
Introduction to Riemannian manifolds

All manifolds will be connected, Hausdorff and second countable.

Terminology. Let M be a smooth manifold. Denote the tangent space at x ∈M

by TxM . If f : M → N is a smooth map between smooth manifolds, denote the

associated map on TxM by (Df)x: TxM → Tf(x)N . If I is an open interval in R

and α: I → M is a smooth path, then for t ∈ I , α′(t) denotes (Dα)t(1) ∈ Tα(t)M .

Definition. A Riemannian metric on a smooth manifold M is a choice at each

point x ∈M of a positive definite inner product 〈 , 〉 on TxM , the inner products

varying smoothly with x. Then M is known as a Riemannian manifold. We will

not give a formal definition of the phrase ‘varying smoothly with x’.

Definition. A local isometry between two Riemannian manifolds M and N is a

local diffeomorphism h: M → N , such that, for all points x ∈M and all vectors v

and w in TxM ,

〈v, w〉 = 〈(Dh)x(v), (Dh)x(w)〉.

A (Riemannian) isometry is a local isometry that is also a diffeomorphism.

Let M be a Riemannian manifold and let x be a point in M . The Riemannian

metric allows one to define for a vector v ∈ TxM the length ||v|| = 〈v, v〉1/2 and

also the angle between two non-zero vectors v and w in TxM :

cos(Angle(v, w)) =
〈v, w〉

||v|| ||w||
.

The lengths || || determine the inner product: if v, w ∈ TxM , then

〈v, w〉 = (||v + w||2 − ||v||2 − ||w||2)/2.

So, a diffeomorphism which preserves the lengths of vectors is necessarily a Rie-

mannian isometry.

Smooth paths α: [0, T ]→M inherit a length, given by

Length(α) =

∫ T

0

||α′(t)|| dt.

This is independent of its parametrisation - in other words, if β: [0, T1]→ [0, T ] is a

diffeomorphism, then Length(α◦β) = Length(α). This is just a consequence of the
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fact that we can change the variable in the integration. A piecewise smooth path

α: [0, T ]→ M is a path that is smooth at all but finitely many points. Piecewise

smooth paths also inherit a length. We construct a metric d on M : if x and y are

points in M , then

d(x, y) = inf{Length(α) : α is a piecewise smooth path from x to y}.

Proposition 1.1. This does give a metric on M . The topology induced by this

metric coincides with the original topology on M .

Notation. If x is a point in a metric space M and ǫ > 0, denote {y ∈ M :

d(x, y) < ǫ} by Bǫ(x).

Crucial in the study of Riemannian manifolds is the notion of a geodesic.

Here’s a non-standard definition, which is equivalent to the usual one.

Definition. A geodesic (with speed s ∈ R≥0) is a smooth map α: I →M (where

I is an interval in R) such that ||α′(t)|| = s for all t ∈ I and which is ‘locally

length minimising’. This means that for all t ∈ I , there is an ǫ > 0, such that for

all t1 and t2 in (t− ǫ, t + ǫ) ∩ I ,

d(α(t1), α(t2)) = s|t1 − t2|.
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Figure 1.

Exercise. 1. The geodesics in R
n are straight lines.

2. The geodesics in S2 are great circles.

Remarks. 1. This demonstrates that geodesics need not be globally length-

minimising. In other words, it need not be true that

d(α(t1), α(t2)) = s|t1 − t2|
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for all t1, t2 ∈ I . For example, great circles in S2. This example also demonstrates

that there need not be a unique shortest path between two points.

2. The maximal interval I ⊂ R on which a geodesic is defined need not be

the whole of R. For example, consider geodesics in the open unit disc in R
2.

3. There need not be a shortest path between two points. For example,

consider the points (−1, 0) and (1, 0) in R
2 − {(0, 0)}. But if there is a shortest

path between two points, then we may find one which has constant speed. This

is necessarily globally length minimising and hence a geodesic.

4. A local isometry between Riemannian manifolds (for example, the inclusion

of an open subset) preserves geodesics.

