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Abstract. For each link type K in the 3-sphere, we show that there is a poly-

nomial pK such that any two diagrams of K with c1 and c2 crossings differ by
at most pK(c1) + pK(c2) Reidemeister moves. As a consequence, the problem

of recognising whether a given link diagram represents K is in the complexity

class NP and hence can be completed deterministically in exponential time.
We calculate this polynomial pK explicitly for various classes of links.
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1. Introduction

Haken, Hemion and Matveev showed that the equivalence problem for knots and
links is soluble [9, 12, 18]. But the complexity class of this problem is not at all well
understood. In particular, it is not known whether there is an efficient algorithm
to decide whether two links are the same. One of the most simple and attractive
ways of approaching this problem is to find an upper bound on the number of
Reidemeister moves required to pass between two diagrams of a link that is a
computable function of the number of crossings in each diagram. In [5], Coward
and the author provided such a bound and thereby gave a conceptually simple
algorithm to solve the link equivalence problem. However, the bound was huge: a
tower of exponentials that is exponentially high. In this paper, we show that, if
we fix the link type, one can actually find an upper bound that is a polynomial
function of the number of crossings.

Theorem 1.1. For each link type K in the 3-sphere, there is a polynomial pK with
following property. If D1 and D2 are two diagrams for K with c1 and c2 crossings
respectively, then they differ by a sequence of at most pK(c1)+pK(c2) Reidemeister
moves.

This has the following algorithmic consequence. For a link type K, the K-
recognition problem is the question whether a given link diagram represents K.

Theorem 1.2. For each link type K, the K-recognition problem lies in NP.

By definition, a problem is in the complexity class NP if, whenever an instance
of the problem has an affirmative answer, there is a certificate that provides this
affirmation that can be checked in polynomial time. In the case of the K-recognition
problem, this certificate takes a particularly simple form. It consists of a fixed
diagram of K, together with a sequence of Reidemeister moves taking the given
input diagram to this fixed diagram. We note that NP problems can be solved
deterministically in exponential time, simply by checking all possible certificates of
polynomially bounded length.

Corollary 1.3. For each link type K, the K-recognition problem can be solved
deterministically in exponential time, as a function of the number of crossings in a
given link diagram.

Theorem 1.1 asserts the existence of the polynomial pK . The following result
shows that it is algorithmically computable.

Theorem 1.4. There is an algorithm that takes, as its input, a diagram of a link
K and outputs the polynomial pK .

We implement this procedure when K is the figure-eight knot, and obtain the
following.

Theorem 1.5. For K the figure-eight knot, we may set pK(c) = (10108c)15460896.

At the end of the paper, we will investigate torus links, and we will find the
following explicit polynomial.

Theorem 1.6. When K is a torus knot, we may set pK(c) = (1011c)299666.

Again this result has the following algorithmic consequence, which was recently
proved by Baldwin and Sivek [1] using other techniques.
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Theorem 1.7. Deciding whether a diagram represents a torus knot is in NP.

Proof. We are given a diagram D for a link K with c crossings. We need to show
that when K is a torus knot, then there is a certificate that establishes this. Suppose
that K is the (p, q)-torus knot, where 0 < |p| ≤ q. Note that K has a standard
diagram D′ with c′ = q(|p| − 1) crossings, and this realises the crossing number of
K, by a theorem of Murasugi [19]. Our certificate is a sequence of Reidemeister
moves, with length bounded by a polynomial function of c, taking D to D′. By
Theorem 1.7, the number of Reidemeister moves required to take D to D′ is at
most (1011c)299666 + (1011c′)299666. Since c′ ≤ c, we deduce that the number of
Reidemeister moves is at most 2(1011c)299666. �

In general, the degree of pK is quite easy to compute. Without loss of generality,
pK(c) = (ac)d, for constants a and d. When K is non-split, the degree d is solely a
function of the length of a certain type of hierarchy for the exterior of K. But the
coefficient a is related to finer details of the hierarchy and also the link.

It remains a very interesting question whether there is a universal polynomial p
that works for every link K. If there were such a polynomial, then this would imply
that the link equivalence problem lies in NP. That would represent a very significant
improvement on the known computational complexity of this important problem.
(See [15] for the best known upper bound on its computational complexity.)

1.1. Outline of the proof. This paper can be viewed as a continuation of the
paper [17]. There, an explicit polynomial upper bound on Reidemeister moves was
provided for the unknot. A variety of techniques were used: Dynnikov’s work on
arc presentations of the unknot [8], normal surface theory, and a detailed analysis
of surfaces carried by Euclidean branched surfaces. An outline of the argument
there is as follows. Given a diagram D of the unknot, convert it to a rectangular
diagram. This specifies an arc presentation for the unknot, in the following sense.
An open book decomposition for the 3-sphere is fixed, with binding circle an unknot
and with pages that are open discs. A link is an arc presentation if it intersects
binding circle at finitely many points, and elsewhere intersects each open page in
either the empty set or a properly embedded arc. (For the terminology related to
rectangular diagrams and arc presentations, see [6], [8], or Section 5).

The unknot bounds a spanning disc, which can be placed in a form that respects
the arc presentation, called admissible form. A good measure of the disc’s com-
plexity is the number of times that it intersects the binding circle, which we term
its binding weight. Now, arising naturally from an arc presentation of a link, there
is a polyhedral structure of the link’s exterior. By using well-known estimates on
the complexity of normal surfaces in such a polyhedral structure, due to Hass and
Lagarias [10], we obtain an exponential upper bound on the disc’s binding weight.
In [8], Dynnikov described a collection of moves that can be used to reduce the
binding weight of the spanning disc without increasing the arc index of the presen-
tation. Using this, it is straightforward to find an exponential bound on the number
of Reidemeister moves. But one can improve this to a polynomial by using normal
surface theory in a deeper way. If the spanning disc has high binding weight, then
one can find many parts of the surface that are normally parallel. Using this obser-
vation, it was shown in [17] that one can reduce the binding weight of the spanning
disc by a definite factor using a single move. This then leads to the polynomial
bound on Reidemeister moves.
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Many of these ideas can be translated to the setting of general non-split links.
The main thing that is absent is a spanning disc. Instead, we use an entire hierarchy
for the link exterior. We show that, after polynomially many moves on the arc
presentation, all the surfaces in this hierarchy can be arranged to have polynomially
bounded binding weight. The hierarchy specifies a handle structure on the exterior
of K. By reattaching a regular neighbourhood of K with a simple handle structure,
we obtain a handle structure on the 3-sphere, and it is easy to arrange that each
component of K runs through a 0-handle and a 1-handle. We pick a fixed diagram
D′ for K. The aim is to convert D to D′ using a controlled number of Reidemeister
moves. We pick a fixed copy of D′ drawn on a specified 0-handle. This specifies
a realisation K ′ of the knot within this 0-handle. The next step in the argument
is to pick a fixed ambient isotopy within this handle structure taking K to K ′.
This achieved using a series of moves, for example, sliding part of the knot across
a 2-handle. Each 2-handle is embedded within S3 in a distorted way, but this
distortion is controlled. So, when the knot is slid across this 2-handle, one can
bound the resulting number of Reidemeister moves in the diagrams obtained by
projecting onto the horizontal plane. In this way, we obtain a upper bound on the
number of Reidemeister moves required to pass between the given diagram D and
the fixed diagram D′. This is a polynomial function pK(c(D)), where c(D) is the
crossing number of D. Therefore, if one is given two diagrams D1 and D2 of K
with crossing number c1 and c2 respectively, the number of moves required to pass
from one to the other via D′ is at most pK(c1) + pK(c2).

1.2. Structure of the paper. In Section 2, we give an introduction to some
aspects of normal surface theory, and we prove some new results. Possibly the
most significant of these is Theorem 2.11, which asserts that JSJ surfaces in a
compact orientable irreducible 3-manifold with incompressible boundary can always
be realised as fundamental normal surfaces. The main aim of this section is to show
that many surfaces in a hierarchy are exponentially controlled. This means that for
any triangulation of the manifold with t tetrahedra, the surface can be arranged to
intersect the 1-skeleton at most abt times, where a and b are constants depending
only on the 3-manifold and the surface, but not the triangulation. The results in
Section 2 are then used in Section 3, where the main aim is to show that the exterior
of every non-split link, other than the unknot, admits an exponentially controlled
hierarchy. This means that, for every manifold appearing in the hierarchy with
its inherited boundary pattern, the next surface in the hierarchy is exponentially
controlled. We therefore fix such a hierarchy H for our given link K. Although
Sections 2 and 3 are focused on triangulations, it is also convenient to use handle
structures. We therefore give a very brief introduction to handle structures in
Section 4.

Section 5 introduces our other main tools: arc presentations and rectangular
diagrams. It is primarily expositional, but contains a few new results. We mostly
discuss admissible form for a surface, and the resulting singular foliation that such
a surface inherits. In Section 6, we consider a partial hierarchy for a link exterior
where each surface is admissible form. We define a polyhedral decomposition, a
handle structure and a triangulation for the exterior of this partial hierarchy. In
Section 7, we consider the next surface S in the hierarchy. This can be arranged to
be normal, with an exponential upper bound on its weight, and a further modifi-
cation makes it admissible.
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In Section 8, we introduce branched surfaces. We show that the admissible
surface S is naturally carried by a branched surface B. Each patch of B comes
from parallel tiles of S.

Section 9 mostly discusses the modifications to an admissible surface S that
were introduced by Dynnikov [8], and which drew on work of Bennequin [2] and
Birman-Menasco [3]. Here, one considers the singular foliation on S. There are
primarily three types of singularity: interior vertices (where the interior of the sur-
face intersects the binding circle transversely), interior saddles (where the interior
of the surface is arranged like a saddle with respect to the circle-valued function
on the complement of the binding circle) and poles (where the surface has a lo-
cal maximum or minimum with respect to this height function). However, there
are two further types of singularity on ∂S: boundary vertices and boundary sad-
dles. Coming out of each saddle, there are four leaves of this foliation. Such leaves
are called separatrices. They typically end on a boundary or interior vertex. The
valence of a vertex is the number of separatrices emanating from it. The moves
discussed by Dynnikov arise when there is an interior vertex of valence at most 3
or a boundary vertex of valence 1. He showed that when K is the unknot in an
arc presentation, then any admissible spanning disc always has such a vertex. The
moves then modify the link and the spanning disc, and result in a reduction of the
disc’s binding weight. In Section 9, we recall these moves, but we introduce one
further modification. In the case where there was a boundary vertex of valence 1,
Dynnikov was able to slide the two arcs of K incident to this vertex across a subset
of the disc, and thereby reduce the arc index of K. Such a move is not appropri-
ate in our context. The boundary of our surface S runs over previous surfaces in
the hierarchy, and so one cannot simply move ∂S across a portion of S and keep
it properly embedded. Instead, we introduce an alternative move called a wedge
insertion.

Each of the above moves may only reduce the binding weight of S by 1 or 2. As
in [17], a crucial part of our argument is to perform such moves but with a much
greater reduction in binding weight. This is possible when there is a collection of
vertices of S, each with low valence, and with parallel stars. Here, the star of a
vertex is the union of the leaves of the singular foliation emanating from it. We
define parallelism in terms of the branched surface B. Therefore in Section 10,
we revisit the moves from Section 9 in the context of many low valence vertices
with parallel stars. These modifications change the surface and also the branched
surface B. It is important that they do not make B more complicated. Therefore,
we define a notion of complexity for B and show that it does not increase. In
fact, we have to introduce a second branched surface B′, in order to control what
happens during wedge insertion. We package B and B′, along with the admissible
surface, in a structure that we call an admissible envelope.

The above argument works well when there are ‘many’ vertices with low va-
lence and having parallel stars. Here, ‘low’ means ‘at most 3’ for interior vertices.
The definition of ‘low’ valence for boundary vertices is slightly more complicated.
Our task is to show that there are many such vertices, unless S has polynomially
bounded binding weight. A fairly simple Euler characteristic argument, presented
in Section 13, establishes that there are these vertices unless there are many ver-
tices with valence 4 in the double S+ of S. If there are such 4-valent vertices in S+

then their incident tiles patch together to form a subsurface of S+ with a natural
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Euclidean metric. In Section 11, we consider this subsurface. In [17], this subsur-
face was also considered. It was possible to show that if the Euclidean subsurface
was sufficiently big, then it contained a large rectangle or annulus with that the
property that opposite sides of the rectangle or annulus are parallel. It was then
argued that this rectangle or annulus could be patched together to form a normal
torus that was a normal summand for (some multiple of) the spanning disc. This
contradicted an initial assumption that the surface had no such summand. Here,
we need to make a similar argument, but a somewhat more technical one. In [17], it
was possible to hypothesise that the spanning disc had particularly nice properties
as a normal surface, whereas in our situation all we have is that S is exponentially
controlled. So we need to present a more technical variation of the argument in [17].
However, the conclusion is the same, that the Euclidean subsurface of S+ cannot
be too large, and hence there must in fact be many vertices of S with parallel stars
and low valence.

We piece together these various parts of the argument in Section 15. We are
given a diagram D for K with crossing number c. An isotopy of D makes it into
a rectangular diagram with arc index n at most (81/20)c. It then determines an
arc presentation for K. We have an exponentially controlled hierarchy H for the
exterior of K. In Theorem 15.1, we establish the existence of a polynomial q so that
H may be arranged to have binding weight at most q(n), and this is achieved using
at most n2q(n) exchange moves and cyclic permutations of K. This is achieved
by arranging each of the surfaces of the hierarchy in turn to have polynomially
bounded binding weight.

This hierarchy H induces a handle structure on the exterior of K. We then attach
a regular neighbourhood of K, to obtain a handle structure on the 3-sphere. We
have arranged that all the 2-handles are thin regular neighbourhoods of admissible
surfaces, and that these have polynomially bounded binding weight. In Sections 16,
17 and 18, we isotope the link K through this handle structure until it lies within
a 0-handle, and also so that its projection to the horizontal plane in R3 is some
fixed diagram D′ for K. By considering the projection of K to this plane, we need
at most polynomially many Reidemeister moves to convert the given diagram D to
D′. This then completes the proof of Theorem 1.1.

In Section 19, we run through the details of this construction for the figure-
eight knot. We find an explicit hierarchy H that is exponentially-controlled, and
from this it is quite straightforward to compute the polynomial q given above. We
also bound the number of Reidemeister moves needed when isotoping K through
the handle structure. This leads to the proof of Theorem 1.5, where an explicit
polynomial upper bound for Reidemeister moves is given. A similar analysis is
given in Section 20 in the case of torus knots.

1.3. Notation. If M is a compact manifold and X is a closed subset of M , the
manifold M\\X obtained by cutting M along X is the following compactification of
M −X. We assign M some Riemannian metric, and then M\\X is the completion
of M −X with respect to its path metric. The inclusion M −X → M induces a
map M\\X →M .

2. Normal Surfaces

2.1. Definition. Let T be a triangulation of a compact 3-manifold M . Then a
surface S properly embedded in M is normal with respect to T if it intersects each
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tetrahedron in a collection of triangles and squares, as shown in Figure 1. Triangles
and squares are known as elementary normal discs.

Triangle Square

Figure 1. Elementary normal discs in a tetrahedron

A normal surface S can be encoded by a collection of non-negative integers as
follows. One simply counts the number of triangles and squares of each type in
each tetrahedron. There are 7 types of triangle and square in each tetrahedron.
So, if T contains t tetrahedra, then we obtain a list of 7t non-negative integers.
Each integer is a co-ordinate of S and the complete list is called the normal surface
vector for S and is denoted (S).

2.2. The weight of a surface. Let M be a compact 3-manifold with a triangula-
tion T . Let S be a properly embedded surface that is disjoint from the vertices of
T and that intersects the edges transversely. The weight w(S) of S is its number
of points of intersection with the edges.

2.3. Boundary patterns. We will need to conduct normal surface theory in the
presence of boundary patterns. Therefore, in this subsection, we recall some of the
terminology relating to boundary patterns.

A boundary pattern P for a compact orientable 3-manifold M is a (possibly
empty) collection of disjoint simple closed curves and trivalent graphs embedded in
∂M .

A surface embedded in M is clean if it is disjoint from P .
We say (M,P ) is boundary-irreducible if for any clean disc D properly embedded

in M , there is a clean disc D′ in ∂M such that ∂D′ = ∂D. This is equivalent to
the requirement that ∂M − P is incompressible.

Let S be a properly embedded surface in M transverse to P . A boundary-
compression disc for S (with respect to the pattern P ) is a clean disc D embedded
in M such that

(1) D ∩ S is an arc α in ∂D;
(2) ∂D\\α = D ∩ ∂M ;
(3) α does not separate off a component of S\\α that is a clean disc.

The surface S is boundary-compressible (with respect to the pattern) if it admits a
boundary-compression disc; otherwise it is boundary-incompressible.

We say that a pattern-isotopy of a properly embedded surface S in M is an am-
bient isotopy that preserves the boundary pattern throughout. When two surfaces
differ by such an isotopy, we say that they are pattern-isotopic.



AN UPPER BOUND ON REIDEMEISTER MOVES FOR EACH LINK TYPE 8

Two surfaces properly embedded in M are strongly equivalent if there is a home-
omorphism of M , whose restriction to ∂M is pattern-isotopic to the identity, taking
one surface to the other.

2.4. Boundary patterns and normal surfaces. It is well known that incom-
pressible boundary-incompressible surfaces may be placed in normal form, under
rather mild hypotheses. The following version of this result, which is Corollary
3.3.25 in [18], achieves this in the presence of boundary patterns.

Proposition 2.1. Let (M,P ) be a compact orientable irreducible boundary-
irreducible 3-manifold with boundary pattern. Let T be a triangulation of M in
which P is simplicial. Let S be an incompressible, boundary-incompressible surface
properly embedded in (M,P ), other than a 2-sphere or a boundary-parallel disc in-
tersecting P in zero or two points. Then S is pattern-isotopic to a surface S′ that
is normal with respect to T . Moreover, we can ensure that the weight of S′ is at
most the weight of S.

2.5. Annuli and tori in M . We present some definitions from [18].
Let M be a compact orientable 3-manifold with a boundary pattern P .
An annulus A in ∂M is almost clean if its intersection with P is a (possibly

empty) collection of disjoint core curves in the interior of A.
An annulus A in ∂M is a necklace annulus if P is disjoint from ∂A and separates

the components of ∂A and there is an arc in A joining the two components of ∂A
such that A ∩ P is a single point.

A clean annulus properly embedded in M is essential if it is incompressible and
boundary-incompressible (with respect to the pattern) and is not parallel to an
almost clean annulus in ∂M . Note that when (M,P ) is irreducible and boundary-
irreducible, then a clean annulus is essential if and only if it is incompressible and
not parallel to an almost clean annulus in ∂M .

almost clean necklace

P

Figure 2. Almost clean annulus and necklace annulus in ∂M

A torus T properly embedded in (M,P ) is essential if it is incompressible and
not parallel to a torus in ∂M . (In this definition, it is not relevant whether this
torus in ∂M is clean or not.)

We say that (M,P ) is simple if it is irreducible and boundary-irreducible and
contains no properly embedded essential tori and no properly embedded essential
clean annuli.
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2.6. Normal summation and fundamental surfaces. Let M be a compact
orientable 3-manifold with a triangulation T .

We say that a properly embedded normal surface S is the sum of two properly
embedded normal surfaces S1 and S2 if their normal surface vectors satisfy (S) =
(S1) + (S2). We write S = S1 + S2.

A normal surface S is a fundamental surface if it cannot be written as the sum
of two non-empty normal surfaces.

The following was proved by Hass and Lagarias in [10].

Proposition 2.2. Let M be a compact 3-manifold and let T be a triangulation of
M with t tetrahedra. Then, for any fundamental normal surface S, each coordinate
of S is at most t27t+2.

We note the following immediate consequence.

Corollary 2.3. Let M , T and t be as above. Then for any fundamental normal
surface S, w(S) ≤ t227t+6.

2.7. A topological interpretation of normal summation. There is a topolog-
ical way of viewing normal summation, which is as follows.

Suppose that S is a properly embedded normal surface that is a sum of normal
surfaces S1 and S2. We may perform a small pattern-isotopy to S1, keeping it
normal throughout, so that afterwards S1 and S2 intersect transversely in a collec-
tion of properly embedded simple closed curves and arcs. Then S is obtained from
S1∪S2 by removing a regular neighbourhood of S1∩S2, and then attaching annuli,
Möbius bands and discs which join S1 and S2 together in this regular neighbour-
hood. Along each curve and arc of S1 ∩ S2, there are two possible ways to perform
this smoothing, but only one correctly gives the normal surface S. This is called a
regular switch. If the smoothing is performed the other way, it is called an irregular
switch. In a regular neighbourhood of each component of S1 ∩ S2, there is an I-
bundle over this component properly embedded in M\\S called a trace surface. It
is an annulus, disc or Möbius band. A patch is a component of (S1∪S2)\\(S1∩S2).

S S

S

1

S2

S2

S1
trace surface

Figure 3. Normal summation

A normal sum S = S1 + S2 of two surfaces is in reduced form if S cannot be
written as a sum S′1 + S′2 where each S′i is pattern-isotopic to Si and S′1 ∩ S′2 has
fewer components than S1 ∩ S2.

There is a well-established theory of summation of normal surfaces, and we record
some of its main results for our future reference. These are essentially proved in
4.1.8, 4.1.36, 6.3.20 and 6.3.21 in [18].

Theorem 2.4. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let T be a triangulation of M in which P is
simplicial. Let S be a properly embedded, incompressible, boundary-incompressible,
normal surface that has least possible weight, among all normal surfaces that are
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pattern-isotopic to it. Assume either that S is connected or that no component of S
is a sphere, clean disc, projective plane, boundary-parallel torus, or clean inessential
annulus. Suppose that S can be expressed as a normal sum S1 + S2, where S1 and
S2 are in general position and non-empty, and the summation is in reduced form.
Then the following hold.

(1) No patch is a disc disjoint from ∂M or a disc that intersects ∂M in a single
clean arc.

(2) Every patch is incompressible and boundary-incompressible (with respect to
the pattern P ).

(3) The trace surfaces are incompressible in M\\S.
(4) S1 and S2 are incompressible and boundary-incompressible (with respect to

the pattern P ).
(5) No component of S1 or S2 is a sphere, clean disc or projective plane.
(6) If S is orientable, then no component of S1 or S2 is a clean annulus that

is parallel to an almost clean annulus in ∂M .
(7) If S is orientable and has least weight up to strong equivalence, then no

component of S1 or S2 can be parallel to a toral component T of ∂M such
that |S ∩ T | ≤ 1.

(8) If S is orientable, then no component of S1 or S2 can be parallel to a toral
component T of ∂M disjoint from P .

Note that (3) is not explicitly stated in [18] but it is an immediate consequence of
(1) and (2). This is because a compression disc for a trace surface must be parallel
to the boundary of the surface, and hence can be used to create a compression
disc for an incident patch. Then by (2) this patch is a disc disjoint from ∂M ,
contradicting (1).

Proposition 4.1.36 in [18], which gives (4) and (5), has the assumption that S is
connected. However, this assumption is only required to rule out the possibility that
S has a component that is a sphere, clean disc or projective plane. We therefore
make this alternative hypothesis in the above theorem. Similarly, Propositions
6.3.20 and 6.3.21 in [18], which give (6) and (7), also assume that S is connected.
However, this assumption is made in order to apply Proposition 4.1.36 in [18] and
to exclude the possibility that a component of S1 or S2 is a boundary-parallel toral
component of S or a clean inessential annulus component of S. However, we assume
that S has no such component.

