence of finite index subgroups Γi. For example, one can define the rank gradient
which is

lim inf
i

d(Γi)

[Γ : Γi]
.

The mod p homology gradient and first Betti number gradient are defined similarly.
The latter is in fact, by a theorem of Lück [47], related to the first L2 Betti number

of Γ (denoted b
(2)
1 (Γ)). More precisely, when Γi is a nested sequence of finite-index

normal subgroups of a finitely presented group Γ, and their intersection is the

identity, then their first Betti number gradient is equal to b
(2)
1 (Γ). When Γ is the

fundamental group of a finite-volume hyperbolic 3-manifold, b
(2)
1 (Γ) is known to

be zero, and hence b1(Γi) always grows sub-linearly as a function of the covering
degree [Γ : Γi]. Interestingly, there is no corresponding theory for mod p homology
gradient, and the following question is at present unanswered.

Question. Let Γ be a finitely presented group, let Γi be a nested sequence of
finite-index normal subgroups that intersect in the identity. Then does their mod
p homology gradient depend only on Γ and possibly p, but not the sequence Γi?

This is unknown, but it seems very likely that the mod p homology gradient
is always zero when Γ is the fundamental group of a finite-volume hyperbolic 3-
manifold and the subgroups intersect in the identity. However, if we drop the
condition that the subgroups intersect in the identity, then there is an interest-
ing situation where positive mod p homology gradient is known to hold, by the
following result of the author [30].

Theorem 6.1. Let Γ be the fundamental group of either an arithmetic hyperbolic
3-manifold or a finite-volume hyperbolic 3-orbifold with non-empty singular locus.
Then, for some prime p, Γ has a nested strictly descending sequence of finite-index
subgroups with positive mod p homology gradient.

We will explore this in more detail in Section 9. But we observe here that
it rapidly implies Theorem 5.3. The existence of such a sequence of finite-index
subgroups seems to be a very strong conclusion. In fact, the following is unknown.
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Question. Suppose that a finitely presented group Γ has a strictly descending
sequence of finite-index subgroups with positive mod p homology gradient, for some
prime p. Does this imply that Γ is large?

We will give some affirmative evidence for this in Section 10. Somewhat sur-
prisingly, this question is related to the theory of error-correcting codes (see [32]).

We have mostly focused on the existence of very fast homology growth for
certain covers of hyperbolic 3-manifolds. But one can also consider the other end
of the spectrum, and ask how slowly the homology groups of a tower of covers can
grow. In this context, the following theorem of Boston and Ellenberg [7] is striking
(see also [12]).

Theorem 6.2. There is an example of a closed hyperbolic 3-manifold, with funda-
mental group that has a sequence of nested finite-index normal subgroups Γi which
intersect in the identity, such that b1(Γi) = 0 and d3(Γi) = 3 for all i.

This is proved using the theory of pro-p groups. This is a particularly promising
set of techniques, which will doubtless have other applications to 3-manifold theory.

7. The behaviour of geometric and topological in-

variants in finite covers

In addition to the above algebraic invariants, it seems to be important also to
understand the behaviour of various geometric and topological invariants in a tower
of covers, including the following:

1. the first eigenvalue of the Laplacian,

2. the Cheeger constant,

3. the Heegaard genus.

We will recall the definitions of these terms below.
It is well known that the Laplacian on a closed Riemannian manifold M has

a discrete set of eigenvalues, and hence there is a smallest positive eigenvalue,
denoted λ1(M). This exerts considerable control over the geometry of the manifold.
In particular, it is related to the Cheeger constant h(M), which is defined to be

inf
S

Area(S)

min{Volume(M1),Volume(M2)}
,

as S ranges over all codimension-one submanifolds that divide M into submanifolds
M1 and M2. It is a famous theorem of Cheeger [14] and Buser [11] that if M is
closed Riemannian n-manifold with Ricci curvature at least −(n − 1)a2 (for some
a ≥ 0), then

h(M)2/4 ≤ λ1(M) ≤ 2a(n − 1)h(M) + 10(h(M))2.
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A consequence is that if Mi is a sequence of finite covers of M , then λ1(Mi) is
bounded away from zero if and only if h(Mi) is. In this case, π1(M) is said to have
Property (τ) with respect to the subgroups {π1(Mi)}. As the definition implies,
this depends only on the fundamental group π1(M) and the subgroups {π1(Mi)},
and not on the choice of particular Riemannian metric on M . Also, π1(M) is said
to have Property (τ) if it has Property (τ) with respect to the collection of all
its finite-index subgroups. Since any finitely presented group is the fundamental
group of some closed Riemannian manifold, this is therefore a property that is or is
not enjoyed by any finitely presented group. In fact, one can extend the definition
to finitely generated groups that need not be finitely presented. (See [42, 46] for
excellent surveys of this concept.)

