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The branches of knot theory

Knot theory is divided into three quite distinct subfields:

I hyperbolic knot theory

I gauge/Floer theory

I quantum topology
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Finding connections between these fields

Each field has plenty of knot invariants:

Hyperbolic invariants:

I Volume

I Cusp shape and volume

I Length spectrum

I Trace field . . .

3/4-dimensional invariants:

I signature

I Heegaard Floer homology

I Instanton Floer homology

I s, τ , ε, Υ, . . .

Goal: Find new connections between these invariants
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Knot signature

The 3/4-dimensional invariant that we focused on was the
signature.

This is defined by starting with a Seifert surface S for the knot K .

The symmetrised Seifert form for S is the bilinear form

H1(S)× H1(S)→ Z
(`1, `2) 7→ lk(`1, `

+
2 ) + lk(`2, `

+
1 )

where `+2 is the push-off of `2 in the positive normal direction from
S .

The signature σ(K ) is the signature of this bilinear form.



Connections with dimension 4

View R3 as the boundary of R4
+ = {(x1, x2, x3, x4) : x4 ≥ 0}.

R3

R4
+

Knot K

The 4-ball genus of a knot K is the minimal genus of a
(topological locally-flat) surface in R4

+ with boundary equal to K .

Theorem: [Murasugi 1965] g4(K ) ≥ |σ(K )|/2.
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Using machine learning

Goal: can we predict the signature from hyperbolic invariants?

I Using snappy, we created a sample set of 2,700,000 hyperbolic
knots.

I This was the Regina census of 1,700,000 knots with ≤ 16
crossings plus 1, 000, 000 randomly chosen knots with ≤ 80
crossings.

I We randomly divided them into two groups: a training set and
a test set.

I We trained a neural network to predict the signature from the
hyperbolic invariants.

I We then tested this network using the test set.

I The network could predict the signature with impressive
accuracy.
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Saliency

The main hyperbolic invariants that were used to predict signature:



Hyperbolic structures

A hyperbolic structure on a knot complement is a complete
finite-volume Riemannian metric of constant curvature −1.

By Mostow rigidity, if such a metric exists, it is a unique up to
isometry.

Thurston’s theorem: The complement of a non-trivial knot K has a
hyperbolic structure if and only if K is not a torus knot or a
satellite knot.

satellite knot torus knot



Cusp geometry

Any knot complement has an end of the form T 2 × [1,∞).

When the knot is hyperbolic, this has a canonical geometry and is
called a cusp.

Let H3 be upper-half space {(x , y , z) : z > 0}. Let H be the
horoball {z ≥ 1}.

Then the cusp is formed H/〈group of Euclidean translations〉.

{(x, y, z) : z =1}



The cusp boundary

The boundary of the cusp is a Euclidean torus C/Λ for a lattice Λ.
We normalise Λ so that the longitude λ is real and positive, and
the meridian µ has positive imaginary part.

0 λ

μ

Cusp torus for 61

The three main features that the machine learning algorithms used
to predict signature were λ, Re(µ) and Im(µ).
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Signature and cusp geometry

A plot of signature against Re(µ) coloured by λ

Initial observation: the signs of the signature and Re(µ) are highly
correlated.
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The natural slope

I Pick a geodesic representative µ for
the meridian.

I Fire a geodesic µ⊥ orthogonally
from it.

μ

μ

I Eventually, it will return to the meridian.

I In that time, it will have gone along one longitude and some
number s of meridians.

I Define the natural slope to be −s.

slope(K ) = Re(λ/µ).
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Slope and signature



First conjectures

Conjecture: There is a constant c0 such that

σ(K ) ' c0 slope(K ).

Conjecture: There are constants c0 and c1 such that

|σ(K )− c0 slope(K )| ≤ c1 vol(K ).
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Highly twisted knots

Theorem: Let K be a knot, and let C1, . . . ,Cn be curves in the
complement that bound disjoint discs in S3. Suppose
K ∪ C1 ∪ · · · ∪ Cn is hyperbolic. Let K (q1, . . . , qn) be the knot
obtained from K by adding qi full twists along each Ci .

Let
`i = lk(K ,Ci ). Suppose `1, . . . , `m are even and `m+1, . . . , `n are
odd. Then there is a constant k such that if each |qi | >> 0,∣∣∣∣∣slope(K (q1, . . . , qn)) +

n∑
i=1

`2i qi

∣∣∣∣∣ ≤ k

∣∣∣∣∣σ(K (q1, . . . , qn)) +

(
1

2

m∑
i=1

`2i qi +
1

2

n∑
i=m+1

(`2i − 1)qi

)∣∣∣∣∣ ≤ k

vol(K (q1, . . . , qn)) ≤ k .

