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Abstract

We prove that any diagram of the unknot with c crossings may be reduced to the trivial

diagram using at most (236 c)11 Reidemeister moves.

1. Introduction

Turing stated in one of his famous articles [24] that ‘No systematic method is yet known by

which one can tell whether two knots are the same.’ Even the basic case of recognising the unknot

is not obviously soluble. A few years later, in his groundbreaking work on normal surfaces, Haken

solved the problem of recognising the unknot [11] and then made a crucial contribution to the more

general problem of whether two knots are equivalent [12]. This was finally solved by the efforts of

several mathematicians, including Hemion [17] and Matveev [22]. But it remains a major unresolved

question to determine exactly how complex these problems are. The current state of our knowledge

is that unknot recognition is in NP and co-NP. The fact that it is in NP is due to Hass, Lagarias and

Pippenger [14] and that it is in co-NP was proved by Agol [1], but not written down in detail, and an

alternative solution was given by Kuperberg [21], assuming the Generalised Riemann Hypothesis.

There are many examples of challenging diagrams of unknots. In 1934, Goeritz gave an example

of a diagram with 11 crossings, with the property that any sequence of Reidemeister moves taking

it to the trivial diagram must go via a diagram with more than 11 crossings. Other tricky examples

have been given by Thistlethwaite, Haken, Henrich and Kauffman [18]. We include some of these

below in Figures 1-3. They all point to the probable conclusion that there is no simple way of

recognising the unknot.

The most elementary and natural way of approaching the unknot recognition problem is to

try to find an explicit upper bound on the number of Reidemeister moves required to turn a given

diagram of the unknot with c crossings into the trivial diagram. It is easy to see that the existence

of a computable upper bound is equivalent to the solvability of the unknot recognition problem. But

of course one wants a bound that is as small a function of c as possible.

In [13], Hass and Lagarias showed that a diagram of the unknot with c crossings can be converted

into the trivial diagram using at most 2kc Reidemeister moves, where k = 1011. In [15], Hass and

Nowik proved that, in general, at least c2/25 moves are required. There is a large gap between these

upper and lower bounds, and so it has remained a basic question: is there a polynomial upper bound

on the number of Reidemeister moves required to turn an unknot diagram into the trivial diagram?

This is what we solve in this paper.

Theorem 1.1. Let D be a diagram of the unknot with c crossings. Then there is a sequence of

at most (236 c)11 Reidemeister moves that transforms D into the trivial diagram. Moreover, every

diagram in this sequence has at most (7 c)2 crossings.
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It is worth pointing out that this does not actually improve our knowledge of the complexity

class of the unknot recognition problem. But it does give an alternative way of establishing that

the unknot recognition problem is in NP, because the sequence of Reidemeister moves provided by

the above theorem gives a polynomial time certificate of unknottedness. Therefore, it remains an

unsolved problem whether unknot recognition is in P. Of course, this may be very difficult, because

a negative answer would imply that P 6= NP. Moreover, it is unlikely that a polynomial time

algorithm could be ruled out, even conditional upon the hypothesis that P 6= NP, because it is

widely conjectured that problems in NP ∩ co-NP are not NP-complete (see p.95 of [10]).

We also have a result for split links.

Theorem 1.2. Let D be a diagram of a split link with c crossings. Then there is a sequence of at

most (49 c)11 Reidemeister moves that transforms D into a disconnected diagram. Moreover, every

diagram in this sequence has at most 9 c2 crossings.

Our theorems rely in a crucial way on groundbreaking work of Dynnikov [8]. He considered a

special way of arranging a knot or link called an arc presentation. One way of visualising is these

is via rectangular diagrams (also called grid diagrams), which are diagrams in the plane consisting

of horizontal and vertical arcs, subject to the condition that the vertical arc always passes over the

horizontal one at a crossing and the condition that no two arcs are collinear. The number of vertical

arcs equals the number of horizontal arcs, and this is known as the arc index of this presentation.

Dynnikov proved the surprising result that any arc presentation of the unknot can be reduced to

the trivial presentation using a sequence of moves, known as exchange moves, cyclic permutations

and destabilisations (see Figures 5-7). Crucially, the arc index never needs to increase. This has

the striking consequence that if a diagram of the unknot has c crossings, then there is a sequence of

Reidemeister moves taking it to the trivial diagram, such that all diagrams in this sequence have at

most 2(c + 1)2 crossings (Theorem 2 in [8]). But this does not give a polynomial upper bound on

the number of such moves.

It is also possible to show that the approach of Hass and Lagarias in [13] does not provide

a polynomial upper bound. They start with a diagram of the unknot with c crossings, and they

use this to build a triangulation of a convex polyhedron with t ≤ 840c tetrahedra, each of which is

straight in R3 and which contains the given unknot in its 1-skeleton. From this, they construct a

triangulation of the knot exterior. By work of Haken [11], the disc that the unknot spans can be

realised as a normal surface with respect to this triangulation, and Hass and Lagarias show that at

most 2kt normal triangles and squares are required, where k = 107. They then isotope the unknot

across this disc. The projection to the plane of the diagram then gives a sequence of Reidemeister

moves. The bound on the number of normal squares and triangles gives the exponential bound on

the number of Reidemeister moves. It does not seem feasible to use this approach of sliding the knot

across a normal spanning disc to obtain a better bound on Reidemeister moves. This is because

Hass, Snoeyink and Thurston [16] gave examples of unknots consisting of 10n+ 9 straight arcs, for

which any piecewise linear spanning disc must have at least 2n−1 triangular faces.

Instead, our approach here is to combine Dynnikov’s methods with the use of normal surfaces.

Given an arc presentation for an unknot, Dynnikov explains how a spanning disc may be placed

in what he calls admissible form. He defines a measure of complexity on such surfaces. The key

part of his argument is to show that an admissible spanning disc must have at some point a certain
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local configuration. This then specifies a way of modifying the surface and the arc presentation.

This has the effect of performing ‘generalised exchange moves’ on the arc presentation and possibly

destabilisations. He shows that, during this process, either a destabilisation is performed or the

complexity of the spanning disc has gone down.

Dynnikov defines a triangulation of the 3-sphere associated to an arc presentation of a link. If

the arc index is n, this has n2 tetrahedra. It turns out that placing the spanning disc or splitting

sphere in admissible form is almost equivalent to placing this surface into normal form with respect

to this triangulation. Moreover, his measure of complexity is (under reasonable assumptions) just

the number of intersections between the disc or sphere and certain edges of the triangulation. Thus,

using the bound on the complexity of normal surfaces that was proved by Hass and Lagarias in

[13], the complexity of a splitting sphere is at most n27n
2

. (A similar, but slightly larger bound is

required for the spanning disc of the unknot.) Hence, using Dynnikov’s argument, one can show

that the number of generalised exchange moves that one needs to perform before one can apply a

destabilisation is at most an exponential function of n2.

However, this is much larger than a polynomial upper bound. To obtain this, one needs to

go deeper into normal surface theory. In a triangulated 3-manifold with n2 tetrahedra, any normal

surface consists of at most 5n2 types of normal triangles and squares. One can show that if there

is a local configuration of the spanning disc or splitting sphere which specifies a way of reducing

complexity, then one can also reduce complexity in regions of the surface that are normally parallel.

Thus, one might hope that, using a single generalised exchange move, one can reduce complexity by

a factor of roughly (1−n−2). This is probably too optimistic, for it may be the case that most of the

weight of the normal surface is concentrated in regions where this good configuration does not occur.

The key technical part of this paper is to show that, under this situation, the surface does not have

minimal complexity. In particular, there is another spanning disc or splitting sphere, with smaller

complexity, for the same arc presentation. This is shown by establishing that some multiple of the

given surface is actually a normal sum of a normal torus and a multiple of some simpler spanning

disc or splitting sphere. The proof of this is somewhat delicate, and relies on the use of branched

surfaces and ‘first-return maps’.

Thus, the results that we actually prove are as follows. (For the definitions of trivial and

disconnected arc presentations, see Section 2.1.)

Theorem 1.3. Let D be an arc presentation of the unknot with arc index n. Suppose that the

associated rectangular diagram has writhe k. Then there is a sequence of at most 4 × 1018 n10

exchange moves, at most 6 × 1018 n9 cyclic permutations, at most 1019 n8 generalised exchange

moves, at most 3 × 1013 n6 stabilisations and at most 3 × 1013n6 destabilisations taking D to the

trivial arc presentation. Moreover, the arc index is at most 2n+ |k|+ 1 throughout this sequence of

moves.

Theorem 1.4. Let D be an arc presentation of a split link with arc index n. Then there is a

sequence of at most 3× 1011 n8 generalised exchange moves, at most 2× 1011 n9 cyclic permutations

and at most 8× 1010 n10 exchange moves that takes D to a disconnected arc presentation.

Now each generalised exchange move on an arc presentation with arc index n can be expressed

as a composition of at most (3/2)n3 Reidemeister moves (Lemma 2.4). Any exchange move is a

product of at most n Reidemeister moves (Lemma 2.2). A cyclic permutation requires at most
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(n − 1)2 Reidemeister moves (Lemma 2.3). Also, given any diagram of a knot or link with c

crossings, this is isotopic to a rectangular diagram with arc index at most (81/20)c (Lemma 2.1).

Any rectangular diagram with arc index n has at most (n−1)2/2 crossings (see the proof of Theorem

2 in [8]). These observations, combined with Theorems 1.3 and 1.4, imply Theorems 1.1 and 1.2.

The plan of the paper is as follows. In Section 2, we give some elementary properties of

arc presentations. Section 3 contains an overview of Dynnikov’s proof that arc presentations of the

unknot and split links can be simplified using a sequence of exchange moves, cyclic permutations and

destabilisations. In Section 4, we present an alternative argument, which provides an explicit upper

bound on the number of exchange moves, cyclic permutations, stabilisations and destabilisations

required to trivialise a rectangular diagram of the unknot, given an upper bound for the complexity

of the spanning disc. This is an unsurprising result, and is required only in the case of the unknot. In

Section 5, we recall some key facts from normal surface theory, including some results about vertex

normal surfaces. We introduce a new notion of a boundary-vertex normal surface, which is useful in

the parts of the proof dealing with the unknot. In Section 6, we introduce normal surface theory to

arc presentations. We give Dynnikov’s triangulation of the 3-sphere, and explain how surfaces that

are normal with respect to this triangulation have a form that is very close to admissible. Section

7 contains the proof of Theorems 1.3 and 1.4, assuming the result that the normal spanning disc

or splitting sphere cannot contain large ‘Euclidean’ regions. This is proved in Sections 8 and 9,

using branched surfaces. In the final section, we discuss possible improvements to the degree of the

polynomial bound, and we also give some potential directions for further research.

The presence of surfaces with boundary causes several complications in these arguments, and

so the case of the unknot is more complex than the case of split links. We therefore suggest that

the reader initially concentrates on the split link case.

I would like to thank the referee for their very careful reading of an earlier version of this paper.

Figure 1: Goeritz’s unknot

Figure 2: Thistlethwaite’s unknot
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Figure 3: One of Haken’s unknots (image courtesy of Cameron Gordon)

2. Basic properties of arc presentations

In this section, we present some elementary material on arc presentations and rectangular

diagrams. Much of this was first discovered by Cromwell [6]. We have largely followed Dynnikov’s

presentation in [8].

2.1. Definition of arc presentations

We fix a description of the 3-sphere as the join S1 ∗ S1 of two circles. The co-ordinate system

(φ, τ, θ) is used, where φ, θ ∈ R/2πZ are co-ordinates on the circles, and τ ∈ [0, 1]. Thus, (φ, 0, θ1)

and (φ, 0, θ2) are identified for all θ1 and θ2. Similarly, (φ1, 1, θ) and (φ2, 1, θ) are identified for all

φ1 and φ2. The circles τ = 0 and 1 are denoted by S1
φ and S1

θ respectively. The circle S1
φ is called

the binding circle. The open disc defined by θ = t and τ > 0 is called a page and denoted Dt.

Suppose that a link L satisfies the following two conditions: L ∩ S1
φ is a finite set, called

the vertices of L, and for any t ∈ R/2πZ, the intersection Dt ∩ L is either empty or an open arc

approaching two distinct vertices. This is called an arc presentation of L. The number of vertices

equals the number of pages that contain open arcs of L. This number is called the arc index of the

arc presentation.

We say that an arc presentation is trivial if it has arc index 2. We say that it is disconnected

if there is a 2-sphere that intersects each page in a single embedded arc, and which has components

of L on both sides of it.

2.2. Rectangular diagrams

There is an equivalence between arc presentations and rectangular diagrams, which we now

describe.

A rectangular diagram of a link L is a link diagram defined as follows. The plane of the diagram

has a product structure R×R. We require that the projection of L is a union of arcs, each of which is

of the form {s}× [t1, t2] or [s1, s2]×{t}. These are known as vertical and horizontal arcs. Whenever

the interiors of two arcs of the projection intersect, the over-arc at the resulting crossing is required

to be the vertical arc. Also, no two arcs may be collinear.
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Figure 4: A rectangular diagram

An arc presentation of L determines a rectangular diagram as follows. The arc presentation

can be specified by the following data: the φ-values of the vertices, the values of θ where the page

contains an arc, and the vertices at the endpoint of this arc. Let s1, . . . , sn ∈ [0, 2π) denote the

φ-values of the vertices, and let t1, . . . , tn ∈ [0, 2π) denote the θ-values of the arcs. For each arc of L,

lying in Dt, joining vertices si and sj where si < sj , we insert a horizontal edge of the rectangular

diagram at [si, sj ] × {t}. For each vertex s of L, its two adjacent arcs lie in Dti and Dtj , where

ti < tj . For each such vertex, we insert a vertical edge of the rectangular diagram at {s} × [ti, tj ].

We now explain briefly why this is indeed a diagram of L. In fact, we will give a reasonably

explicit map from the complement of the link defined by the arc presentation to the complement of

the link defined by the rectangular diagram. (A more complete explanation is given in [6].)

Consider an arc presentation for L. We replace each arc of L in a page Dt, joining vertices s1

and s2, where s1 < s2, by the concatenation of three arcs:

{φ = s1, θ = t, ε ≤ τ ≤ 1− ε}

∪ {s1 ≤ φ ≤ s2, θ = t, τ = 1− ε}

∪ {φ = s2, θ = t, ε ≤ τ ≤ 1− ε}.

Here, ε is some fixed real number in the interval (0, 1/2). As L approaches a vertex s in pages Dt1
and Dt2 , where t1 < t2, we replace it by an arc

{φ = s, t1 ≤ θ ≤ t2, τ = ε}.

After this, L lies in the region {ε ≤ τ ≤ 1 − ε}, which is a thickened torus. If we project onto

{τ = 1/2}, we obtain a diagram in a torus, and this torus is standardly embedded in S3. Because

we ensured that the arcs did not go beyond φ = 0 and θ = 0, the diagram lies in the square

{0 ≤ φ < 2π, 0 ≤ θ < 2π, τ = 1/2}.

If we realise this square as a subset of the plane, we obtain the required rectangular diagram for L.

2.3. From ordinary diagrams to rectangular diagrams

Cromwell [6] proved that any link L has an arc presentation, by starting with an arbitrary

diagram of L and making it rectangular. In this subsection, we will carry out this procedure, but

also keep track of an upper bound on the arc index of the resulting rectangular diagram.
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Lemma 2.1. Let D be a diagram of a link with c crossings. Then D is isotopic to a rectangular

diagram with arc index at most (81/20)c.

Proof. We may clearly assume that D is connected. We may also assume that D contains no edge

loops (which are arcs of the diagram with both endpoints at the same crossing). For we may remove

all such edge loops, then isotope the resulting diagram so that it is rectangular, and then add back

in the loops in a rectangular fashion.

LetX be the underlying 4-valent planar graph specified byD. This has 2c edges. We will modify

X by subdividing its edges. If any pairs of edges are parallel, subdivide one of the edges from each

pair. We may assume that at least 6 edges of the diagram are not parallel to any other edge, since

otherwise D is a standard diagram of a (2, n)-torus link or a simple type of 2-bridge link, in which

case the lemma is easy to establish. We deduce that X now has at most 2c + (2c − 6)/2 = 3c − 3

edges.

In [23], Storer examined the problem of how to arrange a planar graph (with no edge loops or

parallel edges) so that its edges are horizontal and vertical arcs, possibly after subdividing its edges.

By Corollary 4 in [23], X may be subdivided so that it has a total of at most (17/10)m+ 4 vertices,

where m is the original number of edges of X, and then isotoped so that each edge is horizontal or

vertical in the plane. So, the number of 2-valent vertices of X is now at most (17/10)(3c−3)+4−c ≤
(41/10)c.

This diagram might not be a rectangular diagram for two reasons. Firstly, some edges may be

collinear. But if so, then a small modification, keeping the arcs horizontal and vertical, can made to

avoid this. Secondly, at some crossings, the over-arc may be horizontal, rather than vertical. But

if so, there is an obvious modification which introduces 8 new 2-valent vertices at such a crossing

(see Figure 7 of [6]). Note that we may assume that at least half the crossings have the correct

behaviour, as otherwise, we can instead just rotate the entire diagram by a quarter turn. So, the

number of 2-valent vertices is at most (41/10)c + 4c = (81/10)c. The arc index of this rectangular

diagram is at most half the number of 2-valent vertices, which is less than (81/20)c, as required.

This bound of (81/20)c is obviously not optimal. In fact, Cromwell and Nutt in [7] show that

in many cases, the link specified by D has an arc presentation with arc index at most c+ 2. In the

proof of Theorem 2 in [8], Dynnikov states that one can always find an arc presentation for the link

with arc index at most 2c+2. However, the resulting rectangular diagram is not necessarily isotopic

to D. So, to be able to use this fact in the proof of Theorems 1.1 and 1.2, one would need to be able

to find an upper bound on the number of Reidemeister moves required to transform D into the new

rectangular diagram. This is surely possible, but it is not completely straightforward. So, we have

chosen to follow the simpler course of isotoping D so that it is rectangular, even though this might

not lead to the optimal upper bound on arc index.

2.4. Exchange moves, stabilisations and destabilisations

Cromwell [6] introduced a set of moves, which modify an arc presentation without changing

the link. These are most simply visualised using rectangular diagrams:

(1) cyclic permutation of the horizontal (or vertical) arcs;
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(2) stabilisation and destabilisation;

(3) interchanging parallel edges of the rectangular diagram, as long as they have no edges between

them, and their pairs of endpoints do not interleave; this is termed an exchange move.

These are shown in Figures 5-7.

When we use the term exchange move, we assume that the parallel edges that are moved past

each other do not lie either side of θ = 0 or φ = 0. In this case, a cyclic permutation needs to be

done first, before the exchange move can be performed. The reason that we make this distinction is

that an exchange move requires fewer Reidemeister moves in general than a cyclic permutation.

Figure 5: Cyclic permutation of the vertical edges

stabilisation

destabilisation

stabilisation

destabilisation

stabilisation

destabilisation

stabilisation

destabilisation

Figure 6: Stabilisations and destabilisations

Figure 7: Exchange moves

We now provide upper bounds on the number of these moves.

Lemma 2.2. Let n be the arc index of an arc presentation of L, and let D be the resulting

rectangular diagram. Suppose that an exchange move is performed on this arc presentation, and

let D′ be the resulting rectangular diagram. Then D′ and D differ by a sequence of at most n

Reidemeister moves.

8



Proof. This is fairly evident from Figure 7. In the bottom case of Figure 7, no Reidemeister moves

are required. In the top case, one might first need to make a type 2 Reidemeister move to make

the two horizontal edges overlap, then a sequence of at most n− 2 type 3 Reidemeister moves, then

possibly a type 2 move.

Lemma 2.3. Let n be the arc index of an arc presentation of L. Suppose that a cyclic permutation

is performed on the vertical (or horizontal) arcs. Then the resulting rectangular diagrams differ by

a sequence of at most (n− 1)2 Reidemeister moves.