The reason for the ‘τ ’ terminology is that Property (τ) is a weak form of
Kazhdan’s Property (T). In particular, any finitely generated group with Property
(T) also has Property (τ) [49]. A harder result is due to Selberg [58], which implies
that SL(2, Z) has Property (τ) with respect to its congruence subgroups.

The simplest example of a group without Property (τ) is Z. Also, if there
is a surjective group homomorphism Γ → Γ and Γ does not have Property (τ),
then nor does Γ. Hence, if a group has a finite-index subgroup with positive first
Betti number, then it does not have Property (τ). Strikingly, it remains an open
question whether the converse holds in the finitely presented case.

Question. If a finitely presented group does not have Property (τ), then must it
have a finite-index subgroup with positive first Betti number?

The assumption that the group is finitely presented here is critical. For exam-
ple, Grigorchuk’s group [23] is residually finite and amenable, and hence does not
have Property (τ), and yet it is a torsion group, and so no finite-index subgroup
has positive first Betti number. Although a positive answer to this question is
unlikely, it might have some striking applications. For example, every residually
finite group with sub-exponential growth does not have Property (τ). So, a posi-
tive answer to the above question might be a step in establishing that such groups
are virtually nilpotent, provided they are finitely presented.

One small piece of evidence for an affirmative answer to the question is given
by the following theorem of the author [29], which relates the behaviour of λ1 and
h to the existence of a finite-index subgroup with positive first Betti number.

Theorem 7.1. Let M be a closed Riemannian manifold. Then the following are
equivalent:

• there exists a tower of finite covers {Mi} of M with degree di, where each
Mi → M1 is regular, and such that λ1(Mi)di → 0;

• there exists a tower of finite covers {Mi} of M with degree di, where each
Mi → M1 is regular, and such that h(Mi)

√
di → 0;

• there exists a finite-index subgroup of π1(M) with positive first Betti number.
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However, it remains unlikely that the above question has a positive answer.
Hence, the following conjecture [44] about 3-manifolds is a priori much weaker
than the Positive Virtual b1 Conjecture.

Conjecture (Lubotzky-Sarnak). The fundamental group of any closed hyperbolic
3-manifold does not have Property (τ).

This is a natural question for many reasons. It is known that if Γ is a lattice
in a semi-simple Lie group G, then whether or not Γ has Kazhdan’s Property (T)
depends only on G. It remains an open question whether a similar phenomenon
holds for Property (τ), but if it did, then this would of course imply the Lubotzky-
Sarnak Conjecture.

An ‘infinite’ version of the Lubotzky-Sarnak Conjecture is known to hold, ac-
cording to the following result of the author, Long and Reid [36].

Theorem 7.2. Any closed hyperbolic 3-manifold has a sequence of infinite-sheeted
covers Mi where λ1(Mi) and h(Mi) both tend to zero.

Of course, λ1(Mi) and h(Mi) need to be defined appropriately, since each Mi

has infinite volume. In the case of λ1(Mi), this is just the bottom of the spectrum
of the Laplacian on L2 functions on Mi. To define h(Mi), one considers all compact
codimension-zero submanifolds of Mi, one evaluates the ratio of the area of their
boundary to their volume, and then one takes the infimum. Just as in the finite-
volume case, there is a result of Cheeger [14] which asserts that λ1(Mi) ≥ h(Mi)

2/4.
Also, in the case of hyperbolic 3-manifolds Mi, these quantities are related to
another important invariant δ(Mi), which is the critical exponent. A theorem of
Sullivan [61] asserts that

λ1(Mi) =

{

δ(Mi)(2 − δ(Mi)) if δ(Mi) ≥ 1

1 if δ(Mi) ≤ 1.

