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The branches of knot theory

Knot theory is divided into three quite distinct subfields:
» hyperbolic knot theory
» gauge/Floer theory
> quantum topology
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Finding connections between these fields

Each field has plenty of knot invariants:

Hyperbolic invariants: 3/4-dimensional invariants:
> Volume P signature
» Cusp shape and volume » Heegaard Floer homology
P Length spectrum » Instanton Floer homology
» Trace field ... > s, 7,6, T, ...

Goal: Find new connections between these invariants



Knot signature

The 3/4-dimensional invariant that we focused on was the
signature.

This is defined by starting with a Seifert surface S for the knot K.
The symmetrised Seifert form for S is the bilinear form
Hl(S) X Hl(S) — 7
(ﬁl,gg) — lk(gl,gz_) + lk(gz,g_l'_)
where E;r is the push-off of £, in the positive normal direction from
S.

The signature o(K) is the signature of this bilinear form.
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Connections with dimension 4

View R3 as the boundary of Ri = {(x1, X2, x3,x4) : xa > 0}.

The 4-ball genus of a knot K is the minimal genus of a
(topological locally-flat) surface in R* with boundary equal to K.

Theorem: [Murasugi 1965] ga(K) > |o(K)|/2.
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Using machine learning

Goal: can we predict the signature from hyperbolic invariants?
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Using snappy, we created a sample set of 2,700,000 hyperbolic
knots.

This was the Regina census of 1,700,000 knots with < 16
crossings plus 1,000,000 randomly chosen knots with < 80
crossings.

We randomly divided them into two groups: a training set and
a test set.

We trained a neural network to predict the signature from the
hyperbolic invariants.

We then tested this network using the test set.

The network could predict the signature with impressive
accuracy.



Saliency

The main hyperbolic invariants that were used to predict signature:

Im({Meridional translation)
Longitudinal translation
Re(Meridional translation)

é Im(Short geodesic)
§ Injectivity radius
:; Cusp volume
aé’ Symmetry group
§ Torsion degree
§' Re(Short geodesic)
Volume

Chern-Simons

Adjoint torsion degree

0 02 04 06 08 10
Normalized attribution score



Hyperbolic structures

A hyperbolic structure on a knot complement is a complete
finite-volume Riemannian metric of constant curvature —1.

By Mostow rigidity, if such a metric exists, it is a unique up to
isometry.

Thurston's theorem: The complement of a non-trivial knot K has a
hyperbolic structure if and only if K is not a torus knot or a
satellite knot.

e

satellite knot torus knot




Cusp geometry

Any knot complement has an end of the form T2 x [1,00).

When the knot is hyperbolic, this has a canonical geometry and is
called a cusp.

Let H3 be upper-half space {(x,y,z): z > 0}. Let H be the
horoball {z > 1}.

Then the cusp is formed H/(group of Euclidean translations).

{y,2)z=1}




The cusp boundary

The boundary of the cusp is a Euclidean torus C/A for a lattice A.
We normalise A so that the longitude X is real and positive, and
the meridian p has positive imaginary part.

w
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The cusp boundary

The boundary of the cusp is a Euclidean torus C/A for a lattice A.
We normalise A so that the longitude X is real and positive, and
the meridian p has positive imaginary part.

[/ -

Cusp torus for 61

The three main features that the machine learning algorithms used
to predict signature were A, Re(p) and Im(u).



Signature and cusp geometry
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Signature and cusp geometry
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Initial observation: the signs of the signature and Re(yu) are highly
correlated.
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The natural slope

» Pick a geodesic representative 1 for L > i
the meridian. \ — \
T

> Fire a geodesic ;- orthogonally
from it.

» Eventually, it will return to the meridian.

» In that time, it will have gone along one longitude and some
number s of meridians.

» Define the natural slope to be —s.

slope(K) = Re(A\/p).



Slope and signature

Signature

Regina dataset - up to 16 crossings

—

RN 20 1o [) 0 2

Signature

-5

-10

-15

Random knots
10 to 80 crossings
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Conjecture: There is a constant ¢y such that

o0(K) ~ cg slope(K).

Conjecture: There are constants ¢y and ¢; such that

lo(K) — coslope(K)| < ¢ vol(K).



Highly twisted knots

Theorem: Let K be a knot, and let Cy,..., C, be curves in the
complement that bound disjoint discs in S3. Suppose
KUCLU---U G, is hyperbolic. Let K(qi,...,q,) be the knot
obtained from K by adding g; full twists along each C;.



Highly twisted knots

Theorem: Let K be a knot, and let Cy,..., C, be curves in the
complement that bound disjoint discs in S3. Suppose
KUCLU---U G, is hyperbolic. Let K(qi,...,q,) be the knot
obtained from K by adding g; full twists along each C;. Let

¢ =1k(K, G;). Suppose l1,...,0n are even and {py1, ..., L, are
odd.



Highly twisted knots

Theorem: Let K be a knot, and let Cy,..., C, be curves in the
complement that bound disjoint discs in S3. Suppose
KUCLU---U G, is hyperbolic. Let K(qi,...,q,) be the knot
obtained from K by adding g; full twists along each C;. Let

¢ =1k(K, G;). Suppose l1,...,0n are even and {py1, ..., L, are
odd. Then there is a constant k such that if each |g;| >> 0,

slope(K(q1,...,qn)) + > _ £qi| < k

i=1

o(K(q1,---,qn)) + (;Z&?qi +% > - 1)qi>
i=1

i=m+1

<k

VO](K(qla .. '7qn)) < k.

So the conjectures are false!



Theorems

Theorem 1: There is a constant ¢; such that

|o(K) — (1/2) slope(K)| < c1 vol(K) inj(K) 3.
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Theorems

Theorem 1: There is a constant ¢; such that

|o(K) — (1/2) slope(K)| < c1 vol(K) inj(K) 3.

Here, inj(K) is inf{inj,(S% — K) : x € (53 — K) — cusp}.
Theorem 2: o(K) and

(1/2) slope(K) + Z k(%)

v€0ddGeo

differ by at most cavol(K) for some constant cy.

Here, OddGeo is the set of geodesics with length at most 0.1 and
that have odd linking number with K, and k(7) is a correction
term defined in terms of the complex length of ~.



Consequence: 4-ball genus

Corollary:

ga(K) > [slope(K)|/4 — (c1/4) vol(K) inj(K) .
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Consequence: surgery

The slopes on ON(K) are parametrised by fractions q/p.
Let K(g/p) be the manifold obtained by Dehn filling along q/p.

The filling is exceptional if K(g/p) does not have a hyperbolic
structure.

Each slope g/p has a length /(g/p) as measured in the Euclidean
metric on the torus.

Theorem: [Agol, L] If ¢(q/p) > 6, then q/p is not exceptional.

Lemma: ¢(q/p) > |pslope(K) + q|. Hence if q/p is exceptional,
then

q/p € [—slope(K) — 6/p, —slope(K) + 6/p].
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Exceptional slopes and signature

If g/p is exceptional, then
q/p € [—slope(K) — 6/p, —slope(K) + 6/p].

Hence, q/p is ‘close’ to —20(K).

Example: (-2,3,7) pretzel knot.

Its exceptional slopes are

16, 17, 18, 37/2, 19, 20. —
slope(K) ~ —18.215

o(K)=-8. l

&0

c

00,0000



Signature and spanning surfaces

Let S be an unoriented spanning surface for K.
Its Goeritz form is

Gs: Hl(S) X H]_(S) — 7
(61,52) — lk(gl,flz)

where £} is the double push-off of /5.
Theorem: [Gordon-Litherland]

o(K) = o(Gs) + e(5)/2,

where e(S) is the framing of 0S.
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Building a triangulation

Theorem: [Thurston] Any closed hyperbolic 3-manifold M has a
triangulation where the number of tetrahedra is at most
O(vol(M)inj(M)~3).
Proof:

Let e = min{inj(M)/4,1}.

Pick a maximal set of points ™ °
P in M, no two of which are
closer than €/4.

|P| < vol(M)/vol(B(e/8)). s

triangulate
—_—

Form the associated Voronoi domain.

Add a vertex to each face and cone off the face.
Triangulate each polyhedron of the domain as a cone on its
boundary.
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Theorem: Any cusped hyperbolic 3-manifold M has a triangulation
where the number of tetrahedra is at most O(vol(M)inj(M)~3).
Furthermore, if M = S — K and n is a closest even integer to
slope(K), then the slope A — nu is represented by a normal curve
that intersects each triangle in @M in at most one arc.

Start with a maximal set u
of points in d(cusp), no

two of which are closer

than €/4, and then extend

this to a maximal set in

M — int(cusp). 0

A—nu
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Building a spanning surface

Lemma: Let C be a normal curve in M that intersects each
triangle in at most one arc and that is trivial in Hy(M;Z3). Then
C extends to a normal surface F in M that intersects each
tetrahedron in at most one triangle or square.

Proof: C bounds an unoriented surface S in M.
Make S miss the vertices and be transverse to the edges.

For each edge e, put a
point at the midpoint of
the edge iff |[SNe| is odd.

Join these points.
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Proof of Theorem 1
Theorem 1: There is a constant ¢; such that

o(K) — (1/2) slope(K)| < c1 vol(K) inj(K) 2.

Let n be a closest even integer to slope(K).

Let F be the normal surface produced by the lemma with
OF = X\ — np.

Then |x(F)| < O(number of tetrahedra) < O(vol(M)inj(M)~3).
Let Gr be the Goeritz form for F.

Then |o(Gg)| < O(vol(M)inj(M)~3).

Gordon-Litherland: o(K) = o(Gf) + n/2.

So |o(K) — slope(K)/2| < |o(GE)| + 1 < O(vol(M)inj(M)~3).
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Proof of Theorem 2

Theorem 2: o(K) and (1/2)slope(K) + >~ coddceo #(7) differ by
at most cvol(K) for some constant c;.

Proof outline:

Margulis: There is a universal € > 0.1 such that the points x with
inj, < €/2 form cusps and regular neighbourhoods of short
geodesics. The rest is the thick part of M.

Triangulate the thick part using O(vol(M)) tetrahedra.

Form a spanning surface F that intersects each tetrahedron in at
most one triangle or square and with boundary slope equal to

A — np, where n is closest even integer to slope(K).

Carefully specify F in N(short geodesics).

o(Gr) = O(vol(M)) + > (1)
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o(K) =0(Gf)+ n/2.



The machine knew all along!

Im(Meridional translation)
Longitudinal translation
Re(Meridional translation)
Im(Short geodesic)
Injectivity radius

Cusp volume

Symmetry group

Torsion degree

Re{Short geodesic)
Volume

Chern-Simons

X{z): Geometric invariants

Adijoint torsion degree
0 02 04 06 08 10
Normalized attribution score

Items 4 and 5 are the terms appearing in Theorems 1 and 2.