Note also that (8) is slightly different from Proposition 6.3.21 in [18]. There, it
is assumed that |T ∩ S| ≤ 1, when aiming to establish that no component of S1 or
S2 can be parallel to a toral component T of ∂M . It is also assumed that S has
least weight up to strong equivalence. However, we note that when T is disjoint
from P , then the argument of Proposition 6.3.21 in [18] implies that there is a
pattern isotopy that reduces the weight of S. The argument reduces to the case
where S1 and S2 are arranged near T as shown in Figure 4, with S′2 a component of
S2 that is parallel to T , and the summation S1 + S2 is in the same direction along
each curve of S1 ∩ S′2. Hence, there is an isotopy that takes S to S1 + (S2 − S′2),
thereby reducing its weight. This isotopy may move the curves S ∩ T , but this is
nevertheless a pattern isotopy because T is disjoint from P .
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isotopysum

T TT

S S1

S'2

Figure 4. Isotopy of S when a summand has a boundary-parallel
torus component S′2

2.8. Components of least weight surfaces.

Theorem 2.5. Let (M,P ) be a compact orientable irreducible boundary-
irreducible 3-manifold with boundary pattern. Let T be a triangulation of M in
which P is simplicial. Let S be an incompressible, boundary-incompressible, ori-
entable normal surface properly embedded in (M,P ). Then S has least weight in
its pattern-isotopy class if and only if each component of S does.

Proof. Suppose that S is pattern-isotopic to a normal surface S′ with smaller
weight. Then some component of S′ has smaller weight than the corresponding
component of S. Hence, we deduce that this component of S did not have least
weight.

Suppose now that S has least weight. Suppose that some component S1 of S does
not have least weight. Let S2 be the remaining components of S. Let S′1 and S′2 be
normal surfaces that have least weight among surfaces pattern-isotopic to S1 and
S2. Hence, w(S′1) < w(S1) and w(S′2) ≤ w(S2). Now, by Proposition 3.7 in [13],
we may form the normal sum S′ = S′1 + S′2 and this surface S′ is pattern-isotopic
to S. But w(S′) = w(S′1) + w(S′2) < w(S1) + w(S2) = w(S), which contradicts the
assumption that S had least weight.

Note that Proposition 3.7 in [13] was not stated for 3-manifolds with boundary
patterns. However, the presence of the simplicial boundary pattern P does not
affect the argument there and so Proposition 3.7 in [13] still applies. �

2.9. Exponentially controlled and weakly fundamental surfaces. We will
need to consider two types of normal surface that are less constrained than a fun-
damental surface. We term these weakly fundamental surfaces and exponentially
controlled surfaces. Such surfaces will play an important role in this paper.

Let M be a compact orientable 3-manifold with a boundary pattern P . Let T
be a triangulation of M in which P is simplicial. We say that a normal surface S
is weakly fundamental if

(1) no component of S can be expressed as the sum of two non-empty normal
surfaces S1 and S2, where S2 is disjoint from P and is a sphere, projective
plane, disc, torus or annulus, and

(2) no component of S can be expressed as a sum S1 + S2 + S3 of non-empty
normal surfaces where S2 and S3 are Möbius bands disjoint from P .

Proposition 2.6. Let M be a compact orientable 3-manifold with a boundary pat-
tern P . Let T be a triangulation of M in which P is simplicial, and let t be the
number of tetrahedra in T . Then, for any weakly fundamental normal surface S
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with no 2-sphere components,

w(S) ≤ t227t+6(−χ(S) + 2|S ∩ P |+ 2|S|).

Proof. Let {Si} be the set of fundamental normal surfaces. We write S as a sum
of its components, and then we write each component as a sum of fundamental
normal surfaces. We thereby obtain an expression

S =
∑
i

niSi

where each summand is identified with a summand of some component of S. By
disregarding the surfaces Si that do not appear in this sum, we may assume that
ni > 0 for all i. Weight, Euler characteristic and the number of intersections with
P are all additive with respect to normal summation, and therefore

w(S) =
∑
i

niw(Si),

−χ(S) = −
∑
i

niχ(Si),

|S ∩ P | =
∑
i

ni|Si ∩ P |.

Hence,

−χ(S) + 2|S ∩ P | =
∑
i

ni(−χ(Si) + 2|Si ∩ P |).

Since S is weakly fundamental, −χ(Si) + 2|Si ∩ P | ≥ 1, for each i with at most
2 exceptions for each component of S. The exceptions occur when Si is a torus,
projective plane, disc or annulus disjoint from P (in which case at most one Si can
be of this form and this is the only summand for this component of S) or a Möbius
band (in which case at most two Si can be of this form for this component of S).
We deduce that ∑

i

ni ≤ −χ(S) + 2|S ∩ P |+ 2|S|.

Corollary 2.3 gives a bound on the weight of each fundamental normal surface.
Hence,

w(S) ≤ t227t+6(−χ(S) + 2|S ∩ P |+ 2|S|),
as required. �

Let M be a compact orientable 3-manifold with a boundary pattern P . For
constants c and k, we say that a surface S properly embedded in M is (c, k)-
exponentially controlled if, for any triangulation T of M in which P is simplicial and
having t tetrahedra, S is strongly equivalent to a surface S′ satisfying w(S′) ≤ ckt.
If a surface is (c, k)-exponentially controlled for some c and k, we say that it is
exponentially controlled.

An immediate consequence of Proposition 2.6 is the following.

Corollary 2.7. Let (M,P ) be a compact orientable 3-manifold with boundary
pattern. Let S be a compact surface properly embedded in M . Suppose that for
any triangulation T of M in which P is simplicial, S is strongly equivalent to a
weakly fundamental normal surface. Then S is (c, k)-exponentially controlled, where
c = −χ(S) + 2|S ∩ P |+ 2|S| and k = 215.
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2.10. Making surfaces weakly fundamental. Many topologically relevant sur-
faces may be placed in this form, as the following result demonstrates.

Theorem 2.8. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let T be a triangulation of M in which P is
simplicial. Suppose that M contains no properly embedded essential tori or essen-
tial clean annuli. Let S be an incompressible, boundary-incompressible, orientable
surface properly embedded in (M,P ). Suppose that each incompressible toral com-
ponent of ∂M is disjoint from P . Suppose also that no component of S is a sphere,
a clean disc, a clean annulus or a boundary-parallel disc intersecting P twice. Then
S is pattern-isotopic to a weakly fundamental normal surface.

Proof. By Proposition 2.1, S is pattern-isotopic to a normal surface. We may
assume that S has smallest weight, up to pattern isotopy. By Theorem 2.5, each
component of S has least weight in its pattern-isotopy class. We will show that
each component S′ of S is weakly fundamental, which will prove the theorem.

Suppose that S′ is not weakly fundamental. Assume first that it can be expressed
as S1 +S2, where S2 is disjoint from P and is a sphere, projective plane, disc, torus
or annulus. We may assume that this summation is in reduced form. However,
by Theorem 2.4, S2 cannot be a sphere, projective plane, clean disc, clean annulus
or torus. For example, suppose that S2 is a torus. By Theorem 2.4 (4), it is
incompressible. By assumption, it must be parallel to a toral boundary component
that is disjoint from P . But this is ruled out by Theorem 2.4 (8).

Suppose that S′ can be expressed as can be expressed as S1 + S2 + S3 where
S2 and S3 are Möbius bands disjoint from P . By Theorem 2.4 (4), S2 and S3

are incompressible. The orientable double cover of each of the Möbius bands is a
properly embedded clean incompressible annulus, which must therefore be parallel
to an almost clean annulus in ∂M . Therefore, M is a solid torus and P is a (possi-
bly empty) collection of essential non-meridional curves. We may give M a Seifert
fibration in which P is a union of fibres. Now, [S2] and [S3] are both non-trivial ele-
ments of H2(M,∂M ;Z/2Z) ∼= Z/2Z and so their sum is homologically trivial. The
sum S2 +S3 is incompressible and boundary-incompressible by Theorem 2.4 (4). It
is also orientable, since it is homologically trivial. It is therefore pattern-isotopic to
a surface that is vertical or horizontal, plus possibly some boundary-parallel compo-
nents. If any component is vertical, then it is a clean annulus, which is inessential,
contradicting Theorem 2.4 (6). If any component is boundary-parallel, it is a disc
intersecting the pattern twice, since any other connected boundary-parallel surface
is either a clean disc or boundary-compressible, contradicting Theorem 2.4 (5) or
(4). If any component is horizontal, it is a meridian disc. Each component of S2+S3

is therefore a disc. This is impossible since the Euler characteristic of S2 + S3 is
zero. �

2.11. JSJ surfaces. Let (M,P ) be a compact orientable irreducible boundary-
irreducible 3-manifold with boundary pattern.

Let F be an incompressible torus or an incompressible boundary-incompressible
clean annulus properly embedded in (M,P ). Then F is rough if any incompress-
ible torus and any clean incompressible boundary-incompressible annulus in M is
pattern-isotopic to a surface disjoint from F . This is Definition 6.4.12 of [18].
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A surface F properly embedded in M is JSJ if it is either a rough torus not
parallel to a clean torus in ∂M , or a rough clean annulus not parallel to an almost
clean annulus in ∂M . This is Definition 6.4.29 of [18].

It is possible to show that any collection of JSJ surfaces can be pattern-isotoped
to be pairwise disjoint. Hence, the JSJ surfaces are obtained by taking one rep-
resentative of each JSJ surface, up to pattern-isotopy, and arranging them to be
disjoint from each other. The resulting surface is in fact well-defined up to pattern-
isotopy, when (M,P ) is irreducible and boundary-irreducible. (See Theorem 6.4.31
in [18].)

Let F be the JSJ surfaces for (M,P ). Give M\\F the boundary pattern con-
sisting of the union of ∂F and (M\\F ) ∩ P . Then each component of M\\F with
this boundary pattern is a JSJ piece. (Matveev [18] calls them JSJ-chambers.)

We now introduce two types of properly embedded clean essential annulus. A
clean essential annulus A properly embedded in M is longitudinal if any other clean
essential annulus A′ can be pattern-isotoped so that ∂A∩ ∂A′ = ∅. Otherwise A is
transverse. This is Definition 6.4.13 in [18]. Note that any JSJ annulus is always
longitudinal and never transverse.

We now recall Theorem 6.4.42, Lemma 6.4.32, Proposition 6.4.35 and Proposi-
tion 6.4.41 from [18], which combine to give the following result.

Theorem 2.9. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold manifold with boundary pattern. Then its JSJ pieces fall into the fol-
lowing types:

(1) simple 3-manifolds with pattern;
(2) Seifert fibred manifolds with pattern consisting of fibres;
(3) I-bundles, with pattern disjoint from the horizontal boundary and intersect-

ing each vertical boundary component in a non-empty collection of parallel
copies of its core curve.

Moreover, if a JSJ piece contains an essential torus or a clean essential longitudinal
annulus, it is of the second type. If a JSJ piece contains a clean essential transverse
annulus, it is of the third type.

Remark 2.10. Note that a JSJ annulus or torus can be pattern-isotoped off any
properly embedded clean Möbius band or Klein bottle F , for the following reason.
The orientable double cover F̃ is a properly embedded clean annulus or torus. We
claim that this is incompressible. Otherwise it would compress to two clean discs or
to a 2-sphere. In the case of two discs, the boundary-irreducibility of (M,P ) implies
that the boundary of each of these discs would bound a clean disc in ∂M . One of
these discs in ∂M can be extended so that its boundary is ∂F . But then the union
of this disc and F is a projective plane. The irreducibility of M implies that it is
a copy of RP3, which contradicts the fact that M has non-empty boundary. When
F̃ compresses to a sphere, this bounds ball in M that does not contain the Klein
bottle. Hence, again M is closed, which is a contradiction. This proves the claim.
Therefore any JSJ annulus or torus can be pattern-isotoped off F̃ . It is therefore
disjoint from the regular neighbourhood N(F ) or lies within it. In the latter case,
it can also be pattern-isotoped off F . For we may give N(F ) the structure of an
I-bundle or circle bundle over a Möbius band in which F is a union of fibres. Then
the JSJ torus or annulus can also be made a union of fibres and hence is an annulus
or torus parallel to F̃ .
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2.12. Connected JSJ surfaces are fundamental. Many topologically relevant
surfaces can be made fundamental. In particular, this is true of the JSJ annuli and
tori, as follows.

Theorem 2.11. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let T be a triangulation of M in which P is sim-
plicial. Then each connected JSJ surface that has least weight in its pattern-isotopy
class is fundamental.

Our proof will use the following notion. We say that two surfaces S1 and S2

properly embedded in M are partially coincident if S1∩S2 is a compact subsurface
of S1 and S2. We say that they have essential intersection if no component of
S1∩S2 or (S1∪S2)\\(S1∩S2) is a disc disjoint from ∂M or a disc intersecting ∂M
in a single arc.

When at least one of S1 and S2 is a torus and they have essential intersection,
then S1 ∩S2 consists of annuli or possibly a torus. When S1 and S2 are both clean
annuli and they have essential intersection, then either every component of S1 ∩S2

is an annulus parallel to a core curve of S1 and S2 or every component of S1 ∩ S2

is a square, which is a disc consisting of an arc in ∂Si, an essential arc properly
embedded in Si, another arc in ∂Si and another essential arc properly embedded
in Si.

A generalised product region is a connected 3-manifold of the form (F×[−1, 1])/∼,
where ∼ is an equivalence relation with each equivalence classes equal either to a
singleton or to an interval of the form x × [−1, 1] for points x ∈ J , where J is a
finite union of closed intervals and circles in ∂F . A horizontal boundary component
is the image of F ×{1} or F ×{−1}. A vertical boundary component is the closure
of the image of a component of (∂F −J)× [−1, 1]. The pinching locus is the image
of J × [−1, 1].

F x I Intervals are 
equivalence 
classes

Vertical boundary

Horizontal boundary

Pinching
locus

Quotient

Figure 5. A generalised product region is obtained from a prod-
uct by collapsing certain arcs in the boundary

Lemma 2.12. Let S1 and S2 be surfaces properly embedded in a compact ori-
entable 3-manifold M with boundary pattern P , where each Si is an incompressible
boundary-incompressible torus or clean annulus. Suppose that they are partially
coincident but not equal, that they have essential intersection, and that there is a
pattern-isotopy taking S1 off S2. Then there is a component X of M\\(S1 ∪ S2)
that is a generalised product region X with the following properties:

(1) each horizontal boundary component lies in S1 or in S2;
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(2) each vertical boundary component lies in ∂M and is disjoint from P ;
(3) the pinching locus is a union of components of S1 ∩ S2 ∩X.

It is possible that other components of S1 ∩ S2 lie in the horizontal boundary. It is
also possible that the inclusion of the product region into M is not injective, since
components of S1 ∩ S2 in the boundary of the product region may be identified.

Proof. Note that each component F of S1 ∩S2 is a square or annulus. We say that
F is removable if the two components of S1 − S2 incident to ∂F emanate from the
same side of S2 (or equivalently, the two components of S2 − S1 incident to ∂F
emanate from the same side of S1). Otherwise F is non-removable. (See Figure 6.)

S2

1S

S2

1S'

S2

1S

S2

1S'

removable non-removable

isotopy isotopy

Figure 6. Isotoping partially coincident surfaces S1 and S2 so
that they intersect transversely

We now perform a small isotopy to S1 so that the resulting surface S′1 intersects
S2 transversely, where this intersection consists of a single arc or curve in each non-
removable component of S1∩S2. Note that we may obtain the original arrangement
S1 and S2 by collapsing some product regions as follows. For each removable
component F of S1 ∩ S2, we have a copy of F × [−1, 1] in M , with (F × [−1, 1]) ∩
(S′1 ∪ S2) = F × {−1, 1}. If we collapse the each interval {∗} × [−1, 1] to a point,
we obtain the original arrangement of S1 and S2. Similarly, for each non-removable
component F of S1 ∩ S2, we have a copy of (F − (S′1 ∩ S2))× [−1, 1] embedded in
M and when the copies of [−1, 1] are collapsed to points, we again revert to the
original arrangement of S1 and S2.

We now apply a theorem of Waldhausen [22] (in the case where the surface
are closed) or Johannson [14] (in the case where the surfaces have boundary).
This states that there is a generalised product region arising as a component of
M\\(S′1 ∪ S2) where one horizontal boundary component lies in S′1, the other hor-
izontal boundary component lies in S2, any vertical boundary lies in ∂M and is
disjoint from P , and the binding locus consists of components of S′1 ∩ S2.

We now perform the collapses described above. The generalised product region
collapses to a collection of generalised product regions for S1 and S2, with com-
ponents of S1 ∩ S2 attached. Any one of these new generalised product regions
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gives the desired component of M\\(S1 ∪ S2). Note that the collapses may create
self-identifications on the boundary of the generalised product region. �

Lemma 2.13. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let T be a triangulation of M in which P
is simplicial. Let F be a clean properly embedded surface, with least weight in
its pattern-isotopy class, and that is incompressible and boundary-incompressible.
Suppose that F = F1 + F2 is in reduced form.

(1) If A is a trace annulus or disc, then A is incompressible and boundary-
incompressible in the manifold M\\F with boundary pattern consisting of
P and the copies of ∂F .

(2) Suppose that A is a trace annulus. Suppose also that for any other sum-
mation F = F ′1 + F ′2, then |F ′1 ∩ F ′2| ≥ |F1 ∩ F2|. Then A is essential in
M\\F .

(3) If F is a JSJ annulus, and A is a trace disc, then the JSJ piece of M
containing A is an I-bundle chamber, in which F is a vertical boundary-
component.

Proof. (1) Each trace annulus and disc is incompressible by Theorem 2.4. Suppose
that A is boundary-compressible and hence parallel to an annulus or disc in F .
If we were to perform an irregular switch along A but regular switches along all
other trace discs, annuli and Möbius bands, the result would be a copy of F as well
as a compressible annulus or torus. After performing an irregular switch, there is
always an isotopy that strictly reduces the weight of the surface. Hence, we deduce
that F did not have least weight in its pattern-isotopy class, which is contrary to
hypothesis.

(2) Note first that F is connected, because otherwise there is a summation F =
F ′1+F ′2 with F ′1∩F ′2 = ∅, contradicting our minimality assumption. Suppose that A
is an inessential trace annulus and hence, by (1), parallel to an almost clean annulus
in M\\F . Thus, A separates off a solid torus V in M\\F in which the pattern
is a non-empty collection of disjoint longitudes. There may be other trace annuli
in V , but they are all incompressible and boundary-incompressible by (1). Hence,
there is a trace annulus in V that is outermost in V . By considering this trace
annulus instead, we may assume that the interior of V contains no trace annuli.
Let F ′1 be (F1\\V ) ∪ (F2 ∩ V ) and define F ′2 similarly. Then F = F ′1 + F ′2 and
|F ′1 ∩ F ′2| < |F1 ∩ F2|, contrary to assumption.

(3) Since A is a trace disc, F is decomposed by F ∩ A into two squares. Each
of these squares has a product structure as I × I where (I × I) ∩ ∂M = I × ∂I.
Similarly, A has such a structure. So a regular neighbourhood of F ∪ A is an I-
bundle over a surface S. Note that A is not attached to both sides of F , since this
would imply the existence of an essential clean annulus that could not be isotoped
off F , contradicting the assumption that F is a JSJ annulus. Hence, S is a pair
of pants or a once-punctured Möbius band. Suppose first that a vertical boundary
component of this I-bundle is compressible. Then it bounds a copy of D2 × I with
interior disjoint from the bundle, and we can extend the bundle over this 3-ball. In
the case where the base surface S was a once-punctured Möbius band, this implies
that the component of M\\F containing A was an I-bundle chamber, as required.
So suppose that the base surface was a pair of pants. There may have been other
trace discs in D2×I, but there is one that outermost, and we hence may assume that
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A is outermost in D2× I. But then the same patch is incident to both components
of A ∩ F , which is impossible, since one lies in F1 and one lies in F2. Thus, we
have reduced to the case where the vertical boundary components of the I-bundle
are incompressible. If any is inessential, then extend the I-bundle over the incident
solid torus. We end with an I-bundle having essential vertical boundary. This
must be part of an I-bundle piece in M . Furthermore, F is a vertical boundary
component of this piece, as claimed. �

Proof of Theorem 2.11. Let T be a connected JSJ surface. Pick a least weight
normal representative for T , up to pattern-isotopy. If T is not fundamental, then
we may write T = T1 + T2 where T1 is connected. We may assume that |T1 ∩
T2| is minimal among all such summations, and in particular that the sum is in
reduced form. By Theorem 2.4, no Ti has positive Euler characteristic. Hence,
χ(T1) = χ(T2) = 0. Furthermore, T1 and T2 are incompressible and boundary-
incompressible. Hence, T1 is a clean annulus, torus, Klein bottle or Möbius band.
Therefore, since T is rough, there is a pattern-isotopy taking T1 off T . In the case
where T1 is a Möbius band or Klein bottle, this is the content of Remark 2.10.

The summation T = T1 + T2 places T and T1 into partially coincident position.
Specifically, each patch in T1 becomes a component of T ∩ T1. Each trace annulus,
disc or Möbius band becomes a component of T1\\T . Each patch in T2 becomes
a component of T\\T1. Note that for each trace annulus or disc in T1\\T , the
incident components of T\\T1 emanate from opposite sides of the trace disc or
annulus. This is a consequence of normal summation.

We claim that the trace annuli and discs are incident to just one side of T . Any
trace disc or annulus is incompressible and boundary-incompressible in M\\T by
Lemma 2.13 (1). If there is a trace annulus A, then this is essential in M\\T
by Lemma 2.13 (2). So, by Theorem 2.9, the JSJ piece of M containing A is
either Seifert fibred or an I-bundle chamber, but in the latter case, the horizontal
boundary is one or two copies of T . Thus, in both cases, the JSJ piece of M
containing A is Seifert fibred, and A is a union of fibres. If there is a trace disc on
one side of T , then Lemma 2.13 (3) implies that this lies in an I-bundle chamber
of M\\T , and this must be a solid torus. Again the JSJ piece of M containing A
is Seifert fibred. Note that there cannot be both trace annuli and trace discs, since
trace discs would cut the annulus T into discs. Hence if there are trace discs or
annuli on both sides of T , then we deduce that on both sides of T there are Seifert
fibre spaces. Moreover, as trace annuli are pairwise disjoint, we deduce that these
Seifert fibre spaces have isotopic regular fibres. In all case, we deduce that T is not
JSJ, which is a contradiction, proving the claim.

Since there is an admissible isotopy taking T off T1, Lemma 2.12 gives a gener-
alised product region V . Since its boundary is orientable, it can contain no trace
Möbius band components. Consider first the horizontal boundary component F1

of V lying in T1. We claim that this contains exactly one removable component of
T ∩ T1. If there were more than one such component, then between two of them
would be a component of T1\\T , which would be a trace annulus or disc, with the
two incident components of T\\T1 emanating from the same side, which is impos-
sible. If there was no removable component of T ∩ T1 in F1, then F1 would be an
entire trace disc or annulus, but then again the two incident components of T\\T1,
which lie in ∂V , would emanate from the same side of F1.
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Now consider the horizontal boundary component F of V lying in T . We claim
that this contains no removable components of T ∩ T1. For if there were such a
component, then each component of T\\T1 incident to ∂F would have components
of T1\\T emanating from both sides. Hence, there would be trace annuli or discs
incident to both sides of T . But we have shown above that this does not arise.

Thus, we have shown that the product region V must have exactly two com-
ponents of T1\\T in its boundary, in other words exactly two trace annuli or two
trace discs.

Note that the map V → M is an injection. This is because the only way that
it can fail to be an injection is when the two horizontal boundary components of
V contain components of T1 ∩ T that are identified. But we have shown that F
contains no such components. So the two horizontal boundary components of V are
disjoint apart from along their boundaries. Consider the surfaces T ′1 and T ′2 that
are obtained from T1 and T2 by swapping the two horizontal boundary components
of V . In other words, T ′1 = (T1\\F1) ∪ F and T ′2 is obtained from T2 by removing
F ∩ T2 and attaching the remainder of ∂V . Then T ′1 and T ′2 are normal, and
T = T ′1 + T ′2, but |T ′1 ∩ T ′2| < |T1 ∩ T2|. This contradicts the assumption that the
summation T1 + T2 is in reduced form. �

Theorem 2.14. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let T be a triangulation of M in which P is sim-
plicial. Then the JSJ surfaces may be realised as a disjoint union of fundamental
surfaces.

