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1. Introduction

In 3-manifold theory, properly embedded surfaces play a key role. It is particularly interesting

when a compact 3-manifold M contains two properly embedded disjoint surfaces S1 and S2 such

that M − (S1 ∪ S2) is connected. It is this scenario that we will investigate in this paper. Our aim

is to show that the 3-manifolds where this situation occurs are actually very plentiful. Moreover,

we will see how algebraic methods can be profitably used to detect the existence of such a pair of

surfaces. In particular, the infinite dihedral group Z2 ∗ Z2 will play a central role. This is because

a compact connected 3-manifold M contains a pair of such surfaces if and only if π1(M) admits a

surjective homomorphism onto Z2 ∗ Z2 (see Theorem 3.1.)

Note that we do not require that S1 and S2 are 2-sided. The existence of two disjoint properly

embedded 2-sided surfaces S1 and S2 in a 3-manifold M with M − (S1 ∪ S2) connected appears to

be a much more rare occurrence, and is equivalent to the existence of a surjective homomorphism

π1(M)→ Z ∗ Z. (See [1] for example, where obstructions to the existence of such a homomorphism

are given.)

The following is our main result.

Theorem 1.1. Let M be a compact connected orientable 3-manifold, and suppose that ∂M is

non-empty and contains no 2-spheres. Then M contains two properly embedded disjoint surfaces S1

and S2 such that M − (S1 ∪ S2) is connected if and only if M is neither a Z2 homology solid torus

nor a Z2 homology cobordism between two tori.

Corollary 1.2. Let L be a link in S3. Then the exterior X of L contains two properly embedded

disjoint surfaces S1 and S2 such that X − (S1 ∪ S2) is connected if and only if one of the following

holds:

(i) L has at least three components, or

(ii) L has two components, which have even linking number.

It is an interesting and not completely straightforward exercise to construct such surfaces in

the exterior of the Whitehead link. We will do so explicitly in Section 4.

The case of 2-component links was studied by Hillman in [3], where he stated Corollary 1.2 in

this case. (It appears in the middle of the second full paragraph on page 176 in [3].)

The plan of the paper is as follows. In Section 2, we prove the foundational result that the

existence of a surjective homomorphism from a finitely generated group G onto Z2∗Z2 is equivalent to

the existence of an index 2 subgroup K of G with b1(K) > b1(G). In Section 3, we first prove that, for

a compact connected 3-manifold M , the existence of a surjective homomorphism π1(M)→ Z2 ∗ Z2

is equivalent to the existence of two properly embedded disjoint surfaces as in the statement of

Theorem 1.1. We then use these two facts to prove one direction of Theorem 1.1. The starting

point is the well-known inequality b1(M) ≥ b1(∂M)/2 for any compact orientable 3-manifold M
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(see Lemma 3.5 in [2] for example). Assuming that M is a 3-manifold as in Theorem 1.1 which is

neither a Z2 homology solid torus nor a Z2 homology cobordism between two tori, we find a double

cover M̃ of M such that b1(∂M̃) > b1(∂M), and, after some work, we deduce that b1(M̃) > b1(M).

The results in Section 2 and earlier in Section 3 then give the required surfaces. The existence of

these two surfaces is thereby proved, but the construction is group-theoretic and far from explicit.

In Section 4, we give a more geometric way of finding these surfaces, which can be used easily in

practice. We examine the case of the exterior of the Whitehead link, which is an instructive example.

In Section 5, we introduce methods from profinite group theory. We show that the existence of a

surjective homomorphism from a finitely generated group G to Z2 ∗ Z2 is detected by the pro-2

completion of G. These profinite techniques are used to prove the other direction of Theorem 1.1,

which establishes that certain 3-manifolds as described in the theorem do not contain two disjoint

properly embedded surfaces whose union is non-separating. In Section 6, we also use profinite group

theory to control the Z2 homology classes of the surfaces for certain 3-manifolds. For example, we

show that in the case where M is a compact orientable 3-manifold that has the same Z2 homology

as a handlebody (other than a solid torus), then S1 and S2 may be chosen to represent any pair

of distinct non-trivial classes in H2(M,∂M ;Z2). The key input here is the fact that, in this case,

π1(M) has the same pro-2 completion as a non-abelian free group. In Section 7, we pose some

questions, which may stimulate further research in this area.

2. Surjections to the infinite dihedral group

We start with the following group-theoretic result.

Theorem 2.1. Let G be a finitely generated group, and let K be an index 2 subgroup. Then the

following are equivalent:

(i) There is a surjective homomorphism φ:G → Z2 ∗ Z2 such that K is the kernel of πφ, where

π:Z2 ∗ Z2 → Z2 is the homomorphism which is an isomorphism on each factor.

(ii) b1(K) > b1(G).

Note that this has the following immediate corollary.

Corollary 2.2. Let G be a finitely generated group. Then the following are equivalent:

(i) There is a surjective homomorphism G→ Z2 ∗ Z2.

(ii) For some index two subgroup K of G, b1(K) > b1(G).

Proof of Theorem 2.1. (i) ⇒ (ii). Suppose that there is a surjective homomorphism φ:G→ Z2 ∗ Z2

such that K is the kernel of πφ. We claim that b1(K) > b1(G).

Now, the inclusion i:K → G induces a homomorphism i∗:H1(G;R) → H1(K;R). This is

clearly an injection. This is because H1(G;R) may be viewed as the set of homomorphisms G→ R
and if a homomorphism G→ R is zero when restricted to K, then it is zero on all of G.

We will show that in fact this injection i∗ is not a surjection. This will prove that b1(K) > b1(G)

as required.

The kernel of the homomorphism π is a subgroup A of Z2 ∗ Z2 that is infinite cyclic. Let ψ be
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the composition K → A→ R, where the first map is the restriction of φ to K and the second map

is the standard inclusion of the infinite cyclic group into R. We will show that ψ is not in the image

of i∗.

For suppose that ψ is in this image. This means that ψ extends to a homomorphism ψ̃:G→ R.

Let a and b be generators of the factors of Z2 ∗ Z2. Let ga and gb be elements of G that are sent

by φ to these generators. Then gagb lies in K and its image under ψ is 1, say. On the other hand,

gbga also lies in K and its image under ψ is −1, because ab and ba are inverses. But, because R is

an abelian group, ψ(gagb) = ψ̃(gagb) = ψ̃(gbga) = ψ(gbga), which is a contradiction.

(ii) ⇒ (i). Let K be an index 2 subgroup of G with b1(K) > b1(G). Let V be the vector

space H1(K;R). This acted on by G/K = Z2 via the conjugation action of G on K. Let τ be the

automorphism of H1(K;R) induced by the non-trivial element of G/K. Since τ is an involution, it

gives rise to a decomposition V = V− ⊕ V+, where V− and V+ are the −1 and +1 eigenspaces of τ .