Proof. In Figure 5, a vertical arc is slid across the diagram from left to right. As it meets another

vertical arc, a type 2 Reidemeister move might need to be performed, followed by a sequence of at

most (n− 2) type 3 moves, then possibly a type 2 move if one was not performed at the beginning.

This is at most n−1 Reidemeister moves. There are at most n−1 vertical arcs that it is slid across.

So, at most (n− 1)2 Reidemeister moves are needed in total.

2.5. Generalised exchange moves

A more substantial modification to an arc presentation was introduced in [6], known as a

generalised exchange move. This is defined as follows.

Let 0 < s1 < s2 < s3 < 2π be values of φ which are disjoint from the vertices of L. Let

0 ≤ t1 < t2 < 2π be values of θ which are disjoint from the arcs of L. Suppose that each horizontal

arc [s, s′]× {t} of the rectangular diagram satisfies the following conditions:

(1) if t ∈ (t1, t2), then {s, s′} is not interleaved with {s2, s3};

(2) if t ∈ S1
θ − (t1, t2), then {s, s′} is not interleaved with {s1, s2}.

Then one can modify the rectangular diagram by changing the φ value of all the vertices between

s1 and s2 so that they lie between s2 and s3 in the same order, and by changing the φ value of

all the vertices between s2 and s3 so that they lie between s1 and s2 in the same order. This is a

generalised exchange move.

The effect of a generalised exchange move on the rectangular diagram is shown in Figure 8, in

the case where t1 = 0, where it is evident that it does not change the link type.

Lemma 2.4. Let n be the arc index of an arc presentation of L. A generalised exchange move on

this arc presentation is a composition of at most (3/2)n3 Reidemeister moves. It is also a composition

of at most n cyclic permutations and at most (3/4)n2 exchange moves.

Proof. In Figure 8, a generalised exchange move is shown where t1 = 0. In general, as many as n/2

cyclic permutations may need to be made before t1 = 0 and by Lemma 2.3, these may require at

most n3/2 Reidemeister moves.

Figure 8 shows how the generalised exchange moves can be divided into three steps. We

estimate the number of Reidemeister moves or exchange moves required in the first step. Place each

horizontal arc [s, s′]× {t} in one of the following sets:

(1) In A1 if s, s′ ∈ (s1, s2) and t ∈ S1
θ − (t1, t2);

(2) In A2 if s, s′ 6∈ (s1, s2) and t ∈ S1
θ − (t1, t2);
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(3) In A3 if s, s′ 6∈ (s2, s3) and t ∈ (t1, t2);

(4) In A4 if s, s′ ∈ (s2, s3) and t ∈ (t1, t2).

So, the first step of the generalised exchange move slides the A1 arcs past those in A4 and some of

those in A2. It also slides the A4 arcs past some of those in A3. The number of exchange moves is

therefore at most |A1||A4|+ |A1||A2|+ |A3||A4| ≤ (|A1|+ |A3|)(|A2|+ |A4|) ≤ n2/4. The other two

steps are similar, and so we obtain the required bound of (3/4)n2 exchange moves. By Lemma 2.2,

the first and third steps each require at most n3/4 Reidemeister moves. The second step evidently

needs no Reidemeister moves.

Finally, we reverse the cyclic permutations that were made initially. This is necessary because

the generalised exchange move does not change the θ-value of any arc. Again, by Lemma 2.3, these

require at most n3/2 Reidemeister moves. So, in total, at most (3/2)n3 Reidemeister moves are

needed.

A B

C D
A

B

C

D

A

B

C

D
AB

CD
Figure 8: A generalised exchange move

2.6. Generalised destabilisations

Dynnikov also introduces another move called a generalised destabilisation. Here, one assumes

that there are two arcs of L, one running from a vertex s1 to a vertex s, and the second running

from s to a vertex s2. Let the θ-values of these two arcs be t1 and t2. One assumes that there are

no arcs of L with θ values in (t1, t2). Then, the generalised destabilisation replaces these two arcs

of L by a single arc, running from s1 to s2, at height t2, say.
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s s s

1

1 12 s s s2 1s s s2

2

t
t

exchange
moves

destabilisation

Figure 9: A generalised destabilisation

In Figure 9, a generalised destabilisation is expressed as composition of exchange moves and a

destabilisation. The following is clear.

Lemma 2.5. Let n be the arc index of an arc presentation of L. Then a generalised destabilisation

is the composition of at most n exchange moves, followed by a destabilisation.

3. A summary of Dynnikov’s methods

In this section, we give an overview of Dynnikov’s work on monotonic simplification of arc

presentations in [8]. This was highly influenced by Cromwell’s initial investigations into arc pre-

sentations in [6]. In turn, this was influenced by the development of braid theory by Birman and

Menasco (see [4] for example, or the survey in [3]) and Bennequin [2]. Our presentation in this

section is substantially based on [8].

3.1. Admissible form for characteristic surfaces

When L is the unknot or a split link, there is an associated surface, that Dynnikov refers to as

a characteristic surface. In the case of the unknot, this is a spanning disc. For a split link, it is a

2-sphere disjoint from the link, and with link components on both sides of it.

This surface S inherits a singular foliation F on S − S1
φ defined by dθ = 0. The intersection

points S ∩ S1
φ are called the vertices of S.

Dynnikov places the characteristic surface S into admissible form, which is defined as follows:

(1) The surface S is smooth everywhere, except at ∂S ∩ S1
φ.

(2) S − ∂S intersects the binding circle S1
φ transversely at finitely many points.

(3) The foliation F has only finitely many singularities, which are points of tangency of S with the

pages Dt.

(4) All singularities of F are of Morse type, ie local maxima, local minima or saddle critical points.

(5) Near any point of (∂S) ∩ S1
φ, the foliation F is radial.

(6) There is at most one point p ∈ (∂S) ∩ S1
φ at which |

∫
γ
dθ| > 2π, where γ ⊂ S is a properly

embedded arc in a small neighbourhood of p such that the endpoints of γ in ∂S lie on different

sides of p. Such a point p is called a winding vertex. The quantity |
∫
γ
dθ| is the winding angle

at this vertex.

(7) There is at most one point p ∈ (∂S) − S1
φ at which the surface S is not transverse to the

corresponding page Dθ(p). At the exceptional point, the foliation F must have a saddle critical
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point. If such a saddle and a winding vertex are both present, then the winding vertex is an

endpoint of the edge containing the saddle.

(8) Each page Dt contains at most one arc of L and at most one singularity of F|S−∂S , but not

both.

Consider an arc of L, which is the intersection with some page, and suppose that it does not

contain a saddle of S. Suppose that ∂S = L (and so we are in the case where L is the unknot).

Then, near this arc, except at the endpoints, all points of S satisfy one of the following:

(1) they have θ-values slightly greater than that of the arc, or

(2) they have θ-values slightly smaller than that of the arc.

We term this an up or down arc, respectively.

Now consider two incident arcs of L, neither of which contains a saddle of S. Then, by examining

their common vertex, we see that one must be an up arc and one must be a down arc. So, as

one travels along L, one meets up and down arcs alternately, with the possible exception of an

arc containing a saddle. As a consequence, when the arc index of an unknot L is odd, then the

characteristic surface must have a saddle somewhere on its boundary.

In the case where L is a split link, placing the characteristic 2-sphere into admissible form

is a simple application of general position. However, when L is the unknot, a little more work is

required. One first declares that the arcs of L are alternately up and down arcs, plus possibly one

arc that contains a saddle of S. This controls the location of S near these arcs. Near each vertex of

L, the foliation is required to be radial. When the vertex is not a winding vertex, this determines the

behaviour of S near that vertex. At the winding vertex, the amount that the surface winds is chosen

so that the curve ∂N(L) ∩ S has zero linking number with L. Thus, one first specifies the location

of S near L, using this recipe. Then a small isotopy supported away from a small neighbourhood of

L moves S into admissible form. More details can be found in the proof of Lemma 1 of [8].

3.2. The structure of admissible surfaces

Near a singular point of F or a vertex of S, there are the following possible local pictures:

(a) (b) (c) (d) (e)

Figure 10: Singularities of the foliation

In (a), the behaviour near a point of (S − ∂S)∩ S1
φ is shown. This is termed an interior vertex

of F . A boundary vertex is shown in (d), which is a point of intersection ∂S ∩S1
φ. The singularities

shown in (b), (c) and (e) are called a pole, an interior saddle and a boundary saddle. We follow

Dynnikov by denoting a vertex of S by a hollow dot, and a Morse singularity by a solid dot.
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When the singularities are removed from F , the result is a genuine foliation on S − S1
φ. Each

leaf is known as a fibre. (Dynnikov also calls the singularities of F fibres, but we do not do so here.)

Therefore, fibres are of the following types:

(1) a closed circle;

(2) an open arc connecting two vertices;

(3) an open arc connecting a vertex to a saddle or a saddle to itself.

Note that an open arc cannot connect a vertex to itself, other than possibly a winding vertex. This

is because the fibres emanating from a non-winding vertex have distinct θ-values. Note also that

a fibre cannot connect two distinct saddles, because each fibre lies in a single page and each page

contains at most one saddle. A fibre that is incident to a saddle is termed a separatrix.

The complement of the vertices, the singular locus, the separatrices and the boundary of S has

a special form. Each component of this complement we term a tile. This has a foliation induced by

arcs and curves where θ is constant. It therefore admits a product structure. Hence, each tile is an

open annulus or an open disc, which we term an annular and disc tile respectively. The discs have

two vertices in their boundary, and at most two saddles. (When the boundary of a disc tile runs

over fewer than two saddles, its closure contains an arc of L.) Note, however, that the boundary of

a tile may run over the same saddle more than once, as shown in Figure 11. Hence, the closure of a

disc or annular tile need not be a closed disc or annulus. There is a type of annular tile that is not

shown in Figure 11, which has boundary consisting of just two vertices. In this case, S is a 2-sphere,

and if it has components of L on both sides of it in S3, then the arc presentation is disconnected.

We may therefore assume that there are no such tiles.

Figure 11: Some tiles

Note that if there are any poles, then there are necessarily closed circle fibres near them.

However, we will see shortly that poles can be readily removed. Closed circle fibres also arise near a

separatrix that joins a saddle to itself. Note, however, that in a small neighbourhood of each vertex

of S, all the fibres are intervals.

Dynnikov defines the complexity of the characteristic surface S in admissible form to be the

number of singularities of F . We will use a slight variation of this. We will consider the binding

weight wβ(S), which is the number of intersections between S and the binding curve S1
φ. In other

words, the binding weight of S is the number of vertices of S, as shown in Figures 10(a) and 10(d).
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3.3. Reducing the complexity of the characteristic surface

In [8], Dynnikov uses an Euler characteristic argument to show that the singular foliation F
must contain certain configurations. In each case, he shows that one may either perform some

exchange moves and cyclic permutations followed by a destabilisation, or one may perform some

cyclic permutations, exchange moves and generalised exchange moves, after which one may reduce

the complexity of the characteristic surface. There are 8 possible configurations that he considers.

However, in this paper, four of these play a particularly important role, and we will focus initially

on these.

For a vertex s of F , the closure of the union of all the fibres of F approaching s is called the

star of s. The valence of s is the number of separatrices approaching s.

Dynnikov defines an interior vertex s as bad if one of the following cases arises:

(1) the star of s contains at least two fibres in distinct tiles that connect s to boundary vertices;

(2) the star of s contains a winding vertex.

If an interior vertex is not bad, it is good.

The main cases that we consider now are:

(1) There is a pole.

(2) There is a good 2-valent interior vertex.

(3) There is a good 3-valent interior vertex.

(4) There is a 1-valent boundary vertex.

These are not the only possible cases, but they are the only ones that we will be concerned

with in this paper. Note that Dynnikov explains in the proof of Lemma 5 in [8] that there can be

no 1-valent interior vertex.

3.4. When there is a pole

In this case, there is a simple modification that can be performed to the surface which reduces

the number of singularities by 2 without changing the binding weight. One considers the tile incident

to the pole. It has on its boundary a saddle. One can isotope the surface so as to cancel the pole

and the saddle. This may move other parts of the surface, but it does not introduce any other

singularities. The link itself does not need to be moved. In particular, no exchange moves, cyclic

permutations or destabilisations are performed at this step.

3.5. When there is a good 2-valent interior vertex

Suppose that the characteristic surface S has a good 2-valent interior vertex s. Then Dynnikov

shows that there is a generalised exchange move that can be applied to the arc presentation, which

leaves the complexity of S unchanged, and then a further modification to the surface which reduces

its complexity.
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Adjacent to s, there are two disc tiles, and hence the configuration of F near s is as shown in

Figure 12.

x1

x2

s2s s
1

Figure 12: A good 2-valent vertex

The resulting arrangement of the characteristic surface is shown in Figure 13. Dynnikov explains

that, in this situation, one should perform a generalised exchange move, exchanging the intervals

(s1, s) and (s, s2). This has the effect of modifying the foliation F without increasing its binding

weight. One can then perform an isotopy to S, which reduces its binding weight by 2.

s

s

s

x1

x2

21

1Sφ

Figure 13: The arrangement of the characteristic surface

1Sφ
s2s1 s 1Sφ

Figure 14: The ambient isotopy of S

This procedure does not change the foliation near ∂S. In particular, no new winding vertices or

boundary saddles are introduced. Moreover, in the case where L is the unknot, the decomposition

of L into ‘up’ and ‘down’ arcs, plus possibly one extra arc, remains unchanged.

3.6. When there is a good 3-valent interior vertex

When there is a good 3-valent interior vertex, Dynnikov explains how one can isotope S without

increasing its binding weight, to create a good 2-valent interior vertex. This is admirably described

in the proof of Lemma 6 in [8], and so we only give a sketch here.
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Let s be the good 3-valent interior vertex. Let s2, s3 and s4 be the three vertices in its star.

Without loss of generality, suppose that they are arranged around S1
φ in the order s, s2, s3, s4. Let

x1 be the saddle that is connected by separatrices to s, s2 and s3, and let s5 be the other vertex

connected to x1 by a separatrix. Let x2 be the saddle that is connected by separatrices to s, s3 and

s4, and let s6 be the other vertex connected to x2 by a separatrix. A picture of the foliation near s

is shown in the left of Figure 15. Let t1 = θ(x1) and t2 = θ(x2). Suppose, without loss of generality,

that the fibres joining s and s3 have θ values lying in the interval (t1, t2).

The first thing that one does is perform at most n/2 cyclic permutations, so that 0 < t1 <

t2 < 2π. Then Dynnikov explains that all events in the interval (t1, t2) need to moved out of this

interval, where an event is the occurrence of a saddle or an arc of the link in some page Dt, where

t ∈ (t1, t2). This is done by moving the events with endpoints in (s, s3) into the future, so that

they happen after t2, and by moving the events with endpoints in (s3, s) into the past, so that they

happen before t1. In particular, the arcs of the link in these intervals need to be moved past each

other using exchange moves. Suppose that there are m such arcs with endpoints in the interval

(s, s3). Then there are at most n − m arcs with endpoints in the interval (s3, s) that need to be

moved. So at most m(n−m) ≤ n2/4 exchange moves are required.

x1x2

2s s

5s3s6s

4s 2s s

5s3s6s

4s

Figure 15: A good 3-valent vertex

Once this has been achieved, one then performs an isotopy, which has the effect on the foliation

as shown in Figure 15. This turns s into a good 2-valent interior vertex, and so one then proceeds

as in Section 3.5.

As in Section 3.5, this procedure does not change the foliation near ∂S.

3.7. When there is a 1-valent boundary vertex

In this case, there are two possibilities for the configuration of F near the 1-valent boundary

vertex s. These depend on whether or not there is a boundary-saddle in the star of s. They are

shown in Figure 16. In both cases, Dynnikov gives a modification to L and S. We concentrate on

the case where the star of s does not contain a boundary saddle. The other case is similar.
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x

s s s21 s s s21
L

Figure 16: A 1-valent vertex s

Now, it cannot be the case that s and s1 are both winding vertices, since S is admissible. Hence,

the tile that is incident to both of them has total θ-angle less than 2π. There is therefore some page

that is disjoint from this tile. We first perform at most n/2 cyclic permutations so that this page

is at θ = 0. We then slide the arc of L that joins s and s1 across this tile, maintaining it in pages.

This has the effect of performing some exchange moves. At most n of these are performed in total,

because the tile containing s and s1 is disjoint from the page D0.

s s

s

21

1Sφ

s s21

1Sφ

x

L

L

L

Figure 17: The ambient isotopy of S

We now consider the tile containing s and s2. We perform at most n/2 cyclic permutations so

that the tile misses the page D0. Then we slide the arc of L that joins s and s2 across this tile. This

process is stopped when the two arcs of L have adjacent θ-values. Then a generalised destabilisation

is performed. By Lemma 2.5, this is a composition of at most n exchange moves, followed by a

destabilisation.

This procedure does not introduce any winding vertices, since the θ-angle around each of

the vertices s1 and s2 is reduced. However, the resulting surface need not be in admissible form,

because the saddle (labelled x in the left of Figure 16) becomes a boundary-saddle. If S already has

a boundary-saddle elsewhere, then a further isotopy is necessary if one wants the resulting surface

to be in admissible form. In the next section, we introduce a variation of admissible form, which we

term alternative admissible form, which is partly designed to get around this complication.
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4. Simplifying arc presentations of the unknot

In the previous section, we gave an outline of Dynnikov’s argument, which provides a sequence

of exchange moves, cyclic permutations and destabilisations taking an arc presentation of the unknot

or split link to a trivial or disconnected presentation. The argument relied on destabilising the arc

presentation or reducing the binding weight of the characteristic surface at each stage. It is not

very surprising that the number of moves that are required can be bounded in terms of the initial

binding weight. In this section, we prove a result along these lines. The main complication is that it

is not the case that, in Dynnikov’s argument, a single exchange move is used to reduce the binding

weight by one. Many moves may be needed, and these need to be quantified. It is possible to do this

by carefully analysing Dynnikov’s proof, but the resulting upper bound on the number of exchange

moves and cyclic permutations is not optimal. Instead, we present a variant of Dynnikov’s theorem

and proof, which leads to a better bound. We are very grateful to Ivan Dynnikov for suggesting that

a proof along these lines would be possible. This relies on a slightly modified version of admissible

form, which is as follows.

Let L be a link with a given arc presentation. Let S be a compact surface embedded in S3

with interior disjoint from L and with each component of ∂S being a component of L. Then S

is in alternative admissible form if it satisfies (1), (2), (3), (4), (5) and (8) in the definition of an

admissible surface, together with the following:

(9) There are no winding vertices.

(10) Each arc of L contains at most one boundary saddle of S.

This has some advantages and some disadvantages over admissible form. The main disadvantage

is that it might not be possible to isotope a given surface into alternative admissible form, keeping

the link fixed. But it is possible to do so after stabilising.

Lemma 4.1. Let D be an arc presentation of the unknot L with arc index n. Let S be a spanning

disc in admissible form. Suppose that it is not in alternative admissible form, and hence has a

winding vertex. Let its winding angle be at most 2πm for some positive integer m. Then, there is

a sequence of m− 1 stabilisations and at most (m− 1)(n+m) exchange moves, taking D to a new

arc presentation D′, after which we may isotope S to an alternative admissible surface, keeping L

fixed. The difference between the binding weight of S′ with respect to D′ and the binding weight of

S with respect to D is m− 1.