Proof. Pick a normal representative for the JSJ surfaces that has least weight in
its pattern-isotopy class. By Theorem 2.5, each component has least weight in its
pattern-isotopy class. Hence by Theorem 2.11, each component is fundamental. �

2.13. Normal annuli in Seifert fibre spaces. We will be considering the JSJ
tori for the exterior of a non-split link in the 3-sphere. It is possible that certain
complementary regions of these tori may be Seifert fibre spaces. These require
techniques that are rather different from other types of 3-manifolds. So, in this
section, we recall and develop the necessary machinery.

We start by recalling what Seifert fibre spaces can arise. By [4, Proposition 3.2],
such Seifert fibre spaces fall into one of the following types:

(1) a solid torus, which has base space a disc with at most one cone point;
(2) the product of a planar surface with the circle; this has no exceptional

fibres; it arises, for example, as the exterior of the link shown in Figure 7
(i);

(3) the exterior of a torus link, with zero, one or both of the core curves of the
associated solid tori removed, as shown in Figure 7 (ii); its base space is
punctured 2-sphere with at most two cone points; moreover, if the space
has two exceptional fibres, these have coprime orders.

We will be concerned with annuli properly embedded in such a Seifert fibre space.

Lemma 2.15. Let M be a Seifert fibre space with non-empty boundary, that embeds
in the 3-sphere, other than a solid torus or S1 × S1 × I.

(1) If ∂M is a single torus, then there is an essential annulus A properly em-
bedded in M , such that the exterior of A is two solid tori.
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(i)

(ii)

Figure 7. Some links with Seifert fibred exteriors

(2) If ∂M is more than one torus, let T1 and T2 be distinct boundary compo-
nents. Then there is an essential annulus A properly embedded in M , with
one boundary component on T1 and one boundary component on T2.

In both cases, A is unique, up to a homeomorphism of M that is isotopic to the
identity on ∂M .

Proof. We start by describing A, and then go on to explain why it is unique. When
∂M is a single torus, the base space of the Seifert fibre space is a disc with two
cone points. We pick a properly embedded arc in the disc that separates the two
cone points. When ∂M is more than one torus, we pick a properly embedded arc
in the base space joining the boundary components corresponding to T1 and T2. In
each case, the inverse image in M of this arc is the required annulus A.

cone points annulus A

T T1 2

Figure 8. Some possible base spaces of M containing the projec-
tion of A

We now show that A is unique, up to a homeomorphism of M that is isotopic to
the identity on ∂M . The hypothesis that M embeds in the 3-sphere, has non-empty
boundary, and is not a solid torus or S1 × S1 × I implies that its Seifert fibring is
unique up to isotopy [20, 21]. Any properly embedded orientable essential surface
in a Seifert fibre space is isotopic to a surface that is horizontal or vertical. If an
annulus is horizontal, then the base orbifold must have zero Euler characteristic,
but this is ruled out by our hypothesis that M embeds in the 3-sphere and is not
S1 × S1 × I. So, we may assume that A is vertical. It therefore projects to an arc
in the base orbifold, which avoid the cone points. It is easy to see that there is
a unique such arc, up to orientation-preserving homeomorphism of the base space
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that preserves each boundary component and each cone point. This implies that A
is unique, up to a homeomorphism of M that is isotopic to the identity on ∂M . �

Proposition 2.16. Let M and A be as in Lemma 2.15. Let P be a boundary
pattern, such that for each component T of ∂M , one of the following holds:

(1) T is disjoint from P ;
(2) T ∩ P is a disjoint union of essential simple closed curves;
(3) T\\P is discs.

Suppose that among the annuli in Lemma 2.15, A intersects P as few times as
possible. When A is disjoint from P and ∂M is connected, we also require that both
components of ∂A lie in the same component of ∂M\\P . Pick a triangulation of
M in which P is simplicial. Then A is strongly equivalent to a weakly fundamental
surface.

Proof. Since A is essential, it can be isotoped to a normal surface. We pick a
representative for A that has minimal weight, up to strong equivalence. Suppose
that A is not weakly fundamental.

Suppose first that A can be expressed as a sum S1 + S2 of normal surfaces,
where S2 is a sphere, projective plane, torus, clean disc or clean annulus. We
may assume that the sum is in reduced form. By Theorem 2.4, these surfaces are
both incompressible, and neither has a sphere, projective plane, clean disc or clean
inessential annulus component. Hence, χ(S1) = χ(S2) = 0.

Consider first the case when S2, say, is a torus. Then, ∂A = ∂S1. So either some
component of S1 is an annulus or two components of S1 are Möbius bands. But the
latter case cannot arise, because each Möbius band would have to be vertical and so
would contain a singular fibre of order 2, whereas M contains at most two singular
fibres and these have coprime orders. So, S1 has an essential annulus component.
It cannot be boundary-parallel by our assumption on P . Since it has the same
boundary as A, it is strongly equivalent to A. But S1 has smaller weight than A,
which is a contradiction. So we may assume that A has no torus summand.

Suppose now that S2 is a clean essential annulus and that S1 has an annulus
component. Consider first the case where M has base space a disc and two ex-
ceptional fibres. Then, by our minimality assumption about |A ∩ P |, A must be
disjoint from P . So, by assumption, both components of ∂A lie in the same com-
ponent of ∂M\\P . Hence, ∂S1 and ∂S2 also lie in this component. Hence, S2

is strongly equivalent to A. But it has smaller weight than A, which is a contra-
diction. So suppose that M has more than one boundary component. Then by
assumption, the components of ∂A lie on distinct tori T1 and T2. Now ∂S1 ∪ ∂S2

lies on the same boundary components as ∂A. Since S2 is clean, the torus or tori
T containing ∂S2 have a clean fibre. By our minimality assumption on |A ∩ P |,
A ∩ T is disjoint from P . Hence, A ∩ T lies in the same component of T\\P as
S1 ∩ T and S2 ∩ T . If S2 has one boundary component on T1 and one bound-
ary component on T2, then we may replace A by this surface. So suppose that
both boundary components of S2 lie on some boundary component T of ∂M , then
∂S1 ∩ (∂M −T ) = ∂A∩ (∂M −T ), which is single curve. This curve cannot be the
boundary of a Möbius band component of S1, since then every other component of
S1 is a torus or an annulus with both boundary curves on T , which implies that
[A ∩ T ] = [S1 ∩ T ] + [S2 ∩ T ] = 0 ∈ H1(T ;Z2), but this is not the case. So we may
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replace A by the annular component of S1 containing ∂A ∩ (∂M − T ) and reduce
its weight, which is a contradiction.

Suppose now that S2 is a clean essential annulus and that S1 has no annulus
or torus components. Then S1 is a collection of Möbius bands. But M cannot
support two or more disjoint Möbius bands. So S1 is a single Möbius band. If
M has a single boundary component, then, as above, S2 is strongly equivalent
to A and has smaller weight, which is a contradiction. So, suppose that M has
more than one boundary component, and that one component of ∂A lies on T1
and the other lies on T2. Then ∂S1 is a single regular fibre on some component
(T1, say) of ∂M . The curves ∂S2 are isotopic to regular fibres on ∂M . If both
curves of ∂S2 lie on T2, then [A ∩ T2] = [S2 ∩ T2] = 0 ∈ H1(∂M ;Z2), which
is not the case. If one curve of ∂S2 lies on T1 and the other lies on T2, then
[A ∩ T1] = [∂S1 ∩ T1] + [∂S2 ∩ T1] = 0 ∈ H1(∂M ;Z2), which again is not the case.
Finally if both curves of ∂S2 lie on T1, then A is disjoint from T2, which is not the
case. In all cases, we obtain a contradiction.

Suppose now that A = S1 + S2 + S3 where S2 and S3 are clean Möbius bands.
Suppose also that M has a single boundary component. Then S2 (say) is a vertical
surface that projects to an arc in the base space running from the boundary of the
base space to a singular point of order 2. So 2S2 is a clean essential annulus. By
assumption, A is therefore clean and both its boundary components lie in the same
component of ∂M\\P . Hence, the annuli 2S2 and 2S3 also have boundary lying in
this component, and so are strongly equivalent to A. Now w(S2 + S3) is the mean
of w(2S2) and w(2S3). So one of w(2S2) and w(2S3) is at most w(S2 + S3), the
former say. But then w(2S2) ≤ w(S2 + S3) < w(A), contradicting the assumption
that A has least weight.

Suppose now that A = S1+S2+S3 where S2 and S3 are clean Möbius bands, and
that M has at least two boundary components. Now [∂S2] represents the homology
class of a fibre of T1 or T2. The same is true of [∂S3]. Hence, S2 + S3 cannot be
a single Möbius band and some tori. It also cannot have more than one Möbius
band component, since M does not support two disjoint Möbius bands. So, S2 +S3

contains a clean annulus component. We may therefore write A = S′1 + S′2 where
S′2 is a clean annulus, and we have dealt with that case above.

�

Proposition 2.17. Let M be homeomorphic to T 2 × [0, 1], with boundary pattern
P so that (M,P ) is boundary-irreducible. Suppose that M contains no clean es-
sential annulus. Let T be a triangulation of M in which P is simplicial. Then
any incompressible, boundary-incompressible annulus A properly embedded in M ,
in general position with respect to P and joining the two components of ∂M , is
strongly equivalent to a weakly fundamental normal surface.

Proof. By Proposition 2.1, A is pattern-isotopic to a normal surface. We may
assume that A has smallest weight, up to strong equivalence. By Theorem 2.4 (5),
no summand of A is a sphere, clean disc or projective plane. By Theorem 2.4 (4)
and (7), no summand is a torus. By Theorem 2.4 (4) and (6), no summand is
a clean inessential annulus. We are assuming that M contains no clean essential
annulus. The manifold T 2× I does not contain a properly embedded Möbius band.
Hence, A is weakly fundamental. �
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Proposition 2.18. Let M be homeomorphic to T 2× [0, 1], with non-empty bound-
ary pattern P so that (M,P ) is boundary-irreducible. Let T be a triangulation
of M in which P is simplicial. Let A be any essential annulus disjoint from the
pattern, joining the two boundary components. Then A is strongly equivalent to a
fundamental surface.

Proof. We may assume that A has least weight, up to strong equivalence. Suppose
that A is not fundamental, and hence is a normal sum S1+S2. We may assume that
this summation is in reduced form. Hence, by Theorem 2.4, S1 are incompressible
and boundary-incompressible and have zero Euler characteristic. Now T 2 × [0, 1]
supports no properly embedded Möbius band. Therefore, S1 and S2 are unions of
clean annuli or tori. For at least one i, [Si ∩ ∂M ] is non-trivial in H1(∂M ;Z2). Say
that this is true of S1. Then S1 contains a clean annulus joining the two components
of ∂M . The components of ∂M\\P that it intersects must be the same components
that A intersects. These components of ∂M\\P are annuli. So, there is a pattern
isotopy taking ∂S1 to ∂A. There is then a homeomorphism equal to the identity on
∂M taking S1 to A. This contradicts the assumption that A had least weight. �

2.14. Boundary parallel surfaces.

Lemma 2.19. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let S′ be a union of edges of P , circles of
P , and components of ∂M\\P that are not necessarily disjoint in ∂M , and let S
be an incompressible boundary-incompressible surface that is obtained from S′ by
taking the frontier of a regular neighbourhood and that contains no disc component
intersecting P zero or two times. Then S is (6, 2)-exponentially controlled.

Proof. Let T be any triangulation of M in which P is simplicial. Then a represen-
tative for S intersects each edge of T at most twice. There are at most 6t edges,
where t is the number of tetrahedra of T . Hence, the weight of S is at most 12t. It
need not be normal, but it can be isotoped to a normal surface without increasing
its weight, by Proposition 2.1. Therefore, its weight is at most 12t ≤ 6 · 2t. Hence,
it is (6, 2)-exponentially controlled. �

2.15. Sections of circle bundles. In this subsection, we consider the case where
M is a circle bundle over a surface with non-empty boundary. Our goal will be
to show that, for any triangulation of M , there is a surface isotopic to a section
of the bundle having controlled weight. However, we need somewhat more than
this. The bundle M will be decomposed into solid tori, each of which is a union
of circle fibres. Moreover, the intersection of any two such solid tori will consist of
a (possibly empty) union of annuli, which again is a union of fibres. We want to
ensure that the surface intersects each solid torus in a collection of meridian discs.
In order to ensure this, we will need to generalise some of the results earlier in this
section.

The first thing that we do is to slightly relax the notion of an exponentially con-
trolled surface. Given a compact orientable 3-manifold M with boundary pattern
P , we say that a surface S properly embedded in M is (c, k)-nearly exponentially
controlled if, given any triangulation of M with t tetrahedra in which P is simpli-
cial, there is an orientation-preserving homeomorphism of M that preserves each
edge, vertex and circle of P , and that takes S to a surface with weight at most ckt.
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The next thing that we need to do is to consider a more general notion of weight
for a surface. Suppose that E1 and E2 are sets of edges of the triangulation, where
E1 ⊂ E2. The prioritised weight of a properly embedded surface S is the triple

(|S ∩ E1|, |S ∩ E2|, w(S)).

Two such triples are compared using lexicographical ordering.
In our setting, each solid torus will be simplicial in the triangulation, and E2

will be the edges in the boundary of these solid tori, and E1 will be the set of edges
that lie either in three such solid tori or in two such solid tori and ∂M .

We note that there is the following version of Theorem 2.4 that refers to priori-
tised weight.

Theorem 2.20. Let M , P and T be as in Theorem 2.4. Let E1 ⊂ E2 be col-
lections of edges of the triangulation. Let S be a properly embedded, connected,
incompressible, boundary-incompressible, normal surface that has least possible pri-
oritised weight, among all normal surfaces that are pattern-isotopic to it. Suppose
that S can be expressed as a normal sum S1+S2, where S1 and S2 are in general po-
sition and non-empty, and the summation is in reduced form. Then the conclusions
of Theorem 2.4 all hold.

The results from [18] used in the proof of Theorem 2.4 do not refer to the
prioritised weight, but rather the weight of S. However, we observe that all the
arguments used in these proofs in [18] work just as well for prioritised weight, and
hence Theorem 2.20 follows.

Lemma 2.21. Let M be a compact orientable 3-manifold that is a circle-bundle
over a surface. Let P be a boundary pattern for M . Let C be a disjoint union
of fibres in M , each of which lies in the interior of M or in P , and where each
component of ∂M contains at least one component of C. Let A be a collection of
annuli in M , each of which is embedded, is a union of fibres and has boundary
in C. Suppose that the interior of these annuli are disjoint, and that for each
component of C, there are three sheets of A and ∂M coming into it. Suppose that
M is triangulated, with P , C and A all simplicial. Let E1 be the set of edges in
C, and let E2 be the set of edges in A∪ ∂M . Let S be a surface properly embedded
in M , and suppose that there is a homeomorphism of M that preserves A and that
takes S to a section. Assume that S has minimal number of intersections with P
among all such surfaces. Then there is an isotopy preserving A ∪ P taking S to a
normal surface S′ with prioritised weight at most that of S.

Proof. Consider a surface S′ that is isotopic to S, via an isotopy preserving A∪P ,
and that has least prioritised weight among all such surfaces. Note that S′ intersects
each component of C at least once, since it is isotopic to a section, and hence S′

intersects each component of C exactly once, because its prioritised weight has
been minimised. Furthermore, for each annulus of A, S′ intersects that annulus in
a single essential arc.

Suppose that S′ is not normal. Then we may apply one of the normalisation
moves in the proof of Corollary 3.3.25 in [18]. We claim that each such move gives
an isotopy supported away from A ∪ ∂M . For example, suppose that there is a
simple closed of curve of intersection between S′ and some face of the triangulation.
Since S′ intersects each annulus of A in a single essential arc, we deduce that the
face does not lie in A. Similarly, it does not lie in ∂M . Consider such a simple
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closed curve that is innermost in the face. It bounds a disc D in the face. By the
incompressibility of S′, ∂D bounds a disc D′ in S′, and by the irreducibility of M ,
D ∪D′ bounds a ball. We may isotope D′ across this ball and then a bit beyond
the face. This procedure removes intersections between D′ and the 1-skeleton of
the triangulation. However, it has no effect on A ∩ S′, since if any component of
A∩S′ were removed, the resulting surface would be disjoint from some fibre, which
is impossible.

Other moves in the proof of Corollary 3.3.25 in [18] remove two points of in-
tersection between some edge and S′. We claim that such an edge cannot lie in
A∪ ∂M . Certainly, the edge cannot lie in C, since each component of C intersects
S′ just once. Also, the edge cannot lie in P by our assumption that the number
intersection points with P is minimal. On the other hand, if the edge lies in some
annular component A′ of (A ∪ ∂M)\\C and is disjoint from P , then the isotopy
replaces the essential arc A′∩S′ with a pattern-isotopic arc with smaller weight plus
possibly a simple closed curve. This contradicts the assumption that the prioritised
weight of S′ is minimal.

In all cases, we deduce that the isotopy is supported away from A ∪ ∂M . The
resulting surface is normal. �

Lemma 2.22. Let M , P , C, A, E1 and E2 be as in Lemma 2.21. Suppose that
M\\A is a union of solid tori. Let T be a triangulation of M in which C, P and
A are simplicial. Let S be a surface that, after a homeomorphism preserving A, is
equal to a section. Let S′ be a surface that is the image of S under a homeomorphism
of M that preserves each vertex, edge and circle of P , and which has no greater
prioritised weight. Then there is a homeomorphism of M preserving each vertex,
edge and circle of P and each component of A taking S to S′.

Proof. The homeomorphism of M taking S to S′ preserves each of the fibres in
C ∩ ∂M and so is isotopic to a fibre-preserving homeomorphism. The surface S
intersects each component of C exactly once. Since S′ differs from S by a fibre-
preserving homeomorphism and an isotopy, it also intersects each component of
C an odd number of times. Because the prioritised weight of S′ is at most that
of C, we deduce that S′ intersects each component of C exactly once. Hence, S′

intersects each annulus in A and ∂M\\P in exactly one essential arc plus possibly
some inessential simple closed curves. However, S′ cannot intersect any component
of ∂M\\P in an inessential simple closed curve, since S′ is isotopic to a section.
Moreover, if S′ had an inessential simple closed curve of intersection with some
component of A, then we could perform an isotopy to S′ supported in the inte-
rior of M to reduce its prioritised weight. So, S′ ∩ (A ∪ ∂M) is homeomorphic
to S ∩ (A ∪ ∂M). Furthermore, their regular neighbourhoods in S′ and S respec-
tively are homeomorphic. The surfaces S′ and S are obtained from these regular
neighbourhoods by attaching S′\\N(A ∪ ∂M) and S\\N(A ∪ ∂M) respectively.
The latter is a disjoint union of discs. Hence, as S′ and S have the same Euler
characteristic, S′\\N(A ∪ ∂M) is also discs. Each such disc is a meridian disc for
a solid torus component of M\\A. So, there is a homeomorphism of M preserving
each vertex, edge and circle of P and each component of A taking S′ to a section.
Therefore, there is also such a homeomorphism taking S to S′. �

Proposition 2.23. Let M , P , C, A, E1 and E2 be as in Lemma 2.21. Suppose that
M\\A is a union of solid tori. Let T be a triangulation of M in which C, P and A
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are simplicial. Let S be a properly embedded surface that is isotopic, via an isotopy
preserving A, to a section. Suppose that, among such surfaces, S intersects P as
few times as possible. Then there is a homeomorphism of M preserving each vertex,
edge and circle of P and each component of A taking S to a weakly fundamental
normal surface.

Proof. By Lemma 2.21, there is an isotopy preserving A ∪ P taking S to a normal
surface without increasing its prioritised weight. We now fix S to be such a surface
that has least prioritised weight, up to homeomorphism ofM preserving each vertex,
edge and circle of P and each component of A. Then by Lemma 2.22, S has least
prioritised weight, up to a homeomorphism of M that preserves each vertex, edge
and circle of P and each component of A. Hence, the same is true of the surface
2S, which is two parallel copies of S.

Suppose that S is not weakly fundamental. Suppose first that S = S1 + S2

where S1 is non-empty and S2 is a sphere, projective plane, torus, clean disc or
clean annulus. The surface 2S is a sum S′1 + S′2 where each S′i is the (possibly
disconnected) orientable double cover of Si. We may assume that the summation
is in reduced form. By Theorem 2.20, S′1 and S′2 are both incompressible and
boundary-incompressible, have no component that a 2-sphere, a clean disc or a
clean annulus parallel to an almost clean annulus in ∂M . Hence, S′1 and S′2 must
be isotopic to surfaces that are horizontal or vertical. Suppose that neither S′1 nor
S′2 has any horizontal components. Then each component is vertical. Hence, the
same is true of each component of S1 and S2. But then S1 and S2 would intersect
each fibre an even number of times, whereas S does not, which is a contradiction.
So, one of S′1 and S′2 has a horizontal component, and so the same is true of a
component of S1 or S2. This is isotopic to a section, since it intersects each fibre in
C at most once. Now, S2 is disjoint from P and so cannot be a section. Therefore,
S1 is isotopic to a section. Moreover, its boundary is equal to ∂S away from annular
components of ∂M\\P . So there is a homeomorphism of M preserving each vertex,
edge and circle of P , taking S1 to S. It has smaller prioritised weight than S. So,
by Lemma 2.22, there is a homeomorphism of M preserving each vertex, edge and
circle of P and each component of A, taking S1 to S. But this contradicts our
assumption that S had smallest prioritised weight among such surfaces.

Suppose now that S = S1 + S2 + S3, where S1 is non-empty and S2 and S3

are clean Möbius bands. The only orientable circle bundles over a compact surface
that have a section and that contain a properly embedded Möbius band are the
solid torus and the orientable circle bundle over the Möbius band. Suppose first M
is a solid torus. In that case, both S2 and S3 represent the non-trivial element of
H2(M,∂M ;Z2). So S2 + S3 is homologically trivial and therefore has no Möbius
band component. (Note that the solid torus does not contain two disjoint properly
embedded Möbius bands.) Now, S2 +S3 has zero Euler characteristic and therefore
some component is a clean disc or clean annulus. So, S can be written as the sum
of a non-empty normal surface and a clean disc or a clean annulus. We have already
ruled that out above. Suppose now that M is the orientable circle bundle over the
Möbius band. Then S2 and S3 are isotopic to sections of the bundle. However,
by assumption, each component of ∂M contains a component of C, which lies in
P , and hence M does not admit a clean section. This contradiction completes the
proof. �
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As above, let M be a circle bundle, and suppose that C is a union of finitely
many fibres with C ∩ ∂M ⊂ P , and that A is a collection of annuli with boundary
in C. Suppose that these divide M into solid tori, and that each component of
∂M contains at least one component of C. A broken section for M is obtained
by picking distinct angles in [0, 2π), one for each solid torus, and isotoping the
intersection between S and each solid torus, so that for any fibre in that solid
torus, its intersection with S has been moved through the relevant angle.

Proposition 2.24. Let M , P , C, A, E1 and E2 be as in Proposition 2.23. Let S
be a properly embedded surface that is isotopic, via an isotopy preserving A, to a
section. Suppose that, among such surfaces, S intersects P as few times as possible.
Then M has a broken section that is (3c, k)-nearly exponentially controlled, where
c = −χ(S) + 2|S ∩ P |+ 2|S| and k = 215.

Proof. By Proposition 2.23, there is a homeomorphism of M preserving each vertex,
edge and circle of P and each component of A, taking S to a weakly fundamental
normal surface. By Proposition 2.6,

w(S) ≤ t227t+6(−χ(S) + 2|S ∩ P |+ 2|S|).

We now perturb it to a broken section. By choosing the perturbation angles to
be sufficiently close to zero, the resulting surface is still normal and it has at most
three times the weight. (The weight on the edges of C will increase by a factor of
three, since the three adjacent meridian discs have been perturbed to be disjoint.)
Hence, it is (3c, k)-nearly exponentially controlled. �

3. Hierarchies

In this section, we recall some of the main concepts from the theory of hierarchies,
as developed by Haken [9] and elucidated by Matveev [18].