We claim that the eigenspace V+ consists of precisely the homomorphisms K → R that extend

to G. For suppose that a homomorphism ψ:K → R extends to a homomorphism ψ̃:G→ R. Let g be

an element of G−K. The image of ψ under τ sends k ∈ K to ψ(g−1kg) = ψ̃(g−1kg) = ψ̃(k) = ψ(k).

So, ψ lies in V+. Conversely, suppose that ψ:K → R lies in V+ and is therefore invariant under τ .

Then we extend ψ to ψ̃:G→ R by defining

ψ̃(k) = ψ(k)

ψ̃(gk) = ψ(k) + (ψ(g2))/2

Here, g is a fixed element of G−K, and k is an arbitrary element of K. It is easy to check that ψ̃

is a homomorphism, which clearly extends ψ. This proves the claim.

So, the dimension of V+ is b1(G). Now, we are assuming that b1(K) > b1(G), and so V− is

therefore non-zero. We can view H1(K;Z) as a lattice in H1(K;R), consisting of those homomor-

phisms K → R that have image in Z. The action of G/K on H1(K;R) leaves this lattice invariant

as a set, simply because it sends a homomorphism K → Z to another such homomorphism. Thus,

we may find non-zero elements of H1(K;Z) ∩ V−, as follows. Take any element α of H1(K;Z)

not in V+, and consider α − τα, where τα is the image of α under the action of τ . Thus, as

we know that H1(K;Z) ∩ V− is non-zero, we may find a primitive element ψ in H1(K;Z) ∩ V−.

This corresponds to a surjective homomorphism ψ:K → Z. We now use this to define a surjec-

tive homomorphism φ:G → Z2 ∗ Z2. Pick any element g in G − K. Note that g2 ∈ K and that

ψ(g2) = ψ(g−1g2g) = −ψ(g2), and hence ψ(g2) = 0. Define a function

G
φ−→ Z2 ∗ Z2

k 7→ (ab)ψ(k),

gk 7→ a(ab)ψ(k).

Here k is an arbitrary element of K. This is easily checked to be a homomorphism. For example,

suppose that k1, k2 ∈ K. We check that φ(k1)φ(gk2) = φ(k1gk2):

φ(k1)φ(gk2) = (ab)ψ(k1)a(ab)ψ(k2)

φ(k1gk2) = φ(g(g−1k1g)k2) = a(ab)−ψ(k1)(ab)ψ(k2) = a(ba)ψ(k1)(ab)ψ(k2).
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We also check that φ(gk1)φ(gk2) = φ(gk1gk2):

φ(gk1)φ(gk2) = a(ab)ψ(k1)a(ab)ψ(k2) = (ab)−ψ(k1)+ψ(k2)

φ(gk1gk2) = φ(g2(g−1k1g)k2) = (ab)ψ(g2)(ab)−ψ(k1)(ab)ψ(k2).

This homomorphism φ is surjective. This can be seen as follows. Since ψ is surjective, there is some

k ∈ K such that ψ(k) = 1. So, φ(gk) = aab = b, and φ(kgk) = φ(k)φ(gk) = abb = a.

Finally, note that Ker(π) = A consists of precisely those elements of Z2 ∗ Z2 of the form (ab)m

for some m ∈ Z. So, the kernel of πφ is exactly K, as required. This proves the theorem.

3. Constructing disjoint surfaces in 3-manifolds

The following is fairly well known. See, for example [4], where a related result is proved.

Theorem 3.1. Let M be a compact connected 3-manifold. Then, the following are equivalent:

(i) There is a surjective homomorphism π1(M)→ Z2 ∗ Z2.

(ii) There are two disjoint properly embedded surfaces S1 and S2 in M such that M − (S1 ∪ S2) is

connected.

Proof. (ii) ⇒ (i). Suppose that there are surfaces S1 and S2 as in (ii). We will use these to define

a continuous map f :M → (RP 3) ∨ (RP 3) such that f∗:π1(M) → π1((RP 3) ∨ (RP 3)) = Z2 ∗ Z2 is

surjective.

Let N(S1) and N(S2) be disjoint regular neighbourhoods of S1 and S2. Then N(Si) is an

I-bundle over Si in which Si lies as a zero-section. We now define a map fi:N(Si)→ RP 3.

Pick a cell structure on Si. This lifts to a cell structure on S̃i = cl(∂N(Si)− ∂M), which is the

(∂I)-bundle over Si. This extends to a cell structure on N(Si), as follows. The fibre over each 0-cell

of Si becomes a 1-cell of N(Si). The interior of each 1-cell of Si has inverse image in N(Si)− S̃i that

is an open disc, which we declare to be the interior of a 2-cell. Similarly, each 2-cell of Si induces a

3-cell of N(Si). We define fi one cell at a time, starting with the 0-cells, then the 1-cells and so on.

Give RP 3 the usual cell structure, with one 0-cell, one 1-cell, one 2-cell and one 3-cell. Now define fi

on the 0-cells of N(Si), by sending them to the unique 0-cell of RP 3. Map each 1-cell of N(Si) that

misses Si also to the 0-cell of RP 3. Send each 1-cell of N(Si) that intersects Si around the 1-cell of

RP 3 so that the interior of the cell is mapped in homeomorphically. There are two different ways

of doing this. We pick one arbitrarily. The 2-cells of N(Si) come in two varieties. There are 2-cells

that lie in S̃i. We send these to the 0-cell of RP 3. The 2-cells that are vertical in N(Si) we map to

the 2-cell of RP 3. This is possible because the boundary of each vertical 2-cell of N(Si) runs over

two vertical 1-cells, and so its boundary has been mapped to a loop in RP 3 that is homotopically

trivial. Finally, the 3-cells of N(Si) may be mapped in because π2(RP 3) = 0.

Thus, we have defined a map fi:N(Si)→ RP 3. Note that the image of S̃i is the 0-cell of RP 3.

Now form the wedge RP 3 ∨ RP 3 by gluing the two copies of RP 3 along the 0-cells. We may

define f :M → RP 3∨RP 3 by sending points outside of N(S1)∪N(S2) to the basepoint of the wedge,

and by mapping in N(Si) to the ith copy of RP 3 using fi.
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We claim that f∗:π1(M) → π1((RP 3) ∨ (RP 3)) is a surjection. Give M a basepoint that is

disjoint from N(S1) ∪N(S2). We just have to find based loops `1 and `2 in M such that the image

of `i is the generator for the ith factor of π1((RP 3) ∨ (RP 3)). Pick a path from the basepoint of M

to one of the 0-cells of N(Si), so that the interior of the path misses N(S1)∪N(S2). Then continue

this path across the 1-cell that intersects Si. Then run the path back to the basepoint of M , again

with the interior of the path avoiding N(S1)∪N(S2). This is possible because we are assuming that

M − (S1 ∪ S2) is connected. The result is a based loop `i with the required properties.