Proof. When a stabilisation is performed on an arc presentation, it occurs near a vertex s of L. A

new arc of L is inserted into some page Dt. If we then perform at most n exchange moves, we may

take t to be any value, as long as this page contains no other arcs of L. We may also suppose that Dt
contains no singularities of the given admissible surface S. If there is a fibre of the singular foliation

on S that is incident to s and that lies in the page Dt, then there is an obvious way of isotoping

S so that, with respect to the new arc presentation, conditions (1), (2), (3), (4), (5), (6), and (8)

in the definition of admissibility hold. The effect of this on the singular foliation near s is shown

in Figure 18. Away from this regular neighbourhood of s, the singular foliation is unchanged. We

may do this m− 1 times at the winding vertex of S, so that the resulting surface S′ has no winding

vertex. Note that each arc of L ends up with at most one boundary saddle. Hence, this surface is

now in alternative admissible form.
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Figure 18: Stabilising near a vertex

We can now give an upper bound on the number of moves required to trivialise an arc presen-

tation of the unknot.

Theorem 4.2. Let D be an arc presentation for the unknot L with arc index n. Let S be a

spanning disc which is in alternative admissible form, with binding weight wβ(S). Then, there is

a sequence of at most 4n2wβ(S) exchange moves, at most nwβ(S) cyclic permutations, at most

wβ(S) stabilisations and at most wβ(S) destabilisations that takes D to the trivial arc presentation.

Moreover, throughout this sequence, the arc index remains at most n+ 1.

Stabilisations are used here and in Lemma 4.1, and so this is not ‘monotonic simplification’ in

the sense of Dynnikov [8].

Note that if wβ(S) is bounded above by a polynomial function of the arc index n, then the

number of moves given by Theorem 4.2 is also bounded above by a polynomial in n.

Proof. Because S is in alternative admissible form, it inherits a singular foliation. The language of

admissible surfaces readily translates to this setting. However, we modify the definition of good and

bad vertices, as follows. An interior vertex of S is now bad if its star contains fibres f1 and f2 in

distinct tiles, both of which are incident to boundary vertices, and such that both components of

S\cl(f1∪f2) contain at least one vertex of S. We say that a boundary vertex is bad if its star contains

a fibre f that is also incident to some other boundary vertex, and such that both components of

S\cl(f) contain at least one vertex of S. We say that a vertex is good if it is not bad.

We may assume that S has no poles, since if S contains a pole, then there is a simple modification

to S which reduces its number of singularities without changing its binding weight and without

moving L.

For a vertex s of S, define its interior valence di(s) and boundary valence db(s) to be the number

of separatrices approaching s, that lie in the interior of S and the boundary of S respectively. So,

the sum of these two quantities is the valence of s.

Claim. There is either a good interior vertex with valence 2 or 3, or a good boundary vertex s such

that 2di(s) + db(s) ≤ 3.

In order to prove this, we will first construct a graph G embedded in S. For each bad interior

vertex and for each tile in its star that is incident to a boundary vertex, pick a fibre in that tile and

make it an edge of the graph. For each tile incident to two boundary vertices and which does not

contain an arc of L in its closure, pick a fibre in that tile, which runs between these two vertices,

and make it an edge of G. Take the vertices of G to be the endpoints of these edges.

This graph divides S into discs. We will now pick one of these discs, S′, carefully. If G is empty,

then set S′ = S. So, suppose that G is non-empty. Let N(G) be a thickening of G away from ∂S.

This is almost a regular neighbourhood, except that N(G)∩ ∂S = G∩ ∂S. Let α be ∂N(G). Thus,

α is a union of properly embedded arcs, with disjoint interiors but which may intersect at their
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endpoints. Each arc of α runs parallel to one or two edges of G. We say that an arc α′ of α is trivial

if some component of S\α′ contains no vertices of S. In this case, the corresponding component of

S\G contains a single separatrix running from a vertex of G to a boundary saddle. Let α− be the

resulting of removing all trivial arcs from α. Pick an arc of α− that is outermost in the disc S. This

separates off a disc S′ with no arcs of α− in its interior. Suppose first that S′ is not disjoint from G.

Then S′ contains at least two trivial arcs of α, and so we deduce that S′ contains a good boundary

vertex s with db(s) = 2 and di(s) = 0, as required by the claim. Thus, we may assume that S′ is

disjoint from G. It therefore corresponds to a component of S\G, which we will also call S′.

If G is non-empty, then cl(S′) ∩G is either a single edge joining two bad boundary vertices or

two edges joined at a bad interior vertex of S. Note that, by construction, S′ contains at least one

vertex of S, which does not lie in G.

Now glue two copies of cl(S′) along the two copies of cl(S′) ∩ ∂S. Denote the resulting surface

by S+. It is either a disc or sphere. This surface S+ has a singular foliation. It has either zero, two

or four vertices in its boundary. In the latter case, at least one of these vertices has valence greater

than one. For if all four vertices in ∂S+ had valence 1, then it is easy to check that S′ contains no

vertices, which is impossible.

Note that S+ has no boundary saddles. Let vi2 and vi3 be the number of interior vertices of S+

with valence 2 and 3 respectively. Let vb1 be the number of boundary vertices of S+ with valence 1.

Then vb1 < 4. Using the fact that S+ has positive Euler characteristic, Dynnikov’s argument in the

proof of Lemma 5 in [8] gives that 2vi2 + vi3 + vb1 ≥ 4. (See formula (8) in [8] for example.) Hence,

S+ contains in its interior a vertex with valence at most 3. This came from a good vertex s of S.

When s is in the interior of S, it is the vertex required by the claim. (Note that a vertex in the

interior of S cannot have valence 1.) So, suppose that s lies in the boundary of S. Each separatrix

in the star of s that lies in the interior of S gives rise to two separatrices in S+. Each separatrix in

the boundary of S gives rise to just one separatrix of S+. So, we deduce that 2di(s) + db(s) ≤ 3,

which proves the claim.

When there is a good interior vertex in S with valence 2 or 3, we would like to apply the

procedure described in Sections 3.5 and 3.6. However, there is one minor complication. We have

modified the definition of a good interior vertex, and so an interior vertex s that was bad with the

previous definition may now be good. In the star of such a vertex s, there are two fibres f1 and

f2 lying in distinct tiles, which are incident to boundary vertices s1 and s2, say, and such that one

component of S\cl(f1 ∪ f2) contains no vertex of S. We are concerned with the situation where s

has valence 2 or 3, and so we now consider these two cases.

Suppose first that s has valence 3. Then, the local picture near s may not be quite as shown in

Figure 15. One or both of the saddles x1 and x2 may be boundary saddles, in which case the vertices

s5 or s6 might not be present. If x1 and x2 are both boundary saddles, then we focus instead on s3

which is a good boundary vertex with db(s3) = 2 and di(s3) = 0. Such vertices are dealt with later

in the argument. So, we may suppose that at most one of x1 and x2 is a boundary saddle. If x2 is a

boundary saddle, the isotopy described in Section 3.6 may still be applied. When x1 is a boundary

saddle, we swap the roles of x1 and x2, and so when we apply the isotopy described in Section 3.6,

the resulting foliation is the mirror image of that shown in the right in Figure 15 without the vertex

s5. Therefore, in both cases, the valence of s can be reduced to 2. It remains good.
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So, suppose now that the valence of s is 2. If s is a good interior vertex that was bad using the

previous definition, then the singular foliation near s is shown in Figure 19. The arrangement of the

characteristic surface still is as shown in Figure 13, but now the arc in S running from s1 to s2 via

x1 is actually an arc of L. It is clear that the generalised exchange move and the isotopy of Figure

14 may still be applied, as along as they are combined with a generalised destabilisation of L which

removes this arc.

These procedures reduce the binding weight by 2, and require at most n cyclic permutations,

at most n2 + n exchange moves and at most one destabilisation.

x1

x2

s2s s
1

L

Figure 19: A 2-valent interior vertex that is now good

We now consider the case where there is a good boundary vertex s such that 2di(s)+db(s) ≤ 3.

Hence, we are in one of the following situations:

(1) db(s) = 0 and di(s) = 0;

(2) db(s) = 0 and di(s) = 1;

(3) db(s) = 1 and di(s) = 0;

(4) db(s) = 1 and di(s) = 1;

(5) db(s) = 2 and di(s) = 0.

Note that db(s) ≤ 2, since at most two separatrices in the star of s lie in the boundary of S.

We may assume that Case (1) does not arise, because a vertex cannot have zero valence, unless

the arc presentation is already is trivial.

Cases (2) and (3) are shown in Figure 16. As explained in Section 3.7, we may apply sequence

of at most n cyclic permutations, at most 3n exchange moves and then a destabilisation. After this,

the spanning surface remains in alternative admissible form. Its binding weight has been decreased

by 1. Note that in Case (2), the saddle x that is in the star of the vertex becomes a boundary saddle

in the new spanning surface. The fact that boundary saddles can be created in this way is one of

the reasons why we use alternative admissible form.

In Cases (4) and (5), a new move is required. We will focus on Case (5), but Case (4) is similar.

A picture of the star of s is shown in Figure 20. Note that s1 lies in the interior of S, because s

is good. We first perform a generalised stabilisation, which replaces the arc of L between s and

s2 by two arcs, one running from s to s1, the other running from s1 to s2. By Lemma 2.5, this is

a composition of a stabilisation and at most n exchange moves. These new arcs of L follow fibres
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of the foliation of S that lie near the separatrices incident to x1. The unknot L with this new arc

presentation inherits a spanning disc, which is a subset of S, in alternative admissible form. This

is shown in the right of Figure 20. With respect to this new surface, db(s) = 1 and di(s) = 0. So,

we are in Case (3), and therefore a sequence of at most n cyclic permutations, at most 3n exchange

moves and then a destabilisation can be performed. Note that, although a stabilisation has been

performed, it is followed by a destabilisation, and so the arc index remains at most n after this

process.

x1 x2s s2 s3

s1

x2s s2 s3

s1

Figure 20: Case (5) in the proof

Since the binding weight has decreased by at least 1 at each stage, and we have bounded the

number of exchange moves, cyclic permutations, stabilisations and destabilisations at each stage,

the theorem follows immediately.

5. Normal surfaces

In this section, we recall some key aspects of normal surface theory. We also extend the theory

a little, by introducing the new concept of a boundary-vertex normal surface.

5.1. Definitions

Let P be a compact 3-dimensional polyhedron. Then a disc properly embedded in P is said to

be an elementary normal disc if

(1) it is disjoint from the vertices and intersects the edges transversely;

(2) it intersects each face in a collection of properly embedded arcs; and

(3) it intersects each edge at most once.

When P is a tetrahedron, an elementary normal disc necessarily intersects the 1-skeleton in

three or four points. Normal discs of this form are called triangles and squares. Examples are shown

in Figure 22.

Let M be a compact 3-manifold with a polyhedral decomposition P. Then a surface properly

embedded in M is normal if it intersects each polyhedron in a disjoint union of elementary normal

discs.

Note that this is a variation on the usual notion of normality. Many authors require that

elementary normal discs satisfy an extra condition: for each arc of intersection with an interior face,

the endpoints of the arc do not lie on adjacent edges, one of which is in ∂M , while the other is not.

We do not make this requirement here. Our notion of normality is very close to that used by Jaco
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and Oertel in [19].

We say that an arc properly embedded in a 2-dimensional polygon is normal if it is disjoint

from the vertices and has endpoints in distinct edges. When M has a polyhedral decomposition, its

boundary ∂M also inherits a polyhedral structure. We say that a collection of disjoint simple closed

curves in ∂M is normal if its intersection with each face in ∂M is a collection of normal arcs.

One of the key tenets of normal surface theory is that many topologically relevant surfaces

may be placed in normal form. This is usually proved by showing that, when a properly embedded

surface is not normal, then there is a modification that can be made to it which reduces the number

of intersections with the 1-skeleton. Hence, a surface with minimal number of intersections with the

1-skeleton (among a suitable collection of surfaces) is typically normal. In fact, when the surface is

closed, these modifications do not increase the number of intersections with any edge. (See Theorem

3.3.21 in [22] for example.) We may therefore obtain a version of this result which uses a variation

of the usual notion of complexity, which is defined as follows.

Let M be a compact 3-manifold with a polyhedral decomposition P. Fix a subcomplex β of the

1-skeleton. For a surface S properly embedded in M in general position with respect to the 1-skeleton

of P, define the weight of S, denoted w(S), to be the number of intersection points between S and

the 1-skeleton of P. Define the β-weight of S to be the number of intersection points between S and

β, denoted wβ(S). We will consider the pair (wβ(S), w(S)) and order these pairs lexicographically.

Thus, (wβ(S), w(S)) is less than (wβ(S′), w(S′)) if and only if either wβ(S) < wβ(S′), or wβ(S) =

wβ(S′) and w(S) < w(S′).

Note that the terminology wβ(S) is already being used to denote the binding weight of an

admissible surface S. This is intentional, because later in the paper, we will choose P and β so that

these quantities coincide.

A straightforward modification to the proof of Theorem 3.3.21 in [22] gives the following result.

Theorem 5.1. Let M be a compact orientable 3-manifold with a polyhedral decomposition P that

has a subcomplex β in its 1-skeleton. Suppose that M is reducible. Then there is a reducing sphere

S in normal form, such that (wβ(S), w(S)) is minimal among all reducing spheres that are in general

position with respect to the 1-skeleton.

We will also need to work with normal surfaces with boundary. In this case, the usual normali-

sation procedure may need to move the boundary of a surface. With the strong notion of normality

that is used by many authors, this movement of the boundary of the surface is hard to avoid. How-

ever, with the weaker version of normality we are using in this paper, it is possible to ensure that

the boundary of the surface does not need to be moved, under a fairly mild hypothesis. The main

modification occurs when there is an arc of intersection between the surface S and an interior face

of the polyhedral decomposition with endpoints on the same edge, and with this edge lying in ∂M .

Then, usually one performs a boundary compression to simplify the surface. If S is orientable, then

its boundary inherits an orientation and we see that, in this situation, the boundary of the surface

intersects this edge in two points of opposite sign. Thus, if we ensure that this does not arise, then

this modification is not required. We therefore obtain the following result.
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Theorem 5.2. Let M be a compact orientable 3-manifold with a polyhedral decomposition P that

has a subcomplex β in its 1-skeleton. Suppose that M has compressible boundary. Let C be a

normal simple closed curve in ∂M that bounds a disc in M . Suppose that, for each edge in ∂M ,

all points of intersection between C and that edge have the same sign. Then there is a compression

disc S in normal form, with ∂S = C, such that (wβ(S), w(S)) is minimal among all compression

discs that are in general position with respect to the 1-skeleton and that have boundary equal to C.

5.2. The normal surface equations

Let M be a compact 3-manifold with a polyhedral decomposition P. Suppose that there are

k types of elementary normal discs in P. Then each properly embedded normal surface S in M

determines a sequence of non-negative integers (x1, . . . , xk). Each xi is the number of elementary

normal discs of a fixed type, and is called the co-ordinate of this disc type. This sequence is known

as the normal surface vector for S, and we denote it by [S].

This vector satisfies a system of linear equations called the matching equations. There is a set

of equations for each face F of P with polyhedra on both sides. When S is a normal surface properly

embedded in M , the elementary discs in the polyhedra adjacent to F intersect F in a collection of

normal arcs. For each type of normal arc in F , there must be the same number of arcs of this type

from the polyhedra on both sides. These conditions are the matching equations.

Some elementary normal disc types in a polyhedron necessarily intersect. We call two discs of

this type incompatible. Thus, incompatible elementary discs cannot occur in a properly embedded

normal surface. For example, in the case of a tetrahedron, two squares of different types necessarily

intersect. Therefore the vector for a normal surface satisfies the constraints which, for each pair of

incompatible disc types, force the co-ordinate of at least one of them to be zero. These conditions

are called the compatibility conditions.

The following key result is one of the cornerstones of normal surface theory (see Section 1 in

[19] for example).

Theorem 5.3. There is a one-one correspondence between properly embedded normal surfaces, up

to normal isotopy, and solutions to the matching equations by non-negative integers that satisfy the

compatibility conditions.

Because of this strong relationship between normal surfaces and solutions to certain equations,

it is useful to take advantage of tools from linear algebra.

The normal surface solution space N is the set of vectors in Rk with non-negative real co-

ordinates that satisfy the matching equations and the compatibility conditions. Thus, the points of

N ∩ Zk correspond to properly embedded normal surfaces.

It is easy to see that the normal surface solution space has a polyhedral structure, in the sense

that it is a union of convex polytopes glued along certain faces. More specifically, suppose that

we pick a subset Z of the co-ordinates, with the property that when two elementary normal discs

are incompatible, at least one of their co-ordinates lies in Z. Consider the set of vectors with real

non-negative entries that satisfy the matching equations, and that satisfy the extra condition that

whenever a co-ordinate lies in Z, it is forced to be zero. We denote this set by NZ . Then NZ is
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simply the intersection of a subspace of Rk with the non-negative quadrant {(x1, . . . , xk) : xi ≥ 0 ∀i}.
Hence, it is a cone on a compact polytope. This polytope is just the intersection of this set with the

hyperplane {(x1, . . . , xk) : x1 + . . .+xk = 1}. We denote it by PZ . Note that N is the union of NZ ,

over all possible subsets Z.

Let S, S1 and S2 be properly embedded normal surfaces. Then S is said to be the sum of S1

and S2 if [S] = [S1] + [S2]. We often write S = S1 +S2. The sum of n parallel copies of S is denoted

by nS. Now, the Euler characteristic of S is a linear function of the number of elementary normal

discs of each type. Hence, when S = S1 + S2, then χ(S) = χ(S1) + χ(S2).

The normal surface S is a vertex surface if it is connected, and whenever nS is the sum of S1

and S2 for some positive integer n, then each of S1 and S2 is a multiple of S.

5.3. Realising certain surfaces as vertex surfaces

Jaco and Tollefson [20] proved that many topologically relevant surfaces may in fact be realised

as vertex surfaces. One of their results is as follows (see Lemma 5.1 in [20]).

Theorem 5.4. Let M be a compact orientable 3-manifold with a triangulation T . Suppose that

M is reducible. Then there is a vertex normal surface S that is a reducing sphere, such that w(S)

is minimal among all reducing spheres that are in general position with respect to the 1-skeleton.

We will need variation on this result, which differs from it in two ways. Firstly, we will not be

dealing with a triangulation. Instead, we will start with a triangulation T (of the 3-sphere) in which

the link L is simplicial, and we will remove a small regular neighbourhood of L, forming a polyhedral

structure P. Now, many of Jaco and Tollefson’s arguments do not extend from triangulations to

polyhedral structures. However, any closed normal surface in P is also normal in T . The arguments

of Jaco and Tollefson do work in this setting. Secondly, we will use a slightly more refined version of

complexity, as in Theorem 5.1. We therefore obtain the following result. The proof of this precisely

follows that of Lemmas 5.1 and 4.8 in [20], and is omitted.

Theorem 5.5. Let T be a triangulation of a compact orientable 3-manifold. Let M be the compact

3-manifold that results from removing a small open neighbourhood of a subcomplex L of the 1-

skeleton. Let P be the resulting polyhedral structure. Let β be a subcomplex of the 1-skeleton of

P. Suppose that M is reducible. Then there is a reducing sphere that is a vertex normal surface

with respect to T , and such (wβ(S), w(S)) is minimal among all reducing spheres that are in general

position with respect to the 1-skeleton.

5.4. Boundary-vertex surfaces

When dealing with vertex surfaces, one loses some control over their boundary behaviour. In

order to get around this, we introduce a new notion.

Let M be a compact orientable 3-manifold with a polyhedral decomposition P. Let S be a

properly embedded normal surface in M . Then S is a boundary-vertex surface if S is connected and

whenever nS is the sum of normal surfaces S1 and S2, where ∂S1 and ∂S2 are both multiples of ∂S,

then each of S1 and S2 is a multiple of S.
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Boundary-vertex surfaces will play an important role in the proof of our theorems, in the case

of the unknot. We will therefore explore them in some detail now.

Fix a collection of disjoint simple closed curves C in ∂M that are normal. The C-normal

surface solution space NC is the set of vectors in the normal solution space N with boundary that

is a multiple of C.