3.1. Hierarchies and boundary patterns. Let M be a compact orientable 3-
manifold with a boundary pattern P . A partial hierarchy for M is a sequence of
surfaces S1, . . . , Sn and a sequence of 3-manifolds M = M1, . . . ,Mn+1, where each
Si is a properly embedded orientable incompressible surface in Mi, and each Mi+1

is obtained from Mi by cutting along Si. We write this as

M = M1
S1−→M2

S2−→ · · · Sn−→Mn+1.

A partial hierarchy is a hierarchy if Mn+1 is a collection of 3-balls.
In the partial hierarchies that we consider, the boundaries of the surfaces will

be in general position. Hence, ∂Si intersects P ∪ ∂S1 ∪ · · · ∪ ∂Si−1 in finitely
many points. Also, ∂Si is non-embedded at only finitely many points. This latter
phenomenon occurs when Si runs over both sides of an earlier surface. We will
ensure that this latter situation does not arise with the hierarchies that we consider.

The topological space S1 ∪ · · · ∪ Si is homeomorphic to a 2-complex, but this
construction cannot be made in a canonical way, in general. We therefore introduce
the following structure.

We say that a space is a generalised 2-complex if it is obtained as follows. Let the
1-skeleton K1 be the disjoint union of finitely many circles and a finite 1-complex.
Then attach a compact surface F via an attaching map f : ∂F → K1. We say that
the image of each component of F is a generalised 2-cell.
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Note that S1 ∪ · · · ∪ Si has the structure of a generalised 2-complex, as follows.
The union P ∪ ∂S1 ∪ · · · ∪ ∂Si is the 1-skeleton. The 0-cells are the points where
some ∂Si meets P , some other ∂Sj or itself.

Let Γi be P ∪ ∂S1 ∪ · · · ∪ ∂Si. The inverse image of Γi in Mi+1 is a union
of simple closed curves and graphs Pi+1 embedded within ∂Mi+1. This is the
boundary pattern that Mi+1 inherits from the partial hierarchy.

Note that, when visualising this boundary pattern, it is convenient to regard
each surface Si as ‘transparent’, in the following sense. When a later surface Sj has
boundary that runs over a part of ∂Mj associated with Si, then boundary pattern
is created not only at this part of ∂Mj+1 but also in the part of ∂Mj+1 lying on
the other side of Si. See Figure 9, for example.

S1

S2

3

S3

Boundary pattern for M

Figure 9. A partial hierarchy and associated boundary pattern

The following simple fact is well known. See, for instance, the discussion following
Definition 6.3.6 in [18].

Lemma 3.1. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let

M = M1
S1−→M2

S2−→ · · · Sn−→Mn+1

be a partial hierarchy, where no component of any Si is a sphere or clean disc. For
each i, let Pi be the boundary pattern that Mi inherits. Then (Mi, Pi) is irreducible
and boundary-irreducible.

In our proof of Theorem 1.1, we will reduce to the case where K is a non-split
link other than the unknot. In the hierarchies we consider, the initial manifold M
will be the exterior of K. By Lemma 3.1, the manifolds with boundary pattern in
such a hierarchy will all be irreducible and boundary-irreducible.

3.2. Exponentially controlled hierarchies. Let M be a compact orientable 3-
manifold with boundary pattern P . Let

M = M1
S1−→M2

S2−→ · · · Sn−→Mn+1

be a hierarchy. We say that it is (c, k)-exponentially controlled if, for each i ≤ n and
each triangulation of M with t tetrahedra, in which P, S1, . . . , Si−1 are simplicial,
there is a homeomorphism of M that is isotopic to the identity on ∂M and that
preserves P and Sj , for each j < i, and that takes Si to a surface with weight at
most ckt.
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Remark 3.2. Clearly, if each surface in the hierarchy is exponentially controlled,
then the entire hierarchy is also exponentially controlled. However, there is one
circumstance where we cannot ensure that the surfaces are exponentially controlled.
This is when the manifold Mi is a union of solid tori and 3-balls, and where the
solid tori patch together to form a circle bundle embedded in M . Any two such
solid tori intersect in a collection of clean annuli. The next surface in the hierarchy
will be a broken section. It might not be the case that any two sections of the circle
bundle are strongly equivalent. However, applying the techniques of Section 2.15,
and using specific properties of the partial hierarchy that we have constructed, we
are able to find a homeomorphism of M that is isotopic to the identity on ∂M and
preserving all the surfaces in the partial hierarchy, taking one section to another.

The following result will be crucial.

Theorem 3.3. Let M be the exterior of a non-split link in the 3-sphere other than
the unknot. For each component of ∂M that is incident to a Seifert fibred JSJ piece
other than T 2 × [0, 1], suppose that P ∩ ∂M is a single curve with slope 0 or ±1,
other than the fibre slope. Suppose also that P is disjoint from the other components
of ∂M . When M is a copy of T 2 × [0, 1], then suppose that ∂M ∩ P consists of a
longitude in each component of ∂M . Then (M,P ) has an exponentially controlled
hierarchy.

The outline of the proof is as follows. Suppose that we have formed a partial hi-
erarchy that is exponentially controlled, and let Mi be the final manifold. Suppose
that it is not a disjoint union of 3-balls. We would like to find an exponentially con-
trolled surface in Mi. Since Mi is not a disjoint union of 3-balls, it contains a prop-
erly embedded (non-separating) orientable incompressible boundary-incompressible
surface S. In the case that Mi contains no properly embedded essential clean annuli
or essential tori, then Theorem 2.8 can probably be used to make S weakly funda-
mental. On the other hand, if Mi contains an essential clean annulus or essential
torus, then it probably contains a JSJ torus or annulus. In this case, Theorem 2.14
can be used to make the JSJ annuli and tori fundamental.

There are, of course, several complications. One is that Theorem 2.8 also has a
hypothesis about the way that the boundary pattern intersects the incompressible
boundary tori of Mi, and this leads to some technical issues.

The second complication is that it is not clear that the above procedure ter-
minates. Fortunately, one can guarantee that the decomposition along S reduces
some notion of complexity, and hence that the hierarchy eventually terminates, as
long as one is careful about the choice of surface S. A significant complication is
that the JSJ annuli in Mi may in fact be boundary parallel. Cutting along such
a surface produces a solid torus together with a copy of the original manifold, but
with different boundary pattern. In order not to get stuck in a repeating loop,
considerable care is required here.

The third main complication is that it is possible for a manifold to contain an
essential clean annulus or essential torus, and yet have no JSJ torus or annulus.
This is clearly problematic, because neither Theorem 2.8 nor Theorem 2.14 can
be used. But according to Theorem 2.9, this only occurs in two very restricted
situations: when a component of Mi is Seifert fibred with pattern consisting of
fibres, and when a component of Mi is an I-bundle over a surface and the pattern
Pi is a collection of simple closed curves in the vertical boundary of the bundle.
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This second case arises, for example, when the first surface in the hierarchy is a fibre
in a fibration over the circle. When Haken first developed the theory of hierarchies
[9], this was a situation that he could not handle. Fortunately, in the case of a
non-split link in the 3-sphere other than the unknot, it is now known that one can
avoid this situation, as follows.

Let S be a surface properly embedded in a compact orientable 3-manifold M .
Then S is a fibre surface if it is a fibre in a fibration of M over the circle. This is
equivalent to M\\S having the structure of an I-bundle with horizontal boundary
equal to the copies of S.

The surface S is a semi-fibre if it is connected and separating and each component
of M\\S is homeomorphic to an I-bundle over some non-orientable surface, with
S forming the horizontal boundary of the bundle. Semi-fibres do not arise as
properly embedded surfaces when M is the exterior of a link in the 3-sphere. This
is because the zero-section of each I-bundle is a non-orientable surface, and one may
join these two surfaces by annuli in the boundary to form a closed non-orientable
surface properly embedded in M . However, the 3-sphere does not support any such
surface.

The following is due to Culler and Shalen [7].

Theorem 3.4. Let M be the exterior of a hyperbolic link. Then M contains a
properly embedded orientable incompressible, boundary-incompressible surface that
is neither a fibre nor a semi-fibre, and with no sphere or disc components.

We now give a procedure for finding an exponentially controlled hierarchy for
the exterior M of a non-split link other than the unknot. We give M the following
boundary pattern. For each component of ∂M that is incident to a Seifert fibred
JSJ piece of M other than T 2 × [0, 1], we give it boundary pattern that equals a
single curve with slope 0 or ±1, chosen so that its slope does not agree with the
fibre slope. The remaining components of ∂M are given empty boundary pattern.
In the case where M is a copy of T 2 × [0, 1] (which is exactly when the link is the
Hopf link), then we we pick boundary pattern that is a longitude on each boundary
component.

(1) If M has any JSJ tori, decompose along two parallel copies of each torus.
Let X be the union of the copies of T 2 × I between these tori. We will
not touch any component of X until both of its boundary components have
inherited non-empty boundary pattern.

(2) For each Seifert fibred JSJ piece of M2 − X, pick a properly embedded
annulus as in Section 2.13. Insert one or two copies of it, depending on
whether the annulus is separating or non-separating. Repeat this process
until each Seifert fibred component of M2 −X has been decomposed into
solid tori.

(3) In each hyperbolic complementary region, find a properly embedded ori-
entable incompressible boundary-incompressible surface that is not a union
of fibre surfaces and that has no sphere or disc components. Cut along
it or two parallel copies of it, depending on whether it is separating or
non-separating.

(4) We now embark upon a sequence of the following decompositions. The
process continues until one of two situations arises. If every component of
the 3-manifold is a ball, then the procedure terminates with the required
hierarchy. If every component of the 3-manifold is a 3-ball or a solid torus
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with a clean longitude, and there is at least one component of the latter
type, then pass to step (5). The decompositions are as follows:

(i) If a component of the 3-manifold contains a clean essential annulus
that is parallel to an annulus in the boundary, then cut along this
annulus.

(ii) If a component of the 3-manifold does not contain an annulus as in
(i), but has some JSJ annuli, then cut along them all.

(iii) Suppose that a component of the 3-manifold is a copy of T 2 × [0, 1]
with non-empty pattern consisting of essential parallel curves. If it is
a component of X, suppose also that both components of T 2 ×{0, 1}
have non-empty intersection with the pattern. Pick an essential clean
annulus, joining the two boundary components, and cut along two
copies of it.

(iv) Suppose that a component of the 3-manifold is a copy of T 2×[0, 1] and
is simple (with respect to the boundary pattern). If it is a compo-
nent of X, suppose also that both components of T 2 × {0, 1} have
non-empty intersection with the pattern. Pick an incompressible
boundary-incompressible annulus joining the two boundary compo-
nents and cut along two copies of it.

(v) If a component of the 3-manifold is simple (with respect to the bound-
ary pattern), and its boundary has a compression disc (that intersects
the boundary pattern), but the manifold is not a solid torus with a
clean longitude, then pick a disjoint collection of such discs that are
boundary-incompressible (with respect to the boundary pattern), tak-
ing two parallel copies of a disc if it is non-separating, and cut along
this collection.

(vi) If a component of the 3-manifold is simple and its boundary is
incompressible, but it is not a copy of T 2 × [0, 1], then, in this
component, pick a properly embedded orientable incompressible sur-
face with non-empty boundary, with no sphere or disc components,
that is boundary-incompressible with respect to the inherited pattern
and with respect to the empty pattern. Cut along one or two parallel
copies of it, depending on whether it is separating or non-separating.

(5) By reaching this stage, every component of the 3-manifold is a 3-ball or a
solid torus with a clean longitude. We now perform the following decom-
positions until no more such decompositions are possible.

(i) If a solid torus contains a necklace annulus in its boundary, then push
this annulus into the manifold so that it becomes properly embedded,
and then cut along it. This creates a new solid torus. Cut along two
copies of a meridian disc for this solid torus that intersects the pattern
as few times as possible.

(ii) If two solid tori have a component of intersection that is a disc, then
cut along a parallel copy of this disc lying in one of the solid tori.

(6) Upon reaching this stage, it is still the case that every component of the
3-manifold is a 3-ball or a solid torus with a clean longitude. Consider the
union of these solid tori. This is a circle bundle over a surface. The interior
of the circle bundle intersects the union of the previous surfaces in the par-
tial hierarchy in a union of annuli A. Let S be a properly embedded surface
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that is isotopic, via an isotopy preserving A, to a section. Suppose that,
among such surfaces, S intersects the boundary pattern Pn as few times as
possible. Then M has a broken section that is (3c, k)-nearly exponentially
controlled, where c = −2χ(S) + |S ∩Pn|+ 2|S| and k = 215. This therefore
decomposes the solid tori to 3-balls.

Remark 3.5. In the above procedure, each surface Si lies in a single component of
Mi. However, that restriction can be weakened, as follows. We can instead require
that no two components of Mi that contain components of Si are incident across
an earlier surface of the hierarchy.

Theorem 3.6. This procedure produces a (µ, 215)-exponentially controlled hierar-
chy, where µ is the maximal value of −6χ(Si) + 3|Si ∩ Pi|+ 6|Si| over all surfaces
Si in the hierarchy, and where Pi is the boundary pattern of the ith manifold.

Proof. The fact that each of these surfaces is (µ, 215)-exponentially controlled fol-
lows from the results in Section 2, apart from the broken section in (6) which we
will discuss below. Specifically, the fact that each JSJ torus is fundamental is the
content of Theorem 2.14. Propositions 2.16, 2.17 and 2.18 give that the surfaces
in (2) are weakly fundamental. Theorem 2.8 implies that the surfaces in (3) are
weakly fundamental. Similarly, the surfaces in (4) and (5) are exponentially con-
trolled, either by Theorem 2.8, Theorem 2.14, Proposition 2.17, Proposition 2.18
or Lemma 2.19. However, Theorem 2.8 has some hypotheses about toral boundary
components of ∂Mi that need to be checked.

We claim that from step (3) onwards Mi has no essential tori. Suppose that on
the contrary there is a properly embedded essential torus T in Mi. Note that T is
disjoint from the surfaces S1, . . . , Si−1 because it lies in the interior of Mi. Since T
is essential in Mi, it is π1-injective in Mi. As at each stage of the partial hierarchy,
we have decomposed along a 2-sided incompressible surface, Mi π1-injects into M .
Hence, T is incompressible in M . It is disjoint from the JSJ surfaces in M , since
these are the first decomposition in (1). It does not lie in a Seifert fibred piece,
since these are decomposed into solid tori in (2). Hence T is boundary parallel in
M or parallel to a JSJ torus of M . So, there is a copy of T 2 × [0, 1] between this
torus and a boundary component of M2, where T 2 × {1} = T . Now each surface
in the partial hierarchy is incompressible, and the only connected incompressible
surfaces properly embedded in T 2 × [0, 1] disjoint from T 2 × {1} are parallel to a
subsurface of T 2 × {0}. Thus, we deduce that in Mi, there is a copy of T 2 × [0, 1]
with T 2 × {0} being a component of ∂Mi and T 2 × {1} = T . In other words, T is
boundary parallel in Mi and hence not essential, as claimed.

We also claim that from step (3) onwards, each incompressible toral boundary
component of Mi either is clean or lies in a component of Mi that is a copy of
T 2 × [0, 1]. Consider an incompressible toral boundary component T of some Mi.
As argued above, T is boundary parallel in M or parallel to a JSJ torus of M .
Suppose that the component of Mi containing T is not a copy of T 2× [0, 1]. Hence,
T lies in M2 − X. If T is a boundary component of M2, then it must lie in a
hyperbolic piece of M2 since the Seifert fibred pieces are decomposed into solid tori
in (2). But then T is clean, because any component of X on the other side of T
is not decomposed until the copy of T in X inherits non-empty pattern, by which
stage T is no longer a component of ∂Mi. If T intersects a component of ∂M2

but does not lie entirely in ∂M2, then consider the first surface Sj that intersects
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the region between T and ∂M2. This is parallel to a clean subsurface of ∂Mj and
hence is boundary-compressible, contrary to our construction. Finally, suppose
that T is disjoint from ∂M2. Then it is parallel to a boundary component T ′ of
M2. Between T and T ′ is a copy of T 2 × [0, 1], and as argued above, this implies
that the component of Mi containing T is a copy of T 2 × [0, 1], as claimed.

When a component of Mi that is a copy of T 2 × [0, 1] is decomposed, we ensure
in (4)(iii) and (4)(iv) that we cut along an annulus joining the two boundary com-
ponents. In (4)(iii), we use Proposition 2.18. In (4)(iv), we use Proposition 2.17.
Hence, when we apply Theorem 2.8, its hypotheses hold. In particular, when we
use it in steps (3) and (4), any incompressible toral boundary components in the
relevant component of Mi are clean.

We need to show that the process terminates, with the final manifold being a
collection of balls. To do so, we use the machinery developed by Matveev in [18]
that was based on work of Haken [9].

The procedure described here should be compared with the procedure given by
Matveev in [18]. The initial part of Matveev’s procedure, described in [18, Section
6.5.1] is to perform the following moves whenever they are possible:

(E1) If (Mi, Pi) contains an essential torus, then add one or two parallel copies
of such a torus depending on whether the torus is separating or non-
separating.

(E2) If (Mi, Pi) contains a clean essential longitudinal annulus that is not parallel
to an annulus in ∂Mi, then add one or two parallel copies of such an annulus,
depending on whether the annulus is separating or non-separating.

(E3) If (Mi, Pi) contains a clean essential annulus that is parallel to an annulus
in the boundary, then cut along this annulus.

(E4) If a component of (Mi, Pi) is simple, and its boundary has a compression
disc, but the manifold is not a solid torus with a clean longitude, then pick
a compression disc that intersects Pi as few times as possible, and cut along
one or two parallel copies of this, depending on whether it is separating or
non-separating.

(E5) If a component of (Mi, Pi) is simple and its boundary is incompressible,
then, in this component, pick a properly embedded connected orientable
incompressible boundary-incompressible surface F with non-empty bound-
ary, other than a sphere or disc, and for which −χ(F ) + |F ∩Pi| is as small
as possible. Then cut along one or two parallel copies of it, depending on
whether it is separating or non-separating.

Matveev shows in Corollary 6.5.7 in [18] that the above procedure terminates,
although the final manifold is not necessarily a 3-ball. Matveev then uses further
‘extension moves’ (E6)-(E10) and ‘auxiliary moves’ (E3′), (E4′) and (E4′′).

We do not follow Matveev’s approach precisely for several reasons. First of all,
we require the hierarchy to be exponentially controlled, whereas Matveev requires
less of his hierarchies. Secondly, we are in a more particular situation where the
initial manifold is the exterior of a link, whereas he has to work with more general
Haken 3-manifolds.

We claim that by the time we have completed steps (1)-(4) above, none of
Matveev’s moves (E1)-(E5) can be applied. Hence, the manifold with boundary
pattern that we obtain after completing moves (1)-(4) has all the properties that
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Matveev requires before he embarks on (E6)-(E10) and (E3′), (E4′) and (E4′′). Let
(Mi, Pi) be the manifold with pattern obtained after steps (1)-(4).

Suppose now that some component of Mi − X contains a clean essential lon-
gitudinal annulus, but that none of 4(i), 4(ii) and 4(iii) can be applied. After a
pattern-isotopy, this annulus lies in a JSJ piece for Mi, which by Theorem 2.9 is
Seifert fibred with pattern consisting of fibres. This is not a solid torus, because
such a manifold does not support an essential longitudinal annulus. The Seifert
fibre pieces of M were decomposed in (2). Hence, the component of Mi −X con-
taining the annulus is a copy of T 2× [0, 1]. It might be a regular neighbourhood of
a JSJ torus for M or it might be parallel to component of ∂M . Its pattern must
be non-empty, since the annulus is longitudinal. Hence, 4(iii) can be applied to it,
which is contrary to hypothesis.

So we have shown that neither (E1) nor (E2) can be applied to Mi −X. Note
that (E3) is exactly 4(i). Note further that if (E4) can be applied, then so too can
4(v). Similarly, if (E5) can be applied to a component of Mi −X, then so too can
4(vi) or (iv). Since (4) has been completed, we deduce that none of (E3) - (E5) can
be applied to Mi −X.

Hence, by Lemma 6.5.10 in [18], each component of (Mi−X,Pi−X) is either a 3-
ball, a solid torus having a clean longitude or an I-bundle chamber. Matveev defines
an I-bundle chamber to be an I-bundle over some compact surface with negative
Euler characteristic, with boundary pattern consisting a non-empty collection of
simple closed curves in each vertical boundary component. He also requires that
in each vertical boundary component of the I-bundle, its two boundary curves are
part of the pattern.

We will show that in fact there are no I-bundle chambers. As explained by
Matveev in the proof of Proposition 6.5.14 in [18], each I-bundle chamber has
horizontal boundary equal to the horizontal boundary of another I-bundle chamber.
Hence, by [18, Proposition 6.5.14], the union of the I-bundle chambers, minus a
small regular neighbourhood of the vertical boundary, consists of the following four
types of components:

(1) a copy of F × I where F is a compact orientable surface, with F × ∂I ⊂
∂N(K);

(2) a twisted I-bundle F ×̃I, where F is a compact non-orientable surface, with
the horizontal boundary of the I-bundle in ∂N(K);

(3) a fibration over the circle with fibre a compact orientable surface;
(4) a union of two twisted I-bundles glued along their horizontal boundary,

called a quasi-Stallings manifold.

We say that a component of the union of the I-bundle chambers, minus a small
regular neighbourhood of their vertical boundary, is a chamber compendium. Its
vertical boundary is the union the vertical boundaries of its constituent I-bundles.
It is a collection of annuli and tori properly embedded in M , the exterior of K.

We claim that the vertical boundary of each chamber compendium is incom-
pressible in M . Suppose not, and hence that the vertical boundary is compressible.
Hence, there is a vertical boundary component T that admits a compression disc
with interior disjoint from the vertical boundary. Any compressible torus in the
irreducible 3-manifold M either lies in a 3-ball or bounds a solid torus. Any com-
pressible annulus lies in a 3-ball. The surface T is incident to at least one horizontal
boundary component F of an I-bundle chamber. Each component of ∂F represents
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a non-trivial element of the fundamental group of the chamber, and hence is a non-
trivial element of π1(M). Hence, T cannot lie in a 3-ball. It is therefore a torus
bounding a solid torus V . Consider the first surface Si in the hierarchy to intersect
V . Then Si∩V is incompressible in V , for the following reason. The boundary of a
compression disc for Si∩V would have to bound a disc in Si, since Si is π1-injective.
This disc does not lie wholly in V . But each surface in the hierarchy incident to
V but not lying wholly in V must contain a horizontal boundary component F of
an I-bundle chamber incident to V . Hence, we deduce that a boundary compo-
nent of F is homotopically trivial in M , which is ruled out above. Since Si ∩ V is
incompressible and orientable in the solid torus V , it is a collection of incompress-
ible annuli and discs. In fact, it cannot contain any discs, since this would again
imply that a horizontal boundary component of a chamber did not π1-inject into
M . There is therefore some annulus A of Si ∩ V that is outermost in V . This is
incident to horizontal boundary components F and F ′ of I-bundle chambers. Lying
between F and F ′ is a union of I-bundle chambers, which is again an I-bundle. It
is possible that F = F ′ if they bound a twisted I-bundle. Enlarge this I-bundle
so that it contains the region in V between A and ∂V . This is again an I-bundle,
but A is now a vertical boundary component. Now the base of this I-bundle has
negative Euler characteristic and so contains an essential properly embedded arc
with both endpoints on the boundary component corresponding to ∂A. Over this
arc is a disc E consisting of I-fibres, with E ∩ Si = ∂E. By the incompressibility
of Si, ∂E bounds a disc E′ in Si. The intersection of E′ with F is a planar surface
component of F\\∂E. Hence, we deduce that some component of ∂F bounds a
disc in Si, which we have shown to be impossible.

Thus, we have shown that the vertical boundary of each chamber compendium
is incompressible.

