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Abstract. We show there exist tunnel number one hyperbolic 3–manifolds with
arbitrarily long unknotting tunnel. This provides a negative answer to an old question
of Colin Adams.

1. Introduction

In a paper published in 1995 [1], Colin Adams studied geometric properties of hyper-
bolic tunnel number one manifolds. A tunnel number one manifold is defined to be a
compact orientable 3–manifold M with torus boundary component(s), which contains
a properly embedded arc τ , the exterior of which is a handlebody. The arc τ is defined
to be an unknotting tunnel of M .

When a tunnel number one manifold M admits a hyperbolic structure, there is a
unique geodesic arc in the homotopy class of τ . If τ runs between distinct boundary
components, Adams showed that its geodesic representative has bounded length, when
measured in the complement of a maximal horoball neighborhood of the cusps. He
asked a question about the more general picture: does an unknotting tunnel in a
hyperbolic 3–manifold always have bounded length?

In response, Adams and Reid showed that when the tunnel number one manifold
is a 2–bridge knot complement, that unknotting tunnels have bounded length [2].
Akiyoshi, Nakagawa, and Sakuma showed that unknotting tunnels in punctured torus
bundles actually have length zero [3], hence bounded length.

Sakuma and Weeks also studied unknotting tunnels in 2–bridge knots [18]. They
found that any unknotting tunnel of a 2–bridge knot was isotopic to an edge of the
canonical polyhedral decomposition of that knot, first explored by Epstein and Penner
[8]. They conjectured that all unknotting tunnels were isotopic to edges of the canon-
ical decomposition. Heath and Song later showed by example that not all unknotting
tunnels could be isotopic to edges of the canonical decomposition [10]. However, the
question of whether unknotting tunnels have bounded length remained unanswered.

In this paper we finally settle the answer to this question. We show that, in fact,
the answer is no. There exist tunnel number one manifolds with arbitrarily long
unknotting tunnel.

Theorem 4.1. There exist finite volume one–cusped hyperbolic tunnel number one
manifolds for which the geodesic representative of the unknotting tunnel is arbitrarily
long, as measured between the maximal horoball neighborhood of the cusp.

Note we are not claiming here that the unknotting tunnel in these examples is
ambient isotopic to a geodesic. Such examples can in fact be constructed, but the
argument is more complex and will appear in a companion paper [11]. However, note
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that Theorem 4.1 does force the unknotting tunnels in these examples to be arbitrarily
long, because the length of a properly embedded arc is at least that of the geodesic in
its homotopy class.

We prove Theorem 4.1 in two ways. The first proof, which appears in Section 4, is
geometric and partially non-constructive. We analyze the infinite–volume hyperbolic
structures on the compression body C with negative boundary a torus, and positive
boundary a genus 2 surface. A guiding principle is that geometric properties of hyper-
bolic structures on C should often have their counterparts in finite–volume hyperbolic
3–manifolds with tunnel number one. For example, any geometrically infinite hyper-
bolic structure on C is the geometric and algebraic limit of a sequence of geometrically
finite hyperbolic structures on C, and it is also the geometric limit of a sequence of
finite–volume hyperbolic 3–manifolds with tunnel number one. It is by finding suitable
sequences of hyperbolic structures on C that Theorem 4.1 is proved. In particular,
the proof gives very little indication of what the finite–volume hyperbolic 3–manifolds
actually are.

The geometric proof of Theorem 4.1 leads naturally to the study of geometrically
finite structures on the compression body C and their geometric properties. We include
some background material in Sections 2 and 3. However, we postpone a more extensive
investigation of geometrically finite structures on C to a companion paper [11].

The second proof is more topological, and appears in Section 6. The idea is to start
with a tunnel number one manifold with two cusps. An argument using homology
implies that there exist Dehn fillings on one cusp which yield a tunnel number one
manifold whose core tunnel must be arbitrarily long.

A consequence of the second proof is that the resulting tunnel number one manifold
cannot be the exterior of a knot in a homology sphere. In Section 5, we modify the
construction of the first proof to show there do exist tunnel number one manifolds
with long tunnel which are the exterior of a knot in a homology sphere. It seems likely
that the Dehn filling construction in Section 6 can be modified to produce hyperbolic
knots in homology spheres with long unknotting tunnels. However, to establish this,
a substantially different method of proof would be required.

Although we construct examples of knots in homology 3–spheres with long unknot-
ting tunnels, we do not obtain knots in the 3–sphere using our methods. It would be
interesting to determine whether such sequences of knots exist. If they do, can explicit
diagrams of such knots be found?

1.1. Acknowledgements. Lackenby and Purcell were supported by the Leverhulme
trust. Lackenby was supported by an EPSRC Advanced Research Fellowship. Purcell
was supported by NSF grant DMS-0704359. Cooper was partially supported by NSF
grant DMS-0706887.

2. Background and preliminary material

In this section we will review terminology and results used throughout the paper.
The first step in the proof of Theorem 4.1 is to show there exist geometrically finite

structures on a compression body C with arbitrarily long tunnel. We begin by defining
these terms.
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Figure 1. The (1, 2)–compression body. The core tunnel is the thick
line shown, with endpoints on the torus boundary.

2.1. Compression bodies. A compression body C is either a handlebody, or the
result of taking a closed, orientable (possibly disconnected) surface S cross an interval
[0, 1], and attaching 1–handles to S × {1}. The negative boundary, denoted ∂−C, is
S ×{0}. When C is a handlebody, ∂−C = ∅. The positive boundary is ∂C \ ∂−C, and
is denoted ∂+C.

Throughout this paper, we will be interested in compression bodies C for which
∂−C is a torus and ∂+C is a genus 2 surface. We will refer to such a manifold as a
(1, 2)–compression body, where the numbers (1, 2) refer to the genus of the boundary
components.

Let τ be the union of the core of the attached 1–handle with two vertical arcs in
S × [0, 1] attached to its endpoints. Thus, τ is a properly embedded arc in C, and C
is a regular neighborhood of ∂−C ∪ τ . We refer to τ as the core tunnel. See Figure 1.

Note that the fundamental group of a (1, 2)–compression body C is isomorphic to
(Z × Z) ∗ Z. We will denote the generators of the Z × Z factor by α, β, and we will
denote the generator of the second factor by γ.

2.2. Hyperbolic structures. Let C be a (1, 2)–compression body. We are interested
in complete hyperbolic structures on the interior of C. We obtain a hyperbolic struc-
ture on C \∂C by taking a discrete, faithful representation ρ : π1(C) → PSL(2,C) and
considering the manifold H

3/ρ(π1(C)).

Definition 2.1. A discrete subgroup Γ < PSL(2,C) is geometrically finite if H
3/Γ

admits a finite–sided, convex fundamental domain. In this case, we will also say that
the manifold H

3/Γ is geometrically finite.

Geometrically finite groups are well understood. In this paper, we will often use the
following theorem of Bowditch (and its corollary, Corollary 2.10 below).

Theorem 2.2 (Bowditch, Proposition 5.7 [5]). If a subgroup Γ < PSL(2,C) is geo-
metrically finite, then every convex fundamental domain for H

3/Γ has finitely many
faces.

Definition 2.3. For C a (1, 2)–compression body, we will say that a discrete, faithful
representation ρ is minimally parabolic if for all g ∈ π1(C), ρ(g) is parabolic if and
only if g is conjugate to an element of the fundamental group of the torus boundary
component ∂−C.
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Definition 2.4. A discrete, faithful representation ρ : π1(C) → PSL(2,C) is a min-
imally parabolic geometrically finite uniformization of C if ρ is minimally parabolic,
ρ(π1(C)) is geometrically finite as a subgroup of PSL(2,C), and H

3/ρ(π1(C)) is home-
omorphic to the interior of C.

It is a classical result, due to Bers, Kra, and Maskit (see [4]), that the space of
conjugacy classes of minimally parabolic geometrically finite uniformizations of C may
be identified with the Teichmüller space of the genus 2 boundary component ∂+C,
quotiented out by Mod0(C), the group of isotopy classes of homeomorphisms of C
which are homotopic to the identity.

In particular, note that the space of minimally parabolic geometrically finite uni-
formizations is path connected.

2.3. Isometric spheres and Ford domains. The tool we use to study geometrically
finite representations is that of Ford domains. We define the necessary terminology in
this section.

Throughout this subsection, let M = H
3/Γ be a hyperbolic manifold with a single

rank two cusp, for example, the (1, 2)–compression body. In the upper half space
model for H

3, assume the point at infinity in H
3 projects to the cusp. Let H be

any horosphere about infinity. Let Γ∞ < Γ denote the subgroup that fixes H. By
assumption, Γ∞ = Z × Z.

Definition 2.5. For any g ∈ Γ \ Γ∞, g−1(H) will be a horosphere centered at a point
of C, where we view the boundary at infinity of H

3 to be C ∪ {∞}. Define the set
Sg to be the set of points in H

3 equidistant from H and g−1(H). Sg is the isometric
sphere of g.

Note that Sg is well–defined even if H and g−1(H) overlap. It will be a Euclidean
hemisphere orthogonal to the boundary C of H

3.
At first glance, it may seem more natural to consider points equidistant from H

and g(H), rather than g−1(H) as in Definition 2.5. However, we use the historical
definition of isometric spheres in order to make use of the following classical result,
which we include as a lemma. A proof can be found, for example, in Maskit’s book
[15, Chapter IV, Section G].

Lemma 2.6. For any g ∈ Γ \ Γ∞, the action of g on H
3 is given by inversion in Sg

followed by a Euclidean isometry. �

The following is well known, and follows from standard calculations in hyperbolic
geometry. We give a proof in [11].

Lemma 2.7. If

g =

(

a b
c d

)

∈ PSL(2,C),

then the center of the Euclidean hemisphere Sg−1 is g(∞) = a/c. Its Euclidean radius
is 1/|c|.
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Let Bg denote the open half ball bounded by Sg. Define F to be the set

F = H
3 \

⋃

g∈Γ\Γ∞

Bg.

Note F is invariant under Γ∞, which acts by Euclidean translations on H
3.

WhenH bounds a horoballH∞ that projects to an embedded horoball neighborhood
about the rank 2 cusp of M , F is the set of points in H

3 which are at least as close to
H∞ as to any of its translates under Γ\Γ∞. Such an embedded horoball neighborhood
of the cusp always exists, by the Margulis lemma.

Definition 2.8. A vertical fundamental domain for Γ∞ is a fundamental domain for
the action of Γ∞ cut out by finitely many vertical geodesic planes in H

3.

Definition 2.9. A Ford domain of M is the intersection of F with a vertical funda-
mental domain for the action of Γ∞.

A Ford domain is not canonical because the choice of fundamental domain for Γ∞

is not canonical. However, for the purposes of this paper, the region F in H
3 is often

more useful than the actual Ford domain.
Note that Ford domains are convex fundamental domains. Thus we have the fol-

lowing corollary of Bowditch’s Theorem 2.2.

Corollary 2.10. M = H
3/Γ is geometrically finite if and only if a Ford domain for

M has a finite number of faces.

2.4. Visible faces and Ford domains.

Definition 2.11. Let g ∈ Γ \ Γ∞. The isometric sphere Sg is called visible from
infinity, or simply visible, if it is not contained in

⋃

h∈Γ\(Γ∞∪Γ∞g) B̄h. Otherwise, Sg is
called invisible.

Similarly, suppose g, h ∈ Γ \ Γ∞, and Sg ∩ Sh ∩ H
3 is nonempty. Then the edge of

intersection Sg ∩ Sh is called visible if Sg and Sh are visible and their intersection is
not contained in

⋃

k∈Γ\(Γ∞∪Γ∞g∪Γ∞h) B̄k. Otherwise, it is invisible.

The faces of F are exactly those that are visible from infinity.
In the case where H bounds a horoball that projects to an embedded horoball

neighborhood of the rank 2 cusp ofM , there is an alternative interpretation of visibility.
An isometric sphere Sg is visible if and only if there exists a point x in Sg such that
for all h ∈ Γ \ (Γ∞ ∪ Γ∞g), the hyperbolic distance d(x, h−1(H)) is greater than the
hyperbolic distance d(x,H). Similarly, an edge Sg ∩ Sh is visible if and only if there
exists a point x in Sg ∩ Sh such that for all k ∈ Γ \ (Γ∞ ∪ Γ∞g ∪ Γ∞h), the hyperbolic
distance d(x,H) is strictly less than the hyperbolic distance d(x, k−1(H)).

We present a result that allows us to identify minimally parabolic geometrically
finite uniformizations.

Lemma 2.12. Suppose ρ : π1(C) → PSL(2,C) is a geometrically finite uniformization.
Suppose none of the visible isometric spheres of the Ford domain of H

3/ρ(π1(C)) are
visibly tangent on their boundaries. Then ρ is minimally parabolic.
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By visibly tangent, we mean the following. Set Γ = ρ(π1(C)), and assume a neigh-
borhood of infinity in H

3 projects to the rank two cusp of H
3/Γ, with Γ∞ < Γ fixing

infinity in H
3. For any g ∈ Γ \ Γ∞, the isometric sphere Sg has boundary that is a

circle on the boundary C at infinity of H
3. This circle bounds an open disk Dg in C.

Two isometric spheres Sg and Sh are visibly tangent if their corresponding disks Dg

and Dh are tangent on C, and for any other k ∈ Γ \ Γ∞, the point of tangency is not
contained in the open disk Dk.

Proof. Suppose ρ is not minimally parabolic. Then it must have a rank 1 cusp. Apply
an isometry to H

3 so that the point at infinity projects to this rank 1 cusp. The
Ford domain becomes a finite sided region P meeting this cusp. Take a horosphere
about infinity. Because the Ford domain is finite sided, we may take this horosphere
about infinity sufficiently small that the intersection of the horosphere with P gives
a subset of Euclidean space with sides identified by elements of ρ(π1(C)), conjugated
appropriately.

The side identifications of this subset of Euclidean space, given by the side identifi-
cations of P , generate the fundamental group of the cusp. But this is a rank 1 cusp,
hence its fundamental group is Z. Therefore, the side identification is given by a single
Euclidean translation. The Ford domain P intersects this horosphere in an infinite
strip, and the side identification glues the strip into an annulus. Note this implies two
faces of P are tangent at infinity.

Now conjugate back to our usual view of H
3, with the point at infinity projecting

to the rank 2 cusp of the (1, 2)–compression body H
3/ρ(π1(C)). The two faces of P

tangent at infinity are taken to two isometric spheres of the Ford domain, tangent at
a visible point on the boundary at infinity. �

Remark. The converse to Lemma 2.12 is not true. There exist examples of geometri-
cally finite representations for which two visible isometric spheres are visibly tangent,
and yet the representation is still minimally parabolic. We see examples of this in [11].

We next prove a result which will help us identify representations which are not
discrete.

Lemma 2.13. Let Γ be a discrete, torsion free subgroup of PSL(2,C) such that M =
H

3/Γ has a rank two cusp. Suppose that the point at infinity projects to the cusp, and
let Γ∞ be its stabilizer in Γ. Then for all ζ ∈ Γ \ Γ∞, the isometric sphere of ζ has
radius at most the minimal (Euclidean) translation length of all elements in Γ∞.

Proof. By the Margulis lemma, there exists an embedded horoball neighborhood of
the rank 2 cusp of H

3/Γ. Let H∞ be a horoball about infinity in H
3 that projects to

this embedded horoball. Let τ be the minimum (Euclidean) translation length of all
nontrivial elements in the group Γ∞, say τ is the distance translated by the element
wτ . Suppose Sζ has radius R strictly larger than τ . Without loss of generality, we
may assume Sζ is visible, for otherwise there is some visible face Sξ which covers the
highest point of Sζ , hence must have even larger radius.

Because the radius R of Sζ is larger than τ , Sζ must intersect wτ (Sζ) = Sζw−1
τ

, and

in fact, the center wτζ
−1(∞) of Sζw−1

τ

must lie within the boundary circle Sζ ∩ C.
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Consider the set of points P equidistant from ζ−1(H∞) and wτζ
−1(H∞). Because

these horoballs are the same size, P must be a vertical plane in H
3 which lies over the

perpendicular bisector of the line segment running from ζ−1(∞) to wτζ
−1(∞) on C.

Now apply ζ. This will take the plane P to S0 := Sζw−1
τ ζ−1 . We wish to determine

the (Euclidean) radius of S0. By Lemma 2.6, applying ζ is the same as applying an
inversion in Sζ , followed by a Euclidean isometry. Only the inversion will affect the
radius of S0. Additionally, the radius is independent of the location of the center of
the isometric sphere Sζ , so we may assume without loss of generality that the center
of Sζ is at 0 ∈ C and that the center of Sζw−1

τ

is at τ ∈ C. Now inversion in a circle

of radius R centered at zero takes the point τ to R2/τ , and the point at infinity to 0.
Thus the center of S0, which is the image of τ under ζ, will be of distance R2/τ from
a point on the boundary of S0, i.e. the image of ∞ on P under ζ. Hence the radius of
S0 is R2/τ > R. Denote R2/τ by R0. We have R0 > R > τ .

Now we have a new face S0 with radius R0 > R > τ . Again we may assume it is
visible. The same argument as above implies there is another sphere S1 with radius
R1 > R0 > τ . Continuing, we obtain an infinite collection of visible faces of increasing
radii. These must all be distinct. But this is impossible: an infinite number of distinct
faces of radius greater than τ cannot fit inside a fundamental domain for Γ∞. Thus Γ
is indiscrete. �

The following lemma gives us a tool to identify the Ford domain of a geometrically
finite manifold.

Lemma 2.14. Let Γ be a subgroup of PSL(2,C) with rank 2 subgroup Γ∞ fixing the
point at infinity. Suppose the isometric spheres corresponding to a finite set of elements
of Γ, as well as a vertical fundamental domain for Γ∞, cut out a fundamental domain
P for Γ. Then Γ is discrete and geometrically finite, and P must be a Ford domain of
H

3/Γ.

Proof. The discreteness of Γ follows from Poincaré’s polyhedron theorem. The fact
that it is geometrically finite follows directly from the definition.

Suppose P is not a Ford domain. Since the Ford domain is only well–defined up to
choice of fundamental region for Γ∞, there is a Ford domain F with the same choice
of vertical fundamental domain for Γ∞ as for P . Since P is not a Ford domain, F and
P do not coincide. Because both are cut out by isometric spheres corresponding to
elements of Γ, there must be additional visible faces that cut out the domain F than
just those that cut out the domain P . Hence F is a strict subset of P , and there is
some point x in H

3 which lies in the interior of P , but does not lie in the Ford domain.
But now consider the covering map φ : H

3 → H
3/Γ. This map φ glues both P and

F into the manifold H
3/Γ, since they are both fundamental domains for Γ. So consider

φ applied to x. Because x lies in the interior of P , and P is a fundamental domain,
there is no other point of P mapped to φ(x). On the other hand, x does not lie in the
Ford domain F . Thus there is some preimage y of φ(x) under φ which does lie in F .
But F is a subset of P . Hence we have y 6= x in P such that φ(x) = φ(y). This is a
contradiction. �
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2.5. The Ford spine. When we glue the Ford domain into the manifold M = H
3/Γ,

as in the proof of Lemma 2.14, the faces of the Ford domain will be glued together in
pairs to form M .

Definition 2.15. The Ford spine of M is defined to be the image of the visible faces
of F under the covering H

3 →M .

Remark. A spine usually refers to a subset of the manifold onto which there is a
retraction of the manifold. Using that definition, the Ford spine is not strictly a spine.
However, the Ford spine union the genus 2 boundary ∂+C will be a spine for the
compression body.

Let ρ be a geometrically finite uniformization. Recall that the domain of discontinu-
ity Ωρ(π1(C)) is the complement of the limit set of ρ(π1(C)) in the boundary at infinity
∂∞H

3. See, for example, Marden [14, section 2.4].

Lemma 2.16. Let ρ be a minimally parabolic geometrically finite uniformization of a
(1, 2)–compression body C. Then the manifold (H3 ∪Ωρ(π1(C)))/ρ(π1(C)) retracts onto
the boundary at infinity (F̄ ∩ C)/Γ∞, union the Ford spine.

Proof. Let H be a horosphere about infinity in H
3 that bounds a horoball which

projects to an embedded horoball neighborhood of the cusp of H
3/ρ(π1(C)). Let x be

any point in F ∩H
3. The nearest point on H to x lies on a vertical line running from x

to infinity. These vertical lines give a foliation of F . All such lines have one endpoint
on infinity, and the other endpoint on F̄ ∩ C or an isometric sphere of F . We obtain
our retraction by mapping the point x to the endpoint of its associated vertical line,
then quotienting out by the action of ρ(π1(C)). �

To any face F0 of the Ford spine, we obtain an associated collection of visible ele-
ments of Γ: those whose isometric sphere projects to F0 (or more carefully, a subset
of their isometric sphere projects to the face F0). We will often say that an element g
of Γ corresponds to a face F0 of the Ford spine of M , meaning Sg is visible, and (the
visible subset of) Sg projects to F0. Note that if g corresponds to F0, then so does g−1

and w0g
±1w1 for any words w0, w1 ∈ Γ∞.

3. Ford domains of compression bodies

Let C be a (1, 2)–compression body. The fundamental group π1(C) is isomorphic
to (Z × Z) ∗ Z. The Z × Z factor has generators α and β, and the generator of the Z

factor is γ.
Suppose ρ : π1(C) → PSL(2,C) is a minimally parabolic geometrically finite uni-

formization of C. Then ρ(α) and ρ(β) are parabolic, and we will assume they fix the
point at infinity in H

3. Together, they generate Γ∞. The third element, ρ(γ), is a
loxodromic element. In π1(C), α and β are represented by loops in ∂−C. To form the
(1, 2)–compression body, we add to ∂−C × I a 1–handle. Then γ is represented by a
loop around the core of this 1–handle.

In the simplest possible case imaginable, the Ford spine of H
3/Γ consists of a single

face, corresponding to ρ(γ). Note if this case happened to occur, then in the lift to H
3,



THE LENGTH OF UNKNOTTING TUNNELS 9

γ
γ−1

Figure 2. Left: Schematic picture of a simple Ford domain. Right:
Three dimensional view of F in H

3.

the only visible isometric spheres would correspond to ρ(γ), ρ(γ−1), and their translates
by elements of Γ∞. Cutting out regions bounded by these hemispheres would give the
region F . Topologically, the manifold H

3/Γ is obtained as follows. First take F/Γ∞.
The interior of F/Γ∞ is homeomorphic to T 2 × (0,∞). On the boundary on C of
F/Γ∞ lie two hemispheres, corresponding to ρ(γ) and ρ(γ−1). These are glued via
ρ(γ) to form H

3/Γ from F/Γ∞.
This situation is illustrated in Figure 2.
In the following lemma, we show that this simple Ford domain does, in fact, occur.

Lemma 3.1. Let C be a (1, 2)–compression body. There exists a minimally para-
bolic geometrically finite uniformization of C, ρ : π1(C) → PSL(2,C) such that the
Ford spine of H

3/ρ(π1(C)) consists of a single face, corresponding to the loxodromic
generator.

Proof. We construct such a structure by choosing ρ(α), ρ(β), ρ(γ) in PSL(2,C).
Let c ∈ C be such that |c| > 2, and let ρ(α), ρ(β), and ρ(γ) be defined by

ρ(α) =

(

1 2|c|
0 1

)

, ρ(β) =

(

1 2i|c|
0 1

)

, ρ(γ) =

(

c −1
1 0

)

.

Let Γ be the subgroup of PSL(2,C) generated by ρ(α), ρ(β), and ρ(γ). By Lemma
2.7, Sρ(γ) has center 0, radius 1, and Sρ(γ−1) has center c ∈ C, radius 1. For |c| > 2,
Sρ(γ) will not meet Sρ(γ−1). Note also that by choice of ρ(α), ρ(β), all translates of
Sρ(γ) and Sρ(γ−1) under Γ∞ are disjoint. We claim that ρ satisfies the conclusions of
the lemma.

Select a vertical fundamental domain for Γ∞ which contains the isometric spheres
Sρ(γ) and Sρ(γ−1) in its interior. This is possible by choice of ρ(α), ρ(β), and ρ(γ).

Consider the region P obtained by intersecting this fundamental region with the
complement of Bρ(γ) and Bρ(γ−1). As in the discussion above, we may glue this region
P into a manifold C0 by gluing Sρ(γ) to Sρ(γ−1) via ρ(γ), and by gluing vertical faces by
appropriate parabolic elements. The manifold C0 will be homeomorphic to the interior
of a (1, 2)–compression body.

Then Poincaré’s polyhedron theorem implies that the manifold C0 has fundamental
group generated by ρ(α), ρ(β), and ρ(γ). Hence C0 is the manifold H

3/Γ.
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By Lemma 2.14, this fundamental region P must actually be the Ford domain for
the manifold, and Γ is geometrically finite. Since these isometric spheres are nowhere
tangent, ρ is minimally parabolic, by Lemma 2.12. �

The examples of Ford domains that will interest us will be more complicated than
that in Lemma 3.1.

Example 3.2. Fix R > 0, and select ε ∈ R so that 0 < ε < e−R, or equivalently, so
that log(1/ε) ∈ (R,∞). Set ρ(γ) equal to

(1)











i(1 + ε)√
ε

i√
ε

− i√
ε

− i√
ε











.

Note that with ρ(γ) defined in this manner, we have

ρ(γ2) =

(

−2 − ε −1
1 0

)

.

Thus the isometric sphere of ρ(γ) has radius 1/|i/√ε| =
√
ε, while that of ρ(γ2) has

radius 1 by Lemma 2.7. Now select ρ(α) and ρ(β) to be linearly independent parabolic
translations fixing the point at infinity, with translation distance large enough that the
isometric spheres of ρ(γ2), ρ(γ−2), ρ(γ), and ρ(γ−1) do not meet any of their translates
under ρ(α) and ρ(β). The following will do:

ρ(α) =

(

1 20
0 1

)

, ρ(β) =

(

1 20i
0 1

)

.

Lemma 3.3. The representation ρ : π1(C) → PSL(2,C) defined in Example 3.2 is
a minimally parabolic geometrically finite hyperbolic uniformization of C whose Ford
spine consists of exactly two faces, corresponding to ρ(γ) and ρ(γ2).

Proof. Consider the isometric spheres corresponding to ρ(γ), ρ(γ−1), ρ(γ2), and ρ(γ−2).
We will show that these faces, along with the faces of a vertical fundamental domain
for the action of ρ(α) and ρ(β), are the only faces of the Ford domain of the manifold
H

3/ρ(π1(C)). Since the faces corresponding to ρ(γ) and to ρ(γ−1) glue together, and
since the faces corresponding to ρ(γ2) and to ρ(γ−2) glue, the Ford domain glues to
give a Ford spine with exactly two faces. The fact that the manifold is geometrically
finite will then follow by Lemma 2.14.

Choose vertical planes that cut out a vertical fundamental domain for the action of
Γ∞ and that avoid the isometric spheres corresponding to ρ(γ±1) and ρ(γ±2). Because
the translation distances of ρ(α) and ρ(β) are large with respect to the radii of these
isometric spheres, this is possible. For example, the planes x = −10, x = 10, y = −10,
y = 10 in {(x, y, z)|z > 0} = H

3 will do.
Now, the isometric spheres of ρ(γ) and ρ(γ−1) have center −1 and −1 − ε, respec-

tively, and radius
√
ε, by Lemma 2.7. Similarly, the isometric spheres of ρ(γ2) and

ρ(γ−2) have centers 0 and −2−ε, respectively, and radius 1. Then one may check: The
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Sγ−2

−2 − ǫ −1

Sγ2

0

Sγ−1

Sγ

Figure 3. The isometric spheres corresponding to ρ(γ−2), ρ(γ−1), ρ(γ),
and ρ(γ2).

isometric sphere of ρ(γ2) meets that of ρ(γ) in the plane x = −1 + ε/2. The isometric
sphere of ρ(γ) meets that of ρ(γ−1) in the plane x = −1 − ε/2, and the isometric
sphere of ρ(γ−1) meets that of ρ(γ−2) in the plane x = −1 − 3ε/2, as in Figure 3.
These are the only intersections of these spheres that are visible from infinity. If we
glue the isometric spheres of ρ(γ±1) via ρ(γ) and the isometric spheres of ρ(γ±2) via
ρ(γ2), then these three edges of intersection are all glued to a single edge.

Consider the monodromy around this edge. We must show that it is the identity.
Note that a meridian of the edge is divided into three arcs, running from the faces
labeled Sγ−1 to Sγ−2 , from Sγ2 to Sγ, and from Sγ−1 to Sγ. To patch the first pair of
arcs together, we glue Sγ−2 to Sγ2 using the isometry γ−2. To patch the second and
third pairs of arcs, we glue Sγ to Sγ−1 by the isometry γ. The composition of these
three isometries is γ−2γγ, which is the identity, as required.

Hence, by Poincaré’s polyhedron theorem, the space obtained by gluing faces of the
polyhedron P cut out by the above isometric spheres and vertical planes is a manifold,
with fundamental group generated by ρ(γ), ρ(γ2), ρ(α), and ρ(β).

We need to show that this is a uniformization of C, i.e., that H
3/ρ(π1(C)) is home-

omorphic to the interior of C. The Ford spine of H
3/ρ(π1(C)) has two faces, one of

which has boundary which is the union of the 1–cell of the spine and an arc on ∂+C.
Collapse the 1–cell and this face. The result is a new complex with the same regular
neighborhood. It now has a single 2–cell attached to ∂+C. Thus, H

3/ρ(π1(C)) is ob-
tained by attaching a 2–handle to ∂+C× I, and then removing the boundary. In other
words, H

3/ρ(π1(C)) is homeomorphic to the interior of C.
Thus H

3/ρ(π1(C)) is homeomorphic to the interior of C, and has a convex funda-
mental domain P with finitely many faces. By Lemma 2.14, this convex fundamental
domain P is actually the Ford domain. Finally, since none of the isometric spheres of
the Ford domain are visibly tangent at their boundaries, by Lemma 2.12 the represen-
tation is minimally parabolic. Hence it is a minimally parabolic geometrically finite
uniformization of C. �

3.1. Dual edges. To each face of the Ford spine, there is an associated dual edge,
which is defined as follows. For any face F of the Ford spine, there is some g ∈ Γ\Γ∞

such that (subsets of) Sg and Sg−1 are faces of a Ford domain, and Sg and Sg−1 project



12 DARYL COOPER, MARC LACKENBY, AND JESSICA S. PURCELL

Sγ
Sγ−1

Figure 4. The dual to the simplest Ford spine is an edge that lifts to
a collection of vertical geodesics in F , shown in bold.

to F . Above each of these isometric spheres lies a vertical arc, running from the top
of the isometric sphere (i.e. the geometric center of the hemisphere) to the point
at infinity. Define the dual edge to be the union of the image of these two arcs in
H

3/ρ(π1(C)).

Lemma 3.4. For any uniformization ρ : π1(C) → PSL(2,C), the core tunnel will be
homotopic to the edge dual to the isometric sphere corresponding to the loxodromic
generator of ρ(π1(C)).

Proof. Denote the loxodromic generator by ρ(γ). Consider the core tunnel in the
compression body H

3/ρ(π1(C)). Take a horoball neighborhood H of the cusp, and its
horospherical torus boundary. The core tunnel runs through this horospherical torus
∂H, into the cusp. Denote by H̃ a lift of H to H

3 about the point at infinity in H
3.

There is a homeomorphism from C to H
3/ρ(π1(C)) \ H. Slide the tunnel in C so

that it starts and ends at the same point, and so that the resulting loop represents γ.
The image of this loop under the homeomorphism to H

3/ρ(π1(C)) \ H is some loop.
This lifts to an arc in H

3 starting on H̃ and ending on ρ(γ)(H̃). Extend this to an arc
in H

3/ρ(π1(C)) by attaching a geodesic in H̃ and in ρ(γ)(H̃). This is isotopic to (the
interior of) the core tunnel. Now homotope this to a geodesic. It will run through the
isometric sphere corresponding to ρ(γ−1) once. �

4. Long unknotting tunnels

We are now ready to give the geometric proof of our main theorem.

Theorem 4.1. There exist finite volume one–cusped hyperbolic tunnel number one
manifolds for which the geodesic representative of the unknotting tunnel is arbitrarily
long, as measured between the maximal horoball neighborhood of the cusp.

Recall that a tunnel number one manifold is a manifold M with torus boundary
components which admits an unknotting tunnel, that is, a properly embedded arc τ ,
the exterior of which is a handlebody.

Recall also that the length of the geodesic representative of an unknotting tunnel is
measured outside a maximal horoball neighborhood of the cusp.

Before proving Theorem 4.1, we need to prove a similar statement for minimally
parabolic geometrically finite hyperbolic uniformizations of a (1, 2)–compression body.
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Proposition 4.2. For any R > 0, there exists a minimally parabolic geometrically
finite uniformization of a (1, 2)–compression body such that the geodesic representative
of the homotopy class of the core tunnel has length at least R.

Proof. We will prove Proposition 4.2 by finding an explicit minimally parabolic geo-
metrically finite uniformization of a (1, 2)–compression body C. For fixed R > 0, our
explicit uniformization will be that given in Example 3.2 above. By Lemma 3.3, this
is a minimally parabolic geometrically finite hyperbolic uniformization of the (1, 2)–
compression body C whose Ford spine consists of exactly two faces, corresponding to
ρ(γ) and ρ(γ2). We claim that the geodesic representative of the homotopy class of
the core tunnel has length at least R.

Lemma 4.3. Let ρ : π1(C) → PSL(2,C) be a discrete, faithful representation such
that ρ(α), ρ(β) are parabolics fixing the point at infinity in H

3, and ρ(γ) is as in
equation (1). Then the geodesic representative of the homotopy class of the core tunnel
has length greater than R.

Proof. By Lemma 3.4, the core tunnel is homotopic to the geodesic dual to the isomet-
ric spheres corresponding to ρ(γ) and ρ(γ−1). The length of this geodesic is twice the
distance along the vertical geodesic from the top of one of the isometric spheres cor-
responding to ρ(γ±1) to a maximal horoball neighborhood of the cusp about infinity.
Since the isometric sphere of ρ(γ2) has radius 1, a maximal horoball about the cusp
will have height at least 1. The isometric sphere of ρ(γ) has radius

√
ε. Integrating

1/z from z =
√
ε to 1, we find that the distance along this vertical arc is at least

log 1/
√
ε. Hence the length of the geodesic representative of the core tunnel is at least

log 1/ε. By choice of ε, this length is greater than R. �

Remark. Note in the proof above that we may strengthen Lemma 4.3 as follows.
Because of the choice of ε in equation (1), there exists some neighborhood U of the
matrix of (1) such that if ρ(α), ρ(β) are as above, but ρ(γ) lies in U , then the geodesic
representative of the homotopy class of the core tunnel has length greater than R.

This completes the proof of Proposition 4.2. �

Before we present the proof of Theorem 4.1, we need to recall terminology from
Kleinian group theory.

We define the (restricted) character variety V (C) to be the space of conjugacy classes
of representations ρ : π1(C) → PSL(2,C) such that elements of π1(∂−C) are sent to
parabolics. Note this definition agrees with Marden’s definition of the representation
variety in [14], but is a restriction of the character variety in Culler and Shalen’s classic
paper [7]. Convergence in V (C) is known as algebraic convergence.

Let GF0(C) denote the subset of V (C) consisting of conjugacy classes of minimally
parabolic geometrically finite uniformizations of C, given the algebraic topology. It
follows from work of Marden [13, Theorem 10.1] that GF0(C) is an open subset of
V (C). We are interested in a type of structure that lies on the boundary of GF0(C).
These structures are discrete, faithful representations of C that are geometrically finite,
but not minimally parabolic.
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Definition 4.4. A maximal cusp for C is a geometrically finite uniformization of C,
ρ : π1(C) → PSL(2,C) such that every component of the boundary of the convex core
of H

3/ρ(π1(C)) is a 3–punctured sphere.

A maximal cusp is in some sense the opposite of a minimally parabolic representa-
tion. In a minimally parabolic representation, no elements of ∂+C are pinched. In a
maximal cusp, a full pants decomposition of ∂+C, or the maximal number of elements,
is pinched to parabolic elements.

Due to a theorem of Canary, Culler, Hersonsky, and Shalen [6, Corollary 16.4],
conjugacy classes of maximal cusps for C are dense on the boundary of GF0(C) in
V (C). This theorem, an extension of work of McMullen [16], is key in the proof of
Theorem 4.1.

Proof of Theorem 4.1. Let ρ0 be the geometrically finite representation of the proof
of Proposition 4.2, with core tunnel homotopic to a geodesic of length strictly greater
than R. The translation lengths of ρ0(α) and ρ0(β) are bounded, say by B.

We will consider ρ0 to be an element of the character variety V (C). Indeed, define
R to be the set of all representations where ρ(α) and ρ(β) are parabolics fixing infinity
with length bounded by B, and with ρ(γ) fixed as in equation (1). If we view the char-
acter variety V (C) as a subset of the variety of representations ρ of π1(C) where ρ(α)
and ρ(β) have been suitably normalized to avoid conjugation, then we may consider
R as a subset of V (C). Note ρ0 is in R.

The set R is clearly path connected. By Lemma 4.3, for all uniformizations of C in
R, the length of the geodesic representative of the core tunnel is at least R.

Moreover, notice that R includes indiscrete representations, as follows. Recall that
the isometric sphere corresponding to γ2 has radius 1 when ρ(γ) is defined as in
equation (1). Thus by Lemma 2.13, whenever the translation length of α is less than
1, the representation cannot be discrete.

Then consider a path in R from ρ0 to an indiscrete representation. At some point
along this path, we come to R∩ ∂GF0(C).

By work of Canary, Culler, Hersonsky, and Shalen [6], generalizing work of McMullen
[16], the set of maximal cusps is dense in the boundary of geometrically finite structures
∂GF0(C).

It follows that we can find a sequence of geometrically finite representations ρn of
π1(C) such that the conformal boundaries of the manifolds Cn := H

3/ρn(π1(C)) are
maximally cusped genus two surfaces, Cn are homeomorphic to the interior of C, and
such that the algebraic limit of these manifolds Cn is a manifold M = H

3/ρ∞(π1(C))
where ρ∞ is in R. By the remark following Lemma 4.3, for large n, the core tunnels
of the Cn will have geodesic representative with length greater than R.

Now, there exists a maximally cusped hyperbolic structure on the genus 2 handle-
body H. In fact, by work of Canary, Culler, Hersonsky, and Shalen [6, Corollary
15.1], such structures are dense in the boundary of geometrically finite structures on
handlebodies. Thus, there exists a hyperbolic manifold H

3/Γ1 homeomorphic to the
interior of H, such that every component of the boundary of the convex core of H

3/Γ1

is a 3–punctured sphere. We will continue to denote the hyperbolic manifold H
3/Γ1

by H.
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Figure 5. Shown is a picture of F for four geometrically finite struc-
tures with long unknotting tunnel. These structures are converging to a
structure on ∂GF0(π1(C)). Note that in each of the four structures, the
pattern of isometric spheres corresponding to that of Figure 3 is visible,
although the number of visible isometric spheres increases.

Let φn be any homeomorphism from ∂+C to H taking parabolics of Cn on ∂+C to
the parabolics of ∂H. Because φn takes 3–punctured spheres to 3–punctured spheres, it
extends to an isometry. Hence we may glue Cn to H via φn and obtain a tunnel number
one manifold with three drilled out curves, corresponding to the three parabolics of
∂+C. These are three torus boundary components of Mn := Cn ∪φn

H.
Select Dehn filling slopes s1, s2, s3 on these three boundary components that act as

gluing one boundary to the other by a high power of a Dehn twist. When we Dehn fill
along these slopes, the result is a tunnel number one manifoldMn(s1, s2, s3). By work of
Thurston [19], as the length of the slopes increases, the Dehn filled manifold approaches
Mn in the geometric topology. Thus the length of the geodesic representative of the
homotopy class of the unknotting tunnel in Mn(s1, s2, s3) approaches the length of the
geodesic representative of the homotopy class of the core tunnel in Cn as the lengths
of s1, s2, and s3 increase in Mn.

Hence for large enough n and long enough slopes s1, s2, s3, the Dehn filled manifold
Mn(s1, s2, s3) is a tunnel number one manifold with unknotting tunnel homotopic to
a geodesic of length at least R. �

4.1. Remarks. While Theorem 4.1 gives us a manifold whose unknotting tunnel has
a long geodesic representative, the proof does not guarantee that this tunnel is isotopic
to a geodesic, even if we could guarantee that the core tunnel is isotopic to a geodesic
in the approximating geometrically finite structures Cn. This isn’t important for the
proof of Theorem 4.1. However, in [11], we will explain how to modify the above proof
so that the unknotting tunnel is isotopic to a geodesic.

5. Knots in homology 3-spheres

In this section, we refine the construction in Theorem 4.1 in order to control the
homology of the resulting manifolds.
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Theorem 5.1. There exist hyperbolic knots in homology 3-spheres which have tunnel
number one, for which the geodesic representative of the unknotting tunnel is arbitrarily
long.

The manifolds in the proof of Theorem 4.1 were contructed by starting with maxi-
mally cusped geometrically finite uniformizations of the compression body C and the
handlebody H, gluing them via an isometry, and then performing certain Dehn fill-
ings. We will now vary this construction a little. We will again use maximally cusped
geometrically finite uniformizations of the (1, 2)-compression body C and the genus
2 handlebody H, but we will not glue them directly. Instead, we will also find a
maximally cusped geometrically finite uniformization of S × I, where S is the closed
orientable surface with genus 2, and we will glue C to S×{1} and glue H to S×{0}.
In both gluings, the parabolic loci will be required to match together, although we will
leave these loci unglued. The result is therefore a tunnel number one manifold, with 6
disjoint embedded simple closed curves removed. We will then perform certain Dehn
fillings along these 6 curves to give the required tunnel number one manifolds. The
choice of hyperbolic structure on H requires some care. In particular we will need the
following terminology and results.

Let ML(∂H) (respectively, PML(∂H)) be the space of measured laminations (re-
spectively, projective measured laminations) on ∂H. (See for example [9]). Let i(·, ·)
denote the intersection number between measured laminations. A measured lamina-
tion λ is said to be doubly incompressible if there is an ǫ > 0 such that i(λ, ∂E) > ǫ
for all essential annuli and discs E properly embedded in H. Similarly, a projective
measured lamination is doubly incompressible if any of its inverse images in ML(∂H) is
doubly incompressible. It is a consequence of Thurston’s geometrization theorem [17]
that if P is a collection of simple closed curves on ∂H that are pairwise non-parallel
in ∂H, essential in ∂H and doubly incompressible, then there is a geometrically finite
uniformization of H. Let P be the part of its parabolic locus P that lies on ∂+C. The
set of doubly incompressible projective measured laminations forms a non-empty open
subset of PML(∂H) (see [12]).

Lemma 5.2. There is a homeomorphism ψ : ∂H → ∂H satisfying the following con-
ditions:

(1) ψ is pseudo-Anosov;
(2) its stable and unstable laminations are doubly incompressible;
(3) the induced homomorphism ψ∗ : H1(∂H) → H1(∂H) is the identity.

Proof. Since the stable laminations of pseudo-Anosovs are dense in PML(∂H), and the
set of doubly incompressible laminations is open and non-empty, there is a pseudo-
Anosov homeomorphism g with doubly incompressible stable lamination. Let h be a
pseudo-Anosov on ∂H that acts trivially on H1(∂H) (see [20]). Let λ+ and λ− be
its stable and unstable projective measured laminations, which we may assume are
distinct from the unstable lamination of g. Then the pseudo-Anosov gmhg−m also
acts trivially on H1(∂H). Its stable and unstable laminations are gm(λ+) and gm(λ−),
which are arbitrarily close to the stable lamination of g for large m. Hence, they
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too are doubly incompressible when m is large. Thus, we may set ψ to be one such
gmhg−m. �

Proof of Theorem 5.1. Let φ : ∂+C → ∂H be a homeomorphism such that, when C is
glued to H via φ, the result is the standard genus two Heegaard splitting of the solid
torus. Fix a maximally cusped geometrically finite uniformization of C from the proof
of Theorem 4.1, for which the core tunnel has long geodesic representative. Let P be
its parabolic locus. Then φ(P ) is a collection of simple closed curves on H.

Let τ be a composition of Dehn twists, one twist around each component of φ(P ).
Let ψ be the pseudo-Anosov homeomorphism provided by Lemma 5.2. By replacing
ψ by a power of ψ if necessary, we may assume that for each core curve α of P ,
i(α, ψ(α)) 6= 0. The tunnel number one manifold that we are aiming for is obtained by
gluing C to H via ψmτ−Mψ−1τMφ for large integers m and M . Since ψ acts trivially
on homology, this has the same homology as if we had glued by φ, which gives the solid
torus. Thus, this manifold is indeed the exterior of a knot in a homology 3-sphere.

We first choose the integer m. As m tends to infinity, ψmφ(P ) tends to the stable
lamination of ψ in PML(∂H). Hence, we may choose such an m so that ψmφ(P ) is
doubly incompressible.

We start with three manifolds:

(1) C − P ;
(2) (S × [0, 1]) − ((φ(P ) × {1}) ∪ (ψφ(P ) × {0}));
(3) H − ψmφ(P ).

Here, S is the genus two surface, which we identify with ∂H. The second of the
above manifolds has a geometrically finite uniformization, by Thurston’s geometriza-
tion theorem. This is because any essential annulus in S × [0, 1] with boundary in
(φ(P ) × {1}) ∪ (ψφ(P ) × {0}) can be homotoped, relative to its boundary, so that it
lies entirely in (φ(P ) × {1}) ∪ (ψφ(P ) × {0}). Similarly, because ψmφ(P ) is doubly
incompressible, H − ψmφ(P ) admits a geometrically finite hyperbolic structure. Glue
C − P to (S − φ(P )) × {1} via φ, and glue (S − ψφ(P )) × {0} to H − ψmφ(P ) via
ψm−1. Since these manifolds have conformal boundary that consists of 3-punctured
spheres, this gluing can be performed isometrically.

As in the proof of Theorem 4.1, we now perform certain Dehn fillings on the toral
cusps of this manifold, apart from the cusp corresponding to ∂−C. If the Dehn filling
is done correctly, this has the effect of modifying the gluing map by powers of Dehn
twists. We may apply any iterate of these Dehn twists, and so we apply the Mth
iterate, where M is some large positive integer, along each of the curves φ(P )×{1} in
S × {1} and the (−M)th power along each of the curves in ψφ(P ) × {0} in S × {0}.
Thus, the gluing map becomes ψmτ−Mψ−1τMφ. AsM tends to infinity, these manifolds
tend geometrically to the unfilled manifold. In particular, for large M , the geodesic
representative of its unknotting tunnel will be long. �

6. The Dehn filling construction

In this section, we give the proof of Theorem 4.1 that uses Dehn filling and homology.
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Figure 6. A hyperbolic link satisfying the conditions of Lemma 6.1.

Let X be a compact 3–manifold with four torus boundary components and of Hee-
gaard genus 2. This means there is a closed genus 2 surface F in the interior of X
which separates X into two compression bodies, each homeomorphic to the manifold V
obtained by adding one 2–handle onto a copy of F × [0, 1] along an essential separating
simple closed curve in F ×{1}. We label the torus boundary components of X by A0,
A1, B0, B1 so that A0 and B0 are on the same side of F .

Let β0, β1, and α1 be essential simple closed curves on B0, B1, and A1, respectively.
Let M = X(α1, β0, β1) be the manifold obtained by Dehn filling using these slopes, so
that M has a single boundary component A0. Gluing a solid torus to each of the two
boundary components of V yields a genus 2 handlebody. It follows that M has tunnel
number one; indeed a tunnel is obtained using an arc with endpoints on A0 that goes
round the core of the solid torus used to fill along B0.

Lemma 6.1. There exists X as above such that the interior of X admits a complete
hyperbolic structure of finite volume, such that H1(X) ∼= ΓA⊕ΓB where ΓA

∼= ΓB
∼= Z

2,
and under maps induced by inclusion, H1(Ai) = ΓA and H1(Bi) = ΓB for i = 1, 2.

Proof. An example of X is provided by the exterior of the 4 component link L in S3

shown in Figure 6. The link L = a0 ∪ a1 ∪ b0 ∪ b1 consists of two linked copies of
the Whitehead link and is hyperbolic (by SnapPea [21]). Furthermore Lk(a0, a1) =
Lk(b0, b1) = 1 and Lk(ai, bj) = 0. The diagram also shows disjoint arcs α connecting
a0 to b0 and β connecting a1 to b1. It is easy to slide these arcs and links in such a
way that the pair of graphs a0∪ b0∪α and a1∪ b1∪β are spines of the handlebodies of
the genus 2 Heegaard splitting of S3. It follows that X = S3 − η(L) has the required
properties and Ai = ∂η(ai) and Bi = ∂η(bi). Here η(L) denotes an open tubular
neighborhood of L. �

Suppose X is a link of Lemma 6.1. Let x be a basepoint for X on the boundary
of a maximal horoball neighborhood of the cusp corresponding to A0. The idea for
finding the Dehn fillings to give M is that given a base point x in X and R > 0,
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there are only finitely many homotopy classes of loops in X based at x with length
at most 3R. These give finitely many classes in H1(X) and hence, under projection,
finitely many classes γ1, · · · γp ∈ ΓB. The Dehn fillings used to obtain M are chosen
so that H1(M) ∼= Z⊕Zn with the image of ΓB being Zn and that of ΓA being Z. The
fillings are also chosen so that none of the images of γi generate Zn, and so that the
hyperbolic metric on M is geometrically close to that of X. In particular, we may
assume that there is a bilipschitz homeomorphism, with bilipschitz constant very close
to 1, between the R neighborhood of the basepoint of x in X and a subset of M . Let
m be the image of x in M . This will lie near the boundary of a maximal horoball
neighborhood of the cusp of M . Then every loop in M based at m of length at most
2R corresponds to a loop in X based at x with length at most 3R, say.

Lemma 6.2. Suppose Γ is a free abelian group of rank 2 and γ1, · · · γp ∈ Γ. Then
there is an integer n > 0 and an epimorphism φn : Γ → Zn such that for all i the
element φn(γi) does not generate Zn.

Proof. Clearly we may assume that for all i, γi 6= 0. Then we may identify Γ with Z
2 so

that γi = (ai, bi) and for all i, ai 6= 0. Set m = maxi |bi|+2 and define a homomorphism
φ : Z

2 → Z by φ((a, b)) = 2ma− b which is surjective because φ((1, 2m− 1)) = 1. Set
ci = |φ(γi)|. Then

ci = |2mai − bi| ≥ 2m|ai| − |bi| ≥ 2m−m ≥ 2,

using that |ai| ≥ 1 and |bi| ≤ m and m ≥ 2. Now define n =
∏

i ci and define
φn(γ) = φ(γ) mod n. Then φn(γi) = ±ci and ci 6= 1 divides n and therefore does not
generate Zn. �

For the Dehn fillings of B0 and B1, choose simple closed curves βi ⊂ Bi which
generate the kernel of

φn : ΓB → Zn,

where here we are using the identifications H1(B0) ≡ ΓB ≡ H1(B1). There are arbi-
trarily large pairs of such basis elements; thus we may choose them so that the result of
hyperbolic Dehn filling B0 and B1 using these gives a two cusped hyperbolic manifold
with metric on the thick part as close to that of X as desired.

Now perform a very large Dehn filling (thus not distorting the geometry of the thick
part appreciably) along A1. We claim we obtain M with all the required properties.

For suppose that the geodesic representative for the unknotting tunnel of M had
length at most R. Let T be the torus that forms the boundary of a maximal horoball
neighborhood of the cusp of M . The basepoint m of M lies near T , say ζ is a geodesic
arc from m to the nearest point in T . We may pick R large enough so that π1(T ∪ζ,m)
is generated by two curves of length at most R. Similarly, the geodesic representative
for the unknotting tunnel can be closed up on T , then connected to m along ζ to form
a loop based at m with length at most 2R. These three loops generate π1(M,m). By
construction, H1(M) ∼= Z ⊕ Zn. The image of H1(T ) in H1(M) is the first summand,
and the image of the third loop is a proper subgroup of the second summand. Thus,
these three loops cannot generateH1(M), which is a contradiction. Hence, the geodesic
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representative for the unknotting tunnel of M has length more than R. Since R was
arbitrarily large, this establishes Theorem 4.1.
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