(i) ⇒ (ii). Suppose that there is a surjective homomorphism φ:π1(M)→ Z2 ∗ Z2.

Consider RP 2 ∨ RP 2. Give each copy of RP 2 the standard cell structure, and suppose that

these two copies of RP 2 are glued along their 0-cells. In the interior of each 1-cell, pick a point, and

in each 2-cell, pick a properly embedded arc with endpoints equal to one of these points. Let α1

and α2 be the resulting disjoint simple closed curves in RP 2 ∨ RP 2.

Pick a triangulation T for M , and let T (1) and T (2) be its 1-skeleton and 2-skeleton. It is

shown in the proof of Theorem 3.6 in [4] that φ is induced by a map f :T (2) → RP 2 ∨RP 2 with the

following properties:

(1) For i = 1 and 2, f−1(αi) is disjoint from the 0-skeleton of T and intersects the 1-skeleton in

finitely many points. Moreover, f−1(αi) intersects each face of T in a collection of properly

embedded arcs, with boundary equal to f−1(αi) ∩ T (1). (In [4], this arrangement is called a

regular mod 2 cocycle, where each interior vertex has valence 2. Note also the space referred

to as L(2) in [4] is just RP 2.)

(2) f−1(α1 ∪ α2) is non-separating in T (2).

We now extend f−1(α1) and f−1(α2) to disjoint surfaces S1 and S2 properly embedded in M .

For each tetrahedron ∆ of T , f−1(α1) and f−1(α2) intersect this tetrahedron in a collection of simple

closed curves in the boundary of ∆. We attach a collection of disjoint discs properly embedded in

∆ to these curves.

Note that S1 ∪S2 is non-separating. For consider two points in the complement of S1 ∪S2. We

may find paths in M − (S1 ∪ S2) from these points to the 2-skeleton of T . Because f−1(α1 ∪ α2) is

non-separating in T (2), we may find a path joining these two points in the complement of S1 ∪S2.

Remark 3.2. Note that we can gain control over the mod 2 homology classes of the surfaces S1

and S2 in Theorem 3.1, in terms of the surjective homomorphism φ:π1(M)→ Z2 ∗Z2. We see from

the construction that the composition of φ with projection Z2 ∗Z2 → Z2 onto the ith factor is equal

to the homomorphism π1(M)→ Z2 that counts the mod 2 intersection number with Si.

We can now prove one direction of Theorem 1.1. Suppose that M is a compact connected

orientable 3-manifold and that ∂M is non-empty and contains no 2-spheres. Suppose also that M

is neither a Z2 homology solid torus nor a Z2 homology cobordism between two tori. Then, we

wish to show that M contains two disjoint properly embedded surfaces S1 and S2 in M such that

M − (S1 ∪ S2) is connected. By Theorem 3.1, this is equivalent to π1(M) admitting a surjective

homomorphism onto Z2 ∗ Z2. By Corollary 2.2, this is equivalent to the existence of an index 2

subgroup K of π1(M) such that b1(K) > b1(M). To find such a subgroup, we use the following

lemma.
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Lemma 3.3. Let M be a compact orientable 3-manifold, and let M̃ be a double cover of M such

that genus(∂M̃) > genus(∂M). Then b1(M̃) > b1(M).

Proof. Let p: M̃ → M be the covering map. It is argued in the proof of Theorem 2.1 that

p∗:H1(M ;R)→ H1(M̃ ;R) is an injection. The same is true of (p|∂M̃)∗:H1(∂M ;R)→ H1(∂M̃ ;R).

However, an alternative proof is required, because ∂M may be disconnected and so an argument

involving the fundamental group is not immediately appropriate. Instead, we consider the trans-

fer homomorphism t:H1(∂M̃ ;R) → H1(∂M ;R). Recall that this is defined by sending a cocycle

c ∈ C1(∂M̃ ;R) to the cocycle tc ∈ C1(∂M ;R), where tc(e) = c(ẽ1) + c(ẽ2). Here e is an oriented

edge in some cell structure on ∂M , and e1 and e2 are its inverse images in ∂M̃ . It is well known that

this gives a well-defined homomorphism t:H1(∂M̃ ;R) → H1(∂M ;R). It is clear the composition

t ◦ (p|∂M̃)∗:H1(∂M ;R) → H1(∂M ;R) is the homomorphism that multiplies by 2. This is implies

that (p|∂M̃)∗ is an injection, as required.

Now consider the commutative diagram

H1(M ;R)
p∗−→ H1(M̃ ;R)

↓ ↓
H1(∂M ;R)

(p|∂M̃)∗−→ H1(∂M̃ ;R)

where the vertical arrows are the homomorphisms induced by inclusion. It is a well-known conse-

quence of Poincaré duality that, for the compact orientable 3-manifold M , the image of H1(M ;R)→
H1(∂M ;R) has dimension equal to exactly half the dimension of H1(∂M ;R) (see the proof of Lemma

3.5 in [2] for example). A similar statement is true for M̃ .

Suppose now that b1(M̃) ≤ b1(M). Then p∗:H1(M ;R) → H1(M̃ ;R) is therefore an isomor-

phism. So,

Im(H1(M̃ ;R)→ H1(∂M̃ ;R))

= Im(H1(M ;R)→ H1(∂M̃ ;R))

∼= Im(H1(M ;R)→ H1(∂M ;R)).

Hence, b1(∂M̃) = b1(∂M). But this is equivalent to the statement that ∂M̃ and ∂M have the same

genus, which is contrary to hypothesis.

We now return to the proof of one direction of Theorem 1.1.

Case 1. ∂M has a component which is not a torus.

Then, χ(∂M) < 0. Pick any double cover M̃ →M . Then, χ(∂M̃) = 2χ(∂M) < χ(∂M). Also,

|∂M̃ | ≥ |∂M |. This implies that

genus(∂M̃) =
−χ(∂M̃) + 2|∂M̃ |

2
>
−χ(∂M) + 2|∂M |

2
= genus(∂M),

as required.

Case 2. ∂M is at least three tori.

Then, H1(M ;Z2) has rank at least three. Pick some torus T in ∂M . Then the homomorphism

H1(M ;Z2) → H1(T ;Z2) that is induced by inclusion has non-zero kernel. Pick some non-zero

6



element in this kernel, and let M̃ be the corresponding double cover of M . Then, the inverse image

of T in M̃ is two copies of T . So, genus(∂M̃) = |∂M̃ | > |∂M | > genus(∂M), as required.

Case 3. ∂M consists of two tori.

So, H1(M ;Z2) has rank at least two. Now it cannot be the case that, for each torus T in

∂M , H1(M ;Z2) → H1(T ;Z2) is an isomorphism. For this would imply that M is a Z2 homology

cobordism between the two components of ∂M , and this is contrary to assumption. So, for some

component T of ∂M , H1(M ;Z2)→ H1(T ;Z2) is not an isomorphism, and is therefore not injective.