The vertical boundary of chamber compendium cannot contain any annulus com-
ponent, since (1) or (2) would then apply, and hence the horizontal boundary of
the bundle would lie in ∂M . It would then be a disc, annulus or torus, all of which
are ruled out by the assumption that the base of the bundle has negative Euler
characteristic.

So, the vertical boundary of the chamber compendiums consists of incompressible
tori. Each torus is therefore boundary parallel or JSJ or lying in the interior of
a Seifert fibre piece of the JSJ decomposition of M . The latter situation can be
ruled out as follows. Suppose some vertical boundary component lies in a Seifert
fibre piece but is not JSJ or boundary parallel. This Seifert fibre space has been
decomposed into solid tori in step (2). Hence, we deduce that some I-bundle
chamber in the compendium is a 3-ball or solid torus, but the I-bundle chambers
cannot be 3-balls or solid tori.

Hence, each chamber compendium is either a component of the JSJ decomposi-
tion of M or a copy of T 2 × I lying in a regular neighbourhood of a JSJ torus or a
component of ∂M . The latter cannot happen because each chamber compendium
is a surface bundle or Stallings manifold with fibre having negative Euler character-
istic. Thus, we deduce that each chamber compendium is a component of the JSJ
decomposition of M . The intersection between each surface of the hierarchy and
the chamber compendium is horizontal in the chamber compendium. However, in
step (3), we decomposed the hyperbolic JSJ pieces along a surface that was neither
a fibre nor a semi-fibre, and we decomposed the Seifert fibred pieces into solid tori.
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Thus, we have shown that there are no I-bundle chambers.
So, once Step (4) has been completed, each component of Mi −X is a 3-ball or

solid torus. We claim in fact that each component of Mi is a 3-ball or solid torus.
Consider any component of X. The two components of Mi −X that are incident
to it have been decomposed into solid tori and 3-balls. Hence, both its boundary
components have inherited non-empty boundary pattern. Therefore the restriction
in 4(iii) and (iv) on decomposing such a component of X no longer applies. Hence,
this component of X has indeed been decomposed into solid tori in 4(iii) or 4(iv).
Any further decompositions to these components only give solid tori and 3-balls.
This proves the claim.

We now apply the moves in (5). These are exactly moves (E3′), (E4′) of Matveev
[18]. Note that Matveev’s move (E4′′) is not possible in our situation, since it only
applies when the initial manifold M1 is closed. After these moves are performed, the
union of the solid torus chambers are what Matveev terms faithful (as in Definition
6.5.52 in [18]). He proves in Lemma 6.5.53 that when this holds, the union of the
solid toral chambers is a circle bundle over a surface. Moreover, each solid torus
chamber is a union of circle fibres, and each component of intersection between
them is an annulus that is a union of circle fibres. Thus, in step (6), this circle
bundle is decomposed along a broken section. In particular, each remaining solid
torus is decomposed along a meridian disc. Thus this procedure does terminate
with a hierarchy.

We need to show that this hierarchy is (µ, 215)-exponentially controlled. This
was explained at the beginning of the proof for all surfaces in the hierarchy except
the broken section, which is only (µ, 215)-nearly exponentially controlled, by Propo-
sition 2.24. (See Section 2.15 for the precise definition of being nearly exponentially
controlled.) In our case, the surface that we are considering is a broken section, that
is obtained from a section of a circle bundle Y lying in M . Let P be the boundary
pattern for Y . Then ∂Y \\P is a collection of discs and annuli. The annular com-
ponents lie in ∂M and are vertical in the fibration. Any homeomorphism of Y that
preserves each vertex, edge and circle of P is, up to pattern-isotopy, a composition
of Dehn twists about clean vertical annuli and tori. A Dehn twist about a vertical
torus restricts to the identity on ∂M and hence determines a strong equivalence of
M . Consider a Dehn twist about a vertical annulus R. We claim that this Dehn
twist is isotopic to the identity on M .

Now, we assigned boundary pattern to components of ∂M that were incident to
Seifert fibred JSJ pieces, and this pattern consisted of a single essential curve not
having a fibre slope. Hence, when the Seifert fibred pieces are decomposed in step
(2), these components of ∂M incident to JSJ pieces inherit pattern that decomposes
these tori into discs. We therefore deduce that the annular components of ∂Y \\P
are disjoint from those components of ∂M . The annulus R has clean boundary in
∂M , and hence misses the Seifert fibred pieces of M . It is therefore inessential in
M . Hence, a Dehn twist about R gives a homeomorphism of M that is isotopic to
the identity, as claimed.

So suppose that we are given a triangulation of M with t tetrahedra in which the
pattern and all the surfaces before the broken section are simplicial. The broken
section is (µ, 215)-nearly exponentially controlled, and hence, as argued above, there
is a homeomorphism of M , isotopic to the identity on ∂M , preserving the earlier
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surfaces in the hierarchy, taking the broken section to one that has weight at most
µ · 215t, as required. �

3.3. Adequately separating hierarchies. Let

M = M1
S1−→M2

S2−→ · · · Sn−→Mn+1

be a hierarchy. This is said to be adequately separating if the following two condi-
tions hold:

(1) for each i < n, there is no curve in Mi that intersects Si transversely once,
and

(2) for each i < n, Si is contained within a single component of Mi.

Furthermore, either these two conditions hold for i = n or Sn is broken section of
a circle bundle.

The first condition implies that for each component Y of Mi\\Si, the restriction
of Mi\\Si →Mi to Y is an injection. Hence, with both these conditions, we deduce
that no surface Sj (j < n) runs over two parts of ∂Mj that are identified in M .
Note that this remains true for Sn even when it is a broken section of a circle
bundle. This is technically useful, since ∂Sj creates boundary pattern, and if two
parts of ∂Sj were to be identified in M , then this would create possibly unexpected
vertices in the boundary pattern.

We note the following, particularly in reference to Remark 3.5.

Remark 3.7. The hierarchy constructed in Theorem 3.6 is adequately separating.

4. Handle structures

We will deal with handle structures on 3-manifolds. These will always have the
following properties:

Convention 4.1. LetH be a handle structure on a 3-manifold. Then, for 0 ≤ i ≤ 3,
the union of the i-handles is denoted Hi. The index of an i-handle is i. We will
always require the handle structure H to satisfy the following conditions.

(1) For each i-handle Di×D3−i, its intersection with the handles of lower index
is ∂Di ×D3−i.

(2) For each 2-handle H2 = D2 ×D1 and 1-handle H1 = D1 ×D2, the inter-
section H1 ∩ H2 must respect the product structure of each, in the sense
that H1 ∩ H2 is equal to α × D1 in H2, where α is a collection of arcs in
∂D2, and is equal to D1 × β in H1, for a collection of arcs β in ∂D2.

(3) Each 2-handle runs over at least one 1-handle.

A triangulation of a 3-manifold M determines a handle structure for M , where
each i-simplex not lying in ∂M gives rise to a (3− i)-handle.

When analysing handle structures of 3-manifolds, the following surface is of
particular relevance. We let F be H0 ∩ (H1 ∪ H2). This is a subsurface of the
spheres ∂H0. It has a handle structure where the 0-handles, denoted F0, are
H0 ∩ H1, and the 1-handles, denoted F1, are H0 ∩ H2. Note that F1 is indeed a
collection of 1-handles, because each 2-handle of H runs over at least 1-handle of
H, and so F1 has no annular components.
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4.1. Normal surfaces in handle structures. Let H be a handle structure for a
3-manifold M . Then a surface properly embedded in M is said to be in standard
form with respect to H if

(1) it is disjoint from the 3-handles;
(2) it intersects each 2-handle D2 ×D1 in discs of the form D2 × F , for some

finite set of points F in the interior of D1;
(3) it intersects each 1-handle D1 × D2 in discs of the form D1 × α, for a

collection of properly embedded arcs α in D2;
(4) it intersects each 0-handle in a collection of properly embedded discs.

A standard surface S is normal if, for each component D of S∩H0, the following
hold:

(1) D intersects each component of F1 in at most one arc;
(2) D intersects each component of ∂H0\\F in at most one arc and no simple

closed curves that bound discs in ∂H0\\F ;
(3) D does not intersect a component of ∂F0\\F1 more than once;
(4) D does not intersect components of ∂H0\\F and F1 that are adjacent.

These components D of S ∩H0 are called elementary normal discs.

4.2. Curves and graphs in the boundary. Let H be a handle structure for a
3-manifold M . We say that a union of disjoint simple closed curves C in ∂M is
standard if

(1) C is disjoint from the 2-handles of H;
(2) C intersects each 1-handle D1 ∩D2 in D1 × F for some finite subset F of

∂D2;
(3) C intersects each 0-handle in a collection of arcs.

A graph P in the boundary of M is in transverse form if

(1) P is disjoint from the 0-handles of H;
(2) P intersects each 1-handle D1∩D2 in a subset of {∗}×∂D2 for some point
∗ in the interior of D1;

(3) each vertex of P lies in a 2-handle of H;
(4) for any 2-handle D2×D1 ofH, the intersection between P and a component

of D2 × ∂D1 is at most one vertex of P plus arcs that each run from the
vertex to the boundary of D2 × ∂D1.

4.3. The weight and extended weight of a standard surface. The weight
of a standard surface S in a handle structure H is the number of components of
S ∩ H2. Note that, when the handle structure arises from a triangulation T of
a closed 3-manifold, then there is a bijection between the components of S ∩ H2

and the points of intersection between S and the 1-skeleton of T . Thus, in this
situation, the two measures of weight coincide.

We also introduce another measure of complexity. The extended weight of a
standard surface S is defined to be

|S ∩H2|+ |S ∩H1|.

The rationale for this definition is that weight is a somewhat imperfect measure of
complexity. For example, there can be surfaces that avoid the 2-handles completely
but that run through the 0-handles and 1-handles many times. These have zero
weight but large extended weight. Furthermore, we have the following lemma.
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Lemma 4.2. Let H be a handle structure for a compact 3-manifold M . Let P be
a boundary pattern that is in transverse form. Let S be a standard incompressible
boundary-incompressible surface with no component that is a sphere or disc inter-
secting P at most twice. Then S is pattern-isotopic to a normal surface S′ such
that the extended weight of S′ is at most the extended weight of S. Furthermore,
for each 2-handle of H, S′ intersects the 2-handle at most as many times as S did.

This is essentially proved in [18, Theorem 3.4.7], where normalisation moves are
given. It is straightforward to check that they do not increase the extended weight.

4.4. Distinguished subsurfaces of the boundary. When we analyse a handle
structure of a 3-manifold N , its boundary will sometimes contain a distinguished
subsurface X. In addition, ∂N will contain some arcs α properly embedded in
∂N\\X. These will satisfy the condition that ∂X is a collection of standard curves
and that each component of α lies in a 0-handle. We then say that H is a handle
structure for (N,α,X).

When dealing with such extra structure on the boundary, we will slightly vary the
definition of a normal surface S. We now say that a properly embedded surface S
is normal if it is standard, its boundary is disjoint from X, and for each component
D of S ∩H0, the following hold:

(1) D intersects each component of F1 in at most one arc;
(2) D intersects each component of ∂H0\\(F ∪ α ∪X) in at most one arc and

no simple closed curves that bound discs in ∂H0\\(F ∪ α ∪X);
(3) D does not intersect a component of ∂F0\\(F1 ∪ α ∪X) more than once;
(4) D does not intersect components of ∂H0\\(F ∪ α ∪ X) and F1 that are

incident.

We also say that S is crudely normal if it is standard, its boundary is disjoint from
X, and each component D of S ∩H0 satisfies (1) above, as well as:

(3′) no component of D ∩ F0 is an arc with endpoints on the same component
of ∂F0\\(F1 ∪ α ∪X);

(4′) no component of D ∩ F0 is an arc with endpoints on components of
∂F0\\(F1 ∪ α ∪X) and ∂F0 ∩ F1 that are incident.

4.5. Parallelism. Let H be a handle structure for (N,P,X), and let S be a normal
surface. We say that two disc components D0 and D1 of S∩Hi are parallel if there
is an isotopy of N , preserving all the handles of H and preserving X and P , which
takesD0 ontoD1, and such that the restriction of this isotopy toD0 is an embedding
of D0 × [0, 1] into N . We then say that D0 and D1 are of the same type.

More generally, we say that two subsurfaces S0 and S1 of S are said to be
normally parallel if there are subsurfaces S′0 and S′1 of S, each of which is a union
of elementary normal discs, and satisfying S′0 ⊇ S0 and S′1 ⊇ S1, and an isotopy
H : N × [0, 1]→ N preserving all the handles of H, and preserving X and P , such
that the following hold:

(1) The restriction of H to S′0 × [0, 1] is an embedding.
(2) For each elementary normal disc D of S′0 and each t ∈ [0, 1], H(D, t) is an

elementary normal disc.
(3) H(S′0 × {i}) = S′i for i = 0 and 1.
(4) H(S0 × {i}) = Si for i = 0 and 1.
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5. The basic theory of arc presentations

In this section, we give an introduction to rectangular diagrams and arc presen-
tations, as developed mostly by Cromwell [6] and Dynnikov [8].

5.1. Rectangular diagrams. A rectangular diagram is a diagram in the plane
R× R, consisting of arcs, each of which is horizontal (of the form [s1, s2]× {t} for
s1, s2, t ∈ R) or vertical (of the form {s} × [t1, t2] for s, t1, t2 ∈ R). Each crossing
arises when a vertical arc and a horizontal arc cross; the vertical arc is required to
be the over-arc. Moreover, no two arcs may be collinear. (See Figure 10.)

There are the same number of horizontal and vertical arcs. This is the arc index
of the rectangular diagram.

Figure 10. A rectangular diagram

It is an elementary matter to convert any link diagram into a rectangular diagram
by an isotopy of the plane. In [17, Lemma 2.1], the following was proved, which
gives a quantified version of this observation.

Lemma 5.1. Let D be a diagram of a link with c crossings. Then D is isotopic to
a rectangular diagram with arc index at most (81/20)c.

5.2. Arc presentations. Closely related is the concept of an arc presentation for
a link.

One fixes a description of the 3-sphere as the join S1 ∗ S1 of two circles. Thus,
a point in S3 is specified by three coordinates (φ, τ, θ), where φ, θ ∈ R/(2πZ) and
0 ≤ τ ≤ 1. The points (φ, 0, θ) and (φ, 0, θ′) are identified for all θ and θ′. The
resulting circle {τ = 0} is denoted S1

φ and is called the binding circle. Similarly,

(φ, 1, θ) and (φ′, 1, θ) are identified for all φ and φ′, and the resulting circle {τ = 1}
is written S1

θ . For t ∈ R/(2πZ), the open disc {θ = t, τ > 0} is termed a page and
is denoted Dt.

A link K is in an arc presentation if

(1) it intersects the binding circle in finitely many points, called vertices;
(2) its intersection with each page is either empty or a single arc joining distinct

vertices.

The number of vertices is equal to the number of arcs, and is called the arc index
of the arc presentation.
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5.3. The relationship between arc presentations and rectangular dia-
grams. An arc presentation determines a rectangular diagram as follows. Let the
arc index of the arc presentation be n. For each arc in a page Dt joining vertices
s1 and s2 in [0, 2π), insert the horizontal arc [s1, s2] × {t} in the plane. For each
vertex s ∈ S1

φ, let t1, t2 be the θ values in [0, 2π) of the arcs incident to it, and

insert a vertical arc {s} × [t1, t2] into the plane. These vertical and horizontal arcs
in the plane specify a rectangular diagram, once we declare that at each crossing,
the over-arc is the vertical one.

It is clear that this procedure may be reversed: given a rectangular diagram, one
may form the corresponding arc presentation.

It was shown by Cromwell [6] that the arc presentation and the rectangular
diagram specify the same link.

5.4. Modifications to a rectangular diagram. In [6], Cromwell introduced a
collection of modifications that one can make to a rectangular diagram:

(1) Cyclic permutation: Here one cyclically permutes the horizontal (or vertical
arcs).

Figure 11. Cyclic permutation of the vertical arcs

(2) Stabilisation/destabilisation: These are local modifications to the diagram,
as shown in Figure 12, which increase or decrease the arc index.

stabilisation

destabilisation

stabilisation

destabilisation

stabilisation

destabilisation

stabilisation

destabilisation

Figure 12. Stabilisations and destabilisations

(3) Exchange move: This moves two horizontal (or two vertical) arcs of the
diagram past each other. The arcs are required to have adjacent vertical
heights, which means that no other arc has vertical height lying between
them. Also, the horizontal endpoints of these arcs must not be interleaved.
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Figure 13. Exchange moves

Cromwell showed in [6] that any two diagrams of a link differ by a sequence of
these moves. In the case where the link K is unknot, Dynnikov [8] proved that the
striking result that stabilisations (which are the only moves that increase the arc
index) are not required to reduce a rectangular diagram to the diagram with arc
index 2.

5.5. Upper bounds on Reidemeister moves. It is clear that the above modi-
fications to a rectangular diagram can be achieved using Reidemeister moves, and
it is unsurprising that one can obtain explicit upper bounds. A stabilisation or
a destabilisation can obviously be achieved using at most one Reidemeister move.
Exchange moves and cyclic permutations were examined in [17], where the following
bounds were established.

Lemma 5.2. Let n be the arc index of a rectangular diagram D. Suppose that an
exchange move is performed and let D′ be the resulting rectangular diagram. Then
D′ and D differ by a sequence of at most n Reidemeister moves.

Lemma 5.3. Let n be the arc index of a rectangular diagram D. Suppose that a
cyclic permutation is performed on the vertical (or horizontal) arcs giving a rect-
angular diagram D′. Then D and D′ differ by a sequence of at most (n − 1)2

Reidemeister moves.

5.6. Generalised exchange moves. These are defined as follows.
Let 0 < s1 < s2 < s3 < 2π be values of φ disjoint from the vertices of the link

K. Let 0 ≤ t1 < t2 < 2π be values of θ disjoint from the arcs of K. Suppose that,
for each horizontal arc [s, s′]× {t} of the rectangular diagram, the following hold:

(1) If t ∈ (t1, t2), then {s, s′} is not interleaved with {s2, s3}.
(2) If t ∈ S1

φ − (t1, t2), then {s, s′} is not interleaved with {s1, s2}.
Then one can change the rectangular diagram by shifting the φ value of all vertices
between s1 and s2 so that they lie between s2 and s3 in the same order, and by
shifting the φ value of all vertices between s2 and s3 so that they lie between s1
and s2 in the same order. This is a generalised exchange move.

The effect on the rectangular diagram is shown in the case where t1 = 0 in Figure
14.

The following was Lemma 2.4 in [17].

Lemma 5.4. Let n be the arc index of an arc presentation of K. A generalised
exchange move on this arc presentation is a composition of at most (3/2)n3 Rei-
demeister moves. It is also a composition of at most n cyclic permutations and at
most (3/4)n2 exchange moves.
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s1 s2 s3 s1 s2 s3

Figure 14. A generalised exchange move

5.7. Nearly admissible form. We fix S3 as the join S1
φ ∗ S1

θ . Let S be a surface

embedded in S3. Then S−S1
φ inherits a singular foliation F with tangent space at

each point given by the kernel of the 1-form dθ.
We say that S is in nearly admissible form if it satisfies the following:

(1) The boundary ∂S is in an arc presentation.
(2) The surface S is smoothly embedded, except at ∂S ∩ S1

φ.

(3) S − ∂S intersects S1
φ transversely at finitely many points.

(4) The foliation F has only finitely many singularities, each of which is a point
of tangency with some page.

(5) Each singularity is of Morse type, in other words, a local maximum, a local
minimum, an interior saddle or a boundary saddle. (See Figure 15). Note
that local minima and local maxima do not occur on ∂S, since ∂S is in an
arc presentation.

(6) The foliation F is radial near each vertex of S.
(7) Each page contains at most one arc of ∂S or one singularity of F |S−∂S but

not both.
(8) Each arc of ∂S contains at most one singularity of F in its interior (which

is a boundary saddle as shown in Figure 15 (e)).

Near a singular point of F or vertex of S, the foliation has one of the following
local pictures shown in Figure 15.

In (a), the interior of S intersects the binding circle transversely. This is an
interior vertex. In (b), a local maximum or minimum is shown, which is known
as a pole. In (c), there is an interior saddle. A boundary vertex is shown in (d),
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(a) (b) (c) (d) (e)

Figure 15. Singularities of the foliation

which is where the boundary of S intersects the binding circle. A boundary saddle
is given in (e). When a singular point is an interior saddle or a boundary saddle,
we call it a saddle.

An elementary general position argument gives that any embedded surface, with
boundary that is in an arc presentation, may be isotoped into nearly admissible
form, keeping its boundary fixed.

There are various arrangements for the surface S that are closely related to
nearly admissible form. These were introduced by Dynnikov [8] and the author
[17]. We briefly recall these below.

5.8. Admissible form and winding vertices. Let v be a boundary vertex of S.
Pick a properly embedded arc α in S that lies within small regular neighbourhood
of v and with endpoints on each side of v. Then the winding angle of v is |

∫
α
dθ|.

We say that v is a winding vertex if its winding angle is more than 2π.
Admissible form was defined by Dynnikov [8]. The surface is required to nearly

admissible, but also to satisfy some extra conditions which constrain the behaviour
near ∂S. Specifically, there can be at most one winding vertex. There can also be
at most one boundary saddle. Moreover, if there is both a winding vertex and a
boundary saddle, then these are required to lie in the same arc of ∂S.

Dynnikov shows in [8] that if S is an embedded surface and ∂S is connected and
in an arc presentation, then there is an ambient isotopy keeping ∂S fixed taking S
into admissible form.

5.9. Alternative admissible form. A surface S is in alternative admissible form
if it is nearly admissible and it contains no winding vertices.

This was defined by the author in [17]. It has some advantages over admissi-
ble form and some disadvantages. The main advantage is the absence of winding
vertices, which can be problematic. The main disadvantage is that it need not be
the case that a surface can be isotoped into alternative admissible form keeping its
boundary fixed. This is because the constraints that there are no winding vertices
and that there is at most one boundary saddle per arc of ∂S impose restrictions on
the framing of ∂S.

5.10. Generalised admissible form. It will be convenient to consider a further
variation on the above theme, where we permit the surface to have singularities
that are more general than Morse singularities.

We consider R3 with height function z. We say that a surface embedded in
R3 has a generalised interior saddle at the origin if when using cylindrical polar
coordinates near the origin, it has the following form:

{(r, α, z) : z = r2 sin(kα)}
for some integer k ≥ 2. The k = 2 is the case of a Morse saddle.
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We also consider surfaces embedded in the half space {0 ≤ α ≤ π} (which in
Cartesian coordinates is just {y ≥ 0}). We say that the surface has a generalised
boundary saddle at the origin if it has the form

{(r, α, z) : z = r2 sin(kα)} ∩ {0 ≤ α ≤ π}

for some integer k ≥ 2. Thus, at a generalised boundary saddle, the boundary of
the surface is level with respect to the height function z. A generalised saddle is a
generalised interior saddle or a generalised boundary saddle.

We say that a surface is in generalised admissible form if it satisfies (1)-(7) in
the definition of nearly admissible form, except that generalised interior saddles
and generalised boundary saddles are permitted, and it has no winding vertices.

The singular foliation near a generalised interior saddle and a generalised bound-
ary saddle is shown in Figure 16.

Figure 16. Generalised interior saddle and generalised boundary
saddle (in the case k = 3)

5.11. Nearly embedded surfaces. In this paper, it will be necessary to consider
surfaces that are not quite embedded. We say that a surface S in a 3-manifold M
is nearly embedded if S ∩ ∂M = ∂S and S − ∂S is embedded.

Thus, the boundary of a nearly embedded surface is required to lie in ∂M but
it may not be embedded there. However, if one were to remove a very thin regular
neighbourhood of ∂M , the intersection between S and the boundary of the resulting
3-manifold would be a collection of embedded curves. Hence, although ∂S is not
necessarily embedded in ∂M , it is possible to perform a small homotopy to ∂S in
∂M to make it embedded.