The proof of Theorem 7.2 relies crucially on a recent result of Bowen [9], which
asserts that, given any closed hyperbolic 3-manifold M and any finitely generated
discrete free convex-cocompact subgroup F of PSL(2, C), there is an arbitrarily
small ‘perturbation’ of F which places a finite-index subgroup of F as a subgroup
of π1(M). Starting with a group F where δ(F ) is very close to 2, the critical
exponent of this perturbation remains close to 2. Thus, this produces subgroups
of π1(M) with critical exponent arbitrarily close to 2. By Sullivan’s theorem, the
corresponding covers Mi of M have λ1(Mi) arbitrarily close to zero. By Cheeger’s
theorem, h(Mi) also tends to zero, proving Theorem 7.2.

Although the infinite version of the Lubotzky-Sarnak Conjecture does not seem
to have any immediate consequence for finite covering spaces of closed hyperbolic
3-manifolds, it can be used to produce surface subgroups. Indeed, it is a key step
in the proof of Theorem 2.1. We will give more details in Section 9.

In addition to understanding λ1(Mi) and h(Mi) for finite covering spaces Mi, it
also seems to be important to understand the growth rate of their Heegaard genus.
Recall that any closed orientable 3-manifold M can be obtained by gluing two
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handlebodies via a homeomorphism between their boundaries. This is a Heegaard
splitting for M , and the image of the boundary of each handlebody is a Heegaard
surface. The minimal genus of a Heegaard surface in M is known as the Heegaard
genus g(M). A related quantity is the Heegaard Euler characteristic χh

−
(M), which

is 2g(M)−2. These are widely-studied invariants of 3-manifolds, and there is now a
well-developed theory of Heegaard splittings [56]. It is therefore natural to consider
the Heegaard gradient of a sequence of finite covers {Mi}, which is

lim inf
i

χh
−

(Mi)

degree(Mi → M)
.

Somewhat surprisingly, the Cheeger constant and the Heegaard genus of a closed
hyperbolic 3-manifold are related by the following inequality of the author [29].

Theorem 7.3. Let M be a closed orientable hyperbolic 3-manifold. Then

h(M) ≤ 8π(g(M) − 1)

Volume(M)
.

A consequence is that if the Heegaard gradient of a sequence of finite covers of
M is zero, then the corresponding subgroups of π1(M) do not have Property (τ).
Equivalently, if a sequence of finite covers has Property (τ), then these covers have
positive Heegaard gradient.

We now give a sketch of the proof of Theorem 7.3. Any Heegaard splitting for
a 3-manifold M determines a ‘sweepout’ of the manifold by surfaces, as follows.
The Heegaard surface divides the manifold into two handlebodies, each of which
is a regular neighbourhood of a core graph. Thus, there is a 1-parameter family of
copies of the surface, starting with the boundary of a thin regular neighbourhood
of one core graph and ending with the boundary of a thin regular neighbourhood
of the other graph. Consider sweepouts where the maximum area of the surfaces
is as small as possible. Then, using work of Pitts and Rubinstein [53], one can
arrange that the surfaces of maximal area tend (in a certain sense) to a minimal
surface S, which is obtained from the Heegaard surface possibly by performing
some compressions. Since S is a minimal surface in a hyperbolic 3-manifold, Gauss-
Bonnet implies that its area is at most −2πχ(S) ≤ 4π(g(M) − 1). Hence, we
obtain a sweepout of M by surfaces, each of which has area at most this bound
(plus an arbitrarily small ǫ > 0). One of these surfaces divides M into two parts of
equal volume. This decomposition gives the required upper bound on the Cheeger
constant h(M).

There is an important special case when the Heegaard gradient of a sequence
of finite covers is zero. Suppose that M fibres over the circle with fibre F . Then
it is easy to construct a Heegaard splitting for M with genus at most 2g(F ) + 1,
where g(F ) is the genus of F . Hence, the finite cyclic covers of M dual to F
have uniformly bounded Heegaard genus. In particular, their Heegaard gradient
is zero. This is the only known method of constructing sequences of finite covers
of a hyperbolic 3-manifold with zero Heegaard gradient. And so we are led to the
following conjecture of the author, called the Heegaard Gradient Conjecture [29].
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Conjecture. A closed orientable hyperbolic 3-manifold has zero Heegaard gradient
if and only if it virtually fibres over the circle.

This remains a difficult open problem. However, a qualitative version of it
is known to be true. More specifically, if a closed hyperbolic 3-manifold has a
sequence of finite covers with Heegaard genus that grows ‘sufficiently slowly’, then
these covers are eventually fibred, by the following result of the author [27].