As in the case of the usual normal surface solution space, NC is a union of convex polytopes

glued along certain faces. This is because a vector in N lies in NC if and only if satisfies a collection

of extra linear equations. Consider two different arc types of normal arcs in the 2-cells of ∂M . Let

ci and cj be the number of arcs of C of these two types. For a normal surface S, the number of arcs

in ∂S of these two types are linear functions φi and φj of [S]. So, to lie in NC , [S] must satisfy the

linear equation cjφi[S] = ciφj [S]. These equations, as we run over all pairs of arc types in ∂M , give

the extra conditions required to determine NC . Now, just as N is a union of the polytopes NZ , we

may form similar polytopes NC
Z with the above extra linear constraints. So, NC

Z = NC ∩NZ . Then

NC is the union of NC
Z over all possible Z. Note that NC

Z is a cone over a compact polytope, where

the compact polytope is again the intersection with {(x1, . . . , xk) : x1 + . . . + xk = 1}. We denote

this compact polytope by PCZ .

The condition that S is a boundary-vertex surface is precisely that [S] is a multiple of a vertex

of some P ∂SZ and that S is connected. The reason for this is as follows. Suppose that [S] is a multiple

of a vertex of some P ∂SZ and that nS = S1 +S2 where ∂S1 and ∂S2 are both multiples of ∂S. Then,

for each co-ordinate of S that is zero, the corresponding co-ordinates of S1 and S2 are zero. So,

S1 and S2 both lie in N ∂S
Z , and so some multiples of these surfaces lie in P ∂SZ . However, since S

is a multiple of a vertex of P ∂SZ , we deduce that both S1 and S2 are multiples of S. Conversely,

suppose that [S] is not a multiple of any vertex of any P ∂SZ . Let Z be the set of zero co-ordinates

of S. Then a multiple k[S] lies in P ∂SZ for some positive real k. It can therefore be expressed as an

affine linear combination λ1v1 + . . .+ λnvn of the vertices of P ∂SZ , where λ1 + . . .+ λn = 1 and each

λi is non-negative. Choose such an expression where as many of the λi as possible are zero. After

re-ordering, we express k[S] as λ1v1 + . . .+λmvm where each λi is positive. Since m is minimal, the

coefficients λ1, . . . , λm are uniquely determined. Hence, they are the unique solution to a system of

linear equations with rational coefficients, and therefore they are rational. Rescaling, we obtain S

as a non-trivial sum of surfaces, each with boundary a multiple of ∂S, none of which is a multiple

of S. Thus, S is not a boundary-vertex surface.

We will need to realise compression discs as boundary-vertex surfaces. The precise result, which

is an analogue of Theorem 5.5, is as follows.

Theorem 5.6. Let M be a compact orientable irreducible 3-manifold with a polyhedral decompo-

sition P, and a subcomplex β in its 1-skeleton. Suppose that ∂M is compressible, and let C be an

essential normal simple closed curve in ∂M that bounds a disc in M . Suppose that, for each edge

in ∂M , all points of intersection between C and that edge have the same sign. Then there exists a

normal disc S bounded by C, such that

(1) S is a boundary-vertex surface, and

(2) (wβ(S), w(S)) is minimal among all normal discs with boundary equal to C.
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We will now embark upon a proof of this. As mentioned above, the arguments of Jaco and

Tollefson in [20] do not readily translate to the polyhedral setting. We therefore provide a more

direct argument.

We need the following lemma. This is proved in exactly the same way as Lemma 2.1 in Jaco

and Oertel [19], to which we refer the reader for a proof.

Lemma 5.7. Let M be a compact orientable irreducible 3-manifold with a polyhedral decomposition

P, with a subcomplex β in its 1-skeleton. Let S be a properly embedded, incompressible, normal

surface such that (wβ(S), w(S)) is minimal among all surfaces isotopic to S via an isotopy that keeps

∂S fixed. Suppose that S = S1 + S2, and that the number of components of S1 ∩ S2 is minimal

among all normal surfaces S′1 and S′2 such that ∂S′1 = ∂S1, ∂S′2 = ∂S2, S′1 and S′2 are isotopic to S1

and S2 keeping their boundaries fixed and S = S′1 + S′2. Then no component of S1 ∩ S2 is a simple

closed curve bounding a disc in S1 or S2.

Corollary 5.8. Let M be a compact orientable irreducible 3-manifold M with a polyhedral decom-

position P with a subcomplex β in its 1-skeleton. Let S be a properly embedded, incompressible,

normal surface such that (wβ(S), w(S)) is minimal among all surfaces isotopic to S via an isotopy

that keeps ∂S fixed. Then S cannot be written as S1 + S2, where S2 is a 2-sphere.

Proof. We may assume that S1 ∩ S2 is minimal among all normal surfaces S′1 and S′2 such that

∂S′1 = ∂S1, ∂S′2 = ∂S2, S′1 and S′2 are isotopic to S1 and S2 keeping their boundaries fixed and

S = S′1+S′2. Since S2 is a 2-sphere, each component of S1∩S2 bounds a disc in S2, which contradicts

Lemma 5.7.

Proof of Theorem 5.6. By Theorem 5.2, there is a compression disc S in normal form, with ∂S = C,

such that (wβ(S), w(S)) is minimal among all compression discs that are in general position with

respect to the 1-skeleton and that have boundary equal to C.

Note first that this implies that, for each positive integer n, (wβ(nS), w(nS)) is minimal among

all collections of n disjoint discs with boundary equal to nC. For if there was a collection of n such

discs with smaller complexity, then one of these discs would have to have complexity less than that

of S, which is a contradiction.

Now, [S] lies in the C-normal solution solution space. It therefore lies in some polytope NC
Z .

This is a cone on the compact polytope PCZ . Let λ be the unique real number such that λ[S] ∈ PCZ .

Now, PCZ is the affine hull of its vertices v1, . . . , vm. Hence, there are non-negative real numbers

λ1, . . . , λm which sum to 1 such that λ1v1 + . . .+ λmvm = λ[S]. Suppose that as many of the λi as

possible are zero. We may assume that the first k of them, say, are non-zero and the remainder are

zero. So, λ1v1 + . . . + λkvk = λ[S]. Divide by λ to get an expression µ1v1 + . . . + µkvk = [S]. By

our minimality assumption, these real numbers µ1, . . . , µk are unique. Now each vi has rational co-

ordinates and so because of the uniqueness of the µis, each µi is therefore rational. Hence, clearing

denominators, we get an expression

n1[S1] + . . .+ nk[Sk] = nS.

Here, each Si is a connected C-normal surface, which is a boundary-vertex surface. Also, n and each

ni is a positive integer. Hence,

n1χ(S1) + . . .+ nkχ(Sk) = nχ(S).
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Since each Si is C-normal, its boundary consists of multiples of C. So,

n1|∂S1|+ . . .+ nk|∂Sk| = n|∂S| = n.

Therefore,

n1(χ(S1)− |∂S1|) + . . .+ nk(χ(Sk)− |∂Sk|) = 0.

There are therefore two cases:

(1) For some i, χ(Si) > |∂Si|.

(2) For each i, χ(Si) = |∂Si|.

Let us consider Case 1 first. Let Ŝi be the result of attaching a disc to each boundary component

of Si. Then χ(Ŝi) = χ(Si) + |∂Si| > 2|∂Si|. But Ŝi is a closed connected surface, and so its Euler

characteristic is at most 2. We deduce that |∂Si| = 0. Thus, Si is a 2-sphere or projective plane.

Now, Si cannot be a projective plane, for a regular neighbourhood would be a punctured RP 3,

which would force M to be reducible, and this is contrary to assumption. Therefore, Si is a 2-

sphere. We hence get an expression nS = Si + W , for some normal surface W . By Corollary 5.8,

this is impossible.

Let us now consider Case 2. Then each Si is a disc, torus or Klein bottle. We claim that, in

fact, no Si is a torus or Klein bottle. Suppose it were. Write nS = S′ + Si. Then S′ has the same

boundary and the same Euler characteristic as nS. It cannot have any 2-sphere or projective plane

components, for this would contradict Corollary 5.8 or irreducibility. Hence, it consists of n discs,

plus possibly some tori and Klein bottles. Let S′′ be the union of the disc components of S′. Then

the total complexity of S′′ is strictly less than that of nS. Therefore, some component of S′′ has

strictly smaller complexity than S. This is a contradiction.

We deduce that each Si must be a disc. So,

n1 + . . .+ nk = n1χ(S1) + . . .+ nkχ(Sk) = nχ(S) = n.

Now,

n1wβ(S1) + . . .+ nkwβ(Sk) = nwβ(S).

Since each Si is a disc with boundary equal to C, the minimality assumption on (wβ(S), w(S))

implies that wβ(Si) ≥ wβ(S). Hence,

nwβ(S) = (n1 + . . .+ nk)wβ(S) ≥ n1wβ(S1) + . . .+ nkwβ(Sk) = nwβ(S).

We deduce that, for each i, wβ(Si) = wβ(S). Applying the same argument, we also deduce that

w(Si) = w(S). Hence, each Si is a normal disc with boundary C and with minimal complexity. Any

of these is our required boundary-vertex surface.

5.5. Estimating the size of normal surfaces

The following is due to Hass, Lagarias and Pippenger (Lemma 6.1 in [14]).

Theorem 5.9. Let M be a compact 3-manifold with a triangulation having t tetrahedra. Then,

each vertex normal surface S, where [S] = (x1, . . . , x7t), satisfies

max
1≤i≤7t

|xi| ≤ 27t−1.
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We will need the following version of this for compressing discs in polyhedral decompositions.

Theorem 5.10. Let M be a compact orientable 3-manifold with a polyhedral decomposition. Let c

be an upper bound for the number of elementary normal disc types in each polyhedron, and let k be

the number of elementary disc types in total. Let S be a compression disc for ∂M which is a normal

boundary-vertex surface. Let (x1, . . . , xk) be the vector [S]. Let y1, . . . , y` denote the weights of the

edges in ∂M . Then

max
1≤i≤k

|xi| ≤ (2c)k−1

(∑̀
i=1

|yi|

)
.

Proof. Consider the following set of linear equations:

(1) The matching equations.

(2) The equation xi = 0, for each co-ordinate where [S]i is zero.

(3) The equations that specify that xi = [S]i for all edges in ∂M .

These can be expressed as Ax = y, where A is a matrix, x = (x1, . . . , xk)T and y is a column

vector with the first set of entries being zero, and the remaining entries being the co-ordinates

y1, . . . , y` of [∂S]. Now, since S is a boundary-vertex surface, the only solution to these equations

is [S]. Hence, A has zero kernel. So, its rank equals the number of columns. Hence, we may

find a square submatrix B with the same number of columns and with non-zero determinant. The

equations corresponding to the rows of B become Bx = y′ for a submatrix y′ of y. Inverting, we get

x = B−1y′. Now, the rows of B have entries that are 0, 1 and −1, and there are at most 2c non-zero

entries in each row. Also, B−1 equals adj(B)/det(B), where adj(B) is the adjugate matrix. Since B

has integral entries and non-zero determinant, |det(B)| ≥ 1. Each entry of adj(B) is a determinant

of a minor of B and so has modulus at most (2c)k−1. The required bound on the modulus of each

co-ordinate of x immediately follows.

5.6. Normally parallel surfaces

Another useful feature of normal surfaces is that it is possible to speak of parts of the surface

as being normally parallel. The formal definition of this is as follows.

Let M be a compact 3-manifold with a polyhedral decomposition P. Let S be a (possibly

disconnected) surface properly embedded in M that is in normal form with respect to P. Then two

subsurfaces S0 and S1 of S are said to be normally parallel if there are subsurfaces S′0 and S′1 of S,

each of which is a union of elementary normal discs, and satisfying S′0 ⊇ S0 and S′1 ⊇ S1, and an

embedding H:S′0 × [0, 1]→M such that the following hold:

(1) For each elementary normal disc D of S′0 and each t ∈ [0, 1], H(D, t) is an elementary normal

disc.

(2) H(S′0 × {i}) = S′i for i = 0 and 1.

(3) H(S0 × {i}) = Si for i = 0 and 1.
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6. Triangulations and arc presentations

6.1. Dynnikov’s triangulation

Dynnikov gave a triangulation of the 3-sphere associated with an arc presentation of a link L.

In this subsection, we describe this triangulation.

As in Section 2, the 3-sphere is viewed as a join S1
θ ∗ S1

φ. Let n be the arc index of the arc

presentation. Then L intersects the binding circle S1
φ in n points. The intersection between each

page Dt and L is either empty or a single open arc. In the latter case, we may assume that this arc

is a concatenation of two arcs which are joined at S1
θ . We may take each of these arcs to be (φ, τ, θ),

for fixed θ and φ, and with τ varying between 0 and 1.

With L in this form, we now define the triangulation of S3, in which L is simplicial. If

s1 < . . . < sn are the vertices L ∩ S1
φ, and t1 < . . . < tn are the points L ∩ S1

θ , we subdivide S1
φ

and S1
θ at these points. We choose the parametrisation of θ and φ so that these points are equally

spaced around S1
φ and S1

θ . Thus, each circle has been subdivided into n 1-simplices. We give S3

the triangulation that is the join of these two triangulations of S1
φ and S1

θ . A typical 3-simplex is

therefore of the form [si, si+1] ∗ [tj , tj+1], for 1-simplices [si, si+1] ⊂ S1
φ and [tj , tj+1] ⊂ S1

θ , where

the indexing is mod n.

This triangulation T will be of crucial importance in this paper. In the case where L is a split

link, we will arrange that a splitting 2-sphere is normal with respect to T . However, when L is the

unknot, the characteristic surface is a spanning disc, which cannot be made normal with respect to

T , since L is a subset of the 1-skeleton. It is therefore necessary to work with a modified version of

the triangulation, which we define in the next subsection.

6.2. A modification of the triangulation

The first thing that we do is replace each 1-simplex in S1
θ and S1

φ by two 1-simplices. We again

work with the triangulation of the 3-sphere that is the join of these triangulations. We denote this

also by T . This has 4n2 tetrahedra. The purpose of doing this is so that, for each tetrahedron ∆,

L ∩ ∆ ∩ S1
φ is at most one point, and similarly L ∩ ∆ ∩ S1

θ is at most one point. Hence, for each

tetrahedron ∆, the intersection ∆ ∩ L is now at most two isolated points or a single edge.

We now remove a regular neighbourhood of L. The effect of this on each tetrahedron is

to truncate some vertices, or slice off an edge. This is shown in Figure 21. This converts each

tetrahedron into a polyhedron. Let P denote the resulting polyhedral decomposition of the exterior

of L.

6.3. The number of elementary disc types

In this subsection, we provide the following crude upper bound on the number of elementary

normal disc types in each polyhedron of P.
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Figure 21: Truncating the tetrahedra

Lemma 6.1. The number of elementary normal disc types in each polyhedron of P is at most 106.

Proof. Each face of T is a triangle. When truncated to form P, this face ends up with at most 5

sides. Since an elementary normal disc can intersect each edge at most once, it therefore intersects

this face in at most 2 normal arcs. There are at most 10 ways of inserting two normal arcs into the

face (since these avoid at most one of the edges, and this avoided edge determines the normal arcs

up to one further choice). There are at most 10 ways of inserting one normal arc. Hence, there are at

most 21 possible configurations for the intersection between the face and an elementary normal disc.

The normal disc is almost determined by its intersection with these four faces. The one ambiguity

is when L intersects the tetrahedron in an edge, which is sliced off to form a rectangular face. Then

when the elementary normal disc intersects all four edges of this rectangular face, there are two

possible ways that it can intersect this face. So, there are at most 2× 214 < 106 possible elementary

normal disc types in each polyhedron.

6.4. The specified longitude

The boundary ∂N(L) of this polyhedral structure inherits a cell structure. Each truncated

vertex of a tetrahedron gives rise to a triangular 2-cell. Each sliced-off edge gives rise to a rectangular

2-cell.

In the case where L has a single component, we will now pick a normal, simple closed curve C

in ∂N(L) which has winding number one along N(L) and zero linking number with L. We will term

this curve the specified longitude. We first create a normal curve C ′ in ∂N(L), which has winding

number one along N(L), but not necessarily zero linking number with L.

Now L is a union of arcs, each of which is the closure of the intersection with some page. When

the arc index n is even, we label these arcs alternately as up and down arcs. When the arc index n

is odd, this is not possible, and so we label the arcs as alternately up and down, with the exception

of one arc which is unlabelled. We also pick an orientation on L.
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It is also the case that L is a union of edges of the triangulation T . For each edge, there are four

rectangular 2-cells in ∂N(L) that encircle it. Two of these rectangles have slightly greater θ-values

than the arc of L; two have slightly smaller θ-values. Similar statements are true for the φ-values.

We now label the edges of L in this triangulation. If the edge lies in a labelled arc, we give it the

same label. If the edge lies in an unlabelled arc, then we consider the labelled arc to which it is

incident, and give it the opposite label. Now arrange C ′ in the neighbouring rectangles according

to the following recipe:

(1) If the edge of L is labelled ‘up’ and runs from S1
φ to S1

θ , then choose C ′ in this neighbourhood

to have slightly greater θ-value and slightly greater φ-value.

(2) If the edge of L is labelled ‘up’ and runs from S1
θ to S1

φ, then choose C ′ in this neighbourhood

to have slightly greater θ-value and slightly smaller φ-value.

(3) If the edge of L is labelled ‘down’ and runs from S1
φ to S1

θ , then choose C ′ in this neighbourhood

to have slightly smaller θ-value and slightly smaller φ-value.

(4) If the edge of L is labelled ‘down’ and runs from S1
θ to S1

φ, then choose C ′ in this neighbourhood

to have slightly smaller θ-value and slightly greater φ-value.

At each point of L ∩ S1
θ or L ∩ S1

φ, there is a collection of triangles of ∂N(L). Coming into

these, there are the endpoints of two arcs of C ′ lying in rectangular 2-cells. Join these by a path

of normal arcs in the triangles which is as short as possible. (At the point of L ∩ S1
θ in the middle

of the unlabelled arc, C ′ will also need to cross some rectangular 2-cells.) The result is the simple

closed curve C ′.

Suppose that the rectangular diagram associated with this arc presentation has writhe k. Then

we claim that the modulus of the linking number between C ′ and L is at most |k| + n + 1. We

see that C ′ runs parallel to each vertical and horizontal edge of the rectangular diagram, except

possibly at the midpoint of just one edge, where it may jump from one side of the edge to the

other. This exceptional case will correspond to the arc of L containing a boundary saddle. When

vertical and horizontal arcs of the diagram meet at their endpoints, a crossing between C ′ and L can

occur. We deduce that lk(C ′, L) differs from the writhe of the rectangular diagram by at most n+1.

Therefore, |lk(C ′, L)| ≤ |k|+ n+ 1, as claimed. Note that |k| is at most the number of crossings of

the rectangular diagram, which is at most (n− 1)2, and so we also deduce that |lk(C ′, L)| < n2.

To obtain C, we perform some Dehn twists to C ′, the twisting curve being a meridian that

encircles L half-way along an edge of L. If L has an unlabelled arc, then choose the twisting curve

to be a meridian of one of its edges. We perform enough Dehn twists so that lk(C,L) = 0.

We say that the number of Dehn twists that we performed is the twisting number of C. Hence,

this number is at most |k|+ n+ 1.

It is a consequence of the construction that C is normal in ∂N(L) and that, for each edge of

the cell structure of ∂N(L), C intersects that edge in points of the same sign.

We now estimate the weight of C, which is the number of points of intersection with the 1-

skeleton of P. The number of triangles of ∂N(L) at each 0-cell of L is 4n− 8. By construction, C ′

runs through at most 2n of these. Therefore, the weight of C ′ is at most 4n2. The creation of C

from C ′ introduces at most 4n2 points of intersection. So, the weight of C is at most 8n2.
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6.5. Making the elementary normal discs piecewise-linear

Each 3-simplex of T may be identified with a Euclidean tetrahedron, since it is the join of two

edges (one lying in S1
θ , the other lying in S1

φ), which we may take to be Euclidean straight lines.