As in Case 2, we consider a double cover M̃ of M corresponding to a non-zero element in the kernel.

This has genus(∂M̃) > genus(∂M), as required.

Case 4. ∂M is a single torus T .

Then, H1(M ;Z2) has rank at least 1. In fact, it must have rank at least 2, since otherwise M

is a Z2 homology solid torus. But the image of H1(M ;Z2)→ H1(T ;Z2) has rank one, and so again,

there is a non-trivial element in its kernel. The argument then proceeds as in Cases 2 and 3.

4. Making the construction explicit

In the previous section, we completed the proof of one direction of Theorem 1.1, thereby

establishing the existence of pairs of disjoint surfaces in many 3-manifolds whose union is non-

separating. However, the proof is rather algebraic, and so it is hard to see how the surfaces arise

explicitly. In this section, we will remedy this defect, by providing an alternative way of constructing

these surfaces that is considerably more geometric.

A key part of the construction was to find a double cover M̃ → M for which b1(M̃) > b1(M).

We saw in the proof of Theorem 2.1 that there is then a non-trivial primitive element α of H1(M̃ ;Z)

that is in the −1 eigenspace of the action of the non-trivial covering transformation τ .

We will show that the surfaces S1 and S2 required by Theorem 1.1 may be constructed as

follows:

1. Find a compact, oriented, properly embedded, non-separating surface S in M̃ that is dual

to α and that is invariant under the covering transformation τ , but for which τ reverses the

orientation. We will prove below that such a surface S always exists. Since τ reverses the

orientation of S, its image in M is unoriented and typically non-orientable. This image will be

one of the surfaces, say S1.

2. Cut M̃ along S to give a compact orientable 3-manifold M ′. The involution τ restricts to M ′,

and it swaps the two copies of S in ∂M ′ (called S− and S+, say). The next stage is to find a

properly embedded surface S′ in M ′ that is disjoint from S−∪S+ and that is invariant under τ .

It must separate M ′ into two components, one containing S−, the other containing S+. Thus,

τ swaps these two components. Again, the existence of such a surface will be established below.

In practice, it is not hard to find. The image of S′ in M will be S2.

Note that if these surfaces S and S′ exist, as claimed above, then their images S1 and S2

in M have the required properties. Note that S and S′ are properly embedded and disjoint, by

construction, and are the inverse images of S1 and S2. Hence, S1 and S2 are also properly embedded
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and disjoint. Also, M̃ − (S ∪ S′) has two components that are swapped by τ . So, M − (S1 ∪ S2) is

connected, as required.

We now show that the surfaces S and S′ always exist. We know from Theorem 1.1 that M

contains properly embedded disjoint surfaces S1 and S2 such that M − (S1 ∪ S2) is connected.

Also, from the proof of Theorem 1.1, M̃ is the double cover of M corresponding to [S1] + [S2] ∈
H2(M,∂M ;Z2). This cover is constructed as follows. Let S̃1 and S̃2 be cl(∂N(S1) − ∂M) and

cl(∂N(S2)−∂M). These are (possibly disconnected) double covers of S1 and S2, respectively. Then

M̃ is constructed by gluing together two copies of cl(M −N(S1 ∪ S2)), a copy of S̃1 × [−1, 1] and a

copy of S̃2× [−1, 1], as follows. We attach S̃1×{1} and S̃2×{1} to one copy of cl(M −N(S1∪S2)),

using the identity map. But we attach S̃1 × {−1} to the other copy of cl(M −N(S1 ∪ S2)) via the

covering involution on S̃1. We attach S̃2 × {−1} in a similar way.

We take S and S′ to be the inverse image in M̃ of S1 and S2. These have the required properties.

For example, S is S̃1 ×{0} which is transversely oriented in the product bundle S̃1 × [−1, 1]. Hence

it is oriented. Also, the covering transformation on M̃ reverses this transverse orientation, and

hence reverses the orientation on S. Note that S is an oriented surface, properly embedded and

non-separating in M̃ . Hence, it represents a non-trivial primitive element of H1(M̃ ;Z). Since τ

preserves S but reverses its orientation, this class is in the −1 eigenspace.

Thus, the existence of S and S′ is proved using the existence of S1 and S2. But in practice, it

is easiest to find S and S′ first, and from these, construct S1 and S2.

We give a concrete example. Let M be the exterior of the Whitehead link L1 ∪ L2, shown

in the left in Figure 1. Let M̃ be the double cover of M that corresponds to the kernel of the

homomorphism π1(M) → Z2 which counts linking number mod 2 with L2. Since L2 is unknotted,

M̃ is the exterior of link in S3 shown in the right of Figure 1. The link has three components,

whereas the Whitehead link has two, and so b1(M̃) > b1(M). The surface S shown in the right of

Figure 1 is non-separating, orientable and properly embedded in M̃ . The covering involution τ of

M̃ preserves S but reverses its orientation. Thus, Step 1 above applies, and we may take S1 to be

the image of S in M . This is shown in the left of Figure 1.

L

L

S

S1

1

2

double
cover

Figure 1.

The surface S′ is not quite so easy to see. Let D be the disc properly embedded in the exterior

of S1 shown in Figure 2. Its inverse image in M̃ is two discs D̃ properly embedded in the exterior of

S. Now M ′ (the exterior of S) is a sutured manifold because when S is oriented, the two copies of

S in ∂M ′ naturally point into and out of M ′. Let γ′ be its sutures. The discs D̃ form product discs.
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We orient them in such a way that this orientation is reversed by the covering involution. Let M ′2
be obtained by decomposing M ′ along D̃. This is homeomorphic to T 2 × [0, 1]. One component of

its boundary, say T 2 × {0}, contains two sutures γ′2; the other has none. The covering involution τ

restricts to an involution of M ′2, which preserves the product structure on T 2 × [0, 1] and preserves

the sutures. However, it swaps the inward and outward-pointing parts of ∂M ′2. Let A′ be the vertical

annuli γ′2 × [0, 1] in T 2 × [0, 1]. Now, inside ∂M ′2 lies two copies of D̃, which therefore forms four

discs. The sutures γ′2 run over each of these discs in a single arc.

L

L

S

D D

D

S1

1

2

double
cover

~

~

Figure 2.

When we reverse the sutured manifold decomposition, to form M ′ from M ′2, we attach D̃ × I
to M ′2. Inside each component of D̃ × I, we may insert a band of the form [0, 1] × [0, 1] where

[0, 1]× {0, 1} lies in γ′2 and {0, 1} × [0, 1] lies in γ′ (see Figure 3). Attaching these two strips to A′

forms the required surface S′. It is properly embedded in M ′ and is disjoint from S. It is invariant

under the action of τ . Also, it separates M ′ into two components, which are swapped by τ .

component of D x I

γʹ

γʹ

~

γʹ

γʹ

band is attached to this curve

Figure 3.