Theorem 7.4. Let M be a closed orientable hyperbolic 3-manifold, and let Mi be
a sequence of finite regular covers, with degree di. Suppose that g(Mi)/

4
√

di → 0.
Then, for all sufficiently large i, Mi fibres over the circle.

The proof of this uses several of the results mentioned above. Using Theorem

7.3, the hypothesis that g(Mi)/
4
√

di → 0 implies that h(Mi)d
3/4
i → 0. Hence, by

Theorem 7.1, we deduce that some finite-sheeted cover of M has positive first Betti
number. In fact, if we go back to the proof of Theorem 7.1, we see that this is
true of each Mi sufficiently far down the sequence, and with further work, one can
actually prove that these manifolds fibre over the circle.

We will see that the two conjectures introduced in this section, the Lubotzky-
Sarnak Conjecture and the Heegaard Gradient Conjecture, may be a route to
proving the Virtually Haken Conjecture.

8. Two approaches to the Virtually Haken Conjec-

ture

The two conjectures introduced in the previous section can be combined to form
an approach to the Virtually Haken Conjecture, via the following theorem of the
author [29].

Theorem 8.1. Let M be a closed orientable irreducible 3-manifold, and let Mi be
a tower of finite regular covers of M such that

1. their Heegaard gradient is positive, and

2. they do not have Property (τ).

Then, for all sufficiently large i, Mi is Haken.

Hence, the Lubotzky-Sarnak Conjecture and the Heegaard Gradient Conjecture
together imply the Virtually Haken Conjecture. For, assuming the Lubotzky-
Sarnak Conjecture, a closed orientable hyperbolic 3-manifold M has a tower of
finite regular covers without Property (τ). If these have positive Heegaard gradient,
then by Theorem 8.1, they are eventually Haken. On the other hand, if they have
zero Heegaard gradient, then by the Heegaard Gradient Conjecture, M is virtually
fibred.

The proof requires some ideas from the theory of Heegaard splittings. A central
concept in this theory is the notion of a strongly irreducible Heegaard surface S,
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which means that any compression disc on one side of S must intersect any com-
pression disc on the other side. A key theorem of Casson and Gordon [13] implies
that if a closed orientable irreducible 3-manifold has a minimal genus Heegaard
splitting that is not strongly irreducible, then the manifold is Haken. A quantified
version of this is as follows. Suppose that S is a Heegaard surface for the closed
3-manifold M , and that there are d disjoint non-parallel compression discs on one
side of S that are all disjoint from d disjoint non-parallel compression discs on the
other side of S. Then, either g(M) ≤ g(S) − (d/6) or M is Haken.

Suppose now that Mi is a sequence of covers of M as in Theorem 8.1. Let S
be a minimal genus Heegaard surface for M . Its inverse image in each Mi is a
Heegaard surface Si. We are assuming that the Heegaard gradient of these covers
is positive. Hence (by replacing M by some Mi if necessary), we may assume that
g(Mi) is roughly g(Si). Now, we are also assuming that these covers do not have
Property (τ). Hence, there is a way of decomposing Mi into two pieces Ai and Bi

with large volume, and with small intersection. By using compression discs on one
side of Si that lie in Ai and compression discs on the other side of Si that lie in Bi,
we obtain di discs on each side of Si which are all disjoint and non-parallel, and
where di grows linearly as a function of the covering degree of Mi → M . Hence,
by the quantified version of Casson-Gordon, if Mi is not Haken, then g(Mi) is
substantially less than g(Si), which is a contradiction, thereby proving Theorem
8.1.

Of course, it remains unclear whether the hypotheses of Theorem 8.1 always
hold, and hence the Virtually Haken Conjecture remains open. However, there is
another intriguing approach. By using results of Bourgain and Gamburd [8] which
give lower bounds on the first eigenvalue of the Laplacian on certain Cayley graphs
of SL(2, p), Long, Lubotzky and Reid [39] were able to establish the following
theorem.

Theorem 8.2. Let M be a closed orientable hyperbolic 3-manifold. Then M has a
sequence of finite covers Mi with Property (τ) and such that the subgroups π1(Mi)
of π1(M) intersect in the identity.