Each polyhedron in P is a subset of a tetrahedron in T , which we may choose to be convex. We

may also choose the gluing maps between the faces of adjacent polyhedra to be isometries.

Our goal in this subsection is to realise each elementary normal disc of a normal surface as

piecewise-linear, with respect to the Euclidean structure on the polyhedron that contains it. So,

consider a surface S properly embedded in the exterior of L that is normal with respect to P.

We first arrange the points of S ∩ S1
θ in a certain way. We have arranged that each 1-simplex

in S1
θ and S1

φ has equal length. We first ensure that each point of S1
θ ∩ S lies in the middle half of

the 1-simplex in S1
θ that contains it. In other words, it lies closer to the midpoint of this 1-simplex

than to either of its endpoints. This will be technically convenient later in the argument.

We next arrange for S to intersect each face of P in straight arcs, without moving their end-

points. We then arrange for S to lie inside each polyhedron P of P in a certain way. The boundary

of the elementary normal discs is a union of normal arcs in ∂P , which we have taken to be straight in

the Euclidean structure. The elementary normal discs that are triangles can then be realised as flat.

The elementary normal squares can each be realised as two flat triangles, joined along a straight

line. We call these two triangles half-squares. When the square intersects S1
θ and S1

φ, we choose this

straight line so that it runs between S1
θ and S1

φ. We can choose the straight lines in the remaining

squares so that the union of the squares is embedded.

When a normal surface S is closed, its piecewise-linear structure is now completely determined.

However, when S has non-empty boundary, there are many more types of elementary disc to consider.

We realise these as piecewise-linear in the following way.

Cut the polyhedron P along a thin regular neighbourhood of the triangles and squares in S∩P ,

creating a union of (possibly non-convex) polyhedra. Each such polyhedron P ′ is star-shaped, centred

at some point v, say, in its interior. Create a collection of copies of ∂P ′ by performing dilations

based at v with dilation factor smaller than 1. We create as many copies as there are components of

S ∩ int(P ′). The curves S ∩ ∂P ′ are simple closed curves in the sphere ∂P ′. Hence, there is one, α,

that is innermost in ∂P ′. Attach to α an annulus, which runs to the outermost dilated copy of ∂P ′.

Take this annulus to be a subset of a cone on α with cone point v. Now attach, to the other boundary

component of the annulus, the disc in the dilated copy of ∂P ′ that it bounds. The resulting disc is

the required piecewise-linear elementary normal disc spanned by α. Repeat this procedure with a

curve in (S ∩ ∂P ′) − α that is innermost in ∂P ′, but this time using the second-outermost dilated

copy of P ′. Continuing in this fashion, we realise all of S ∩ P ′ as piecewise-linear.

6.6. PL-admissible form

Let S be a surface properly embedded in the exterior of L that is normal with respect to P,

and that is piecewise-linear. As in the case of admissible form, this surface S inherits a singular

foliation F on S − S1
φ defined by dθ = 0. (See Figure 22 for example.)
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S1
θ

S1
φ

Figure 22: Some elementary normal discs with their foliation

The normal surface is not admissible, for many reasons. It is piecewise-linear, not smooth. We

have yet to make sense of a ‘singularity’ for a such a piecewise-linear surface, but with any reasonable

definition, its singularities cannot be said to be of ‘Morse type’. Finally, it need not have the correct

behaviour near ∂S. In this subsection, we introduce the notion of PL-admissible form; the normal

surface will have this structure.

Consider a piecewise-linear surface S embedded in R3 with height function h given by the final

co-ordinate. Suppose that no 1-cell of S is horizontal with respect to h. A point p in S is non-

singular (with respect to h) if it has a disc neighbourhood N in S such that {x ∈ N : h(x) = h(p)} is

a properly embedded arc in N , running through p. Otherwise p is singular. We say that a singular

point p is a pole if it has a neighbourhood N such that {x ∈ N : h(x) = h(p)} is just {p}.

Note that the singular points are isolated. The ones that are not poles are generalised saddles.

An example of the singular foliation near a generalised saddle is shown in Figure 23. A generalised

saddle p has a disc neighbourhood N such that {x ∈ N : h(x) = h(p)} is a star-shaped graph with

central vertex p. When p ∈ S − ∂S, the number of edges of this graph coming out of p is an even

integer at least 4. When this integer is 4, we say that p is a saddle. When p ∈ ∂S, the number of

edges coming out of p is an integer at least 2. When this is 2, we say that p is a boundary-saddle

(see Figure 24).

Figure 23: A generalised saddle

A surface S properly embedded in the exterior of L is PL-admissible if the following hold:

(1) It is piecewise-linear in each polyhedron of P.

(2) It intersects the binding circle transversely at finitely many points.

(3) With respect to the function θ on S3 − S1
φ, S has no horizontal 1-cells and finitely many

singularities.

(4) Each page contains at most one arc of L and at most one singularity of S, but not both.
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We can translate the terminology of admissible surfaces to this setting. A vertex of S is a point

of S∩S1
φ. When the singularities are removed from the singular foliation F on S−S1

φ, the result is a

genuine foliation. Each leaf is a fibre. A fibre that is incident to a generalised saddle is a separatrix.

Each component of the complement of the vertices, the singular locus and the separatrices is a tile.

For a vertex s of F , the closure of the union of all the fibres approaching s is the star of s. The

valence of s is the number of separatrices approaching s.

Note that PL-admissible surfaces have quite different behaviour near the boundary than in the

case of admissible surfaces. This is for several reasons. In the case of admissible surfaces, their

boundary is L, which is a union of arcs in pages. On the other hand, PL-admissible surfaces lie in

the exterior of L, and hence have boundary on ∂N(L). Their boundary curves need not be union of

horizontal arcs. In fact, they have no horizontal arcs in their boundary, because of the assumption

that no 1-cell is horizontal. An example of the singular foliation near ∂S is shown in Figure 24.

S1
φ

S1
θ

∂S

Figure 24: Foliation near the boundary

Let S be a normal surface which has been made piecewise-linear as described in Section 6.5.

Lemma 6.2. In the interior of each elementary normal disc of S, there are at most 24 singularities.

Of these, at most 12 are generalised saddles, and all of these are saddles.

Proof. Note first that a singularity in the interior of a piecewise-linear surface only occurs when

more than two flat discs meet at a point. Moreover, at least four such discs have to meet a point for

this to be a generalised saddle. At least six such discs have to meet for the point to be a generalised

saddle that is not a saddle.

Let D be an elementary normal disc. When D is a triangle or square, it has no singularities

in its interior. So suppose that D is not of this form. Then in our construction, D consists of two

parts: an annulus A which runs between ∂D and a dilated copy of ∂D, and a disc which is a subset

of a dilated polyhedron. Singularities that lie in A−∂D must lie in ∂A−∂D, and these have at most

4 flat discs incident to them. So, any such singular points must be poles or saddles. The number

of such singularities is at most the number of points of intersection between ∂D and the 1-skeleton

of P, which is at most 12, since this is the maximal number of edges of a polyhedron in P. The

vertices in the interior of the disc part of D correspond to vertices of the polyhedron. It is easy to

check that there are at most 12 of these. None of these can be a generalised saddle because they all

have three flat discs incident to them.

Lemma 6.3. Each singular point in ∂S has at most two fibres incident to it, and so is a boundary-

saddle or a pole.
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Proof. Each elementary normal disc is flat near ∂S. So the only way that a singularity can appear

on ∂S is at the intersection between two elementary normal discs. Since just two flat discs meet

here, this implies that the singular point has precisely two or zero fibres incident to it. (See Figure

24.)

6.7. Exceptional and typical separatrices

An example of a separatrix is shown in Figure 22, running in the elementary normal square

from S1
θ to S1

φ. We say that a separatrix that lies entirely in an elementary normal square is typical.

Otherwise, it is exceptional.

Lemma 6.4. There are at most 408n2 exceptional separatrices of S.

Proof. Each exceptional separatrix emanates from a generalised saddle. There are three possible

locations for a generalised saddle: on the boundary of S, in the interior of an elementary normal

disc and on S1
θ . We consider these generalised saddles in turn.

The weight of C is at most 8n2. Hence, the number of singularities on ∂S is at most 8n2. By

Lemma 6.3, each gives rise to at most two exceptional separatrices.

When a generalised saddle lies in the interior of an elementary normal disc, this normal disc

cannot be a triangle or square, and so it must intersect ∂N(L). There are at most 8n2 such discs.

Each contains at most 12 generalised saddles in its interior, all of which are saddles, by Lemma 6.2.

So, these give rise to at most 384n2 exceptional separatrices.

The remaining separatrices are incident to S1
θ . To be an exceptional separatrix, it must start

in an elementary normal disc that is not a triangle or square. There are at most 8n2 of these, and

each such disc intersects S1
θ at most once. So, we obtain at most 8n2 exceptional separatrices of this

form. This gives a total at most 408n2 exceptional separatrices.

6.8. Ordinary tiles and deep vertices

We say that a tile of S is ordinary if it satisfies the following conditions:

(1) Its closure is a disc disjoint from ∂S.

(2) Its boundary is a union of typical separatrices.

(3) It lies in the union of the elementary squares and triangles.

Lemma 6.5. The number of disc tiles that are not ordinary is at most 1644n2. Moreover if S is

closed, then every disc tile is ordinary.

In order to prove this, we will need to introduce the following definition.

For a disc tile T of S, we define its θ-width as follows. Let s1 and s2 be its vertices. Pick a

properly embedded arc γ in T with endpoints in distinct components of ∂T − {s1, s2}. Then the

θ-width of the tile is
∣∣∣∫γ dθ∣∣∣.

Lemma 6.6. For all disc tiles with at most 816n2 exceptions, the tile has θ-width at least π/2n.
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Proof. By Lemma 6.4, there are at most 408n2 exceptional separatrices, and these lie in the boundary

of at most 816n2 tiles. Therefore, consider a tile which has no exceptional separatrix in its boundary.

Consider a vertex s of the tile. The two singular fibres in the boundary of the tile emanating from

s lie in elementary normal squares. These lie in distinct tetrahedra of T . There are at most 2n

tetrahedra arranged around the 1-simplex containing s. They each account for θ-angle around that

1-simplex of at least 2π/2n. Since we have arranged that each point of intersection between S and

S1
θ lies in the middle half of the 1-simplex that contains it, we deduce that the difference in θ value

between these two singular fibres is at least 2π/4n.

Proof of Lemma 6.5. If a disc tile is not ordinary, either its closure intersects ∂S or it contains an

exceptional separatrix in its boundary.

We say that a tile is a boundary-tile if it intersects ∂S in an arc. Not all tiles with closure

that intersects ∂S need be boundary-tiles. This is because the closure of a tile can intersect ∂S at

isolated points, which are boundary saddles. But there are at most 8n2 of these.

We claim that there are at most 820n2 boundary-tiles. The total θ-width of the boundary tiles

equals the total θ-angle that C runs through, in other words,
∫
C
|dθ|. Now, C is a union of normal

arcs in ∂N(L). As C runs along rectangular faces of ∂N(L), its θ-angle barely changes, except near

the endpoints of the rectangle that lie near S1
φ. At these endpoints, it then runs through triangular

faces of ∂N(L). As it does so, its change in θ-angle is at most 2π. So, the total θ-angle that C

runs through is at most 2π times the number of vertices of L, in other words, 2πn. Now, for all

but at most 816n2 tiles, the θ-width of the tile is at least π/2n, by Lemma 6.6. So, the number of

boundary-tiles is at most 816n2 + 4n2 = 820n2, as claimed.

Finally, each exceptional separatrix lies in the boundary of two tiles. So, by Lemma 6.4, this

gives rise to at most 816n2 tiles that are not ordinary.

We say that two vertices of S ∩S1
φ are of the same type if their stars are normally parallel. We

say that a vertex is deep if its star is disjoint from ∂S and every separatrix in the boundary of this

star is typical.

Lemma 6.7. The number of deep vertex types is at most 48n2.

Proof. Consider a deep vertex and all the vertices that are of the same type. Their stars are

normally parallel. Consider the outermost stars in this collection. Transversely orient these so that

they are both pointing away from the other stars of the same type. (If there is just one star in the

collection, we consider it twice, with the two different transverse orientations.) By the definition

of a deep vertex, these stars have only typical separatrices in their boundary. So, each such star is

a union of elementary normal triangles, squares and half-squares. Since each of these stars is not

normally parallel in the specified transverse direction to another star of the same type, we deduce

that it contains an elementary normal triangle, square or half-square that is not parallel to another

elementary normal triangle, square or half-square in the specified transverse direction. There are at

most 4 triangle types and at most one square type in S in each truncated tetrahedron, and there

are at most 4n2 truncated tetrahedra. Hence, there are at most 48n2 outermost triangles, squares

or half-squares in the specified transverse direction. Each one of these outermost triangles, squares

or half-squares that is in the star of a deep vertex lies in a single tile, and therefore lies in the star

of at most two vertices. This gives the upper bound.
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Lemma 6.8. The number of vertices of S that are not deep is at most 3288n2.

Proof. Each vertex that is not deep lies in the boundary of a disc tile that is not ordinary. (Note

that annular tiles are not incident to any vertices.) By Lemma 6.5, at most 1644n2 disc tiles are not

ordinary. Each gives rise to two vertices that are not deep.

6.9. Poles

Lemma 6.9. Let S be the characteristic surface in normal PL-admissible form. Let wβ(S) be the

number of points of intersection between S and S1
φ. Suppose that (wβ(S), w(S)) is minimal among

all normal characteristic surfaces with boundary equal to ∂S. Then, S has at most 208n2 poles.

Moreover, if S is closed, then in fact it contains no poles.

Proof. Let p be a pole of the foliation. We claim that p has non-empty intersection with an

elementary normal disc that is not a triangle or square. Now, the interior of each elementary

triangle and square contains no poles. So, a pole that is only incident to triangles and squares must

lie in the 2-skeleton of P. By construction, it does not lie in the interior of a face of T . In fact,

near edges of T − (S1
θ ∪ S1

φ), the foliation also has no singularities. Since only vertices of S lie on

S1
φ, we deduce that the pole p lies on S1

θ . Let e be the edge of the triangulation containing p. Let

B be the union of the tetrahedra incident to e. If a square is incident to p, then it contains a fibre

ending on p, and so p is not then a pole. Thus, p is only incident to triangles. The union of these

triangles is a disc D properly embedded in B. It forms the link in B of one of the endpoints x of

e. Let D′ be the remainder of the link of x in T . Note that D and D′ have the same number of

triangles, by the way that T is constructed. Remove D from S, replace it with D′. Then perform

a further small isotopy which makes the surface transverse to the 1-skeleton of P. This leaves ∂S

unchanged, and it also does not change wβ(S). But it has decreased w(S). By Theorem 5.1 or 5.2,

there is a normal characteristic surface with the same boundary as S but smaller complexity. This

is contrary to hypothesis, proving the claim.

So, consider an elementary normal disc that is not a triangle or square. There are at most 8n2

of these. By Lemma 6.2, it contains at most 24 poles in its interior. Any pole on its boundary lies

on ∂S or S1
θ . The elementary normal disc intersects S1

θ at most once. So, the number of poles not

lying on ∂S is at most 200n2. There are at most 8n2 poles lying on ∂S.

Note that the claim also implies that, when S is closed, it contains no poles. This is because S

then consists only of triangles and squares.

6.10. Moves on PL-admissible surfaces

Dynnikov’s argument, described in Section 3, dealt with admissible surfaces. But many of these

arguments work just as well with PL-admissible surfaces. For example, we have the following result.

Proposition 6.10. Let D be an arc presentation of a link L with arc index n. Let S be a PL-

admissible surface properly embedded in the polyhedral decomposition P.

(1) Suppose that S contains a deep 2-valent vertex. Then there is a generalised exchange move on

the link, followed by an ambient isotopy of the link complement, taking S to a surface S′ such

that wβ(S′) ≤ wβ(S)− 2.
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(2) Suppose that S contains a deep 3-valent vertex. Then there is a sequence of at most n/2 cyclic

permutations, at most n2/4 exchange moves, a generalised exchange move and some ambient

isotopies on the link complement, taking S to a surface S′ such that wβ(S′) ≤ wβ(S)− 2.

Proof. (1) A picture of the star of a deep 2-valent vertex is shown in Figure 12. The saddles x1

and x2 shown there may be generalised saddles, and so may have many separatrices emanating from

them, but this does not affect the argument. The arrangement of the characteristic surface is shown

in Figure 13, and one may make the same ambient isotopy which reduces the number of intersections

with the binding circle by 2.

(2) A picture of the star of a deep 3-valent vertex is shown in Figure 15, but in the case where

all generalised saddles are actual saddles. When x1 and x2 are generalised saddles, then there may

be several vertices in Figure 15 between s5 and s2, and between s6 and s4, which are joined by

separatrices to x1 and x2 respectively. But we can nevertheless perform the modification described

in Figure 15 without involving these vertices. This requires at most n/2 cyclic permutations and at

most n2/4 exchange moves. It converts the deep 3-valent vertex into a deep 2-valent one. We then

proceed as in (1).

However, we require a stronger version of this, which involves many vertices at a time. This is

absolutely central to this paper.

Proposition 6.11. Let D be an arc presentation of a link L with arc index n. Let S be a PL-

admissible surface properly embedded in the polyhedral decomposition P.

(1) Suppose that S contains m deep 2-valent vertices, all with normally parallel stars. Then there

is a generalised exchange move followed by an ambient isotopy, taking S to a surface S′ such

that wβ(S′) ≤ wβ(S)− 2m.

(2) Suppose that S contains m deep 3-valent vertices, all with normally parallel stars. Then there

is a sequence of at most n/2 cyclic permutations, at most n2/4 exchange moves, a generalised

exchange move and some ambient isotopies, taking S to a surface S′ such that wβ(S′) ≤
wβ(S)− 2m.

Proof. This follows the above argument. However, m copies of the surface shown in Figure 12 or 15

are used, all of which are parallel. Thus, in (1), once the generalised exchange move is performed,

the ambient isotopy shown in Figure 14 can be applied, which reduces the number of intersections

with S1
φ by 2m. The argument in (2) is similar.

6.11. Relating admissible and normal surfaces

In this paper, we are considering four types of surface: admissible surfaces, alternative admis-

sible surfaces, PL-admissible surfaces, and normal surfaces. It will be crucial to be able to pass

between these different types of surface, as each will play an important role. In this subsection, we

explain how to do this in one direction, while maintaining control of the complexity of the surfaces.

Proposition 6.12. Let D be an arc presentation for the unknot L with arc index n. Let S be a

compression disc for ∂N(L) in S3 − int(N(L)) which is in normal PL-admissible form with respect

to P. Suppose that ∂S is equal to the specified longitude, and that its twisting number is t. Then

there is a characteristic surface S′ for L which is in admissible form such that wβ(S′) ≤ wβ(S) + n.

39



Moreover, if S′ contains a winding vertex, then its winding angle is at most 2πt.

Proof. Let N(L) be the regular neighbourhood of L which is removed when forming P. Let N−(L)

be a much smaller regular neighbourhood of L. We initially set S′ to equal S in S3 − int(N(L)).

When Dynnikov shows in [8] how a characteristic surface may be placed in admissible form,

the first thing that he does is to arrange it near L so that it has the correct boundary behaviour.

(See Section 3.1.) We do the same here, so that the characteristic surface S′ lies in N−(L) in this

specified way. It therefore picks up n intersection points with S1
φ, which are precisely the vertices of

the arc presentation.