We will consider nearly embedded surfaces that are in alternative admissible
form. In this situation, we will require that ∂S is a union of fibres, and so it can
be viewed as being in an arc presentation. However, because ∂S is not necessarily
embedded, its image will not necessarily be a union of disjoint simple closed curves.

5.12. The binding weight of surfaces. For an embedded surface S in nearly
admissible form, its binding weight wβ(S) is |S ∩ S1

φ|. However, when S is nearly
embedded, we use a different definition. A nearly embedded surface is given by a
map f : S → S3. The binding weight wβ(S) of S is |f−1(S1

φ)|. Thus, when ∂S runs
over a vertex several times, this vertex is counted with multiplicity.

5.13. Separatrices and tiles. All the above configurations for a surface share
various common features, which we now describe.

If one removes the vertices and generalised saddles, the result is a foliation of a
subsurface of S.
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A separatrix is a component of a leaf of this foliation that is incident to a gener-
alised saddle. Since every generalised saddle has a different value of θ, the separatri-
ces do not join distinct generalised saddles. They therefore run from a generalised
saddle to a vertex or from a generalised saddle back to itself.

If one removes the singularities, the separatrices and ∂S from S, each component
of the resulting surface is called a tile.

Each tile has a foliation, and since it is non-singular and defined by a global
function θ, this foliation induces a product structure on the tile. Therefore, each
tile is an open annulus or open disc. The separatrices in the boundary of a disc
tile run from a generalised saddle to a vertex. Hence, disc tiles come in three types
(see Figure 17):

(1) square tiles, which have two vertices in their boundary (which may be
identified) and two generalised saddles;

(2) half tiles, which have two vertices in their boundary (which may again be
identified) and one generalised saddle; the arc in the boundary of the half
tile joining the vertices lies in ∂S;

(3) bigon tiles, which have two vertices in their boundary and no generalised
saddles. In this case, the bigon tile is a component of S.

square tile half tile bigon tile

Figure 17. Disc tiles

It is frequently the case that annular tiles can be removed without increasing the
binding weight of the surface, or can be otherwise avoided. Thus, we will frequently
make the hypothesis that a given nearly admissible or generalised admissible surface
contains no annular tiles.

5.14. Relating the number of saddles and vertices.

Lemma 5.5. Let S be a generalised admissible surface with no annular tiles. Let
vi(S) denote the number of interior vertices, let vb(S) be the number of boundary
vertices, let xi(S) be the number of generalised interior saddles, and let xb(S) denote
the number of generalised boundary saddles. Then

2vi(S) + vb(S)− 2xi(S)− xb(S) ≥ 2χ(S).

Proof. We consider first the case where S is closed. The singular foliation can
be used to create a cell structure on S, as follows. The 0-cells are the vertices.
Within each tile, we pick a non-singular leaf, and declare it to be a 1-cell. The
complement of this 1-skeleton is a collection of discs, each of which forms an open
regular neighbourhood of a generalised saddle. Here, we are using the assumption
that there are no annular tiles. Let V , E and F be the number of 0-cells, 1-cells
and 2-cells of this cell structure. Then 4F ≤ 2E, because each 2-cell is at least
4-valent. Hence,

χ(S) = V − E + F ≤ V − F = vi(S)− xi(S),
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proving the lemma in this case.
Note that when a component of S contains a bigon tile, then that tile is all of

the component. The required formula is readily verified in this situation. So we
may assume that S contains no bigon tiles.

When S has non-empty boundary, we form its double Ŝ. The singular foliation
on S induces one on Ŝ. Since ∂S is in an arc presentation and S has no bigon
tiles, no annular tiles on Ŝ are formed. Thus, we may create a cell structure on
Ŝ, exactly as in the closed case. Let V , E and F be its number of 0-cells, 1-cells
and 2-cells. Again each 2-cell is at least 4-valent, because it arises either from an
interior generalised saddle of S, or from two generalised boundary saddles fused
together. Hence,

2χ(S) = χ(Ŝ) = V − E + F ≤ V − F = 2vi(S) + vb(S)− 2xi(S)− xb(S).

�

6. Admissible partial hierarchies

6.1. Definition. We are given a link K in an arc presentation. This arc presenta-
tion corresponds to a rectangular diagram for K.

We give the exterior of K a boundary pattern as described in Theorem 3.3. On
each component of ∂N(K), this pattern is either empty or single curve with slope 0
or ±1. We stabilise the arc presentation enough times so that for each component
of ∂N(K) with non-empty boundary pattern, the slope of this boundary pattern is
equal to the writhe of the relevant component of K in its rectangular diagram.

Let S1, . . . , Sn be a partial hierarchy for the exterior K. We set S0 to be ∂N(K).
Thus, although S0 is not properly embedded in the ambient manifold S3\\N(K),
we can still think of it as, in some sense, the first surface of the hierarchy. Because
of the above stabilisations, the initial boundary pattern can be realised as a union
of fibres in the singular foliation on ∂N(K).

We say that S0, . . . , Sn is in admissible form if each Si is an embedded nearly
admissible surface with no annular tiles and no winding vertices, and ∂Si avoids all
the saddles in the earlier surfaces. Note that we require each Si to be embedded,
rather than just nearly embedded. The binding weight of this partial hierarchy is∑n
i=0 wβ(Si).
Let M = Mn+1 be the final manifold in the partial hierarchy arising from

S1, . . . , Sn. It inherits a boundary pattern P = Pn+1 which is in an arc pre-
sentation. Each component of ∂Mn+1\\Pn+1 lies in some Si and so is in nearly
admissible form.

6.2. A polyhedral decomposition for an admissible partial hierarchy. Let
H be the partial hierarchy in admissible form for the exterior of the link K. We
now explain how to construct a polyhedral decomposition ∆ of the exterior of K
that contains H as a subcomplex. Note that the boundary of M is comprised of
parts of H and so inherits the singular foliation of H.

The polyhedral decomposition will be an expression of the exterior of K as a
union of polyhedra with some faces identified in pairs. The polyhedra that we
will use will be expanded tetrahedra, expanded turnovers, and rugby balls, which are
defined as follows.
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A bigon is a cell complex, consisting of two 0-cells, two 1-cells, and a 2-cell. The
1-cells are each attached to both 0-cells, so that the 1-skeleton is a circle. The
boundary of the 2-cell is attached homeomorphically onto the 1-skeleton.

An expanded tetrahedron is a 3-ball that is obtained from a solid tetrahedron by
replacing some of its edges by bigons.

A turnover is a cell complex, consisting of three 0-cells, three 1-cells, two 2-
cells and a 3-cell. The 1-cells are attached to the 0-cells so that the 1-skeleton
is a circle. The boundary of each 2-cell is attached homeomorphically onto this
circle. The 2-skeleton is then a 2-sphere, to which the boundary of the 3-cell is
attached homeomorphically. An expanded turnover is a 3-ball that is obtained
from a turnover by replacing some 1-cells by bigons.

A rugby ball of order n is a cell complex consisting of two 0-cells, n 1-cells,
n 2-cells and a 3-cell. Each 1-cell joins the two 0-cells. Each 2-cell is a bigon.
The 2-skeleton forms a 2-sphere to which the boundary of the 3-cell is attached
homeomorphically.

Figure 18. The polyhedra used in the polyhedral decomposition.
Left: expanded tetrahedron. Middle: expanded turnover. Right:
rubgy ball of order 3.

The binding circle intersects H ∪ N(K) in a finite collection of points and arc.
Cutting the binding circle at these points and arcs gives a union of closed arcs. We
declare that each of these is a 1-cell of ∆.

The complement of the binding circle is foliated by pages Dt, where t ∈ R/(2πZ).
We say that a page Dt contains an event if it has non-empty intersection with the
boundary of some surface of the partial hierarchy, or some Morse singularity of
some surface in the partial hierarchy. There are only finitely many events, and in
each component of the complement of these events, the intersections Dt ∩ H are
isotopic as t varies. Between the event pages, we will also pick a finite collection of
pages and these, together with the event pages, will be called specified pages.

Consider an event page that contains an interior saddle of a surface in H. Then
just below this point, two arcs of the surface come together, forming the interior
saddle, and then just above the interior saddle, they separate into two different
arcs. We pick a page just below and a page just above the interior saddle, and we
declare that these are specified pages. Each of these pages intersects the exterior of
H in a collection of discs. We triangulate each of these discs by coning from a point
on the boundary, unless a disc is a bigon, in which case we leave it untouched. We
ensure that the arcs involved in the interior saddle move are edges of the polyhedral
decomposition. These pages are now decomposed into triangles and isolated bigons.
Despite the possible existence of bigons, we call this a ‘triangulation’.

Now suppose that the event page contains an arc α in the boundary of one of
the surfaces Sj in H. This runs over a previous surface Si in the hierarchy. By
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assumption, this arc in Si misses its interior saddles and boundary saddles. Hence,
near α, one part of Si\\α lies just above α and the other part lies just below α.
There are two possible arrangements for Sj : either α contains a boundary saddle
of Sj or it does not.

Let us first consider the case where α does not contain a boundary saddle of
Sj . Then near α, Sj lies entirely above α or entirely below it. We have three
sheets of H emanating from this arc. Say that one sheet lies below the arc and two
sheets lie above. We declare that a page just above and a page just below the event
page are specified pages. Between the higher page and the event page, we insert a
rugby ball of order 3. The event page intersects the exterior of H in discs. Pick a
triangulation of these discs by coning from points on the boundary. This specifies
triangulations in the two nearby specified pages. Between these triangulations, we
insert expanded turnovers and expanded bigons. We will consider later the case
where α contains a boundary saddle.

When two event pages are adjacent, the discs in the specified page just below
the higher event page and in the specified page just above the lower event page
have been triangulated. These triangulations need not agree. We can change one
triangulation into the other using 2-2 Pachner moves. Pick such a sequence of 2-2
Pachner moves that is as short as possible. We insert new specified pages, the
number being one less than the number of Pachner moves. We triangulate these
as indicated by the Pachner moves. Each of these moves can be realised by the
addition of an expanded tetrahedron. Two of the triangular faces of the expanded
tetrahedron lie in a specified page, as do the other two triangular faces. Between
these, the expanded tetrahedron has four bigons. For each of the triangles not
involved in the 2-2 Pachner move, we insert an expanded turnover.

We now need to explain how to triangulate the space between the pages just
below an interior saddle and just above. The triangulations on these pages mostly
agree. Where they do agree, we insert expanded turnovers. The remainder lies near
the separatrices emanating from the interior saddle. We declare that the interior
saddle point is a vertex of ∆, and that the four separatrices emanating from it are
edges of ∆. The interior saddle is contained in some surface of the hierarchy H,
and near this interior saddle, there is a square in the surface bounded by edges of ∆
lying in the adjacent pages. This square is divided into 4 triangles by the interior
saddle and its incident separatrices. We declare that each of these triangles is a
face of ∆. The 4 separatrices lie in a page, and this has also been decomposed by
other edges of ∆. In the complement of these edges, there are 4 triangles that are
incident to the separatrices. We also declare that these 4 triangles are faces of ∆.
We attach polyhedra of ∆ onto these 4 faces. Four of these polyhedra are expanded
tetrahedra, and four are expanded turnovers. See Figure 19.

When there is a boundary saddle in some Sj , ∆ is defined similarly. The bound-
ary saddle is a vertex of ∆. The three separatrices in Sj emanating from it are
edges of ∆. On each side of Sj , we insert an expanded tetrahedron and an ex-
panded turnover.

Note that by construction, the boundary pattern P for the exterior of H is a
subcomplex of the 1-skeleton of the polyhedral decomposition. This is because the
boundary pattern is a union of fibres, each of which is part of the boundary of a
surface in the hierarchy. This therefore lies in an event page and becomes an edge
of ∆.
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Event level

Level just below
Binding circle

Level just above

An expanded tetrahedron A neighbourhood of the saddle

Figure 19. An expanded tetrahedron lying near an interior saddle

The hierarchy H is a subcomplex of ∆, and hence the exterior of H inherits a
polyhedral decomposition ∆M .

6.3. A triangulation for an admissible partial hierarchy. In the previous
subsection, we defined a polyhedral decomposition ∆ for the exterior of the link,
with the admissible partial hierarchy H as a subcomplex. In this section, we show
that this can be collapsed to a triangulation T . We collapse each rugby ball to a
single edge, in such a way that each edge of the rubgy ball maps homeomorphically
onto the new edge. We collapse each expanded turnover to a single triangular face.
Again, each edge of the expanded turnover is mapped homeomorphically to an edge
of the triangle. We collapse each expanded tetrahedron to a tetrahedron. This gives
a triangulation T for the link exterior.

Note that, in principle, this sequence of collapses might create a topological
space that is not a 3-manifold. For example, suppose that a sequence of expanded
turnovers were glued together in a circular fashion, so that they are indexed by the
integers modulo n, and so that the expander turnover with index i is glued the one
with index i−1 and the one with index i+1 along their triangular faces. Then when
these expanded turnovers are collapsed, they are collapsed to a single triangle, and
hence points in this triangle are not 3-manifold points. However, it is easy to check
that in our situation, we do obtain a triangulation for the link exterior.

By performing the same collapses to ∆M , we obtain a triangulation TM for M .

6.4. Bounding the number of tetrahedra.

Lemma 6.1. Let H = {S0, S1, . . . , Sn} be an admissible partial hierarchy for the
exterior of K. Let w be its binding weight. Then the total number of event pages
is at most 2(w −

∑n
i=1 χ(Si)).

Proof. An event page occurs when some surface Si has an interior saddle or when
its boundary has an arc in a page. The number of interior saddles of the surface
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Si is xi(Si), which is at most 2xi(Si) + xb(Si). By Lemma 5.5, this is at most
2vi(Si)+vb(Si)−2χ(Si). So the sum of the number of interior saddles and boundary
vertices is at most 2(vi(Si)+vb(Si)−χ(Si)). Summing this over i gives the required
upper bound on the number of event pages. �

Lemma 6.2. The total number of specified pages is at most 4w(w −
∑n
i=1 χ(Si)).

Proof. Consider a specified page just below or just above an event page. This inter-
sects the exterior of H in discs. Some of these are bigons which are not triangulated,
and some of these are triangles. The remainder are polygons with at least four edges
in their boundary. Each edge of each polygon is either an arc in the binding circle
or an arc in the interior of the page. There are at most w of the former arcs. There
are at most w/2 arcs in the interior of the page, and each contributes at most two
edges to the boundaries of the polygons. So the polygons have a total of at most
2w sides. Each of these discs has been triangulated by coning from a vertex in its
boundary. Now, the number of 2-2 Pachner moves relating two such triangulations
of a polygon with n sides is at most n − 2. Hence, the number of 2-2 Pachner
moves needed to relate the two triangulated specified pages is at most 2w − 2. So,
the number of specified pages strictly between two adjacent event pages is at most
2w − 1. Adding the number of event pages gives the required bound. �

Lemma 6.3. The number of tetrahedra in the triangulation T of the link exterior
is at most 16w(w −

∑n
i=1 χ(Si)). This is also an upper bound for the number of

tetrahedra in TM .

Proof. The tetrahedra in the triangulations T and TM come from expanded tetra-
hedra of the polyhedral decompositions ∆ and ∆M . We observe that between two
specified pages, neither of which are event pages, there is at most one expanded
tetrahedron. Between any event page and an adjacent specified page, there are at
most four expanded tetrahedra. The result now follows from Lemma 6.2. �

Lemma 6.4. The number of expanded turnovers in the polyhedral decomposition
∆ is at most 8w2(w −

∑n
i=1 χ(Si)).

Proof. Between adjacent specified pages, there are at most 2w expanded turnovers.
Now apply Lemma 6.2. �

Lemma 6.5. Each edge of T has pre-image in ∆ consisting of at most 8w(w −∑n
i=1 χ(Si)) edges. Similarly, each edge in TM has pre-image in ∆M consisting of

at most 8w(w −
∑n
i=1 χ(Si)) edges.

Proof. The edges of T are obtained by collapsing bigons of ∆. Within each page,
each edge is incident to at most one bigon. In adjacent specified pages, edges of ∆
may be joined by bigons. So the number of edges of ∆ collapsed to a single edge
of T is at most twice the number of specified pages. Now apply Lemma 6.2. The
same argument also applies to the edges in TM . �

Lemma 6.6. For each point of intersection between ∂M and the binding circle,
the number of edges of ∆M that are incident to that vertex is at most 4w2(w −∑n
i=1 χ(Si)). This is also an upper bound for the number of edges of TM that are

incident to a vertex in ∂M .



AN UPPER BOUND ON REIDEMEISTER MOVES FOR EACH LINK TYPE 52

Proof. We see from the construction of ∆ in Section 6.2 that each edge lies in a
specified page. It runs from a vertex of H either to another vertex or to a saddle.
Therefore, in any page, the number of edges running from a given vertex is at most
w, the binding weight of the partial hierarchy. So, the total number of edges of
∆M emanating from a given vertex of H is at most w times the number of specified
pages, hence at most 4w2(w −

∑n
i=1 χ(Si)) by Lemma 6.2. When ∆M is collapsed

to form TM , several edges may be combined to a single edge, but the number of
edges emanating from a given vertex in ∂M does not go up. �

6.5. A handle structure for the exterior of the partial hierarchy. Let M
be the exterior of the partial hierarchy H. We can attach a partial collar onto ∂M ,
as follows. For each edge of ∆M in ∂M , attach a bigon along one of the bigon’s
edges. For each triangle of ∆M in ∂M , attach on an expanded turnover with three
bigons in its boundary. Identify each of these bigons with the bigon incident to the
relevant edge in ∂M .

Let ∆̂M be this new polyhedral decomposition of M , and let K be the dual
handle structure. Recall that this has an i-handle for each (3− i)-cell of ∆̂M that
does not lie wholly in ∂M .

For example, dual to the expanded tetrahedron shown in Figure 19, there is
0-handle of K. Its intersection with the 1-handles and 2-handles is shown in Figure
21.

Suppose that S is a surface properly embedded in M that is in general position
with respect to TM . The inverse image of S is a surface in ∆M , which we will call
S′. This also gives a surface Ŝ that is standard in the handle structure K.

Lemma 6.7. Let S be a surface properly embedded in M that is in general position
with respect to TM , and let Ŝ be the resulting surface in K. Then the extended
weight of Ŝ is at most 40w(w −

∑
i χ(Si))w(S), where w is the binding weight of

H and w(S) is the weight of S in TM .

Proof. The polyhedral decomposition ∆M collapses to TM . By Lemma 6.5, each
edge of TM has pre-image in ∆M consisting of at most 8w(w −

∑n
i=1 χ(Si)) edges.

So, the inverse image of S in ∆M has weight at most 8w(w −
∑n
i=1 χ(Si))w(S).

There is a 1-1 correspondence between the edges of ∆M not lying in ∂M and the
2-handles of K. Hence, 8w(w−

∑n
i=1 χ(Si))w(S) is an upper bound for the weight

of Ŝ in K.
Each arc of intersection between S and a face of TM has both its endpoints on

edges of TM . The same is true of the inverse image of S in ∆M . Hence, each
component of intersection between Ŝ and a 1-handle of K is incident to a 2-handle
of K. Each 2-handle of K runs over at most four 1-handles of K. Hence, the number
of intersections between Ŝ and the 1-handles of K is at most 4 times the weight of
Ŝ. Therefore, the extended weight of Ŝ in K is at most 40w(w−

∑n
i=1 χ(Si))w(S),

as required. �

6.6. Making a surface transverse to P . We are considering a partial hierarchy
H in admissible form. We also suppose that it is well-spaced, which means that it
satisfies all the following conditions:

(1) the closure of the union of tiles in H adjacent to P is a regular neighbour-
hood N(P ) of P ;
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(2) for each vertex s of H that lies on P and for each annular component A′

of N(P )\\P containing s, there is a tile in A′ incident to s such that the
other vertex of the tile lies on ∂A′ − P ;

(3) the above vertices include all the vertices lying in A′.

Section 7.2 describes how to make a hierarchy well-spaced, and Figures 25 and 26
show examples of the singular foliations in a well-spaced hierarchy.

We have defined a polyhedral decomposition ∆ and a triangulation T for the link
exterior. These restrict to a polyhedral decomposition ∆M and a triangulation TM
for the exterior M of H. Suppose that S is a surface properly embedded in M that
is normal with respect to TM . In this subsection, we will explain how to pattern-
isotope ∂S so that afterwards it intersects the annuli N(P )\\P in a collection of
essential arcs, each of which intersects P transversely at a single point away from
the vertices of P .

Let A′ be a component of N(P )\\P , which is an annulus. By assumption, for
each vertex s of H that lies on A′∩P , there is a tile in A′ incident to s such that the
other vertex of the tile lies on ∂A′−P . This tile is a union of faces of T . Each such
face has corners that are vertices of H or a saddle, and there is at most one corner
of the latter type. Hence, there is some edge of T running across the tile from s
to the other vertex. Pick one such edge for each vertex of H on P ∩ A′. We may
choose a product structure S1×[0, 1] on A′ so that each of these edges is of the form
{∗}× [0, 1] for some point {∗} on S1. Pick a very thin regular neighbourhood A′′ of
A′ ∩ P in A′ that also intersects these edges vertically. There is an isotopy of ∂M
that expands A′′ to all of A′, and that respects the product structures on A′′ and A′.
Now consider the curves ∂S. We may assume that ∂S intersects A′′ in a collection
of vertical arcs. Hence, when we expand A′′ to fill A′, afterwards the intersection
∂S ∩ A′ is a union of vertical arcs in A′, as required. At certain times during the
isotopy, the image of ∂S passes through a vertex on ∂A′−P . The number of times
this happens is equal to the number of intersections between the initial position of
∂S and the edges running from the vertices on ∂A′−P to P . Hence, the number of
times this happens is at most w(∂S). We can realise the isotopy of ∂S as an isotopy
of S supported in a collar neighbourhood of ∂M . At each moment in time that ∂S
passes through a vertex on ∂M , we obtain new intersection points between S and
the edges of TM . By Lemma 6.6, the total number of these intersection points is at
most 4w2(w −

∑n
i=1 χ(Si))w(∂S).

6.7. Homotoping S into alternative admissible form. As in the previous
subsection, suppose that the partial hierarchy H is in admissible form and is well-
spaced. Again suppose that suppose that S is a surface properly embedded in M
that is normal with respect to TM . We also suppose that S is incompressible and
boundary-incompressible with no component that is a sphere or disc intersecting P
at most twice.

We pattern-isotoped S so ∂S intersects each component of N(P )\\P in a collec-
tion of essential arcs, each of which intersects P transversely at a single point away
from the vertices of P . This isotopy need not have kept S normal in TM .

The boundary of S need not be in an arc presentation, in other words, a con-
catenation of properly embedded arcs in pages. We will homotope ∂S to achieve
this. The homotopy runs from time 0 to time 1, say. For all times in the interval
[0, 1), the curves remain embedded. But at time 1, this need not be the case. This
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homotopy therefore specifies a modification to S near the boundary, taking S to a
nearly embedded surface. In fact, S will embedded away from the binding circle.

Recall that associated with the surface S in TM , there are surfaces S′ and Ŝ in
∆M and K. The homotopy that we will perform to S will also induce a homotopy
to S′ and Ŝ. We start by describing the homotopy to S.

Since the hierarchy H is in admissible form, ∂M inherits the structure of a union
of tiles. The boundary pattern P is a union of fibres, each running between vertices.
We now homotope ∂S, via a homotopy supported away from P , as follows. In each
triangle of TM in ∂M , we homotope ∂S near the edges incident to a saddle. We
homotope its points of intersection along that edge away from the saddle until they
run through the vertex at the other end of the edge. (See Figure 20.)

Figure 20. Homotoping the boundary curves of a surface

The reason that we do not require ∂S to be embedded is as follows. The surface
S is constructed using normal surface theory, and all we have is an exponential
upper bound on its weight. Hence, ∂S may run over the tiles in S0 ∪ · · · ∪ Sn
many times. So it might not be possible to isotope ∂S to become a union of fibres
and preserve the property that it is embedded, without somehow introducing many
more vertices to S0 ∪ · · · ∪ Sn. This runs counter to our main goal, which is to
control the binding weight of the hierarchy.