Combining this with Theorem 7.3, we deduce that these covers have positive
Heegaard gradient. Now, Theorem 8.2 does not provide a tower of finite regular
covers, but it is not unreasonable to suppose that this can be achieved. Hence, by
replacing M by some Mi if necessary, we may assume that the Heegaard gradient of
these covers is very close to χh

−
(M). Let S be any minimal genus Heegaard surface

for M . Its inverse image Si in Mi is a Heegaard splitting of Mi, and it therefore
is nearly of minimal genus. It is reasonable to conjecture that there is a minimal
genus splitting Si for Mi with geometry ‘approximating’ that of Si. Now, Si

inevitably fails to be strongly irreducible when the degree of Mi → M is large, via
a simple argument that counts compression discs and their points of intersection.
One might conjecture that this is also true of Si, which would therefore imply that
Mi is Haken for all sufficiently large i. Of course, this is somewhat speculative,
and the conjectural relationship between Si and Si may not hold. But it highlights
the useful interaction between Heegaard splittings, Property (τ) and the Virtually
Haken Conjecture.
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9. Covering spaces of hyperbolic 3-orbifolds and

arithmetic 3-manifolds

The material in the previous section is, without doubt, rather speculative. How-
ever, the ideas behind it have been profitably applied in some important special
cases. It seems to be easiest to make progress when analysing finite covers of either
of the following spaces:

1. hyperbolic 3-orbifolds with non-empty singular locus;

2. arithmetic hyperbolic 3-manifolds.

There is a well-developed theory of orbifolds, their fundamental groups and
their covering spaces. We will only give a very brief introduction here, and refer
the reader to [57] for more details.

Recall that an orientable hyperbolic 3-orbifold O is the quotient of hyperbolic
3-space H3 by a discrete group Γ of orientation-preserving isometries. This group
may have non-trivial torsion, in which case it does not act freely. The images in O
of points in H3 with non-trivial stabiliser form the singular locus sing(O). This is
a collection of 1-manifolds and trivalent graphs. Each 1-manifold and each edge of
each graph has an associated positive integer, its order, which is the order of the
finite stabiliser of corresponding points in H3. For any positive integer n, singn(O)
denotes the closure of the union of singular edges and 1-manifolds that have order
a multiple of n. The underlying topological space of a 3-orbifold O is always a
3-manifold, denoted |O|.

One can define the fundamental group π1(O) of any orbifold O, which is, in
general, different from the usual fundamental group of |O|. When O is hyperbolic,
and hence of the form H3/Γ, its fundamental group is Γ. One can also define the
notion of a covering map between orbifolds. In the hyperbolic case, these maps
are of the form H3/Γ′ → H3/Γ, for some subgroup Γ′ of Γ. Note that this need
not be a cover in the usual topological sense.

The following result of the author, Long and Reid [35] allows one to apply
orbifold technology in the arithmetic case.

Theorem 9.1. Any arithmetic hyperbolic 3-manifold is commensurable with a
3-orbifold O with non-empty singular locus. Indeed, one may arrange that every
curve and arc of the singular locus has order 2 and that there is at least one singular
vertex.

The main reason why 3-orbifolds are often more tractable than 3-manifolds is
the following lower bound on the rank of their homology [30]. For an orbifold O
and prime p, we let dp(O) denote dp(π1(O)).

Theorem 9.2. Let O be a compact orientable 3-orbifold. Then for any prime p,
dp(O) ≥ b1(singp(O)).

The reason is that π1(O) can be computed by starting with the usual funda-
mental group of the manifold O − sing(O) and then quotienting out powers of the
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meridians of the singular locus, where the power is the relevant edge’s singularity
order. If this order is a multiple of p, then quotienting out this power of this
meridian has no effect on dp. On the other hand, if the order of a singular edge
or curve is coprime to p, then we may replace these points by manifold points
without changing dp. Hence, dp(O) = dp(|O| − int(N(singp(O)))). Now, the latter
space is a compact orientable 3-manifold M with boundary, and it is a well-known
consequence of Poincaré duality that dp(M) is at least dp(∂M)/2. From this, the
required inequality rapidly follows.

So, as far as mod p homology is concerned, orbifolds O where singp(O) is non-
empty behave as though they have non-empty boundary. And 3-manifolds with
non-empty boundary are often much more tractable than closed ones.