We now need to explain how to arrange S′ in N(L) −N−(L). Note that in this region, there

lie the arcs S1
φ ∩ (N(L) − N−(L)), which are vertical in its product structure. We need to ensure

that S′ has no intersection points with these arcs. Then the binding weight of S′, which is just the

number of intersection points with S1
φ, is wβ(S) + n.

Now, the two curves S∩∂N(L) and S′∩∂N−(L) are already fixed. Using the product structure

on cl(N(L) − N−(L)), we may identify ∂N(L) and ∂N−(L), and therefore view these two curves

as lying on the same torus. The former curve is equal to the specified longitude, and the latter is

arranged according to the recipe given by Dynnikov, as described in Section 3.1. But the specified

longitude is defined precisely so that these are equal, up to an ambient isotopy in the complement of

S1
φ. Thus, there is a way of inserting S′ into this product region, so that it is an annulus interpolating

between these two curves, and without introducing any new intersection points with S1
φ.

Note that S′, as constructed, is piecewise-linear, not smooth. Also, its singularities are poles and

generalised saddles. But a small ambient isotopy, supported away from N−(L), makes S′ smooth

with Morse-type singularities. This does not change its binding weight, and it turns S′ into an

admissible surface.

In the definition of the specified longitude in Section 6.4, a normal curve C ′ was first defined.

The specified longitude was obtained from C ′ by performing t Dehn twists along a meridian of L.

This is the location for a winding vertex of S′ (if it has one). By construction, its winding angle is

therefore at most 2πt.

7. The Euler characteristic argument

Theorem 7.1. Let L be the unknot or a split link. Fix an arc presentation of L with arc index n

that is not disconnected. Let S be a characteristic surface in PL-admissible normal form with respect

to the polyhedral decomposition P, as described in Section 6.5. Suppose that S is a boundary-vertex

surface. In the case where L is the unknot, suppose also that ∂S is the specified longitude. Let wβ(S)

be the number of points in S ∩ S1
φ, and let w(S) be the weight of S. Suppose that (wβ(S), w(S)) is

minimal among all characteristic surfaces with the same boundary as S. Then, the number of deep

2-valent and 3-valent vertices is at least

wβ(S)

2× 109n4
− 4833n2.

Moreover, if L is a split link and hence S is closed, the number of such vertices is at least

wβ(S)

2× 109n4
.
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We now define a Euclidean subsurface of S, which will play a key role in the proof. The

designated Euclidean subsurface E of S is obtained as follows. It includes the interiors of the

ordinary tiles. If two such tiles are adjacent along a separatrix, add the interior of this separatrix. If

a vertex is 4-valent and is completely surrounded by ordinary tiles, add it in. Similarly, if a saddle

is completely surrounded by ordinary tiles, add it in.

We now give E a Riemannian metric that is locally isometric to the Euclidean plane. Each

ordinary tile has, by definition, only typical separatrices in its boundary, each of which runs between

a vertex of S and a generalised saddle. So it has precisely 4 separatrices in its boundary (as in the

left of Figure 11). We realise it as the interior of a Euclidean square with side length 1. When the

interiors of edges are added, they are realised as Euclidean geodesics with length 1. The Euclidean

metric extends over the vertices and saddles that are added to form E, in a natural way.

Denote the combinatorial length `(∂E) of ∂E to be the number of separatrices in ∂E plus the

number of components of ∂E that are isolated points.

Lemma 7.2. Suppose that each point of E is at a distance at most R from ∂E. Then, the area of

E is at most π(R+ 1)2 `(∂E).

Proof. For each point y in E, there is a shortest path from y to ∂E, which is a Euclidean geodesic.

Let x be the endpoint of this geodesic in ∂E. Then y lies in the image of the exponential map based

at x. Call this map expx. It is defined on a star-shaped subset of TxE centred at the origin, which

we denote by dom(expx). In fact, if we set S(R, x) to be expx(B(R, 0) ∩ dom(expx)), then y lies in

S(R, x). Thus, we have shown that E equals
⋃
x∈∂E S(R, x).

We now show in fact that E equals the union of S(R+1, x), as x runs over all 0-cells in ∂E. By

a 0-cell, we mean a corner of one of the tiles, which may be a generalised saddle or vertex of F . For

suppose that α is a shortest geodesic joining y to ∂E and that its endpoint x is in the interior of a

side of one of the tiles. Then α is orthogonal to this side. So, if we slide x to one of the endpoints x′

of this side, keeping α a geodesic, then it remains in the same set of tiles. In particular, it remains

in E. This process increases the length of α by at most 1. So, y lies in S(R+ 1, x′).

Now, expx is a local isometry from B(R+ 1, 0)∩ dom(expx) onto S(R+ 1, x). Hence, the area

of S(R + 1, x) is at most π(R + 1)2. So, the area of E is at most `(∂E) times the maximal area of

S(R+ 1, x), which gives the required bound.

The proof of the following key result will take up the entirety of Section 9.

Theorem 7.3. Let L, n and S be as in Theorem 7.1. Let E be the designated Euclidean subsurface

of the characteristic surface S. Then each point of E has distance at most 8000n2 from ∂E.

Proof of Theorem 7.1. Let Γ be the following 1-complex embedded in S. Its 1-cells are the separa-

trices. Its 0-cells are the endpoints of these separatrices, plus the poles. This includes the vertices

of S, the generalised saddles and the endpoints of separatrices on ∂S.

Let S+ be two copies of S glued along ∂S via the identity map. (So, when S is a sphere, S+

is two 2-spheres.) So, χ(S+) ≥ 2. Let Γ+ be the union of the copies of Γ in S+. Then, S+ − Γ+ is

a collection of open annuli and discs. Let S− be the result of removing the open annuli from S+.
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Then χ(S−) = χ(S+) ≥ 2.

Now, S− inherits a cell structure. When a separatrix in S ends at a non-singular point on ∂S,

then combine the two copies of this separatrix in S− into a single 1-cell. So, each 0-cell of S− comes

from a vertex, pole or generalised saddle of F . For i = 0, 1 and 2, let Si− denote the i-cells of S−.

For each 0-cell v, let d(v) denote its valence.

Each 2-cell of S− has precisely four 1-cells in its boundary that are not loops. Hence, 2|S1
−| ≥

4|S2
−|. Therefore,

2 ≤ χ(S−) = |S0
−| − |S1

−|+ |S2
−| ≤ |S0

−| − |S1
−|/2 =

∑
v∈S0

−

(1− d(v)/4).

Let V denote the set of vertices of S, let P denote the set of poles of S and let X denote the set of

generalised saddles in the interior of S. The boundary-saddles give rise to 0-cells of S− with valence

4, and so they do not contribute to the above summation. Therefore,

2 ≤
∑
v∈S0

−

(1− d(v)/4) = 2|P |+ 2
∑
v∈V

(1− d(v)/4) + 2
∑
x∈X

(1− d(x)/4).

For k ≥ 2, let vk denote the number of vertices in S with valence k. Note that there are no vertices of

valence 1 in the interior of S, as explained in the proof of Lemma 5 in [8]. Note also that |P | ≤ 208n2,

by Lemma 6.9. Moreover, |P | is zero when S is closed. So, |P | ≤ 208n2|∂S|. So,

2v2 + v3 =
∑
v∈V
d(v)<4

(4− d(v)) ≥ 4 +
∑
v∈V
d(v)>4

(d(v)− 4) +
∑
x∈X

(d(x)− 4)− 832n2|∂S|.

Note that ∑
v∈V
d(v)>4

(d(v)− 4) =
∑
k>4

∑
v∈V
d(v)=k

(d(v)− 4) =
∑
k>4

vk(k − 4) ≥
∑
k>4

vk.

Similarly, because each generalised saddle in the interior of S has even valence at least 4, we deduce

that ∑
x∈X

(d(x)− 4) ≥ 1

3

∑
x∈X
d(x)6=4

d(x).

So,

2v2 + v3 >
1

3

3
∑
k>4

vk +
∑
x∈X
d(x) 6=4

d(x)

− 832n2|∂S|. (1)

Let vE4 be the vertices lying in the interior of E, each of which is 4-valent by construction. Let

vNE4 denote the number of remaining 4-valent vertices. Each of the vertices in the interior of E

contributes 1 to the area of E. So, by Lemma 7.2 and Theorem 7.3,

vE4 ≤ π(8000n2 + 1)2 `(∂E).

So,

v4 = vE4 + vNE4 ≤ π(8000n2 + 1)2 `(∂E) + vNE4 ≤ π(8000n2 + 1)2(`(∂E) + vNE4 ).
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Each fibre in ∂E is adjacent to a disc tile that is not ordinary. The number of such tiles is at most

1644n2|∂S|, by Lemma 6.5. Each contributes at most 4 to `(∂E). Each isolated point of ∂E is a

generalised saddle with valence not equal to 4 or a vertex with valence not equal to 4. Each 4-valent

vertex not in the interior of E is adjacent to a disc tile that is not ordinary. This tile contributes at

most 2 to vNE4 . So, we deduce that

`(∂E) + vNE4 ≤ 9864n2|∂S|+
∑
k 6=4

vk +
∑
x∈X
d(x)6=4

d(x).

Therefore,

v2 + v3 ≥ `(∂E) + vNE4 −
∑
k>4

vk −
∑
x∈X
d(x) 6=4

d(x)− 9864n2|∂S|

≥ v4
π(8000n2 + 1)2

−
∑
k>4

vk −
∑
x∈X
d(x)6=4

d(x)− 9864n2|∂S|.
(2)

Adding 3 times (1) to (2), we deduce that

7v2 + 4v3 >
v4

π(8000n2 + 1)2
+ 2

∑
k>4

vk − 12360n2|∂S|.

Therefore,

8v2 + 5v3 >
v4

π(8000n2 + 1)2
+
∑
k 6=4

vk − 12360n2|∂S| > |V |
π(8000n2 + 1)2

− 12360n2|∂S|.

The next stage is to discard vertices that are not deep. By Lemma 6.8, the number of these is

at most 3288n2|∂S|. Therefore, the number of deep 2-valent and 3-valent vertices in S is at least

v2 + v3 − 3288n2|∂S| ≥ 8v2 + 5v3
8

− (3288n2|∂S|)

≥ wβ(S)

8π(8000n2 + 1)2
− 4833n2|∂S|

≥ wβ(S)

2× 109n4
− 4833n2|∂S|,

as required.

We are now in a position to prove Theorems 1.4 and 1.3, assuming Theorem 7.3.

Proof of Theorem 1.4. Let D be an arc presentation of a split link L. Suppose that D is not

disconnected. Let n be its arc index. Let T denote Dynnikov’s triangulation of S3, given in Section

6.1. By Theorem 5.1, there is a splitting 2-sphere for S3 − L which is in normal form with respect

to T . By Theorem 5.5, there is such a sphere S which is a vertex surface with respect to T , for

which (wβ(S), w(S)) is minimal. By Theorem 5.9, the binding weight wβ(S) of this surface is at

most n27n
2

, which is less than 28n
2

. The surface S inherits a singular foliation. Then by Theorem

7.1, the number of 2-valent and 3-valent vertices in S is at least

wβ(S)

2× 109n4
.
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By Lemma 6.7, these vertices come in at most 48n2 types. So, there is a collection of at least

wβ(S)/(1011n6) 2-valent or 3-valent vertices, all of the same type. Applying Proposition 6.11, there

is a sequence of at most n/2 cyclic permutations, at most n2/4 exchange moves, a generalised

exchange move and some ambient isotopies, which reduces the binding weight of the surface by at

least 2wβ(S)/(1011n6).

After we have performed these moves, the result is a new arc presentation of L. This gives a new

triangulation, which we will call T ′. Now, the new surface S′ need not be normal, but by Theorem

5.1, there is reducing 2-sphere which is normal with respect to T ′ and with no greater binding

weight. We may therefore repeat the above argument with this new arc presentation, triangulation

and splitting sphere.

Let x be the number of these steps required to reduce the complexity down to less than 1, by

which time we must have reach a disconnected arc presentation, as required. Then

28n
2

(
1− 2

1011n6

)x−1
≥ 1,

because after x − 1 steps, the binding weight is still at least 1, by the definition of x. Taking logs,

we obtain

(x− 1) log

(
1− 2

1011n6

)
+ 8n2 log 2 ≥ 0.

Now, log(1− y) ≤ −y for any y between 0 and 1, and so

(x− 1) ≤ (8n2 log 2)(1011n6/2).

Therefore x ≤ 3× 1011n8, which proves the theorem.

Proof of Theorem 1.3. We now consider the case where L is the unknot. The argument is similar to

that of Theorem 1.4, but it is made more complicated by the presence of boundary. A flowchart for

the proof is shown in Figure 25.

Characteristic surface S
in vertex-normal form
with an exponential bound
on its initial complexity

Perform exchange moves, 
cyclic permutations, generalised
exchange moves and isotopies, 
creating a new arc presentation
and reducing binding weight

Place characteristic surface
in vertex-normal form without
increasing binding weight

Is w (S) > 2 x10   n  ?β
13 6

Modify S to 
an alternative 
admissible surface

Apply Theorem 4.2 to perform 
exchange moves, cyclic 
permutations, stabilisations 
and destabilisations to reduce
the binding weight to two.

Yes

No

Figure 25: Flowchart for the proof of Theorem 1.3
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Let M be the exterior of L, and let P be the polyhedral structure for M defined in Section

6.2. Let C be the specified longitude. Now apply Theorem 5.2 to find a compression disc S for ∂M

which is normal and with boundary equal to C. By Theorem 5.6, we may choose S so that it is a

boundary-vertex surface and so that (wβ(S), w(S)) is minimal. So, by Theorem 5.10 and Lemma

6.1, its binding weight wβ(S) is at most

(2n)(2× 106)4×10
6n2

(8n2) < 210
8n2

.

Now suppose that wβ(S) > 2 × 1013n6. Then by Theorem 7.1, the number of deep 2-valent

and 3-valent vertices in S is at least

wβ(S)

2× 109n4
− 4833n2 ≥ wβ(S)

4× 109n4
.

By Lemma 6.7, these vertices come in at most 48n2 types. So, there is a collection of at least

wβ(S)/(2× 1011n6) deep 2-valent or 3-valent vertices, all of the same type. By Proposition 6.11, we

may perform at most n/2 cyclic permutations, at most n2/4 exchange moves, a generalised exchange

move and some ambient isotopies, to reduce the binding weight by at least wβ(S)/(1011n6).

As in the proof of Theorem 1.4, this creates a new arc presentation of L. This then gives a new

polyhedral decomposition P ′. Let S′ be the result of S after making this modification. Then, S′ is

a surface properly embedded in the exterior of the new copy of L. Its boundary remains a longitude

on ∂N(L). Moreover, the decomposition of L into ‘up’ and ‘down’ arcs, plus possibly one extra

arc, is preserved. And near these arcs, S′ continues to lie in the up and down directions from L.

We may therefore isotope ∂S′, taking it to the new specified longitude for L, without changing its

binding weight. By Theorem 5.6, there exists a normal disc S′′ in P ′ with boundary this specified

longitude that is a boundary-vertex surface, such that wβ(S′′) ≤ wβ(S′). We choose S′′ so that

(wβ(S′′), w(S′′)) is minimal. We then repeat the above argument.

Let x be the number of steps required to reduce the complexity down to at most 2 × 1013n6.

By the above argument,

x ≤ (108n2 log 2)(1011n6) + 1 ≤ 1019 n8.

This is at most 3×1018n10 exchange moves, at most 5×1018n9 cyclic permutations and at most 1019n8

generalised exchange moves. Once we have reduced the binding weight below 2× 1013n6, we apply

Proposition 6.12 to create a characteristic surface in admissible form with binding weight at most

2×1013n6 +n. If it has a winding vertex, its winding angle is at most 2π times the twisting number

of the specified longitude. Now, the exchange moves, cyclic permutations and generalised exchange

moves that we have performed so far do not affect the writhe of the rectangular diagram, which

therefore remains k. So, as explained in Section 6.4, the twisting number of the specified longitude

is at most |k|+ n+ 1. So, by Lemma 4.1, there is a sequence of at most |k|+ n < n2 stabilisations,

less than n2(n + n2) exchange moves and an ambient isotopy of the knot complement taking the

characteristic surface into alternative admissible form with binding weight at most 2×1013n6+n+n2.

Then, by Theorem 4.2, there is a sequence of at most 4(n+n2)2(2×1013n6+n+n2) exchange moves,

at most (n+n2)(2×1013n6+n+n2) cyclic permutations, at most (2×1013n6+n+n2) stabilisations

and at most (2× 1013n6 + n+ n2) destabilisations taking D to the trivial arc presentation. So, the

total number of exchange moves is at most

(3× 1018)n10 + n2(n+ n2) + 4(n+ n2)2(2× 1013n6 + n+ n2) ≤ 4× 1018n10.
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The total number of cyclic permutations is at most

(5× 1018)n9 + (n+ n2)(2× 1013n6 + n+ n2) ≤ 6× 1018n9.

The number of stabilisations and destabilisations are each at most

n2 + (2× 1013n6 + n+ n2) ≤ 3× 1013n6,

as required.

8. Branched surfaces

The remainder of this paper is devoted to the proof of Theorem 7.3. The proof will be given

in Section 9, but it requires some background theory on branched surfaces, which we recall in this

section. This is mostly standard material, which can be found in [9], for example.

8.1. Definitions

A branched surface is a compact 2-complex B smoothly embedded in a 3-manifold M , with

the following properties. At each point x of B, there is a specified tangent plane in Tx(M) and all

the 1-cells and 2-cells that contain x have tangent spaces at x that lie in this tangent plane. This

tangent plane is denoted by Tx(B). Thus, at each point x in the interior of a 1-cell of B, Tx(B) is

divided into two half-planes by the tangent space of the 1-cell. We term these the two sides at x. We

require that, at each such point x, either there are 2-cells on both sides of x or the 1-cell is incident

to a single 2-cell. The closure of the union of the points x of the former type is the branching locus

of B. The closure of the union of the points x of the latter type is the boundary of B, which we

denote by ∂B. (Note that we do not require ∂B to lie in ∂M .) The 2-cells of B are called the

patches of B.

Note that this definition is somewhat more general than the one that is frequently used, for

example in [9]. There, a branched surface is defined via its possible local models. In our definition,

it is not the case that there are only finitely many local models. An example is shown in Figure 26,

but this is not the general situation.

Figure 26: A branched surface
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A thickening N(B) of B has a decomposition as a union of fibres, each of which is homeomorphic

to an interval. (This thickening is almost a regular neighbourhood, except that ∂B ⊂ ∂N(B).) Away

from a small regular neighbourhood of the 1-skeleton of B, this is just an I-bundle. There is a map

π:N(B)→ B which collapses each fibre to a point. For each x ∈ B, the fibre through x is required to

have tangent space that is complementary to Tx(B). Also, each fibre is required to intersect ∂N(B)

in its endpoints, plus possibly a finite collection of closed intervals (see Figure 27). The horizontal

boundary ∂hN(B) is the union of the endpoints of these fibres. The vertical boundary ∂vN(B) is

cl(∂N(B)− ∂hN(B)). Each component of cl(∂vN(B)− π−1(∂B)) is termed a cusp.

cusp
N(B)

Figure 27: The fibred neighbourhood of B

Due to the potential interaction between ∂B and the branching locus, these cusps can have

slightly complicated topology. However, in the following case, they are rather simple.

Lemma 8.1. Let B be a branched surface in an orientable 3-manifold M . Suppose that B ∩ ∂M =

∂B and that π−1(∂B) = N(B) ∩ ∂M . Suppose also that at each x ∈ ∂B, the tangent plane Tx(B)

does not equal Tx(∂M). Then each cusp either is an annulus or is a disc D such that D ∩ ∂M is

two disjoint arcs in ∂D.

Proof. The cusps lie in a regular neighbourhood of the 1-skeleton of B. Near each 1-cell of B, they

have a simple form. They have the structure of I-bundles over this 1-cell, where each I-fibre is the

intersection between the cusp and a fibre of N(B). We need to analyse how these I-bundles join

together near the 0-cells of B. We claim they patch together to give each cusp the structure of an

I-bundle.