Example 2:

2-sphere R  - {(0,0)}2



Open unit disc

Example 3:Example 1:

Figure 2.

A fundamental result from differential geometry is the following.

Theorem 1.2. [Existence and uniqueness of geodesics] For all points x ∈ M

and for all v ∈ TxM , there is a unique maximal interval I ⊂ R containing a

neighbourhood of 0, and a unique geodesic α: I → M , such that α(0) = x and

α′(0) = v.

Idea of proof. Pick a chart φ: U → Rn around x. For each path α: [−T, T ]→ U ,

consider φ ◦ α: [−T, T ] → Rn. One shows that α is a geodesic if and only if the

n co-ordinates of φ ◦ α satisfy certain second order differential equations. These

differential equations have a solution for small enough T , which is unique given

the initial conditions α(0) = x and α′(0) = v.

Definition. The exponential map at a point x ∈M is the map expx from a subset

of TxM to a subset of M which takes a vector v ∈ TxM to α(1), where α: I → M
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is the geodesic from Theorem 1.2 with α(0) = x and α′(0) = v, providing 1 ∈ I .

Proposition 1.3. For each point x ∈ M , expx is a smooth map, whose domain

is an open neighbourhood of 0. For small enough ǫ > 0, expx maps Bǫ(0) ⊂ TxM

diffeomorphically onto Bǫ(x) ⊂M .

Idea of proof. As in Theorem 1.2, one relates geodesics to certain second order

differential equations, and then one uses the fact that their solutions are smooth

and depend smoothly on the initial conditions. For the second part, one first

determines the derivative of expx and discovers that it has maximal rank. Hence,

the inverse function theorem gives that expx sends Bǫ(0) ⊂ TxM diffeomorphically

onto its image in M , which is clearly Bǫ(x) ⊂M .

Proposition 1.4. If h: M → N is a local isometry between Riemannian man-

ifolds, and x ∈ M , then the following diagram commutes (where the maps are

defined):
TxM

(Dh)x

−→ Th(x)N




y

expx





y

exph(x)

M
h
−→ N

Proof. Pick v ∈ TxM . Let α be the unique geodesic in M with α(0) = x and

α′(0) = v. Since h is a local isometry, it preserves geodesics and so h ◦ α is

a geodesic in N . But (h ◦ α)(0) = h(x) and (h ◦ α)′(0) = (Dh)x(v). There-

fore, the uniqueness part of Theorem 1.2 gives that h(expx(v)) = (h ◦ α)(1) =

exph(x)((Dh)x(v)).

Theorem 1.5. Let M and N be Riemannian manifolds, with M connected. Let

h: M → N and k: M → N be local isometries onto their images. Suppose that for

some x ∈M , h(x) = k(x) and (Dh)x = (Dk)x. Then h = k.

Proof. Consider the set

U = {y ∈M : h(y) = k(y) and (Dh)y = (Dk)y: TyM → Th(y)N}.

We first show that U is open. Pick y ∈ U . By Proposition 1.4, the following

diagram commutes:

Th(y)M
(Dh)y

←− TyM
(Dk)y

−→ Tk(y)M




y

exph(y)





y

expy





y

expk(y)

N
h
←− M

k
−→ N
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But h(y) = k(y) and (Dk)y = (Dh)y. Therefore h = k on the image of expy,

which is a neighbourhood of y by Proposition 1.3. If h = k on an open set, then

(Dh) = (Dk) there. Therefore, U is open.

Now, we show that U is closed. Let {yi : i ∈ N} be a sequence of points in U ,

tending to some point y in M . Then h(y) = limi→∞ h(yi) = limi→∞ k(yi) = k(y).

Similarly, (Dh)y = (Dk)y. So, y ∈ U . Therefore, U is closed. Since U is open,

closed and non-empty, and M is connected, U = M . Therefore h = k.

Remark. A Riemannian manifold M has a (possibly infinite) volume. For each

x ∈ M , the paralleliped in TxM spanned by n orthonormal vectors is defined

to have volume 1. By integrating over M , this determines its volume. Compact

Riemannian manifolds always have finite volume.
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