Theorem 9.2 is the basis behind Theorem 6.1. Here, we are given a finite-
volume hyperbolic 3-orbifold O with non-empty singular locus. The main case is
when O is closed. Let p be a prime that divides the order of some edge or curve in
the singular locus. We first show that one can find a finite cover Õ where sing(Õ)
is a non-empty collection of simple closed curves with singularity order p, and
where dp(Õ) ≥ 11, using techniques that are generalisations of those in Section

3. Let λ and µ be a longitude and meridian of some component L of sing(Õ),
viewed as elements of π1(Õ). Then, using the Golod-Shafarevich inequality [40],
we can show that π1(Õ)/〈〈λ, µ〉〉 is infinite, and in fact has an infinite sequence of
finite-index subgroups. These pull back to finite-index subgroups of π1(Õ), which
determine a sequence of covering spaces Oi. Because these subgroups contain the
normal subgroup 〈〈λ, µ〉〉, the inverse image of L in each Oi is a disjoint union of
copies of L. Hence, there is a linear lower bound on the number of components of
singp(Oi) as a function of the covering degree. Therefore, by Theorem 9.2, dp(Oi)
grows linearly, as required.

For any closed orientable 3-manifold M , there are obvious inequalities g(M) ≥
d(π1(M)) ≥ dp(M), and the same is true for closed orientable 3-orbifolds (with
an appropriate definition of Heegaard genus). Hence, Theorem 6.1 provides a
sequence of finite covers of the orbifold O with positive Heegaard gradient. If we
also knew that these covers did not have Property (τ), then by (an orbifold version
of) Theorem 8.1, we would deduce that they are eventually Haken. In fact, we
would get much more than this. We would be able to deduce that π1(O) is large,
via the following theorem of the author [32].

Theorem 9.3. Let Γ be a finitely presented group, let p be a prime and suppose
that Γ ≥ Γ1 ⊲ Γ2 ⊲ . . . is a sequence of finite-index subgroups, where each Γi+1 is
normal in Γi and has index a power of p. Suppose that

1. the subgroups Γi have positive mod p homology gradient, and

2. the subgroups Γi do not have Property (τ).

Then Γ is large.

We will explain the proof of this and related results in the next section. Similar
reasoning also gives the the following theorem [35].
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Theorem 9.4. The Lubotzky-Sarnak Conjecture implies that any closed hyperbolic
3-orbifold that has at least one singular vertex has large fundamental group. In
particular, the Lubotzky-Sarnak Conjecture implies that every arithmetic hyperbolic
3-manifold has large fundamental group.

It is quite striking that the Lubotzky-Sarnak Conjecture, which is a question
solely about the spectrum of the Laplacian, should have such far-reaching conse-
quences for arithmetic hyperbolic 3-manifolds.

The way that this is proved is as follows. One starts with the closed hyperbolic
3-orbifold O with at least one singular vertex. Its fundamental group therefore
contains a finite non-cyclic subgroup. For simplicity, suppose that this is Z/2×Z/2
(which is the case considered in [35]). One can then pass to a finite cover Õ
where every arc and circle of the singular locus has order 2 and which has at least
one singular vertex. Any finite cover of the underlying manifold |Õ| induces a
finite cover Oi of Õ where sing(Oi) is the inverse image of sing(Õ). Since sing(Õ)
contains a trivalent vertex, b1(sing2(Oi)) grows linearly as a function of the covering
degree. Hence, {π1(Oi)} has positive mod 2 homology gradient. With some further
work, and using the solution to the Geometrisation Conjecture, we may arrange
that |Õ| has a hyperbolic structure or has a finite cover with positive b1. Hence,
assuming the Lubotzky-Sarnak Conjecture, one can find finite covers |Oi| with
Cheeger constants tending to zero. Thus, π1(O) is large, by Theorem 9.3.

The above arguments are closely related to those behind Theorem 2.1. In fact,
we can prove the following stronger version [33].

Theorem 9.5. Let Γ be the fundamental group of a finite-volume hyperbolic 3-
orbifold or 3-manifold. Suppose that Γ has a finite non-cyclic subgroup or is arith-
metic. Then Γ contains the fundamental group of a closed orientable surface with
positive genus.

The proof runs as follows. One uses the same finite cover Õ as above. We
do not know that the Lubotzky-Sarnak Conjecture holds, but we have Theorem
7.2, which provides a sequence of infinite-sheeted covers |Oi| of |Õ| with Cheeger
constants tending to zero. These induce covers Oi of Õ. One can use the singular
locus of Oi to find a finite cover with more than one end. It then follows quickly
that π1(Oi) contains a surface subgroup.