Let v be a 0-cell of B in the interior of M . Pick a small smoothly embedded disc P running

through v with tangent plane at v equal to Tv(B). Let N be a thickening of P , which is an I-bundle

over P , and let A be the I-bundle over ∂P , which is an annulus in ∂N . Then we may arrange that

B ∩ ∂N lies in the interior of A, and that it is transverse to the I-fibres of A. It is a branched

1-manifold in A. By our hypothesis on ∂B, this branched 1-manifold has no boundary. Hence, it

divides A into a collection of bigons, together with at least two annuli with smooth boundary. At

each such bigon, two cusps of N(B) enter and are joined together. We deduce that the I-bundle

structures do indeed patch together correctly here.

A similar analysis applies near each 0-cell v of B that lies in ∂M . Again, pick a small smoothly

embedded disc P that contains v, and with tangent plane at v that equals Tv(B). Then P may

be chosen so that P ∩ ∂M is a single arc in ∂P , which contains v in its interior. Thicken P to an

I-bundle N over ∂P . Let W be the I-bundle over cl(∂P − ∂M), which is a disc. Again, we may

assume that B ∩W is transverse to the fibres. It therefore divides W into a collection of bigons, at

least two smooth discs which include collars on the horizontal boundary of W , and some discs, each

of which has a single cusp in its boundary and a single arc of intersection with ∂W . At this latter
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type of disc, a cusp of N(B) hits ∂M and terminates. At each bigon, two bits of cusp of N(B) join

together. Thus, again, we deduce that I-bundle structures patch together as required, proving the

claim.

Since each cusp lies in the boundary of the orientable 3-manifold N(B), we deduce that it is

orientable and hence an annulus or disc, as required.

8.2. Surfaces carried by branched surfaces

A compact surface S is carried by a branched surface B if S is embedded in N(B), it is

transverse to the fibres and S ∩ π−1(∂B) = ∂S. These conditions ensure that, for each patch of

B, the cardinality of π−1(x) ∩ S is constant for all x in the interior of that patch. This cardinality

is termed the weight of S in that patch. These weights form a collection of non-negative integers,

which is known as the vector associated with S, and is denoted by [S]. The weights satisfy a system

of linear equations, which are known as the matching equations. These specify that, at each 1-cell in

the branching locus of B, the total weight of the patches on one side is equal to the total weight of

the patches on the other. Conversely, given a solution to these matching equations by non-negative

integers, one can form a compact surface carried by B with these weights.

8.3. Summation of surfaces

Let S, S1 and S2 be surfaces carried by B. Then S is said to be the sum of S1 and S2 if

[S] = [S1] + [S2]. We say that S1 and S2 are summands of S.

There is an alternative way of viewing summands of a surface.

Lemma 8.2. Let S and S1 be surfaces carried by a branched surface B. Then S1 is a summand of

S if and only if, in every patch of B, the weight of S is at least the weight of S1.

Proof. Suppose that S and S1 satisfy this weight condition. Consider the vector [S]− [S1]. Since [S]

and [S1] satisfy the matching equations, so does [S]− [S1]. By assumption, each of its co-ordinates

is non-negative. Hence, it corresponds to a surface S2 carried by B, and S is the sum of S1 and S2.

Conversely, if S is the sum of S1 and S2, then clearly, the weight of S is at least the weight of

S1 in each patch.

8.4. Branched surfaces associated to normal surfaces

Let P be a polyhedral decomposition of a compact 3-manifold M . Associated to any normal,

properly embedded surface S, there is a branched surface BS , which we term a normal branched

surface. It carries S.

It is constructed as follows. For each type of elementary normal disc in S, we take one such

disc. We arrange for these discs to be smoothly embedded. They form the patches of BS . For each

face F of P with polyhedra on both sides and for each arc type of F ∩ S, we glue all patches of BS

which contain this arc type along this arc.

This is a branched surface, because the tangent planes to BS can be defined as follows. For

each x ∈ BS lying in a 1-cell of P, pick a tangent plane Tx(BS) that does not contain the tangent
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plane of the 1-cell. For each x ∈ BS lying in the interior of a face of P, pick a tangent plane not

equal to the tangent plane of the face. We can do this compatibly with the choices for the points

in the 1-cells of P. For each point x inside the interior of a patch, we define Tx(BS) to be the

tangent plane of the elementary normal disc in which it lies. Although no Riemannian metric has

been specified, one should still think of the tangent planes of BS at the 1-cells and 2-cells of P as

being ‘orthogonal’ to those cells.

Note that S is carried by BS . For we may take a regular neighbourhood N(S) of S, such that

N(S) intersects each polyhedron in a union of elementary normal discs. Then, when two elementary

normal discs of S are normally parallel, we attach the space between them to N(S). Also, when two

arcs of S in a face of P are normally parallel, we attach a slight thickening of the space between them

to N(S). The resulting space is a 3-dimensional subset of the 3-manifold, which we term N(BS).

It is composed of a collection of regions, each of which is the product of an elementary normal disc

type of S with an interval. There is therefore a map π:N(BS)→ BS which collapses these intervals

to points. It is clear that N(BS) is a fibred regular neighbourhood of BS . By construction, S is a

subset of N(BS) that is transverse to the fibres. The boundary of BS is precisely BS ∩ ∂M . So,

π−1(∂BS) ∩ S = S ∩ ∂M = ∂S.

When a surface S′ is carried by BS , it is normal with respect to P. Moreover, the vector for

S′ as a surface carried by BS is equal to its normal surface vector. Hence, summation of surfaces in

the branched surface BS corresponds to the summation of normal surfaces. More precisely, suppose

that S′, S1 and S2 are surfaces carried by BS such that S′ is the sum of S1 and S2. Then these

are normal and S′ = S1 + S2 as normal surfaces. Conversely, if S, S1 and S2 are normal surfaces

satisfying S = S1 + S2, then, when one forms the branched surface BS starting from the normal

surface S, then S, S1 and S2 are all carried by BS and S is the sum of S1 and S2 in BS .

8.5. Branched surfaces carried by branched surfaces

We say that a branched surface B1 is carried by a branched surface B2 if

(1) B1 is smoothly embedded in N(B2), and

(2) for each point x in B1, TxB1 is transverse to the fibres of N(B2).

We do not require that ∂B1 lies in π−1(∂B2), where π:N(B2)→ B2 is the collapsing map for

B2. In fact, π(∂B1) is permitted to run through the interior of patches of B2.

Lemma 8.3. If B1 is carried by B2, then any closed surface carried by B1 is also carried by B2.

Proof. Let S be a closed surface carried by B1. We may assume that, at each point of x of S,

Tx(S) is arbitrarily close to Tπ(x)(B1), where π:N(B1) → B1 is the collapsing map for B1. Since

Tπ(x)(B1) is transverse to the fibre of N(B2) through π(x), we can therefore arrange that Tx(S) is

also transverse to the fibre of N(B2) through x. For a closed surface, this is the definition of S being

carried by B2.
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9. Euclidean subsurfaces of the characteristic surface

This section is devoted to the proof of Theorem 7.3.

Theorem 7.3. Let L be the unknot or a split link. Fix an arc presentation of L with arc index

n. Let S be a characteristic surface in PL-admissible normal form with respect to the polyhedral

decomposition P, and that is a boundary-vertex surface. In the case where L is the unknot, suppose

that ∂S is the specified longitude. Suppose also that (wβ(S), w(S)) is minimal among all character-

istic surfaces for L with the same boundary as S. Let E be the designated Euclidean subsurface of

S. Then each point of E has distance at most 8000n2 from ∂E.

For a subset F of a metric space, and a positive real number r, let Nr(F ) denote the set of

points with distance at most r from F . Thus, in our situation, Theorem 7.3 asserts that in the

metric space E, N8000n2(∂E) is all of E.

9.1. Overview of the proof

The strategy for the proof is as follows. Suppose that there is a point in E with distance more

than 8000n2 from ∂E. Then, around this point, there is a large Euclidean region. We will show

that this implies that there is a normal torus which is a summand for some multiple of S. This will

imply that S is not a boundary-vertex surface, which is contrary to hypothesis.

Throughout this section, S will be a characteristic surface for L, which is in normal form with

respect to the polyhedral decomposition, and that is a boundary-vertex surface. Also, (wβ(S), w(S))

is minimal among all characteristic surfaces for L with the same boundary as S. As above, E will

denote the designated Euclidean subsurface of S. We will prove Theorem 7.3 by contradiction, and

therefore suppose that there is some point z in E with distance more than 8000n2 from ∂E. Let E′

denote the component of E containing z.

9.2. A branched surface carrying the Euclidean subsurface

Starting with the designated Euclidean subsurface E, we can form a branched surface B as

follows. By construction, E is a union of square-shaped tiles. We say that two tiles of E are

normally parallel if they are normally parallel in P. We first form a 2-complex B, where each 2-cell

of B arises from a normal equivalence class of tiles of E. Each 2-cell therefore has the shape of a

square tile. We call each of these 2-cells a Euclidean patch. When two tiles of E are incident along

a separatrix, then we glue the associated patches of B along the corresponding edges.

However, B is not quite a branched surface, because there may be 1-cells of B with more than

one 2-cell on one side but no 2-cells on the other. To remedy this, we attach to B some extra 2-cells,

as follows. For each normal equivalence class of tile T of S that is incident to E but not a subset of

E, we attach a thin neighbourhood of T ∩ ∂E. This is a collection of thin discs. The boundary of

each such disc consists of two long arcs and two short arcs. When two such discs are incident because

they share a common isotopy class of short arc in their boundary, we glue these discs together along

this arc, forming new branching locus on their boundary. The result is the branched surface B.

Note that we make no identifications on the long arcs that do not lie in ∂E. Instead, they

become part of the boundary of B.
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Note also there is a retraction map B → B, which collapses the thin discs attached to B. This

is a homotopy equivalence.

Lemma 9.1. The number of Euclidean patches of B is at most 24n2.

Proof. Each Euclidean patch of B corresponds to a normal isotopy class of ordinary tiles. These tiles

are all normally parallel, and so there are two that are outermost, T1 and T2 say. We claim that each

of T1 and T2 must contain an elementary normal triangle, square or half-square that is outermost

in N(BS). Suppose that this is not the case, for T1, say. Then, adjacent to each elementary normal

triangle, square or half-square in T1 on both sides of T1, there is another elementary normal triangle,

square or half-square and the union of these forms two tiles which are normally parallel to T1 on

both sides of T1. These are ordinary tiles, which contradicts the assumption that T1 is outermost in

N(B). This proves the claim.

As a consequence of the claim, the number of Euclidean patches of B is at most the number of

normal isotopy classes of triangles, squares and half-squares in S. There are at most 6 of these in each

truncated tetrahedron. There are at most 4n2 truncated tetrahedra in the polyhedral decomposition.

This proves the lemma.

Lemma 9.2. B is carried by BS .

Proof. We need to find an embedding B → N(BS). Each Euclidean patch of B is a normal

equivalence class of Euclidean tiles. The remaining patches are subsets of tiles. Each tile is made up

pieces of elementary normal discs. Embed B into N(BS) by including each such piece into a regular

neighbourhood of the relevant patch of BS . It is easy to see that this inclusion map has the right

properties.

Let B′ be the component of B such that N(B′) contains E′. Let B
′

be the component of B

such that N(B
′
) contains E′. Then the retraction map B′ → B

′
is a homotopy equivalence, using

which we may identify π1(B′) and π1(B
′
).

Note that E′ is not carried by B′, because we added non-Euclidean patches to B
′
. But we can

take a small regular neighbourhood of E′ in S, denoted Ê, so that Ê is carried by B′.

9.3. Reducing to the case of trivial monodromy

We now define a homomorphism µ:π1(B′) → O(2), where O(2) is the group of orthogonal

transformations of R2. We term this the monodromy of the branched surface B′.

It is convenient to subdivide the cell structure on B
′
, introducing a new vertex into the midpoint

of each 1-cell of B
′
, and introducing a new vertex in the centre of each 2-cell and coning off from

this vertex. Let b be a basepoint for B
′
, which is a vertex at the centre of one of the original 2-cells.

Around each vertex of this new cell structure, we pick a Euclidean disc of radius 1/4, say, that

lies in B′. Given two vertices which are the endpoints of a 1-cell of B
′
, there is a canonical isometry

taking one disc to the other, which is Euclidean translation along the 1-cell. If one follows a loop

that encircles a 2-cell of B
′
, the composition of these Euclidean isometries is the identity. Thus, one

may define µ:π1(B
′
)→ O(2) as follows. Given a cellular loop ` in B

′
based at b, it is a composition

of paths along 1-cells, and this then gives a composition of Euclidean isometries. This composition

is a Euclidean isometry which takes the disc neighbourhood of b to itself. It is therefore an element
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of the orthogonal group O(2). Because the monodromy around each 2-cell is trivial, this gives a well

defined homomorphism µ:π1(B
′
)→ O(2), and hence a homomorphism µ:π1(B′)→ O(2). Note that

µ(`) is an isometry that preserves the tile containing b, and hence the image of µ lies in a subgroup

of O(2) of order 8.

We now define a finite-sheeted cover B̃ of B′, as follows. We let B̃ be the covering space of B′

corresponding to kernel of the monodromy homomorphism µ:π1(B′)→ O(2).

We record some properties of B̃.

Property 9.3. B̃ is a branched surface.

Proof. There is an inclusion of B′ into the 3-manifold N(B′), which is a homotopy equivalence.

Hence, associated with the kernel of µ:π1(B′)→ O(2), there is a covering space of N(B′), which we

denote by N(B̃). This is a regular neighbourhood of B̃, and hence is the required 3-manifold. Note

that there is a collapsing map π:N(B̃)→ B̃.

Property 9.4. B̃ has trivial monodromy.

Proof. Implicit in this statement is the assertion that one can define a monodromy homomorphism

µ̃:π1(B̃) → O(2). But the method of doing this is by direct analogy with the case of B′. By

construction, the monodromy homomorphism of B̃ has trivial image.

Property 9.5. B̃ is transversely orientable.

Proof. The obstruction to finding a transverse orientation to a branched surface is the existence of

a closed loop ` in the branched surface, so that as one travels around this loop, and one keeps track

of a transverse orientation, this is reversed by the time one returns to the starting point. This is

evident in the monodromy homomorphism µ̃. For then µ̃(`) has non-trivial image after composing

with the determinant homomorphism O(2) → {±1}. This contradicts the fact that µ̃ has trivial

image.

Property 9.6. The number of Euclidean patches of B̃ is at most 192n2.

Proof. This follows from the fact that the number of Euclidean patches of B is at most 24n2.

Property 9.7. The total length of the intersection between the singular locus of B̃ and the Euclidean

patches of B̃ is at most 768n2.

Proof. The singular locus is a subset of the 1-skeleton of B̃. Since each Euclidean patch of B̃ is

isometric to a Euclidean square of side length 1, the total length of the singular locus incident to

the Euclidean patches is at most 4 times the number of Euclidean patches.

There is an inclusion i: Ê → N(B′) and a collapsing map π:N(B′)→ B′. The kernel of µπ∗i∗

is a finite index subgroup of π1(Ê). Let Ẽ be the corresponding covering space of Ê. Then Ẽ is

carried by B̃.

The actual result we will prove in this section is as follows.

Proposition 9.8. Suppose that there is a point x in Ẽ with distance more than 8000n2 from ∂Ẽ.

Then Ẽ has a torus summand, when viewed as a surface carried by the branched surface B̃.

We now show how Theorem 7.3 follows from this.
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We are supposing that there is a point z in E′ with distance more than 8000n2 from ∂E. Let z̃

be a point in the inverse image of z in Ẽ. Then this has distance more than 8000n2 from ∂Ẽ. This

is because a path from z̃ to ∂Ẽ projects to a path from z to ∂E with the same length. So, applying

Proposition 9.8, we deduce that Ẽ has a torus summand T .

Now, the covering map B̃ → B′ sends [Ẽ] to a non-zero multiple m[Ê] of [Ê]. The covering

map sends [T ] to a vector satisfying the matching equations for B′ and with zero boundary. This

corresponds to a closed surface T ′ carried by B′. By Lemma 8.2, T ′ is a summand of m[Ê]. Since T ′

is a closed surface, Lemmas 8.3 and 9.2 imply that T ′ is also carried by BS . So, [T ′] is a summand

of m[S]. We deduce that S is not a boundary-vertex surface. But this is contrary to the hypothesis

of Theorem 7.3.

Thus, Proposition 9.8 implies Theorem 7.3. We therefore now work almost exclusively with Ẽ

and B̃.

We fix a transverse orientation of B̃. This induces a transverse orientation of Ẽ.

9.4. Grids and annuli

The proof now divides into two cases. Either there is a closed geodesic in Ẽ − N1000n2(∂Ẽ)

with length at most 12000n2, or there is not.

Suppose first that there is such a closed geodesic. Since Ẽ has trivial monodromy, this closed

geodesic is a multiple of a simple closed geodesic α.

Now, α represents a non-trivial element of π1(Ẽ). Let Ẽ∞ be the universal cover of Ẽ, and let

α̃ be one component of the inverse image of α in Ẽ∞. Then corresponding to α, there is a covering

transformation τ of Ẽ∞. For each point x̃∞ on α̃, τ acts on x̃∞ by translation along α̃. This is

also true of points close to x̃∞. Now if Nr(α̃) is disjoint from ∂Ẽ∞, for some r > 0, then Nr(α̃) is

isometric to [−r, r] × α̃. Hence, Nr(α̃)/〈τ〉 is isometric to [−r, r] × α. The covering map Ẽ∞ → Ẽ

sends Nr(α̃) onto Nr(α). If there are two points of Nr(α̃) that do not differ by an element of 〈τ〉
but which are sent to the same point in Nr(α), then Ẽ is a torus. This is impossible because ∂Ẽ is

non-empty. We therefore deduce that Nr(α) is isometric to a Euclidean annulus. Summarising, we

have proved the following.

Lemma 9.9. Suppose that α is a simple closed geodesic in Ẽ −N1000n2(∂Ẽ) with length at most

12000n2. Then, for all r ≤ 1000n2, Nr(α) is a Euclidean annulus with core curve α.

Suppose now there is no closed geodesic in Ẽ−N1000n2(∂Ẽ) with length at most 12000n2. Then,

the exponential map based at any x ∈ Ẽ−N7000n2(∂Ẽ) defines an isometry between a Euclidean disc

of radius 6000n2 and N6000n2(x). Let x lie at the centre of a tile. Hence, centred at x, there is a grid,

which is a union of square tiles that is isometric to Euclidean square. (See Figure 28.) We may find

such grids with any odd integer side length less than 6000
√

2n2. Note that 8000n2 + 1 ≤ 6000
√

2n2.

For a positive integer r ≤ 4000n2 and any x ∈ Ẽ −N7000n2(∂Ẽ), we let D(x, r) denote a grid

centred at a tile containing x with side length 2r + 1. Note that when x lies in more than one tile,

this is slightly ambiguous, but this ambiguity will not cause any problems.
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x

Figure 28: A grid centred at x

The proof now divides into these two cases. We focus first on the case where each x in Ẽ −
N7000n2(∂Ẽ) lies in the central tile of a grid with side length 8000n2 + 1.

9.5. First-return maps

For a transversely oriented subsurface F of Ẽ, we now define the first-return map. This is

function (which need not be continuous) rF : dom(rF )→ F , where the domain of definition dom(rF )

is a subsurface of F . For each point x in F , there is a fibre Ix in N(B̃) through x. This fibre is

divided into two by x. Let αx be the component of Ix − {x} into which F points at x. Define

dom(rF ) to be those x ∈ F such that αx ∩ F 6= ∅. For x ∈ dom(rF ), define rF (x) to be the point of

αx ∩ F that is closest to x in αx.

transverse
orientation

r  (x) not definedF
r  (y)F

x
y

F

N(B)~

Figure 29: First-return map

Lemma 9.10. If F ⊆ F ′, then dom(rF ) ⊆ dom(rF ′).