This homotopy creates the surfaces S′ in ∆̂M and Ŝ in K. The latter can also be
viewed as a properly embedded surface in the handle structure K. Moreover, the
homotopy that we have applied to Ŝ is actually an isotopy. This is because in K,
we have removed a regular neighbourhood of the vertices on the binding circle, and
away from the binding circle, the surface really is embedded. An example of this
isotopy is shown in Figure 21. Note that after this isotopy, the surface is disjoint
from the 2-handles that are dual to the edges incident to saddles.

This surface Ŝ can easily be made standard with respect to K, but it is not nec-
essarily normal. However, a further pattern-isotopy makes Ŝ normal with respect
to K, by Lemma 4.2. This does not increase the extended weight of the surface.

Note also that this isotopy does not increase the number of components of in-
tersection with any 2-handle. Hence, the resulting surface is also disjoint from the
2-handles that are dual to all the edges incident to saddles. This imposes the fol-
lowing restrictions on how ∂Ŝ runs over ∂M . Consider any face F of a polyhedron
of ∆M that lies in ∂M . Dual to this polyhedron is a 0-handle of K and dual to
the face is a 1-handle incident to the 0-handle, since we enlarged ∆M to ∆̂M . In
the case where F is triangular, it has three vertices, one of which is a saddle and
the other two being on the binding circle. The 1-handle of K dual to F has three
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A tetrahedron of T The expanded tetrahedron
and a normal square

The copy of the square in this 0-handle

The resulting elementary
disc with its induced foliation

Boundary saddle

The 0-handle of K dual 
to the expanded tetrahedron

Isotoping away from the saddle A possible result of normalisation

The corresponding disc in Δ

of ∆

Figure 21. Isotoping the boundary curves of a surface

2-handles incident to it. Two of these are dual to edges of ∆M incident to the
saddle, and so Ŝ misses these. So, up to handle-preserving isotopy, there is only
one possible configuration for each component of intersection between S and the
1-handle. This corresponds to an arc in F joining the two vertices on the binding
circle. In the case where F is a bigon, both of its vertices are on the binding circle.
Again, there is only one possible configuration for each component of intersection
between the dual 1-handle and Ŝ.

We now summarise the result of the procedure so far.

Lemma 6.8. Let S be a compact orientable incompressible boundary-incompressible
surface properly embedded in M with no component that is a sphere or disc inter-
secting P at most twice. Suppose that S is normal with respect to TM . Then there
is a pattern-isotopy taking S to a surface Ŝ that is normal with respect to K and
with extended weight at most 200w3(w −

∑n
i= χ(Si))

2w(S). This surface Ŝ misses
the 2-handles of K that are dual to the edges incident to saddles. This also induces
a surface (also called Ŝ) in TM that is nearly embedded, that has boundary in ad-
missible form, and that has binding weight at most 200w3(w −

∑n
i=1 χ(Si))

2w(S).
It misses the saddles in ∂M as well as the interior of any edge that is incident to
a saddle.
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Proof. We start with the surface S that is normal with respect to TM . As described
in Section 6.6, we then pattern-isotope S so afterwards it intersects each component
of N(P )\\P in a collection of essential arcs. Its weight in TM is then at most

w(S) + 4w2(w −
n∑
i=1

χ(Si))w(∂S) ≤ 5w2(w −
n∑
i=1

χ(Si))w(S).

By Lemma 6.7, the corresponding surface Ŝ in K has extended weight at most
200w3(w −

∑n
i= χ(Si))

2w(S). By Lemma 4.2, we can then isotope Ŝ to a surface
that is normal with respect to K without increasing its extended weight and without
introducing any new intersections with 2-handles. The bound on the extended
weight in K then gives a bound on the binding weight of the surface in TM . �

Thus, we have now specified, for each polyhedron of ∆M , the intersection be-
tween its boundary and Ŝ. In particular, the boundary of Ŝ is in an arc presentation.
We now arrange the intersection between Ŝ and the interior of the polyhedra, using
the following lemmas.

We start by examining the elementary discs of Ŝ in K. The following straight-
forward result classifies elementary normal discs in a rugby ball.

Lemma 6.9. Let D be an elementary normal disc in a rugby ball with an open
regular neighbourhood of its vertices removed. Then D satisfies one of the following:

(1) The boundary of D is a concatenation of two arcs, each of which lies in a
bigon and runs between the vertices of the rugby ball.

(2) The boundary of D runs over each bigon in exactly one arc, which runs
between the two edges of the bigon.

Proof. We refer to the definition of normality in Section 4.1. By (1) in the definition,
∂D runs over the interior of each edge of the rugby ball at most once. By (2), it
runs over each vertex of the rugby ball at most once. By (4), it cannot run over
both a vertex and the interior of an incident edge. By (3), it cannot be comprised
of an arc in a face with endpoints in the same vertex. Hence, the only possibilities
are as described in the lemma. �

Similarly, we have the following classification of normal discs in an expanded
turnover.

Lemma 6.10. Let D be an elementary disc in an expanded turnover with an open
regular neighbourhood of its vertices removed. Then D satisfies one of the following:

(1) The boundary of D is a concatenation of two arcs, one in a bigon and one
in triangular face, each one running between distinct vertices.

(2) The boundary of D runs over each bigon in at most one arc, and it runs
over each triangular face in exactly one arc.

(3) The boundary of D is a concatenation of three arcs, each of which runs
between distinct vertices.

Examples of these possible discs are shown in Figure 22. In (1) and (2) of
each of these lemmas, the disc D can be arranged so that its singular foliation
is a product foliation with no singularities. But in (3) of Lemma 6.10, it has a
singular foliation with one boundary saddle (which may be placed at a vertex of
the expanded turnover).
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Figure 22. Some normal discs in expanded turnovers and in a
rugby ball

Lemma 6.11. Let B be an expanded tetrahedron of ∆M , with an open neighbour-
hood of its vertices removed, that is incident to a saddle of the partial hierarchy H.
Let D be an elementary normal disc in B that misses the 2-handles dual to edges
incident to the saddle. Then ∂D is a concatenation of two or three arcs, each of
which runs between distinct vertices of the expanded turnover. Furthermore, D can
be arranged so that its singular foliation either is a product or has a single boundary
saddle, at a vertex of the expanded turnover.

Proof. The expanded tetrahedron has four triangular faces. Three of these are
incident to the saddle. As shown above, when ∂D intersects one of these three
faces, it does so in an arc joining the two vertices in its boundary that are not the
saddle. Hence, if D intersects the fourth triangular face, it must also do so in arc
running between two distinct vertices of B. For otherwise, it runs over the interior
of an edge of that triangular face, but this then forces ∂D to intersect the interior
of one of the edges of the other three triangular faces, and we have ruled this out.
So, ∂D is a concatenation of arcs, each of which runs between distinct vertices of
B. By normality, it cannot intersect a vertex of B more than once. It also misses
the vertex that is the saddle. Hence, it is a concatenation of two or three arcs. In
each case, we can arrange its singular foliation to be of the specified form. �

See Figure 21 for an example of such a normal disc. A similar case-by-case
analysis gives the following result for an expanded tetrahedron of ∆M that is not
incident to a saddle of the partial hierarchy H. Recall from Section 6.2 that each
triangular face of the expanded tetrahedron lies in some page, with two triangular
faces lying one page, and two lying in another.

Lemma 6.12. Let B be an expanded tetrahedron of ∆M , with an open neighbour-
hood of its vertices removed, that is not incident to a saddle of the partial hierarchy
H. Let D be a normal disc in B. Then D may be isotoped, keeping its boundary
fixed, so that it satisfies one of the following possibilities:

(1) It inherits a product foliation. Its boundary consists of an arc in the union
of the top two triangular faces and an arc in the union of the bottom two
triangular faces, possibly joined by arcs in the bigons.

(2) It inherits a product foliation. Its boundary consists of an arc in a triangular
face and an arc in bigon face, both joining distinct vertices.
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(3) It has a single boundary saddle. Its boundary consists of three, four or five
arcs. If it has four arcs, then two of these lie in the top two triangles or
the bottom two triangles and are incident. If it has five arcs, then two of
these lie in the top two triangles and are incident, and two of the arcs lie in
the bottom two triangles and are incident. The remaining arcs run between
distinct vertices and lie in a bigon or triangular face.

(4) Its boundary runs through the four bigons, with each arc joining one vertex
of the bigon to the other. It inherits a singular foliation with two boundary
saddles, on distinct vertices.

(5) Its boundary consists of six arcs. Two of these lie in the top two triangles
and are incident, and two of the arcs lie in the bottom two triangles and
are incident. Each of the remaining two arcs runs between distinct vertices
and lies in a bigon. This disc has two boundary saddles.

(6) Its boundary runs through each of the four triangular faces and across each
of the bigons. It is disjoint from the vertices and comes from a square in
the collapsed triangulation. It inherits a singular foliation, with a single
interior saddle and with separatrices running to each of the four bigons.

See Figure 23 for examples of these discs.

(4)

(6)

(1) (2)

(3)

(5)

Figure 23. The five possibilities for elementary normal discs in
an expanded tetrahedron, as described in Lemma 6.12

Lemma 6.13. Each elementary normal disc of Ŝ intersects at most 4 separatrices
and most 4 tiles.

Proof. Each separatrix starts at an interior saddle or boundary saddle. Consider
the case of a boundary saddle first. This occurs in an elementary disc as in (3), (4)
or (5) of Lemma 6.12 or as in (3) of Lemma 6.10 or as in Lemma 6.11. Therefore,
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the separatrices starting at a boundary saddle lie wholly within a single elementary
normal disc.

Now consider the case of an interior saddle. This lies in a disc as in (6) of Lemma
6.12, which we will call a square. Just above and below the event page containing the
interior saddle there are two specified pages. These two pages have triangulations
with no vertices of the triangulation in the interior of these pages. Note that S
intersects of these discs in normal arcs. As the height of the pages increase, some
of these arcs come together in interior saddles lying in squares parallel to the given
square. The separatrices emanating from an interior saddle lie in a square. They
then run to bigons in the boundary of the expanded tetrahedron. After that, they
run through discs as in (2) of Lemma 6.10 and Lemma 6.9 until they reach a vertex
on the binding circle. These latter discs do not contain any boundary saddles. So
they each intersect at most one separatrix, and hence intersect at most 2 tiles. We
also deduce that the only separatrices lying in squares are the ones emanating from
the interior saddle. So they intersect 4 separatrices and 4 tiles. �

7. Extending the partial hierarchy

7.1. Overview. Theorem 3.3 provides an exponentially controlled hierarchy for
the exterior of the link K. Let S1, . . . , Sn be the first n surfaces in this hierarchy.
Let S0 be ∂N(K). Suppose that this partial hierarchy is in admissible form, and
let w be its binding weight.

We now explain, in overview, how to extend this partial hierarchy.

(1) Modify the hierarchy so that it is well-spaced, as defined in Section 6.7.
(2) Build a triangulation T and a polyhedral decomposition ∆ for the exterior

of K, with S0 ∪ · · · ∪ Sn as a subcomplex, as described in Section 6.2. Let
TM be the restriction of T to M , the exterior of S0 ∪ · · · ∪ Sn.

(3) Let S = Sn+1 be the next surface in the hierarchy. Since S is exponentially
controlled, we may assume that it has exponentially bounded weight in TM .

(4) Homotope S to a nearly embedded alternative admissible surface Ŝ that
is embedded away from the binding circle, that is normal with respect
to the handle structure K, and with binding weight at most 200w3(w −∑
i χ(Si))

2w(S), as described in Section 6.7.
(5) This bound on the binding weight is too large for our purposes, and so

we modify Ŝ to reduce its binding weight significantly. This may require
exchange moves and also a modification to the earlier surfaces in the hier-
archy.

(6) Modify S0, . . . , Sn, Ŝ further so that Ŝ is embedded, rather than just nearly
embedded.

(7) The surface Ŝ is in generalised admissible form, but we require it to be
alternative admissible. A small perturbation to the surface achieves this.

Step (1) is described in Section 7.2. Step (2) is explained in Sections 6.2, 6.3
and 6.5. Step (4) is described in Section 6.7. Step (5) will require considerable
work and will be explained in Sections 9, 10, 11, 12 and 13. Step (6) is described
in Section 7.3. Step (7) is given in Section 7.4.

7.2. Making the hierarchy well-spaced. We suppose that we have an admis-
sible partial hierarchy S0, . . . , Sn. We now show how to make it well-spaced. The
boundary pattern P forms an embedded graph in an arc presentation. Let F be
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a component of (S0 ∪ · · · ∪ Sn)\\P . We will show how to modify F so that it is
still nearly admissible, with the same boundary, and so that the closure in F of
the union of the tiles incident to ∂F is a regular neighbourhood of ∂F . Performing
this operation for each component of (S0 ∪ · · · ∪ Sn)\\P will make the hierarchy
well-spaced.

Pick a transverse orientation on F . We cut the hierarchy along ∂F and isotope
F a little in this transverse direction. Thus, ∂F no longer becomes attached to P .
We then insert between ∂F and P an annulus A as shown in Figure 24. Specifically,
between each fibre of ∂F and the adjacent fibre of P , we insert another fibre in the
same page. The union of these new fibres will form a core curve C for the annulus
A, which will divide A into two smaller annuli. One of these annuli as attached to
∂F , extends beyond F and then rapidly returns to C. The other annulus emanates
from P initially in the same way that the original copy of F did, but it then rapidly
returns to C. (See Figure 24.)

P

F F

A

P

C

binding circle

Figure 24. Making F well-spaced

A small isotopy places A into nearly admissible form keeping its boundary fixed.
In the case where F has no boundary saddles, the induced foliation on F is then
as shown in Figure 25.

P

F

P

C A

Figure 25. The effect on the foliation

When F has a boundary saddle incident to an arc in ∂F , then one possibility
for the new singular foliation near that arc is shown in Figure 26.

Note that each vertex of ∂F has been replaced by 3 vertices. Since in each
surface Si of the partial hierarchy, the graph (∂S0∪· · ·∪∂Sn)∩Si has vertices with
degree at most 3, we deduce that this gives rise to at most 6 new vertices. Thus,
the binding weight of the hierarchy increases by at most a factor of 7.
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P

F

P

C A

Figure 26. The effect on the foliation near a boundary saddle

7.3. Making the surface embedded. In this subsection, we suppose that we
have a hierarchy S0, . . . , Sn in admissible form. In particular, each surface is em-
bedded. We also have the next surface Ŝ in alternative admissible form, but it
might just be nearly embedded. However, it is embedded away from the binding
circle. We will show how to modify the hierarchy so that all the surfaces end up
embedded.

The exterior of S0 ∪ · · · ∪ Sn is a 3-manifold M . Its boundary has a singular
foliation. The boundary of S maps to a graph Γ in ∂M that is a union of fibres.
We will modify the surfaces S0, . . . , Sn so that Γ becomes a union of disjoint simple
closed curves. We can then make ∂S run along these curves so that it becomes
embedded.

The first stage is to cut S0 ∪ · · · ∪ Sn along Γ. Then isotope the resulting
components of (S0 ∪ · · · ∪ Sn)\\Γ away from Γ but keeping them admissible. The
second stage is to realise ∂S as a collection of simple closed curves in their arc
presentation. The third stage is to thicken ∂S to a union A of admissible annuli in
which ∂S forms the core curves. The final stage is to isotope ∂A so that it runs
along (S0∪· · ·∪Sn)\\Γ. In this way, we replace (S0∪· · ·∪Sn) by a new 2-complex
((S0 ∪ · · · ∪ Sn)\\Γ) ∪ A. The binding weight of this 2-complex has gone up by at
most 3wβ(∂S), since each new vertex is a vertex of A, and A has three vertices for
each vertex of ∂S. See Figure 27.

∂S
Γ

Figure 27. Making S embedded. Left: a neighbourhood of a
vertex in S. The image of ∂S is a graph Γ. Right: Cutting S
along Γ, and thickening ∂S to annuli.

Since the binding weight of S0 ∪ · · · ∪Sn increases by at least the binding weight
of ∂S, we only perform this procedure when the latter quantity is relatively small.
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7.4. From generalised admissible form to alternative admissible form.
Given a generalised admissible surface, we may perturb it to an alternative ad-
missible surface, as follows. Any generalised interior saddle with n singular leaves
emanating from it may be perturbed to (n−2)/2 saddles. An example where n = 6
is shown in Figure 28. Similarly, any generalised boundary saddle with n singular
leaves may be perturbed to (n − 2)/2 saddles (if n is even) or (n − 3)/2 saddles
plus a boundary saddle (if n is odd). This does not affect the binding weight of the
surface.

Figure 28. A small isotopy replaces a generalised interior saddle
with several interior saddles

8. Branched surfaces

8.1. Definitions. A generalised branched surface is a compact generalised 2-complex
B smoothly embedded in a 3-manifold M , with the following extra structure:

(1) At each point x in B, there is a specified tangent plane in Tx(M) that is
denoted by Tx(B). All the 1-cells and generalised 2-cells containing x are
required to have tangent spaces that lie in Tx(B).

(2) As a consequence, for each point x in the interior of a 1-cell, the tangent
plane Tx(B) is divided into two half-planes by the tangent space of the 1-
cell. These are the two sides of the 1-cell. At each such point x, we require
that there are generalised 2-cells on both sides of x or just one side. The
closure of the union of points of the former type is the branching locus of
B. The closure of the union of points of the latter type is ∂B, the boundary
of B.

The generalised 2-cells of B are known as patches. We permit a 1-cell in the branch
locus to have a single patch on each side. A generalised branched surface is known
as a branched surface if each 1-cell either has patches on both sides or it is incident
to a single patch. The union of points of the latter type is the boundary of B and
is denoted ∂B.

We let N(B) be a thickening of B in M . This thickening is almost a regular
neighbourhood, except that ∂B is required to lie in ∂N(B). (This would hold
true for a regular neighbourhood if ∂B ⊂ ∂M , but we will not be making this
requirement.) This thickening has a decomposition as a union of fibres, each of
which is a closed interval. There is a map π : N(B) → B that collapses each fibre
to a point. Away from a small regular neighbourhood of the 1-skeleton of B, π is
the projection map for an I-bundle. We choose this decomposition of N(B) into
fibres so that the following conditions hold:
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(1) For each x ∈ B, the fibre through x is required to have tangent space that
does not lie in Tx(B).

(2) Each fibre intersects ∂N(B) in its endpoints, together possibly with a col-
lection of closed intervals.

(3) When the fibre does not intersect ∂B, these closed intervals in (2) are
required to lie in the interior of the fibre.

The boundary of N(B) decomposes into two subsurfaces:

(1) the horizontal boundary ∂hB, which is the closure of the union of the
endpoints of the fibres;

(2) the vertical boundary ∂vB, which is ∂N(B)\\∂hB.

Each component of ∂vB\\π−1(∂B) is a cusp. Cusps arise near the branching locus
of B. (See Figure 29.)

cusp
N(B)

�B

�B

�B

branching locus

Figure 29. The fibred neighbourhood of a branched surface B

Note that the branched surfaces that we consider are far from generic. In partic-
ular, more than three 2-cells may be incident to a 1-cell of B. This means the cusps
of ∂N(B) can be quite complicated. However, the following result was established
in Lemma 8.1 of [17]. When B ∩ ∂M = ∂B and π−1(∂B) = N(B) ∩ ∂M and at
each x ∈ ∂B, the tangent plane Tx(B) does not equal Tx(∂M), then each cusp is
either an annulus or a disc D such that D ∩ ∂M is two arcs in ∂D.

8.2. Natural handle structure. Let B be a branched surface with a fibred neigh-
bourhood N(B). Suppose that B has only disc patches. Then N(B) has a handle
structure H where each i-handle is a thickened i-cell of B. We term this the natural
handle structure of N(B).

As explained in Section 4, the surface F = ∂H0 ∩ (H1 ∪H2) plays an important
role when considering handle structures. In the case of the natural handle structure,
we can arrange that this surface is a union of fibres. So one could view this as
a fibred neighbourhood of a generalised train track (once this has been suitably
defined). In fact, the branched surface structure imposes further conditions on F ,
as follows.

Let v be a 0-cell of B and let H0 be the associated 0-handle of H. We require
that H0 is a copy of D2× [−1, 1], where the fibres are of the form {∗}× [−1, 1]. The
vertex v has a well-defined tangent space TvB, which we may view as intersecting
∂H0 in ∂D2×{0}. Because B is smoothly embedded, its intersection with ∂H0 lies
within ∂D2 × [−1, 1], provided H0 is chosen appropriately. Moreover, the tangent
planes of B near v all are close to the tangent plane through the equator.
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Similarly, we require that each 1-handle of H is of the form [−1, 1]× [−1, 1]× I,
where the fibres are of the form {∗} × I for a point ∗ ∈ [−1, 1]× [−1, 1].

8.3. Surfaces weakly carried by branched surfaces. A compact surface S is
weakly carried by a generalised branched surface B if S is properly embedded in
N(B) transversely to the fibres of N(B), and also ∂S = S ∩ ∂N(B) lies within
a small regular neighbourhood of the 1-cells of B. Note that we permit ∂S to
intersect the cusps and the horizontal boundary of N(B).

N(B)

weakly carried surfaces

Figure 30. Weakly carried surfaces

When a surface S is weakly carried by B, each patch of B inherits a non-negative
integer, which is the weight of S in that patch. This is equal to the number of
intersections between S and any fibre away from a regular neighbourhood of the
branching locus.

The surfaces that we will consider will be standard in the natural handle structure
on N(B). Such surfaces satisfy one of the conditions of normality, as follows.

Lemma 8.1. Let B be a generalised branched surface in which each patch is a
disc. Let S be a surface weakly carried by B that is standard in the natural handle
structure H on N(B). Then in each 0-handle H0 of H, each disc D of S ∩ H0

satisfies (1) in the definition of normality. That is, ∂D runs over each 1-handle of
F at most once.

Proof. As discussed in Section 8.2, the surface F ∩ ∂H0 lies within ∂D2× [−1, 1] ⊂
∂H0, where ∂D2×{0} is the equator of ∂H0 corresponding to the tangent plane of
the branched surface. Each fibre of N(B) ∩ ∂H0 lies within {∗} × [−1, 1] for some
point ∗ ∈ ∂D2. Each 1-handle of F has a product foliation by fibres, each parallel
to the co-core of the 1-handle. The boundary of the disc D lies within ∂D2× [−1, 1]
and intersects {∗} × [−1, 1] at most once for each ∗ ∈ ∂D2. It therefore runs over
each 1-handle of F at most once. �

8.4. Surfaces carried by branched surfaces. We say that S is carried by a
branched surface B if it is weakly carried and, in addition, S ∩ π−1(∂B) = ∂S.
Thus, in Figure 30, only the lower surface satisfies this condition.

A surface S carried by B is determined, up to fibre preserving ambient isotopy,
by its weights in the patches. The collection of these weights is known as the vector
for S, and is denoted [S].

When surfaces S, S1 and S2 are carried by B, we say that S is the sum of S1

and S2 if [S] = [S1] + [S2]. Then S1 and S2 are summands. There is an intrinsic
characterisation of one carried surface S1 being a summand of another carried
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surface S: this occurs if and only if the weight of S in each patch is at least that
of S1.

8.5. A branched surface carrying an alternative admissible surface. Sup-
pose that we have a hierarchy H in admissible form. We give the exterior of H the
handle structure K described in Section 6.5. Let S be a nearly embedded surface
in the exterior of H in alternative admissible form with no annular tiles. We as-
sume that S is embedded away from the binding circle. Hence, in K, the surface
is actually embedded. We also make the assumption that it is normal with respect
to K. We now construct a branched surface B that carries S.

Since S is nearly admissible, it is a union of tiles. We say that two tiles of S have
the same type if they are normally parallel with respect to the handle structure K.
For each type of tile of S, take one representative of this tile. These tiles will form
the patches of B. When two tiles share a separatrix, the corresponding patches are
glued along a 1-cell of B. This may lead to a sequence of identifications. For exam-
ple, if a patch P1 shares a separatrix with P2, and P2 shares the same separatrix
with a patch P3, then P1 and P3 are, of course, glued along this separatrix.