To make further progress with finite covers, it seems to be necessary to establish
the Lubotzky-Sarnak Conjecture. But there is an important special case where this
holds trivially: when the manifold or orbifold has a finite cover with positive first
Betti number. For example, suppose that O is a compact orientable 3-orbifold with
singular locus that contains a simple closed curve C. Suppose also that there is a
surjective homomorphism π1(O) → Z that sends [C] to zero. Then the resulting
finite cyclic covers have linear growth of mod p homology (where p divides the
order of C) and also their Cheeger constants tend to zero. So, by Theorem 9.3,
π1(O) is large. Using this observation, the author, Long and Reid were able to
prove the following [35].
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Theorem 9.6. Let Γ be the fundamental group of a finite-volume hyperbolic 3-
manifold or 3-orbifold. Suppose that Γ is arithmetic or contains Z/2×Z/2. Suppose
also that Γ has a finite-index subgroup Γ̃ with b1(Γ̃) ≥ 4. Then Γ is large.

This is significant because such a finite-index subgroup Γ̃ is known to exist in
many cases. Indeed, arithmetic techniques, due to Clozel [15], Labesse-Schwermer
[26], Lubotzky [44] and others, often provide a congruence subgroup with positive
first Betti number. Then, using a theorem of Borel [6], one can find congruence
subgroups with arbitrarily large first Betti number. The consequence of Theorem
9.6 is that one can in fact strengthen the conclusion to deduce that these groups
are large.

10. Group-theoretic generalisations

We have discussed several topological results, such as Theorem 8.1, which are
helpful in tackling the Virtually Haken Conjecture. It is natural to ask whether
there are more general group-theoretic versions of these theorems. In many cases,
there are. For example, the following is a version of Theorem 8.1, due to the author
[28].

Theorem 10.1. Let Γ be a finitely presented group, and let {Γi} be a nested
sequence of finite-index normal subgroups. Suppose that

1. their rank gradient is positive, and

2. they do not have Property (τ).

Then, for all sufficiently large i, Γi is an amalgamated free product or HNN exten-
sion.

We now give an indication of the proof. As is typical with arguments in this
area, one starts with a finite cell complex K with fundamental group Γ. Let Ki

be the finite covering space corresponding to Γi. The hypothesis that Γ does not
have Property (τ) with respect to {Γi} implies that one can form a decomposition
of Ki into two sets Bi and Ci with large volume but small intersection. Via the
Seifert - van Kampen theorem, this then determines a decomposition of Γi into a
graph of groups. We must show that this is a non-trivial decomposition. In other
words, we must ensure that neither π1(Bi) nor π1(Ci) surjects onto Γi. This is
where the hypothesis that {Γi} has positive rank gradient is used. The number
of 1-cells of Bi (or Ci) gives an upper bound to the rank of π1(Bi), and this is a
definite fraction of the total number of 1-cells of Ki. Hence if π1(Bi) or π1(Ci)
were to surject onto Γi, one could use this to deduce that the rank of Γi was too
small.

We have also seen Theorem 9.3, which starts with the stronger hypothesis of
positive mod p homology gradient, and which ends with the strong conclusion of
largeness. The proof follows similar lines, but now the goal is to show that neither
H1(Bi; Fp) nor H1(Ci; Fp) surjects onto H1(Γi; Fp). Instead of using the Seifert -
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van Kampen theorem, the Meyer-Vietoris theorem is used. One deduces that if
H1(Bi; Fp) or H1(Ci; Fp) were to surject onto H1(Γi; Fp), then H1(Γi; Fp) would
be too small, contradicting the assumption that the subgroups Γi have positive
mod p homology gradient. Hence, again we get a graph of groups decomposition
for Γi. This induces a graph of groups decomposition for Γ̃i = [Γi,Γi](Γi)

p. Its
underlying graph has valence at least p at each vertex. And Γ̃i surjects onto the
fundamental group of this graph, which is a non-abelian free group (when p 6= 2),
as required.

One might wonder whether Theorem 9.3 remains true even if we do not assume
that the subgroups {Γi} do not have Property (τ). The above proof breaks down.
But is the hypothesis that the subgroups Γi have positive mod p homology gradient
enough to deduce largeness? As mentioned in Section 6, this question relates to
error-correcting codes. More details can be found in [32]. However, there is one
interesting and natural situation where the hypothesis of positive mod p homology
gradient is enough to deduce largeness, according to the following theorem of the
author [34].

Theorem 10.2. Let Γ be a finitely presented group. Suppose that its derived
p-series has positive mod p homology gradient. Then Γ is large.