Proof. If x ∈ dom(rF ), then αx ∩ F 6= ∅, and so αx ∩ F ′ 6= ∅. Therefore x ∈ dom(rF ′).

Lemma 9.11. rF does not have a fixed point.

Proof. This is because, for each x ∈ dom(rF ), x and rF (x) are distinct points in the fibre Ix.

Lemma 9.12. If F is a connected subsurface of Ẽ that is a union of Euclidean tiles, then F−dom(rF )

consists of at most 192n2 tiles.

Proof. For each Euclidean patch of B̃, the tiles of F in the fibred neighbourhood of this patch are

parallel. Since F is connected and B̃ is transversely orientable, these tiles of F are all coherently

oriented. Hence, on all but one of these tiles of F , rF is defined. There are at most 192n2 Euclidean

patches of B̃, by Property 9.6, which establishes the lemma.
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9.6. The first-return map for large grids

The following is an easy observation.

Lemma 9.13. Let D be a grid with side length at least 14n. Then rD is defined at some point of

D.

Proof. The branched surface B̃ contains at most 192n2 patches. Since D has at least 196n2 tiles, D

must run over some patch of B̃ at least twice. Hence, rD is defined on one of these patches in D.

However, we need the following rather stronger statement.

Proposition 9.14. Every point x ∈ Ẽ −N7000n2(∂Ẽ) lies in dom(rD(x,4000n2)).

The key step in the proof of this is the assertion that, for a large grid D, the points in D

where rẼ fails to be defined lie close to ∂D. In fact, it is convenient to work with several grids

simultaneously, as follows.

Proposition 9.15. Let D1, . . . , Dm ⊆ Ẽ be a collection of disjoint grids, each with side length at

least 1500n2. For each Di, let di be sup{d(y, ∂Di) : y ∈ Di − dom(rẼ)}. Then
∑
i di ≤ 384n2.

Proof. Let D denote the union of the grids D1, . . . , Dm. We now form a union of annuli and

discs C in N(B̃), such that Ẽ ∩ C ⊆ ∂C, as follows. Start with the cusps of N(B̃). In a regular

neighbourhood of the Euclidean patches of B̃, the cusps of B̃ are annuli and discs. This follows from

Lemma 8.1, setting M to be this regular neighbourhood of the Euclidean patches and considering

the branched surface B̃ ∩M . Hence, we may extend each such cusp vertically into the interior of

N(B̃) until it just touches Ẽ. (See Figure 30.) Let C be the result. Note that C ∩ Ẽ is a collection

of simple closed curves and properly embedded arcs in Ẽ. Divide C ∩ Ẽ into ∂−C and ∂+C, where

the transverse orientation on Ẽ points into C at ∂−C, and out of C at ∂+C. Then ∂−C ∩D forms

the intersection between D∩dom(rẼ) and cl(D−dom(rẼ)). It is a collection of simple closed curves

and properly embedded arcs in D.

Claim 1. For each grid Di, any point on ∂−C∩Di that is furthest from ∂Di lies on an arc component

of ∂−C ∩Di.

C
E

E

E

∂ C-

∂  C+

r   defined E
r   not defined

transverse
orientation

~

~ ~

~

Figure 30: The annuli C

Let us assume the claim for the moment. Now, the total length of the cusps of B̃ is at most

768n2, by Property 9.7, and so ∂−C ∩ D also has length at most 768n2. Consider a point p on

∂−C∩Di which has maximal distance from ∂Di. By the claim, p can be at a distance at most 384n2

from ∂Di. Let D′i be the grid with the same centre as Di, but with p on its boundary. Hence, the

interior of D′i either lies entirely in dom(rẼ) or is entirely disjoint from dom(rẼ). But, by Lemma
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9.12, dom(rẼ) is defined for all but at most 192n2 tiles. We are assuming that Di has side length at

least 1500n2. Hence, the side length of D′i is at least 1500n2− (2× 384n2) = 732n2. Therefore there

are at least (732n2)2 tiles in D′i which is more than 192n2. So, we deduce that D′i lies in dom(rẼ).

Therefore, a point in cl(Di − dom(rẼ)) at maximal distance from ∂Di must lie in ∂−C ∩ Di. So,

di is at most half the length of ∂−C ∩Di. Therefore,
∑
di is at most half the length of ∂−C ∩D,

which is at most 384n2. This proves the proposition.

We still need to prove Claim 1.

We give ∂−C ∩D a transverse orientation in D, pointing it towards dom(rẼ). Thus, it points

‘into’ B̃ and away from the cusps.

Claim 2. Each simple closed curve of ∂−C ∩D points into the disc in D that it bounds.

Claim 1 is a consequence of Claim 2, as follows. Cut Di along the arc components of ∂−C ∩Di,

and let D′′i be the disc containing the centre of Di. Since the arc components have length at most

768n2, D′′i contains the grid with the same centre as Di and with side length 732n2 − 1. So, D′′i
contains at least (732n2 − 1)2 tiles. We will rule out the possibility that there are any simple closed

curves of ∂−C in D′′i . Let γ be the union of those components of ∂−C ∩ int(D′′i ) that are outermost,

in other words, that do not lie within another component of ∂−C ∩ int(D′′i ). The total length of γ is

at most 768n2, and so the total number of tiles that it can bound is at most (768n2)2/4 = (384n2)2.

But by Claim 2, dom(rẼ) ∩ D′′i lies within γ. So, at least (732n2 − 1)2 − (384n2)2 tiles do not lie

in dom(rẼ). However, we have already seen in Lemma 9.12 that rẼ is defined on all but at most

192n2 tiles of Ẽ. This is a contradiction, proving Claim 1.

We now must prove Claim 2. Suppose that there is a simple closed curve component β of

∂−C ∩D that points out of the disc that it bounds in D. We therefore get a configuration as shown

in Figure 31.

D
β

Figure 31: An outward-pointing cusp

Let C̃ ′ be the component of C containing β. Let C ′ be the image of C̃ ′ in N(B′) under the

covering map N(B̃) → N(B′). This is a cusp of N(B′) that has been extended to E′. Let 2S be

two normally parallel copies of the characteristic surface S. Shrink the annulus C ′ a little so that

its boundary lies in 2S. Let C ′′ be the resulting annulus. It is embedded. (Note that C ′ might not

have been embedded since its two boundary components might have intersected each other.) The

two curves ∂C ′′ bound discs W1 and W2 in 2S. One of these discs is parallel to the image in E′ of

the disc in D bounded by β. Hence, W1 and W2 are not normally parallel, because the cusp C ′′ lies

between them.

Now, W1 and W2 are disjoint. For if they were nested, say W1 ⊂ W2, then we could remove

W2 from S and replace it by W1, thereby create a normal characteristic surface S′ with the same
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boundary as S, but with (wβ(S′), w(S′)) < (wβ(S), w(S)).

We now form two new normal characteristic surfaces S1 and S2 with the same boundary as

2S. The first of these is obtained from 2S by removing W2 and replacing it with a normally parallel

copy of W1. Similarly, S2 is obtained from 2S by removing W1 and inserting a normally parallel

copy of W2. Then S1 and S2 are both distinct from 2S, up to normal isotopy, because W1 and W2

are not normally parallel. Note that, as normal surfaces, 4S = S1 + S2. Hence, we deduce that S is

not a boundary-vertex surface. This contradiction proves Claim 2.

Proof of Proposition 9.14. Let x be a point in Ẽ − N7000n2(∂Ẽ). We will define two increasing

sequences of non-negative integers mi and ki and a collection of maps D(x, 2000n2− ki)× [0,mi]→
N(B̃) with the following properties:

(1) The map is an embedding on D(x, 2000n2 − ki)× [0,mi).

(2) D(x, 2000n2 − ki)× {0} = D(x, 2000n2 − ki) ⊂ Ẽ.

(3) The transverse orientation on D(x, 2000n2− ki), which is inherited from that of Ẽ, points into

D(x, 2000n2 − ki)× [0,mi)

(4) For each point {∗} in D(x, 2000n2 − ki), {∗} × [0,mi] is a subset of a fibre in N(B̃).

(5) The intersection between D(x, 2000n2− ki)× [0,mi] and Ẽ is D(x, 2000n2− ki)× ([0,mi]∩Z).

This sequence will continue until D(x, 2000n2 − ki) × {mi} ⊆ Ẽ has non-empty intersection with

D(x, 2000n2) ⊆ Ẽ.

We start with D(x, 2000n2) × {0}. Set i, m0 and k0 to be 0. We now apply the following

procedure.

(1) Suppose D(x, 2000n2−ki)×[0,mi] has been defined and that mi > 0. If D(x, 2000n2−ki)×{mi}
is disjoint from D(x, 2000n2), then add it to this product region. Increase mi by 1. Pass to

step 2. If D(x, 2000n2 − ki)× {mi} intersects D(x, 2000n2), then the procedure terminates.

(2) Is rẼ(y) defined for all y ∈ D(x, 2000n2 − ki)× {mi}? If not, then pass to step 3. Otherwise,

remain on this step. This means that below D(x, 2000n2 − ki) × {mi}, there is another part

of Ẽ. Define this to be D(x, 2000n2 − ki) × {mi + 1}. Between these two surfaces, there is a

product region, which we take to be D(x, 2000n2 − ki)× (mi,mi + 1). Return to step 1.

(3) In this situation, rẼ(y) is not defined for some y ∈ D(x, 2000n2 − ki)×{mi}. This means that

there is at least one cusp of N(B̃) directly below some part of D(x, 2000n2 − ki)× {mi}. Let

di be the maximal distance of such a cusp from the boundary of D(x, 2000n2 − ki) × {mi}.
Applying Proposition 9.15 to the discs D(x, 2000n2−k0)×{m0}, . . . , D(x, 2000n2−ki)×{mi}
gives that

∑i
j=1 dj is at most 384n2. Set ki+1 =

∑i
j=1 dj . Therefore D(x, 2000n2 − ki+1) is a

grid of side length at least 2× (2000n2 − 384n2) ≥ 1500n2. Let mi+1 = mi + 1. Increase i by

1, and pass to step 1.

When this process terminates, we deduce the existence of points y ∈ D(x, 2000n2 − ki) and

y′ ∈ D(x, 2000n2) such that y × {mi} = y′ × {0}. Thus, rD(x,2000n2)(y) = y′.

We now extend D(x, 2000n2) to the grid D(x, 4000n2). Now, x × {mi} lies within the grid

D(y × {mi}, 2000n2). Hence, we deduce that x × {mi} lies in D(x, 4000n2). There may be other
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points of D(x, 4000n2) on the fibre between x×{0} and x×{mi}. But we deduce that the first-return

map for D(x, 4000n2) is defined at x.

xy’ x{0}

y x{m }i
equal

D(x, 2000n  ) x {0}2

D(x, 2000n  ) x {m }2
1

D(x, 2000n   - k  ) x {m  }2
1 2

transverse
orientation

Figure 32: Schematic picture of the product regions

9.7. Translation invariance of first-return maps

Let x be a point in Ẽ − N7000n2(∂Ẽ). The points x and rD(x,4000n2)(x) both lie in the disc

D(x, 4000n2) and so there is a well-defined Euclidean translation vector vx taking x to rD(x,4000n2)(x).

This vector lies in the tangent space TxẼ.

Proposition 9.16. The vector field {vx : x ∈ Ẽ −N7000n2(∂Ẽ)} is covariant constant.

In other words, this vector field on a component of Ẽ − N7000n2(∂Ẽ) is the same as the one

obtained by starting with the vector vx for some fixed x in that component, and translating using

Euclidean parallel translation.

Proof. Clearly the vector field is covariant constant on each tile, since B̃ has trivial monodromy.

So suppose that x and x′ lie at the centres of adjacent tiles t and t′ of Ẽ. Let τ be the Euclidean

translation of length 1 taking x to x′. Then, when passing from D(x, 4000n2) to D(x′, 4000n2),

the translation τ is performed. Since B̃ has trivial monodromy, the tile containing rD(x,4000n2)(x)

is also translated by τ . Hence, it lies in the same patch of N(B̃) as t′. We claim that this is

the tile containing rD(x′,4000n2)(x
′). For otherwise, there is a tile of D(x′, 4000n2) lying between it

and x′. But, then translating this tile by τ−1, we get a tile of D(x, 4000n2) lying between x and

rD(x,4000n2)(x), which is impossible.

x x’

rD(x, 4000n  )2 (x)

τ

Figure 33: Translating x to x′

Corollary 9.17. Let x be a point in Ẽ−N7000n2(∂Ẽ). Let β be a path starting at x and remaining

in Ẽ −N7000n2(∂Ẽ). Let β′ be obtained from β by translating each point in the direction vx. Then

π ◦ β = π ◦ β′, where π:N(B̃)→ B̃ is the projection map.

In other words, β and β′ follow the same itinerary through B̃. This will be important for us,

because curves of this form will form two sides of a parallelogram which will glue up to form the
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torus that we are looking for.

9.8. Completion of the proof

We are assuming that there is a point x in Ẽ with distance more than 8000n2 from ∂Ẽ.

Let α be the geodesic in D(x, 4000n2) from x to x′ = rD(x,4000n2)(x). Let β be a geodesic

going through x orthogonal to α with length 1000n2 in both directions from x. Then β remains in

Ẽ −N7000n2(∂Ẽ). Let β′ be the result of translating β using the vector vx, so that it runs through

x′. Then we refer to the region between β and β′ as a strip, and we denote it by P . It is a Euclidean

rectangle.

In Section 9.4, the proof divided into two cases: when there is a closed geodesic in Ẽ −
N1000n2(∂Ẽ) with length at most 12000n2, and when there is not. We initially focused on the

case where there is no such geodesic, and have defined x, α, β and P in this case. But now we want

to reintegrate the two parts of the argument. So, suppose that there is such a geodesic, which may

take to be simple, and call it α. Let x be a point on α, and let β be a geodesic through x that is

orthogonal to α. Suppose that it has length 1000n2 in both directions from x. We proved in Lemma

9.9 that N1000n2(α) is isometric to a Euclidean annulus with core curve α. Hence, β cuts N1000n2(α)

into a Euclidean rectangle. We also call this a strip, and denote it by P .

We now want to emulate the proof of Proposition 9.14, but instead of starting with a grid, we

will start with this strip.

Let p:P → β be orthogonal projection. If V is a finite union of closed intervals in β, we say

that p−1(V ) is strip-like.

We will define an increasing sequence of non-negative integers mi and a collection of strip-like

subsets P = P0 ⊇ P1 ⊇ . . . ⊇ Pk of P , with the following properties.

(1) There is map Pi × [0,mi]→ N(B̃) which is an embedding on Pi × [0,mi).

(2) Pi × {0} = Pi ⊆ P .

(3) The transverse orientation on Pi points into Pi × [0,mi).

(4) For each point {∗} in Pi, {∗} × [0,mi] is a subset of a fibre in N(B̃).

(5) The intersection between Pi × [0,mi] and Ẽ is Pi × ([0,mi] ∩ Z).

This sequence will continue until Pi × {mi} ⊆ Ẽ has non-empty intersection with P ⊆ Ẽ.

We start with P0 = P × {0}. Set i and m0 to be 0. We now apply the following procedure.

(1) Suppose mi > 0, that Pi × [0,mi] → N(B̃) has been defined and that it is an embedding on

Pi× [0,mi). If Pi×{mi} is disjoint from P , then add it to this product region. Increase mi by

1. Pass to step 2. If Pi × {mi} intersects P , then terminate this procedure.

(2) Is rẼ(y) defined for all y ∈ Pi × {mi}? If not, then pass to step 3. Otherwise, remain on

this step. This means that below Pi × {mi}, there is another part of P . Define this to be

Pi × {mi + 1}. Between these two surfaces, there is a product region, which we take to be

Pi × (mi,mi + 1). Return to step 1.
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(3) In this situation, rẼ(y) is not defined for some y ∈ Pi × {mi}. This means that there is at

least one cusp of N(B̃) directly below some part of Pi × {mi}. Extend these cusps vertically

into N(B̃) until they just touch Pi × {mi}. Let Ci be the intersection of these extended cusps

with Pi × {mi}, and let N(Ci) be a thin regular neighbourhood of Ci. Define Pi+1 to be

Pi − int(p−1p(N(Ci)). This is strip-like. Let mi+1 = mi + 1. Increase i by 1, and pass to step

1.

y’ x{0}

y x{m  }kequal

P  x {0}

P  x {m }1

P  x {m  }2

0

0

1

P  x {m  }kk

β’

βγ’
γ

Figure 34: Schematic picture of the product regions and strip-like regions

Now, the total length of C1∪ . . .∪Ck is at most 768n2. Therefore, the length of p(C1∪ . . .∪Ck)

is also at most 768n2. We therefore deduce that when this process terminates Pk is non-empty.

It terminates because, for some y ∈ Pk, {y} × {mk} equals some y′ ∈ P × {0}. Let γ be a

geodesic starting at y × {0} in the direction of α, and define γ′ similarly starting at y′ × {0}. Then

γ× [0,mk] ⊂ Pk× [0,mk] forms a product region between γ and γ′, where each fibre in this product

region lies in a fibre in N(B̃). Hence, γ and γ′ follow the same itinerary in B̃.

Let δ be the subset of β lying between β ∩ γ and β ∩ γ′. Define δ′ ⊂ β′ similarly. Then

γ ∪ δ ∪ γ′ ∪ δ′ forms the boundary of rectangle in Ẽ. Opposite sides of this rectangle have the same

image in B̃. Hence, if we identify opposite sides of this rectangle, the result is a torus that is carried

by B̃. It is a summand of Ẽ by Lemma 8.2.

This proves Proposition 9.8, which completes the proof of Theorem 7.3 and hence the main

results of this paper.

10. Final remarks

10.1. Improving the degree of the polynomials

We now know that there is a polynomial upper bound on the number of Reidemeister moves

required to turn a diagram of the unknot or split link into a trivial or disconnected diagram. It is

natural to try to determine the smallest possible degree of such a polynomial. The result of Hass and

Nowik [15] implies that one cannot do better than a quadratic polynomial. However, the degrees of

the polynomials in Theorems 1.1 and 1.2 are 11.

This can certainly be reduced from 11 to 10, as follows. In the proof of Theorem 1.4, we started

with a reducing 2-sphere with binding weight at most n27n
2

, where n is the arc index. However,

if one starts with a diagram of the link having c crossings, then one can find a triangulation of its
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exterior using at most 8c tetrahedra, and hence find a reducing sphere with weight at most c256c

with respect to this triangulation. One can then compare this triangulation with that of Dynnikov,

and hence find a reducing sphere with binding weight that is an exponential function of c rather than

c2. If one follows the remainder of the argument of Theorem 1.4, one finds that one has reduced the

degree of the polynomial in Theorem 1.2 by 1 down to 10. One can do the same for the polynomial

in Theorem 1.1. We have chosen not to pursue this argument here, because it is somewhat lengthy.

It seems very hard to reduce the degree below 10 using these arguments.

10.2. Further problems

This paper raises many interesting and difficult questions. We mention some these.

Is there a polynomial time algorithm to recognise the unknot? It is the author’s best guess

that there is not, but a proof of such a fact would be extremely hard.

Can the arguments in this paper be applied to other knot types? In particular, can one find

an upper bound on the number of Reidemeister moves required to transform one diagram of a knot

into another that is a polynomial function of the number of crossings in each diagram? Currently,

the only known upper bound on Reidemeister moves for arbitrary knots, which is due to Coward

and the author [5], is much larger than this. It is of the form of a tower of exponentials.
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11. W. Haken, Theorie der Normalflächen. Acta Math. 105 (1961) 245–375.
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