So the conjectures are false!
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Theorems

Theorem 1: There is a constant c1 such that

|σ(K )− (1/2) slope(K )| ≤ c1 vol(K ) inj(K )−3.

Here, inj(K ) is inf{injx(S3 − K ) : x ∈ (S3 − K )− cusp}.

Theorem 2: σ(K ) and

(1/2) slope(K ) +
∑

γ∈OddGeo

κ(γ)

differ by at most c2vol(K ) for some constant c2.

Here, OddGeo is the set of geodesics with length at most 0.1 and
that have odd linking number with K , and κ(γ) is a correction
term defined in terms of the complex length of γ.
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Consequence: 4-ball genus

Corollary:

g4(K ) ≥ |slope(K )|/4− (c1/4) vol(K ) inj(K )−3.



Consequence: surgery

The slopes on ∂N(K ) are parametrised by fractions q/p.

Let K (q/p) be the manifold obtained by Dehn filling along q/p.

The filling is exceptional if K (q/p) does not have a hyperbolic
structure.

Each slope q/p has a length `(q/p) as measured in the Euclidean
metric on the torus.

Theorem: [Agol, L] If `(q/p) > 6, then q/p is not exceptional.

Lemma: `(q/p) > |p slope(K ) + q|. Hence if q/p is exceptional,
then

q/p ∈ [−slope(K )− 6/p,−slope(K ) + 6/p].
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Exceptional slopes and signature

If q/p is exceptional, then

q/p ∈ [−slope(K )− 6/p,−slope(K ) + 6/p].

Hence, q/p is ‘close’ to −2σ(K ).

Example: (-2,3,7) pretzel knot.

Its exceptional slopes are
16, 17, 18, 37/2, 19, 20.
slope(K ) ' −18.215
σ(K ) = −8.
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Signature and spanning surfaces

Let S be an unoriented spanning surface for K .
Its Goeritz form is

GS : H1(S)× H1(S)→ Z
(`1, `2) 7→ lk(`1, `

′
2)

where `′2 is the double push-off of `2.

Theorem: [Gordon-Litherland]

σ(K ) = σ(GS) + e(S)/2,

where e(S) is the framing of ∂S .



Building a triangulation

Theorem: [Thurston] Any closed hyperbolic 3-manifold M has a
triangulation where the number of tetrahedra is at most
O(vol(M)inj(M)−3).

Proof:
Let ε = min{inj(M)/4, 1}.

Pick a maximal set of points
P in M, no two of which are
closer than ε/4.

|P| ≤ vol(M)/vol(B(ε/8)).

x1

x2

x3

x4

x1

x2

x3

x4

L

triangulate

Form the associated Voronoi domain.
Add a vertex to each face and cone off the face.
Triangulate each polyhedron of the domain as a cone on its
boundary.
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Building a triangulation (cusped case)

Theorem: Any cusped hyperbolic 3-manifold M has a triangulation
where the number of tetrahedra is at most O(vol(M)inj(M)−3).

Furthermore, if M = S3 − K and n is a closest even integer to
slope(K ), then the slope λ− nµ is represented by a normal curve
that intersects each triangle in ∂M in at most one arc.

Start with a maximal set
of points in ∂(cusp), no
two of which are closer
than ε/4, and then extend
this to a maximal set in
M − int(cusp).
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Building a spanning surface

Lemma: Let C be a normal curve in ∂M that intersects each
triangle in at most one arc and that is trivial in H1(M;Z2). Then
C extends to a normal surface F in M that intersects each
tetrahedron in at most one triangle or square.

Proof: C bounds an unoriented surface S in M.
Make S miss the vertices and be transverse to the edges.

For each edge e, put a
point at the midpoint of
the edge iff |S ∩ e| is odd.

Join these points.
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Proof of Theorem 1

Theorem 1: There is a constant c1 such that

|σ(K )− (1/2) slope(K )| ≤ c1 vol(K ) inj(K )−3.

Let n be a closest even integer to slope(K ).

Let F be the normal surface produced by the lemma with
∂F = λ− nµ.

Then |χ(F )| ≤ O(number of tetrahedra) ≤ O(vol(M)inj(M)−3).

Let GF be the Goeritz form for F .

Then |σ(GF )| ≤ O(vol(M)inj(M)−3).

Gordon-Litherland: σ(K ) = σ(GF ) + n/2.

So |σ(K )− slope(K )/2| ≤ |σ(GF )|+ 1 ≤ O(vol(M)inj(M)−3).
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The machine knew all along!

Items 4 and 5 are the terms appearing in Theorems 1 and 2.