The result is the branched surface B. Note that each patch of B is a disc and
so B is a 2-complex, rather than a generalised 2-complex. Let N(B) be a fibred
regular neighbourhood of B. We give N(B) its natural handle structure H. For
each i-cell of B, its regular neighbourhood forms an i-handle of H.

We will measure parallelism using the 3-manifold N(B) and its handle structure
H. More specifically, we say that two vertices of S have H-parallel stars if their
stars are normally parallel with respect to H.

Note that S is indeed carried by B, for the following reason. Form a regular
neighbourhood N(S) of S, so that N(S) intersects each handle of K in a union
of elementary normal discs. When two tiles of S are K-parallel, then attach the
space between them to N(S). The result is the 3-manifold N(B). By definition
of parallelism, the region between two normally parallel tiles has the structure as
D × [0, 1] for a disc D, where D × {0, 1} is the two tiles. Thus, D × [0, 1] has the
structure of a union of intervals. These combine to form the fibres of N(B). If
we collapse each of these fibres to a point, we obtain the branched surface B. By
construction, S is a subset of N(B) transverse to the fibres and so it is weakly
carried by B. In fact, S ∩ π−1(∂B) = ∂S, for the following reason. Note that
∂S = S ∩ ∂N(S) lies in the interior of ∂vN(S). The fibred neighbourhood N(B) is
obtained from N(S) by adding to it. But none of these additions affects the interior
of ∂vN(S), and furthermore π−1(∂B) contains ∂vN(S). Hence, S∩π−1(∂B) = ∂S,
and so S is carried by B.

9. Modifications to an admissible surface

When an admissible surface has a vertex of small valence, there is a modification
that can be made to the surface and the arc presentation, which reduces the com-
plexity of the surface. These modifications were key to Dynnikov’s analysis of the
unknot and its spanning disc. Similar moves had also been utilised in the context
of braids by Birman and Menasco [3] and by Bennequin [2].

9.1. Two-valent interior vertex. Let S be a generalised admissible surface. The
star of a two-valent interior vertex s in S is shown in Figure 31.

The arrangement of this star in 3-space is shown in Figure 32.
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x1

x2

s2s s
1

Figure 31. A 2-valent interior vertex and its star
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21

1Sφ

Figure 32. The arrangement of the surface with respect to the arc presentation

There are two separatrices emanating from s. Let t1 and t2 be their θ values,
where 0 ≤ t1 < t2 < 2π. For each t ∈ (t1, t2), there is a leaf of the foliation in Dt
running from s to a vertex s1 in the star of s. For every t ∈ S1

θ − (t1, t2), there is a
leaf of the foliation in Dt running from s to the other vertex s2 in the star of s. We
may suppose, after relabelling if necessary, that the vertices s1, s, s2 occur in that
order around S1

φ.

Let i : S1
φ−{s1, s, s2} → S1

φ−{s1, s, s2} be the following involution. It sends the

interval (s1, s) to the interval (s, s2) linearly, preserving this ordering. Similarly, it
sends (s, s2) to the interval (s1, s) also linearly, preserving this ordering. It fixes
the interval between s2 and s1.

We may now apply the following procedure, which will modify S, and which may
also move the link and indeed any other surfaces in S3, including any surfaces in
the partial hierarchy that have already been constructed.

(1) Remove the star of s from S.
(2) For any leaf of the foliation or arc of the link with an endpoint in φ ∈

S1
φ\{s1, s2}, replace it with a leaf ending at i(φ).

(3) For the leaves of the foliation that ended at s1 or s2, but which were not
part of the star of s, replace them with a leaf ending at s.

This procedure can be achieved via an isotopy of the link and the surfaces. The
effect of this on the rectangular diagram is to perform a generalised exchange move
(see [8]). The effect on S is to remove the star of s from S, and to identify the
leaves running from s1 in the boundary of this star with the leaves running from
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s2. Therefore this decreases the binding weight of S by 2. It has no effect on the
singular foliation in the remainder of S, and no effect on the singular foliation of
the other surfaces.

9.2. Three-valent interior vertex. Let s be a 3-valent interior vertex of S. Let
s2, s3, s4 be the three vertices in its star. After relabelling, we may suppose that
these vertices occur in the order s, s2, s3, s4 around S1

φ. Then the singular foliation

near s is as shown in Figure 33. (In the figure, only saddles are shown for simplicity,
but they may be generalised saddles.) Each generalised saddle has an orientation.
Here, one picks a transverse orientation on S near s. If the transverse orientation
on S at a generalised saddle points in the direction of increasing θ, we say that
it is positive. Otherwise it is negative. There are three generalised saddles in the
boundary of the star of s. Therefore, there are two, x1 and x2 say, that have
the same orientation. By relabelling if necessary, we may assume that x1 is the
generalised saddle involving s, s2 and s3, and that x2 is the generalised saddle
involving s, s3 and s4. Let t1 < t2 be the θ values of these saddles. Note that
t1 6= t2 because the pages Dt1 and Dt2 are distinct at s. So x1 and x2 are definitely
distinct generalised saddles.

x1x2

2s s

3s

4s 2s s

3s

4s

Figure 33. A 3-valent interior vertex

In previous work on this problem [8], the following procedure was used. The
first stage of the modification was to remove all events from the interval (t1, t2).
This was achieved by moving all saddles in the the interval (t1, t2) with separatrices
ending in (s, s3) into the future, and all saddles with separatrices ending in (s3, s)
into the past. Similarly, all boundary arcs in the interval (t1, t2) with endpoints in
(s, s3) move into the future, and those with endpoints in (s3, s) move into the past.
Then one increases the θ-value of x1 until it equals that of x2, and then is slightly
greater than it. The new singular foliation is shown in Figure 33. The effect of this
process on the singular foliation is to turn s into a 2-valent interior vertex. One
can then perform the procedure described in Section 9.1 to remove this vertex.

In this paper, we will do something that is a little different. Again, we remove
all events from the interval (t1, t2), by moving some into the future and some into
the past. And again, we will increase the θ-value of x1, but we will stop when
x1 and x2 have the same θ-values. These can then be combined to form a single
generalised saddle. The effect on the singular foliation of S is shown in Figure 34.
Once again, the vertex s has become 2-valent, and it can be removed using the
method in Section 9.1.
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Figure 34. The modification used in this paper

9.3. Low-valence boundary vertices. For a vertex s on the boundary of a gen-
eralised admissible surface S, there are two types of separatrix that are incident to
it: those lying in ∂S, and those lying in the interior of S. We say that the bound-
ary valence db(s) is equal to the number of separatrices in ∂S that are incident
to s. The interior valence di(s) is the number of interior separatrices incident to
s. We say that a vertex s is a low-valence boundary vertex if it lies on ∂S and
2di(s) + db(s) < 4. Thus, these vertices fall into one of five possible types:

(1) db(s) = 0 and di(s) = 0.
(2) db(s) = 0 and di(s) = 1.
(3) db(s) = 1 and di(s) = 0.
(4) db(s) = 1 and di(s) = 1.
(5) db(s) = 2 and di(s) = 0.

Case 1 cannot occur, because a vertex cannot have zero valence unless the com-
ponent of S containing it is a single bigon tile. The remaining cases are shown in
Figure 35.

ss

s

d (s) = 0,   d (s) = 1b i

s
d (s) = 1,   d (s) = 1b i d (s) = 2,   d (s) = 0b i

d (s) = 1,   d (s) = 0b i

Figure 35. Low-valence boundary vertices

In previous papers [8, 17], such an arrangement usually specifies an ambient
isotopy of ∂S. For example, when considering arc presentations of the unknot,
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which bounds a spanning disc S, Case (2) above leads to an isotopy of the unknot,
which results in a sequence of cyclic permutations and exchange moves, followed
by a destabilisation. We want to do something similar here, but simply moving ∂S
would appear to be problematic. The boundary of S lies in earlier surfaces of the
hierarchy, and this needs to remain the case. We therefore introduce a completely
new type of modification, called a wedge insertion.

9.4. Wedge insertion. Let M be the exterior of an admissible partial hierarchy.
Let P be its boundary pattern. Let D be a nearly admissible disc embedded in M
disjoint from P , with D ∩ ∂M a single arc in ∂D, and where the remainder of ∂D
is an arc in some page. Then the associated wedge W is a regular neighbourhood
of D in M . The 3-manifold M ′ = M\\W is obtained inserting the wedge W into
M . (See Figure 36.)

It is clear that, after a small isotopy, ∂M ′\\P may be placed in nearly admissible
form. Moreover, the singular foliation on ∂M ′ can be determined from that of M
and D. We will only be concerned with the binding weight of ∂M ′, which one can
arrange to be at most the binding weight of ∂M , plus twice the binding weight of
D. When D is the closure of the star of a low-valence boundary vertex, its binding
weight is at most 3 and so the binding weight of ∂M increases by at most 6.

∂M ∂M'

Figure 36. Inserting a wedge into M

We will apply this when there is a low-valence boundary vertex. We take D to
be the star of this vertex. The effect of this is to remove this vertex, and thereby
reduce the binding weight of S. However, it also makes ∂M more complicated, and
therefore this move needs to be applied carefully and sparingly.

In our situation, M is the exterior of an admissible partial hierarchy for K.
We are assuming that D is disjoint from the boundary pattern P of M , and so it
intersects a single surface S′ in this partial hierarchy. We can view the insertion of
the wedge W as being achieved by an isotopy of S′. This isotopy slides S′ across
W , replacing S′ ∩W with ∂W\\S′.

9.5. Parallelism. The above moves do all simplify the surface S, in the sense that
they reduce its binding weight. However, they do so at a cost. In the case of the
2-valent and 3-valent interior vertex, they require a generalised exchange move, and
this is achieved using a sequence of Reidemeister moves. In the case of a low-valence
boundary vertex, the link does not need to be moved, but this modification does
make the earlier surfaces in the partial hierarchy more complicated. We therefore
need to ensure that we use as few of these moves as possible. As in [17], the key is
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to perform a variation of these moves, each of which has the same cost in terms of
Reidemeister moves or the effect on the earlier parts of the hierarchy, but which lead
to a much more substantial decrease in the binding weight of S. We will describe
these moves in the next section.

10. Parallelism and envelopes

In the previous section, we described several modifications that one can make to a
generalised admissible surface. As we have already mentioned, it will be important
that when we perform these moves, we take advantage of parallelism. Initially, we
will say that two parts of S are parallel if they are normally parallel in the handle
structure H. Recall from Section 8.5 that H was a handle structure for the fibred
regular neighbourhood N of a branched surface B that carries S. As we modify
S, we will also need to modify B, N and H. In this section, we will describe these
modifications.

10.1. Distinguished subsurfaces. We will keep track of disjoint distinguished
subsurfaces X and Y in ∂N . We initially set X to be ∂hN and set Y = ∅. As in
Section 4.4, ∂X ∪ ∂Y is a union of standard curves in H.

N

∂M

S

P

P X

Figure 37. The arrangement of N , S and X

10.2. Admissible envelope. We formalise the properties of S, B, N and H in
the following definition. It will also be useful to keep track of the two disjoint
distinguished subsurfaces X and Y , and the boundary pattern P .

We say that (N,X, Y, P ∩N,H, S) is an admissible envelope if

(1) N is a fibred regular neighbourhood of a generalised branched surface with
only disc patches.

(2) H is the natural handle structure for N .
(3) X and Y are disjoint subsurfaces of ∂N with ∂X ∪ ∂Y standard in H.
(4) Each component of ∂hN lies in X or Y or is disjoint from both.
(5) P ∩N is a collection of disjoint arcs properly embedded in ∂vN with end-

points in X and is otherwise disjoint from X ∪ Y . Each such arc lies in a
0-handle of H, and at most one arc lies in each 0-handle.

(6) S is a surface weakly carried by N that is standard with respect to H.
(7) S is disjoint from X.
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(8) S is in generalised admissible form with no annular tiles.
(9) Each 2-handle of H is a regular neighbourhood of a tile of S, and all the

components of intersection between S and this 2-handle inherit correspond-
ing singular foliations. In particular, each 2-handle of H contains at least
one tile of S.

(10) For each 1-handle H1 of H, each component of H1 ∩ S is a regular neigh-
bourhood either of a separatrix or of an arc in ∂S joining two vertices and
not containing a generalised boundary saddle.

(11) For each 0-handle H0 of H, H0 ∩S consists either of a collection of regular
neighbourhoods of vertices of S, or of a collection of regular neighbourhoods
of generalised saddles of S (but not a mixture of the two). We refer to 0-
handles of these types as vertex or saddle 0-handles.

10.3. The role of the distinguished subsurface X. The reason for introducing
the distinguished subsurface X is as follows. Consider a vertex v of S on the
boundary of M , for example as in Figure 38. This lies in a 0-handle H0 of H. As
explained in Section 8.2, this 0-handle is identified with D2 × [−1, 1], where the
fibres of N are of the form {∗}× [−1, 1]. Hence, X ∩ (D2× [−1, 1]) = D2×{−1, 1}.
Attached to this 0-handle are 1-handles and 2-handles, and these also have an I-
bundle structure, although the I-fibres of these handles intersect D2 × [−1, 1] in
closed intervals in {∗} × [−1, 1] rather than necessarily the whole of {∗} × [−1, 1].
Since H0 is incident to ∂M , there is an arc α in ∂D2 such that H0∩∂M = α×[−1, 1].
In particular, no handles are attached to (α− ∂α)× [−1, 1].

As discussed in Section 4, the surface F = H0 ∩ (H1 ∪ H2) plays an important
role. This has a handle structure with F0 = H0 ∩ H1 being the 0-handles and
F1 = H0 ∩ H2 equalling the 1-handles. Consider the 0-handles of F0 incident to
some component of ∂α × [−1, 1]. Arranged along this component, there may be
several 0-handles of F0. Consider one 0-handle of F that is outermost in ∂α×[−1, 1].
The intersection between S and this 0-handle of F consists of arcs. Note that there
is at least one such arc, since every handle of H has non-empty intersection with
S. If we had not specified the distinguished subsurface X, these arcs would have
violated condition (4) in the definition of normality in Section 4.1. However, in the
presence of X, they do satisfy condition (4) in the definition of normality in Section
4.4. Since it is convenient for S to be normal in H, this explains the reason for
using X.

Note that P is disjoint from F , for the following reason. Since P ∩N lies in ∂N ,
the interior of P ∩ ∂H0 is disjoint from F . Moreover, as the endpoints of each arc
of P ∩N lie in X, these endpoints are disjoint from F .

10.4. Another admissible envelope. As explained above, we are keeping track
of a 3-manifold N with a handle structure H. In fact, we will keep track of two 3-
manifolds N and N ′, with handle structures H and H′ respectively. The 3-manifold
N ′ will be a subset of N , and each handle of H′ will lie within a handle of H.

Initially, N ′ = N and H′ = H. But when we insert the first wedge W , then
these two manifolds and handle structures become distinct. With the insertion of
W , N and H remain unchanged, but we remove W from N ′. When W is a regular
neighbourhood of the star of a vertex of ∂S, then there is a natural way of defining
H′. We will also consider the surface S′ = S ∩N ′. Thus, when a wedge is inserted,
we view S′ as being shrunk but S as remaining unchanged.
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∂M

Sv

0-handle

1-handles

2-handles

Figure 38. A vertex v in ∂S and the 0-handle of H that contains it

We say that two vertices of S′ have H′-parallel stars if their stars are normally
parallel with respect to H′.

X

X

Y

Y'

S S
wedge

∂M

N'

S'

Figure 39. The effect on N ′ when a wedge is inserted

10.5. Nested admissible envelopes. We formalise the above arrangements with
the following definition. We say that two admissible envelopes (N,X, Y, P∩N,H, S)
and (N ′, X ′, Y ′, P ∩N ′,H′, S′) are nested if the following hold:

(1) N ′ is a subset of N , and is obtained from N by removing a sequence of
wedges, where each wedge is transverse to the fibres of N and is disjoint
from ∂hN .

(2) Each fibre of N ′ is a subset of a fibre of N .
(3) X ′ = X = ∂hN and P ′ ∩N ′ = P ∩N .
(4) Y = ∅.
(5) Y ′ is a surface properly embedded in N and that is parallel to a subsurface

of ∂vN ; the product region between Y ′ and ∂vN is where the wedges are
inserted.

(6) X ′ ∪ Y ′ contains ∂hN
′.

(7) S ∩N ′ = S′.
(8) S′ is obtained from S by wedge insertions and boundary-compressions along

clean discs that intersect ∂N ′ in arcs lying in Y ′;
(9) S′ is a union of tiles of S.

(10) Each handle of H′ lies in a handle of H with the same index and their
product structures agree.
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We explained above why we keep track of the surface X = X ′. The reason
for the designated surface Y ′ is that it encodes the location where the wedges are
inserted when forming N ′ from N .

The following result helps to clarify the relationship between S and S′.

Lemma 10.1. Let S be a compact incompressible boundary-incompressible sur-
face properly embedded in (M,P ). Let (N,X, Y, P ∩N,H, S) and (N ′, X ′, Y ′, P ∩
N ′,H′, S′) be nested admissible envelopes. Let M ′ be the 3-manifold M\\(N\\N ′),
which is obtained from M by removing wedges. Then S′ is a copy of S in M , plus
possibly some clean properly embedded discs, in the sense that there is an isotopy
taking M to M ′ and taking S plus possibly some clean discs to S′. In particular,
S′ is incompressible and boundary-incompressible in M ′, and S′ is π1-injective in
S.

Proof. By assumption, S′ is obtained from S by wedge insertions and boundary-
compressions along clean discs that intersect ∂N ′ in arcs lying in Y ′. At each wedge
insertion, M ′ and S′ are obtained from what they were previously by an isotopy.
When a boundary compression is performed along a clean disc that intersects ∂N ′

in an arc lying in Y ′, then this disc is a boundary compression disc for S′ in M ′.
However, inductively, S′ is a copy of S plus possibly some clean discs. Since S is
boundary-incompressible, the arc of intersection between S′ and a clean compres-
sion disc is boundary parallel in S′. Hence, after the boundary compression, S′

remains a copy of S plus some clean discs. �

10.6. The complexity of the handle structures. It will be important that, as
we make the modifications to H and H′, they remain of bounded ‘complexity’. We
now make this notion precise. It is defined using the vertex 0-handles.

We consider the intersection between the vertex 0-handles of H with the union
of the 1-handles and 2-handles of H. This is a surface Fv. We define F ′v similarly,
but using the handle structure H′.

For a component F ′ of F ′v, we define the following complexity:

c(F ′) = max{−χ(F ′) + 2|∂X ∩ F ′|, 0}.

Here, X ′ is the distinguished subsurface of ∂N ′. For a component F of Fv, we
define the following:

c+(F ) = −χ(F ) + 2|∂X ∩ F |+ 1.

We define c(F ′) to be the sum of c(F ′) over each component F ′ of F ′. We define
c+(F) to be the sum of c+(F ) over each component F of F . We will measure the
complexity of H by c+(F), and will measure the complexity of H′ by c(F ′). We
will ensure that, during any modification to H and H′, these complexities do not
increase.

We will give some justification in Section 10.13 for this definition of c(F ′). The
following also provides some explanation.

Lemma 10.2. Let F be a component of F or F ′. Then the maximal num-
ber of disjoint non-parallel properly embedded essential arcs in F − X is at most
max{3c(F ), 1}. This is less than 3c+(F ) unless F is a disc disjoint from X. Here,
an arc in F −X is said to be essential if it cannot be homotoped, keeping its end-
points fixed, to an arc in ∂F − X. Also, we say that two arcs α1 and α2 in F
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are parallel if they separate off a disc in F containing exactly one copy of α1 and
exactly one copy of α2 and that is disjoint from X.

Proof. Note first that we may assume that F is not a disc disjoint from X, because
such a disc cannot contain any essential arcs. Let α be a maximal set of arcs as in
the lemma. For a component F0 of F\\α, define its index I(F0) to be

−χ(F0) + 2|F0 ∩X|+ |F0 ∩ ∂α|/4.
Then the sum of I(F0) over all components F0 of F\\α is equal to c(F ). Unless F is
an annulus disjoint from X, each component F0 has positive index, since otherwise
a component of α is inessential or two components are parallel. In the case where
F is an annulus disjoint from X, α consists of a single arc that cuts the annulus
into a single region with zero index. We also note that if I(F0) > 0, then in fact
I(F0) ≥ 1/2. Hence, the number of components of F\\α is at most 2c(F ) unless F
is an annulus disjoint from X. Again using the additivity of index, we deduce that

|α| =
∑
F0

|F0 ∩ ∂α|/4 = c(F ) +
∑
F0

χ(F0)−
∑
F0

2|F0 ∩X| ≤ c(F ) + |F\\α| ≤ 3c(F ).

Again, this formula does not hold when F is an annulus disjoint from X, but in this
case |α| = 1 and c(F ) = 0. Thus, we obtain that |α| ≤ max{3c(F ), 1} in general.
Note that this is clearly less than 3c+(F ) unless F is a disc disjoint from X. �

10.7. The complexity of the natural handle structure. In this section, we
compute an upper bound for c(H) and c+(H) where H is the natural handle struc-
ture arising from the initial alternative admissible surface S.

Lemma 10.3. Let H = {S1, . . . , Sk} be a partial hierarchy with exterior M and
boundary pattern P , and let w be its binding weight. Let K be the handle structure of
(M,P ) described in Section 6.5. Let S be a nearly embedded alternative admissible
surface that is in normal form with respect to K. Then the number of tile types of
S is at most 832w2(w −

∑
i χ(Si)).

Proof. The possible normal disc types of S are described in Lemmas 6.9, 6.10, 6.11
and 6.12. Each tile must be incident to a saddle, and this must lie in an expanded
tetrahedron or an expanded turnover. We see that from Lemmas 6.10 and 6.11
that there are at most three such elementary disc type in each expanded turnover
and there are at most five such normal elementary disc types in each expanded
tetrahedron. The outermost tiles of any given type must intersect some outermost
disc in an expanded tetrahedron or expanded turnover. By Lemmas 6.3 and 6.4,
there are at most 208w2(w−

∑n
i=1 χ(Si)) such normal discs. By Lemma 6.13, each

such disc can intersect at most 4 tiles. So, the number of tile types is at most
832w2(w −

∑n
i=1 χ(Si)). �

Lemma 10.4. The complexity of the initial natural handle structure H satisfies

c(H) ≤ c+(H) ≤ 11648w2(w −
∑
i

χ(Si)).

Proof. The number of tile types of S is at most 832w2(w −
∑
i χ(Si)) by Lemma

10.3. Each tile type gives rise to at most two 1-handles of Fv (one at each vertex of
the tile). So, |F1

v | ≤ 1664w2(w−
∑
i χ(Si)). Also, since each 0-handle of H contains

a component of F1, this also forms an upper bound on the number of 0-handles of
H.
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Each component of X∩Fv intersects some 1-handle of Fv and any given 1-handle
intersects at most two such components of X∩Fv. Each component of X∩Fv gives
rise to at most two points of ∂X ∩Fv. So, |∂X ∩Fv| ≤ 6656w2(w−

∑
i χ(Si)). So,

c+(H) = c+(Fv) ≤ |F1
v |+ 2|X ∩ F| ≤ 11648w2(w −

∑
i

χ(Si)).

The inequality c(H) ≤ c+(H) is immediate. �

10.8. Removing handles.

Lemma 10.5. Let H′− be a handle structure obtained from H′ by removing some
handles disjoint from P and X. For H′− to be a handle structure, we require that
whenever a handle of H′ is removed, then so are all the incident handles with higher
index. Then c(H′−) ≤ c(H′).

Proof. Let F be a component of F ′. When a 1-handle of F disjoint from X is
removed, this decreases −χ(F ) by 1. If this 1-handle is non-separating in F , the
resulting component therefore has smaller complexity than F . