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Poincaré’s work on Analysis Situs

In Analysis Situs, Poincaré
initiated the modern study of
topology.

Topology is the study of spatial
objects, called ‘topological
spaces’ or ‘spaces’ for short.
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Topology

A topologist views two spaces X
and Y as the ‘same’ if one can
be deformed into the other.

More precisely, there is a one-one
correspondence between points in
X and points in Y , and this
correspondence is continuous in
both directions.

This correspondence is known as
a homeomorphism.
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Algebraic topology

Poincaré invented algebraic topology.

Here, one seeks to understand a topological space M by
associating various algebraic quantities to it.

Poincaré investigated two key algebraic structures associated to a
topological space M:

I its fundamental group π1(M),

I its homology groups H0(M),H1(M), . . .

(Actually, the homology groups were first studied by Betti, and
their group structure wasn’t identified until Noether’s work.)
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The fundamental group

Pick a basepoint x in M.

Each loop in M that starts and
ends at x determines an element
of π1(M).

However, if one loop ` can be
deformed into another loop `′,
these represent the same element
of π1(M).

For example, π1(torus) ∼= Z× Z

x
M



The fundamental group

Pick a basepoint x in M.

Each loop in M that starts and
ends at x determines an element
of π1(M).

However, if one loop ` can be
deformed into another loop `′,
these represent the same element
of π1(M).

For example, π1(torus) ∼= Z× Z

x



The fundamental group

Pick a basepoint x in M.

Each loop in M that starts and
ends at x determines an element
of π1(M).

However, if one loop ` can be
deformed into another loop `′,
these represent the same element
of π1(M).

For example, π1(torus) ∼= Z× Z

x



The fundamental group

Pick a basepoint x in M.

Each loop in M that starts and
ends at x determines an element
of π1(M).

However, if one loop ` can be
deformed into another loop `′,
these represent the same element
of π1(M).

For example, π1(torus) ∼= Z× Z

x



The fundamental group of the 2-sphere

The 2-sphere has trivial fundamental group.

In other words, any loop on the sphere can be contracted to a
point:



Poincaré’s investigation of manifolds

Poincaré began to investigate the
strength of these invariants, by
considering various examples.

He focused mainly on manifolds.

An n-dimensional manifold is a
space locally homeomorphic to
Rn.

Example: the 2-sphere, the torus
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2-manifolds

It is natural to focus on manifolds that are closed - this means that
they are compact and have no boundary.

Around the time of Poincaré, closed 2-manifolds were classified:

Theorem: Any closed 2-manifold is one of

or one of another list that includes the ‘Klein bottle’.
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Another way of building a torus

Start with the Euclidean plane
R2.

The group Z× Z acts on R2 by
translations.

Form a new space T from R2 by
forcing points p and q in R2 to
be the same point in T if there is
a translation in Z× Z that sends
p to q.

T is the torus.
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Inside the 3-torus



The 3-sphere

Another example of a 3-manifold is the 3-sphere.



Poincaré’s investigation of 3-manifolds

Do the fundamental group and homology groups determine a
3-manifold?

Poincaré showed that the homology groups alone do not.

But what about the fundamental group?
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Poincaré showed that the homology groups alone do not.

But what about the fundamental group?
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The Poincaré Conjecture

At the end of the 5th supplement to Analysis Situs, Poincaré asks:

‘Consider a compact 3-dimensional manifold V
without boundary. Is it possible that the fundamental
group of V could be trivial, even though V is not
homeomorphic to the 3-dimensional sphere?’

This has become known as the Poincaré Conjecture.

His closing words to the supplement are:

‘However, this question would carry us too far away.’
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Heegaard splittings

Any closed 3-manifold has a
triangulation.

If we thicken up the vertices and edges,
we get a ‘handlebody’.

The rest is also a handlebody.

So, any closed orientable 3-manifold is
obtained from two handlebodies by
gluing their boundaries
homeomorphically.

This is called a Heegaard splitting.
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Heegaard splittings

One can read off the
fundamental group from a
Heegaard splitting H1 ∪ H2.

π1(H1) is a free group.

Meridian discs for H2 form the
relations of a group presentation.

eg .

〈
x1, x2

∣∣∣ x4
1x2x−11 x2 = 1,

x−12 x−11 x2x−11 = 1

〉

homeomorphism

H1

H2
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Lens spaces

When we glue two solid tori
along their boundaries, the result
is a lens space L.

The meridian disc of one solid
torus is glued to the (p, q) curve
of the other.

π1(L) ∼= Zp

But different values of q can give
different manifolds.

So, 3-manifolds are not
determined by their π1.

homeomorphism
between boundary tori

(p,q) curve
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Dehn’s lemma

A nice example of a 3-manifold is the
complement of a knot K in R3.

π1(R3 − (unknot)) = Z.

If K is a non-trivial knot, then in fact
π1(R3 − K ) 6= Z.

This was proved by Christos
Papakyriakopoulos in 1957.
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Dehn’s lemma

Theorem: If M is a compact 3-manifold with boundary, then
π1(∂M)→ π1(M) is injective, unless there is an embedded disc D
in M with boundary a non-trivial curve in ∂M.



The higher-dimensional Poincaré conjecture

In 1960, Stephen Smale proved:

Theorem: If M is a (smooth)
n-dimensional manifold that has
the same fundamental group and
homology groups as the n-sphere,
then it is homeomorphic to the
n-sphere, provided n ≥ 5.

He received a Fields Medal in
1966.

His work was built upon by
Stallings, Zeeman, and Newman.
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Geometrisation

A breakthrough came in the late
1970s.

Bill Thurston introduced his
Geometrisation Conjecture.

This mostly relates to hyperbolic
geometry . . .



Hyperbolic geometry

In the Elements, Euclid
introduced the axioms for plane
geometry.

For example: between any two
distinct points in the plane, there
is a unique straight line.

There was one axiom that was
much less obvious than the
others. This is usually now stated
as the Parallel Postulate:

For each straight line `, and each
point p not on `, there is a
unique straight line `′ through p
that is disjoint from `.
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The hyperbolic plane

In the hyperbolic plane, all of
Euclid’s axioms hold except the
Parallel Postulate.

In the hyperbolic plane, there are
infinitely many lines that go
through p and that are disjoint
from `.

Poincaré introduced a useful
model for the hyperbolic plane.

It is the open unit disc.

‘Straight lines’ are circles and
diameters that intersect the
boundary circle orthogonally.

l
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Hyperbolic structures

We saw that the torus can be obtained
as

Euclidean plane quotiented out by the
action of Z× Z by translations

If a 2-manifold M is obtained as

Hyperbolic plane quotiented out by the
action of a discrete group of isometries

acting freely,

this is a hyperbolic structure on M.
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Hyperbolic 3-space

There is a natural generalisation
of the hyperbolic plane to any
dimension n.

For example, hyperbolic 3-space
is the open unit ball.

Again, ‘straight lines’ are again
circles perpendicular to the
boundary sphere.

So, one can define a hyperbolic
structure on a 3-manifold.



The Geometrisation Conjecture

Thurston’s Geometrisation Conjecture: Any closed 3-manifold
can be canonically decomposed into pieces, each of which admits a
geometric structure.

This ‘canonical decomposition’ was well understood at the time,
and was due to Kneser, Milnor, Jaco, Shalen and Johannson.

By ‘geometric structure’, we mean X/Γ, where X is one of 8
model geometries, and Γ is a group of isometries of X acting
discretely and freely.

These 8 geometries are:
Euclidean, Hyperbolic, Spherical, ...

The Poincaré Conjecture is just a special case of the
Geometrisation Conjecture.
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Thurston’s work

Thurston proved his Geometrisation Conjecture for many
3-manifolds, including

I all prime 3-manifolds M with infinite H1(M);

I all knot and link complements.

For this, he received a Fields Medal in 1982.
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Curvature

Hyperbolic space has a Riemannian metric.

This implies that we can assign a ‘length’ to each smooth path.

Hyperbolic straight lines are geodesics in this metric.

At each point x of a Riemannian manifold and for each
2-dimensional plane P in the tangent space at x , there is a notion
of curvature in that plane, called the sectional curvature of P.
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Curvature

One way of understanding
curvature:

Fire out geodesics from x of
length r in the direction of the
plane P.

Their endpoints form a closed
curve with length L(r).

The sectional curvature of P is

1

2π

d3

dr3
L(r)

∣∣∣
r=0

Spherical
L(r) = 2π sin(r)

L(r) = 2πr

L(r) = 2π sinh(r)

Euclidean

Hyperbolic

Curvature = 1

Curvature = 0

Curvature = -1
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The Geometrisation Conjecture

An alternative formulation of the Geometrisation Conjecture:

Any closed orientable 3-manifold which satisfies some
necessary topological constraints admits a
Riemannian metric of constant curvature.

An approach: start with any metric on the manifold, and improve
it. Hope to get a constant curvature metric or deduce that the
topological hypotheses fail.



Ricci flow

This was defined by Richard Hamilton.

Starting with a Riemannian metric g0,
this specifies a 1-parameter family of
Riemannian metrics gt .

If g0 has constant curvature, then the
metrics don’t change.

Starting with an arbitrary metric g0, do
the metrics gt ‘tend to’ a constant
curvature metric?
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Ricci flow

In 1982, Hamilton proved:

Theorem: Any closed 3-manifold with
‘positive Ricci curvature’ is
homeomorphic to the 3-sphere.

He used the Ricci flow.



Perelman’s work

In 2003, Grigori Perelman announced a solution to the
Geometrisation Conjecture.



Perelman’s work

His also work uses
the Ricci flow, and
employed a
staggering mastery
of geometric
analysis.

His proof was
distinctly sketchy.



After several years of intensive study, his arguments were agreed to
be essentially correct.

Terence Tao:

‘it is now certain that Perelman’s orginal argument
was indeed essentially complete and correct in every
important detail’

Perelman was awarded a Fields Medal in 2006 and the Clay
Millenium Prize in 2010.
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Dimension 4

In 1982, Mike Freedman proved:

Theorem. Any closed
4-manifold with the same
fundamental group and homology
groups as the 4-sphere is
homeomorphic to the 4-sphere.

He received a Fields Medal in
1986.
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What next?

We still don’t really understand
dimension 4.

Question. Must any closed
smooth 4-manifold with the same
fundamental group and homology
groups as the 4-sphere be
diffeomorphic to the 4-sphere?

This is the Smooth 4-dimensional
Poincaré Conjecture.

There are many potential
counterexamples.

But we can’t prove that they are
counterexamples!
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