Let S2 be the image of S′ in M . This can be seen as follows. The image of D̃ in the exterior

of S1 is the disc D. One cannot call it a product disc because the exterior of S1 is not a sutured

manifold. Nevertheless, one can cut the exterior of S1 along D to form a space M2 which is also

homeomorphic to T 2 × I. This is the quotient of M ′2 under τ . The image of γ′2 is a single curve

in ∂M2. Let A be the vertical annulus over this in T 2 × I. This is properly embedded in M2.

Reconstruct the exterior of S1 from M2 by reattaching D × I. Inside D × I, we may find a band.

Attaching this band to A gives the surface S2. It is a twice-punctured projective plane. It has two

boundary components, one lying in L1 and one lying in L2. It is disjoint from S1, and S1 ∪ S2 is

non-separating.

The surface S1 is easy to see, but the difficulty in visualising S2 perhaps arises from the fact

that its boundary component on L2 has slope 2/1. Note that it is a spanning surface for L1 ∪ L2.
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In fact, it is shown in Figure 4, after an isotopy. This was constructed by retracting the annulus A

a little so that it lies in a small regular neighbourhood of L2, and then attaching the band to form

S2.

L1

S2

L2

Figure 4.

5. Profinite methods

We still need to prove one direction of Theorem 1.1. We will show that if M is a compact

orientable 3-manifold that is either a Z2 homology solid torus or a Z2 homology cobordism between

two tori, then it cannot support the surfaces S1 and S2 that are described in the theorem. In the

course of this proof, we will introduce some techniques from the theory of pro-p groups. These will

turn out to have other uses. In particular, we will be able to use them to gain control of the Z2

homology classes of the surfaces S1 and S2 for certain 3-manifolds M .

Let p be a prime. Recall that the pro-p completion Γ̂(p) of a group Γ is the inverse limit

of all its finite quotients that are p-groups. More precisely, an element of Γ̂(p) is a choice, for

each normal subgroup N of Γ with index a power of p, of an element gN of Γ/N , subject to the

following compatibility condition. Whenever N and N ′ are normal subgroups of Γ with index that

are powers of p, and satisfying N ≥ N ′, then we insist that gN ′ maps to gN under the quotient map

Γ/N ′ → Γ/N .

The definition of Γ̂(p) is phrased in terms of normal subgroups of Γ with index a power of

p. However, Γ̂(p) contains information about a wider class of subgroups of Γ which are defined as

follows. We say that a subgroup N of Γ is co-p if there is a sequence of finite index subgroups

Γ = N0 ≥ N1 ≥ . . . ≥ Nk = N

such that each Ni is normal in Ni−1 and has index a power of p. The terminology co-p is not

standard. The usual phrase is ‘subnormal with index a power of p’.

The following is a rapid consequence of the definition of Γ̂(p).

Proposition 5.1. Let G and Γ be finitely generated discrete groups, and let p be a prime. Suppose

that there is a group isomorphism φ: Ĝ(p) → Γ̂(p) between their pro-p completions. Then the

following hold.
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(i) There is an induced bijection (also denoted φ) between the set of co-p subgroups of G and the

set of co-p subgroups of Γ.

(ii) For a co-p subgroup N of G, [G : N ] = [Γ : φ(N)].

(iii) If N is any co-p subgroup of G, then N is normal in G if and only if φ(N) is normal in Γ. In

this case, G/N is isomorphic to Γ/φ(N).

(iv) If N and N ′ are co-p subgroups of G, then N ⊂ N ′ if and only if φ(N) ⊂ φ(N ′).

(v) If N is a co-p subgroup of G, then N and φ(N) have isomorphic pro-p completions.

Thus, an isomorphism between Ĝ(p) and Γ̂(p) entails a strong correspondence between the co-p

subgroups of G and the co-p subgroups of Γ. Slightly surprisingly, Γ̂(p) also controls the first Betti

number of Γ.

Proposition 5.2. Let G and Γ be finitely generated groups with isomorphic pro-p completions for

some prime p. Then b1(G) = b1(Γ).

Proof. By (iii) of Proposition 5.1, there is a one-one correspondence between the quotients of G

that are abelian p-groups and the similar set of quotients of Γ. But G surjects onto (Z/pkZ)l for all

k ∈ N if and only if l ≤ b1(G). So, b1(G) = b1(Γ).

These results imply that, for a finitely generated group Γ, the existence of a surjective homo-

morphism from Γ onto the infinite dihedral group is determined by Γ̂(2).

Theorem 5.3. Let G and Γ be finitely presented groups with isomorphic pro-2 completions. Then

G admits a surjective homomorphism onto Z2 ∗ Z2 if and only if Γ does.

Proof. Suppose that G admits a surjective homomorphism onto Z2 ∗ Z2. Then, by Corollary 2.2, G

has an index 2 subgroup G′ with b1(G′) > b1(G). Index 2 subgroups are normal and hence co-2. So,

using Proposition 5.1, G′ corresponds to a subgroup Γ′ of Γ with index 2. Also by Proposition 5.1,

G′ and Γ′ have isomorphic pro-2 completions. So, by Proposition 5.2, b1(G′) = b1(Γ′). Similarly,

b1(G) = b1(Γ), and hence b1(Γ′) > b1(Γ). So, by Corollary 2.2, Γ admits a surjective homomorphism

onto Z2 ∗ Z2.

The following result shows that the existence of an isomorphism between pro-p completions is

surprisingly common.

Theorem 5.4. Suppose that there is a homomorphism φ:G→ Γ between finitely presented groups

that induces an isomorphism H1(G;Zp) → H1(Γ;Zp) and a surjection H2(G;Zp) → H2(Γ;Zp).
Then φ induces an isomorphism between the pro-p completions of G and Γ.

This is a fairly well known consequence of work of Stallings [6], and a proof can be found in [5]

(see Theorem 2.12 of [5]).

Note that for any finite cell complex M , there is a surjective homomorphism H2(M ;Zp) →
H2(π1(M);Zp). This is because H2(π1(M);Zp) is the homology of an Eilenberg-Maclane space

K(π1(M); 1), which can be obtained from M by attaching cells in dimensions 3 and higher.

We are now in a position to prove the remaining direction of Theorem 1.1. Let M be a compact

orientable 3-manifold with non-empty boundary that contains no 2-spheres.
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Suppose first that M is a Z2 homology solid torus. In other words, H1(M ;Z2) = Z2 and

H2(M ;Z2) = 0. Let Γ be π1(M). Then H1(Γ;Z2) = Z2 and H2(Γ;Z2) = 0. Let φ:Z → Γ be a

homomorphism that sends a generator of Z to an element of Γ that is non-trivial in H1(Γ;Z2). Then

φ induces isomorphisms on first and second homology with Z2 coefficients. Therefore, by Theorem

5.4 the pro-2 completions of Z and Γ are isomorphic. Since there is no surjective homomorphism

from Z to Z2 ∗ Z2, the same is therefore true for Γ, by Theorem 5.3.

Now suppose that M is a Z2 homology cobordism between two tori T1 and T2. Then, by

assumption, i∗:H1(T1;Z2) → H1(M ;Z2) is an isomorphism, where i:T1 → M is inclusion. We will

also show that i∗:H2(T1;Z2)→ H2(M ;Z2) is a surjection. Now there is an exact sequence

H2(T1;Z2)
i∗→ H2(M ;Z2)→ H2(M,T1;Z2)

and so it suffices to show that H2(M,T1;Z2) is trivial. But this is isomorphic to H1(M,T2;Z2) by

Poincaré duality. This fits into an exact sequence

H0(M ;Z2)
∼=→ H0(T2;Z2)→ H1(M,T2;Z2)→ H1(M ;Z2)

∼=→ H1(T2;Z2).

So, H1(M,T2;Z2) is trivial, and hence we have shown that i∗:H2(T1;Z2)→ H2(M ;Z2) is a surjec-

tion. Now the torus is an Eilenberg-Maclane space and so H2(T1;Z2) = H2(π1(T1);Z2). Therefore,

i∗:H2(π1(T1);Z2)→ H2(π1(M);Z2) is also a surjection.

Hence, using Theorem 5.4, π1(T1) and π1(M) have isomorphic pro-2 completions. Now,

π1(T1) = Z×Z clearly does not admit a surjective homomorphism onto Z2 ∗Z2. Hence, by Theorem

5.3, nor does π1(M).

This completes the proof of Theorem 1.1.

6. Controlling the homology classes of the surfaces

Given how common it is for a compact orientable 3-manifold M to contain disjoint properly

embedded surfaces S1 and S2 such that M − (S1 ∪ S2) is connected, it is natural to ask which pairs

of classes in H2(M,∂M ;Z2) may be represented by such surfaces. In this section, we will address

this question.

We start by observing that [S1] and [S2] must be non-trivial and distinct. This is because, when

these surfaces exist, there is an associated surjective homomorphism π1(M)→ Z2 ∗ Z2. Composing

this with the surjection onto the first and second factors, we obtain two homomorphisms φ1 and

φ2:π1(M) → Z2. These correspond to two classes [φ1] and [φ2] in H1(M ;Z2) and the Poincaré

duals of these classes are [S1] and [S2] in H2(M,∂M ;Z2). Hence, because φ1 and φ2 are distinct

non-trivial homomorphisms to Z2, we deduce that [S1] and [S2] are distinct and non-trivial.

How much control do we have over [S1] and [S2], given the above restriction? Equivalently, how

much control do we have over φ1 and φ2? By Theorem 2.1, the kernel of (φ1 + φ2):π1(M)→ Z2 is

an index two subgroup K of π1(M) such that b1(K) > b1(M). Thus, we deduce the following from

Theorem 2.1, Theorem 3.1 and Remark 3.2.
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Proposition 6.1. Let M be a compact connected orientable 3-manifold, and let α be a non-trivial

class in H1(M ;Z2). Then, the following are equivalent:

(i) There are disjoint properly embedded surfaces S1 and S2 such that M − (S1∪S2) is connected,

and such that S1 ∪ S2 is dual to α.

(ii) The degree two cover M̃ of M that corresponds to ker(α:π1(M)→ Z2) satisfies b1(M̃) > b1(M).

This controls only the class [S1] + [S2] in H2(M,∂M ;Z2). But nevertheless, it does constrain

which classes can arise, as in the following theorem. The version of this for links of 2-components

was proved by Hillman (see Theorem 7.7 in [3]).

Theorem 6.2. Let M be the exterior of a link L in the 3-sphere, and let α ∈ H1(M ;Z2) count the

linking number mod 2 with L. Then, the following are equivalent:

(i) There are disjoint properly embedded surfaces S1 and S2 such that M − (S1∪S2) is connected,

and such that S1 ∪ S2 is dual to α.

(ii) ∆L(−1,−1, . . . ,−1) = 0, where ∆L(t1, t2, . . . , tn) is the Alexander polynomial of L.

(iii) L has a disconnected compact spanning surface, no component of which is closed.

Proof. (i) ⇔ (ii): It is well known that the Alexander polynomial of a link L encodes information

about the homology of the finite abelian covers of its exterior. In particular, ∆L(−1, . . . ,−1) equals

the determinant of a square presentation matrix for H1(M̂), where M̂ is the double cover of S3

branched over L (see p.121 of [3] for example). Hence, b1(M̂) > 0 if and only if ∆L(−1, . . . ,−1) = 0.

An elementary calculation gives that b1(M̂) = b1(M̃) − b1(M), where M̃ is the double cover of M

dual to α. Thus, applying Proposition 6.1 completes the proof.

(iii) ⇒ (i): If S is a compact spanning surface for L, then its restriction to M is a properly

embedded surface dual to α. If S is disconnected, then so too is the surface in M . If S is a spanning

surface with no closed components, the surface in M is non-separating.

(i) ⇒ (iii): Let S1 and S2 be disjoint, properly embedded surfaces in M such that S1 ∪ S2 is

dual to α, and such that M − (S1 ∪ S2) is connected. We will show how to modify S1 and S2, so

that the number of components of M − (S1 ∪ S2) does not increase, and so that afterwards, S1 ∪ S2

intersects each component of ∂M in a single simple closed curve. These modifications will not change

the homology classes of S1 and S2 and so each meridian of L will still have non-empty intersection

with S1 ∪ S2. Also, S1 and S2 will remain non-empty, and each component of S1 ∪ S2 will have

non-empty boundary. Thus, we will be able to extend S1 ∪ S2 into N(L) to form a disconnected

compact spanning surface for L with no closed components.

We may first assume that ∂S1 ∪ ∂S2 is a collection of essential simple closed curves on ∂M .

For if some component of ∂S1 ∪ ∂S2 is inessential, we may find one that bounds a disc with interior

disjoint from S1 ∪ S2. Attach this disc to S1 ∪ S2 and push it a little into the interior of M to make

the surfaces properly embedded. This does not change the number of components of M − (S1 ∪S2).

It preserves the properties of these surfaces, but reduces the number of boundary components.

Thus, ∂S1 ∪ ∂S2 divides each component of ∂M into annuli. Consider a meridian µ for some

component of L. This is a simple closed curve on a toral component T of ∂M . Arrange for µ to
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intersect ∂S1∪∂S2 as few times as possible. The evaluation of µ under α is 1, and hence it intersects

∂S1 ∪ ∂S2 an odd number of times. It cannot therefore meet ∂S1, then ∂S2, then ∂S1, and so on

in an alternating fashion. Thus, there are two successive intersections which both lie in ∂S1, say. If

these lie in distinct components of ∂S1, then these two curves cobound an annulus in T . We attach

this annulus to S1 ∪ S2. This preserves the properties of S1 ∪ S2 given in (i), but again reduces

its number of boundary components. The only other possibility is that ∂S1 ∪ ∂S2 intersects T in

a single simple closed curve. Modifying this curve by a mod 2 homology, we may assume that it

intersects µ just once. Since this applies on every component of ∂M , we may extend S1 ∪ S2 to the

required spanning surface for L.

In the case of the Whitehead link L, ∆L(t1, t2) = (t1 − 1)(t2 − 1), and hence ∆L(−1,−1) 6=
0. Therefore, although there exist two disjoint properly embedded surfaces S1 and S2 such that

M − (S1 ∪ S2) is connected, there do not exist two such surfaces that together form a spanning

surface for L.

We have already seen that the existence of a surjective homomorphism from a finitely generated

group G to Z2 ∗Z2 is controlled by the pro-2 completion of G. We may refine this further, as follows.

Let G and Γ be finitely generated groups. Suppose that their pro-2 completions are isomorphic.

By Proposition 5.1, this sets up an isomorphism between G/([G,G]G2) and Γ/([Γ,Γ]Γ2). This is

because G/([G,G]G2) may be characterised as the quotient of G that is an elementary abelian 2-

group of maximal rank, and there is a similar characterisation of Γ/([Γ,Γ]Γ2). This therefore gives

a 1-1 correspondence between homomorphisms G→ Z2 and homomorphisms Γ→ Z2.

Proposition 6.3. Let G and Γ be finitely generated groups. Suppose that their pro-2 completions

are isomorphic. Let φ1 and φ2 be non-trivial homomorphisms G → Z2 and let φ′1 and φ′2 be

the corresponding homomorphisms Γ → Z2. Suppose that there is a surjective homomorphism

φ:G→ Z2 ∗ Z2 such that the composition with projection onto the ith factor is φi, for i = 1 and 2.

Then there is a surjective homomorphism Γ → Z2 ∗ Z2 such that the composition with projection

onto the ith factor is φ′i, for i = 1 and 2.

Proof. We define two subgroups of G. Let G2 be the kernel of G
φ→ Z2 ∗ Z2

π→ Z2, where π sends

the non-trivial element of each factor onto the non-trivial element of Z2. This is an index 2 normal

subgroup of G. Let G4 be the kernel of G → Z2 ∗ Z2 → Z2 × Z2, where again the first map is φ,

and the second map is abelianisation. This is an index 4 normal subgroup of G. It is equal to the

elements of G that have trivial images under both φ1 and φ2.

By Proposition 5.1, G2 (respectively, G4) corresponds to an index 2 (respectively, 4) normal

subgroup Γ2 (respectively, Γ4) of Γ. By Proposition 5.1 and 5.2, b1(G2) = b1(Γ2), and therefore

H1(G2;Z) and H1(Γ2;Z) are isomorphic. However, we wish to set up a slightly more precise corre-

spondence between these two cohomology groups.

The group G/G2 acts on H1(G2;R) by conjugation. The non-trivial element of G/G2 speci-

fies an involution of H1(G2;R), and hence H1(G2;R) decomposes into a direct sum of +1 and −1

eigenspaces H1(G2;R)+ and H1(G2;R)−. Let H1(G2;Z)− be the intersection between H1(G2;R)−

and the lattice H1(G2;Z). Define H1(Γ2;Z)− similarly. Our goal is to find an isomorphism

H1(G2;Z)− → H1(Γ2;Z)− such the following diagram commutes:
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H1(G2;Z)− → H1(Γ2;Z)−

↓ ↓
H1(G2;Z2) → H1(Γ2;Z2)

Here, the top horizontal arrow is the required isomorphism. The vertical arrows are the composition

of inclusion into the full integral cohomology group, followed by reduction mod 2. The bottom

horizontal arrow is the isomorphism that arises from the fact that the pro-2 completions of G2 and

Γ2 are isomorphic. The point is that φ|G2 gives a primitive element of H1(G2;Z)−, which we want to

correspond to a primitive element of H1(Γ2;Z)−. This then determines a surjective homomorphism

φ′: Γ→ Z2 ∗Z2. It is the commutativity of the above diagram that will ensure that the composition

onto the first and second factors will be φ′1 and φ′2.

Let k > 1 be a large enough integer so that G2 does not surject onto (Z/2kZ)b1(G2)+1, and

similarly for Γ2. Let G̃2 be the subgroup of G2 generated by elements of G2 that have finite order in

G2/[G2, G2], together with 2kth powers in G2. This is a normal subgroup of G2, such that G2/G̃2

is isomorphic to (Z/2kZ)b1(G2). Then, using the isomorphism between pro-2 completions, G̃2 corre-

sponds to Γ̃2, which is a normal subgroup of Γ2 such that Γ2/Γ̃2 is isomorphic to (Z/2kZ)b1(Γ2). Let

(G2/G̃2)∗ be the set of homomorphisms from G2 to Z/2kZ. This is also isomorphic to (Z/2kZ)b1(G2).

Define (Γ2/Γ̃2)∗ similarly.

Consider the groups G/G̃2 and Γ/Γ̃2. These are isomorphic. So, the conjugation action of G/G2

on (G2/G̃2)∗ is equivalent to the conjugation action of Γ/Γ2 on (Γ2/Γ̃2)∗. Let (G2/G̃2)∗− be those

elements of (G2/G̃2)∗ that are sent to their inverses by this action. This is a subgroup of (G2/G̃2)∗.

Define (Γ2/Γ̃2)∗− similarly. Then we have an isomorphism between (G2/G̃2)∗− and (Γ2/Γ̃2)∗−. Now,

(G2/G̃2)∗ can be identified with the reduction mod 2k of H1(G2;Z). However, (G2/G̃2)∗− is not

necessarily the same as the reduction mod 2k of H1(G2;Z)−. This is because every element of

(G2/G̃2)∗ with order 2 is sent to its inverse under the conjugation action. Therefore, let (G2/G̃2)∗0
be the set of elements in (G2/G̃2)∗− that are a multiple of an element of (G2/G̃2)∗− which does not

have order 2. This is the image of H1(G2;Z)− under the mod 2k reduction map. Define (Γ2/Γ̃2)∗0
similarly. Then (G2/G̃2)∗0 and (Γ2/Γ̃2)∗0 are isomorphic. Pick a basis for H1(G2;Z)− that maps to a

minimal generating set for (G2/G̃2)∗0. This is sent to a minimal generating set for (Γ2/Γ̃2)∗0. We may

pick elements in H1(Γ2;Z)− in their inverse image which form a basis for H1(Γ2;Z)−. Mapping the

basis elements of H1(G2;Z)− to these basis elements of H1(Γ2;Z)− gives the required isomorphism

between H1(G2;Z)− and H1(Γ2;Z)−.

Using this isomorphism, φ|G2:G2 → Z corresponds to a primitive element of H1(Γ2;Z)− and

hence, as in the proof of Theorem 1.1, we obtain a surjective homomorphism φ′: Γ→ Z2 ∗ Z2.

We now show that the compositions of φ′ with projections onto the first and second factors are

φ′1 and φ′2.

Note that G4 is the kernel of G2 → Z→ Z2. Here, the first homomorphism is the restriction of

φ to G2 and the second is reduction mod 2. Consider Γ2 → Z→ Z2, where the first homomorphism

is the restriction of φ′ to Γ2 and the second is reduction mod 2. Due to the commutativity of

the above diagram, the kernel of this is precisely Γ4. Now, φ1 and φ2 can be characterised as the

only non-trivial homomorphisms G → Z2 that are non-trivial on G2 but trivial on G4. A similar

statement holds for φ′1 and φ′2. So, φ1 and φ2 do indeed correspond to φ′1 and φ′2.
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There is a minor complication. It may be the case that if we compose φ′:G → Z2 ∗ Z2 with

projection onto the first (respectively, second) factor then we get φ′2 (respectively, φ′1). If this is the

case, then redefine φ′ by composing with the automorphism of Z2 ∗ Z2 that swaps the factors.

We will now show that, in an important special case, there is a great deal of flexibility over the

classes [S1] and [S2].

Theorem 6.4. Let M be a compact orientable 3-manifold with the same Z2 homology as a handle-

body. Then, given any two distinct non-zero classes z1 and z2 in H2(M,∂M ;Z2), there are disjoint

properly embedded surfaces S1 and S2 in M , such that M − (S1 ∪ S2) is connected, and such that

zi = [Si].

Proof. Pick a basepoint for M , and pick based loops `1, . . . , `n such that [`1], . . . , [`n] form a basis for

H1(M ;Z2). We may choose these loops so that the mod 2 intersection numbers satisfy [`1].zi = δ1i,

[`2].zi = δ2i and [`j ].zi = 0 for j ≥ 3. Let φ′1 and φ′2:π1(M)→ Z2 be the mod 2 intersection numbers

with z1 and z2 respectively.

Let F be the free group on n generators. Let ψ:F → π1(M) be the homomorphism that sends

the ith free generator to `i. Then, ψ induces an isomorphism H1(F ;Z2)→ H1(π1(M);Z2) and, be-

cause H2(F ;Z2) and H2(M ;Z2) are trivial, ψ induces an isomorphism H2(F ;Z2)→ H2(π1(M);Z2).

Thus, by Theorem 5.4, ψ induces an isomorphism between the pro-2 completions of F and π1(M).

Now F admits a surjective homomorphism φ:F → Z2 ∗ Z2 sending the first free generator to

the non-trivial element in the first factor, the second free generator to the non-trivial element in

the second factor, and the remaining free generators to the identity. Composing φ with projections

onto the first and second factors gives homomorphisms φ1, φ2:F → Z2. These correspond to the

homomorphisms φ′1 and φ′2. Using Proposition 6.3, there is a surjective homomorphism π1(M) →
Z2 ∗ Z2 such that its composition with projection onto the ith factor is φ′i. Theorem 3.1 gives the

required surfaces S1 and S2, and Remark 3.2, [S1] = z1 and [S2] = z2.

A particularly interesting case is when M is the exterior of a connected finite graph X embedded

in S3. Then, as long as b1(X) > 1, M has the same Z2 homology as a handlebody other than a

solid torus. We view it as quite striking that the conclusion of Theorem 6.4 applies in this level of

generality.

7. Further questions and remarks

7.1. Making the surfaces essential

In 3-manifold theory, it is the surfaces that are essential that play a particularly important role.

By definition, an orientable surface properly embedded in an orientable 3-manifold M is essential

if it is incompressible, boundary-incompressible and no component is boundary parallel. A non-

orientable surface S properly embedded in M is essential if cl(∂N(S)− ∂M) is essential. It is well

known that this has an equivalent reformulation in terms of the way that π1(S) maps into π1(M).

In particular, an essential surface is π1-injective.

Question 7.1. Can one arrange for the surfaces S1 and S2 provided by Theorem 1.1 to be essential?
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We do not have a definite answer. However, the following result establishes that one can ensure

that the surfaces are incompressible. Recall that a (possibly non-orientable) surface S properly

embedded in M is incompressible if, for any embedded disc D in M such that D ∩ S = ∂D, the

curve ∂D bounds a disc in S.

Proposition 7.2. If a compact 3-manifold M contains two disjoint, properly embedded surfaces S1

and S2 such that M−(S1∪S2) is connected, then it contains two such surfaces that are, in addition,

incompressible.

Proof. We may assume that S1 and S2 are both connected. Suppose that at least one is compressible.

Then, their union is compressible, by a standard innermost curve argument. Let D be a compression

disc for S1 ∪ S2. Suppose that its boundary lies in S1, say. Compress S1 along D, giving a surface

S1. Suppose that M−(S1∪S2) is not connected. Now, M−(S1∪S2) is obtained from M−(S1∪S2)

by cutting along D and then attaching a 2-handle. The latter operation does not change the number

of components. So, we deduce that D divides M − (S1 ∪ S2) into two components, X and Y , say.

One of these components, X say, lies on the other side of S1, near ∂D. Now, S1 must have two

components. This is because, near D, one of the parts of S1 has X on both sides, whereas the

other has X on one side and Y on the other. Discard the latter component of S1, and let S′1 be the

resulting surface. Then M − (S′1 ∪ S2) is connected. Hence, continuing in this fashion, we end up

with two properly embedded, disjoint, incompressible surfaces S′′1 and S′′2 such that M − (S′′1 ∪ S′′2 )

is connected.

The difficulty in answering Question 7.1 in the affirmative is that if a non-orientable properly

embedded surface fails to be essential, then there is no obvious modification that one can make to

it which, in a suitable sense, simplifies it.

7.2. More than two surfaces

This paper has been devoted to the study of two disjoint surfaces properly embedded in a

3-manifold. It is natural to ask the following:

Question 7.3. Under what circumstances does a compact orientable 3-manifold M contain disjoint

properly embedded surfaces S1, . . . , Sn such that M − (S1 ∪ . . . ∪ Sn) is connected, for n ≥ 3?

The methods in this paper do not obviously apply when n ≥ 3. When n = 2, the group Z2 ∗Z2

plays the central role. This group is virtually abelian, and it is essentially for this reason that the

existence of a surjection from a finitely generated group G to Z2 ∗ Z2 can be detected by the pro-2

completion Ĝ(2). However, for n ≥ 3, ∗nZ2 is virtually free non-abelian, and so it seems unlikely

that one can detect whether a group G surjects onto ∗nZ2 purely by examining Ĝ(2). This probably

implies that Question 7.3 has no straightforward answer.
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