The main part of the proof is showing that if the derived p-series of Γ has
positive mod p homology gradient, then it does not have Property (τ). Hence, by
Theorem 9.3, Γ is large. Once again, let K be a finite 2-complex with fundamental
group Γ, and let Ki be the covering space corresponding to the subgroup Γi in the
derived p-series. One needs to show that the Cheeger constant of Ki is arbitrarily
small. This is achieved by finding non-trivial 1-cocycles on Ki−1 with small support
size, compared with the total number of edges of Ki−1. If K̃i−1 denotes the
cyclic covering space dual to such a cocycle, then the inverse image of the cocycle
determines a decomposition of K̃i−1 into two parts with large volume and small
intersection. Since Ki finitely covers K̃i−1, it too has small Cheeger constant.
In fact, one keeps track of not just one cocycle on Ki−1, but several of them,
and one uses these to create cocycles on Ki with slightly smaller relative support
size, and so on. This is achieved using the technology explained in Section 4 for
constructing cocycles on abelian covers, together with an elementary theorem from
coding theory, known as the Plotkin bound.

11. Subgroup separability, special cube complexes

and virtual fibering

There are many other interesting directions in the theory of finite covers of 3-
manifolds, which we can only briefly discuss here.

The first of these is the notion of subgroup separability. A subgroup H of a
group Γ is separable if for every element γ ∈ Γ that does not lie in H, there is a
homomorphism φ from Γ onto a finite group such that φ(γ) 6∈ φ(H). A group Γ is
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said to be LERF if every finitely generated subgroup is separable. The relevance
of this concept to 3-manifolds arises from the following theorem [38].

Theorem 11.1. Let M be a compact orientable irreducible 3-manifold, and sup-
pose that π1(M) has a separable subgroup that is isomorphic to the fundamental
group of a closed orientable surface with positive genus. Then either M is virtually
fibred or π1(M) is large. In particular, M is virtually Haken.

This raises the question of which 3-manifolds have LERF fundamental group.
There are examples of certain graph 3-manifolds M for which π1(M) is not LERF
[10]. But it is conjectured that the fundamental group of every closed hyperbolic
3-manifold is LERF. A piece of evidence for this conjecture is given by the following
important theorem, which is an amalgamation of work by Agol, Long and Reid [4]
and Bergeron, Haglund and Wise [5].

Theorem 11.2. Let M be an arithmetic hyperbolic 3-manifold which contains a
closed immersed totally geodesic surface. Then every geometrically finite subgroup
of π1(M) is separable.

There is an important new concept, introduced by Haglund and Wise [24], that
relates to subgroup separability. They considered a certain type of cell complex,
known as a special cube complex. A group is said to be virtually special if it
has a finite index subgroup which is the fundamental group of a compact special
cube complex. One major motivation for introducing this concept is the following
theorem of Haglund and Wise [24].

Theorem 11.3. Let Γ be a word-hyperbolic group that is virtually special. Then
every quasi-convex subgroup of Γ is separable.

In the 3-dimensional case, it is known that this condition is equivalent to having
‘enough’ surface subgroups that are separable. Indeed Theorem 11.2 is proved in
the case when M is closed by using the surface subgroups arising from totally
geodesic surfaces to deduce that π1(M) is virtually special.

This is related to work of Agol [1]. He introduced a condition on a group,
called RFRS. We will not give the definition of this here, but we note that if a
group is virtually special then it is virtually RFRS. Agol was able to show that this
condition can be used to prove that a 3-manifold virtually fibres over the circle.

Theorem 11.4. Let M be a compact orientable irreducible 3-manifold with bound-
ary a (possibly empty) collection of tori. Suppose that π1(M) is virtually RFRS.
Then M has a finite cover that fibres over the circle.

The hypotheses that π1(M) is virtually RFRS or virtually special are strong
ones. However, Wise has recently raised the possibility of showing that if a com-
pact orientable hyperbolic 3-manifold M has a properly embedded orientable in-
compressible surface that is not a sphere or a virtual fibre, then π1(M) is virtually
special, by using induction along a hierarchy for M . While this would not say
anything about the Virtually Haken Conjecture itself, it would be a very major
development, as it would nearly reduce all the other conjectures to it. For example,
combined with Theorem 11.4, it would show that every finite-volume orientable
hyperbolic Haken 3-manifold is virtually fibred.
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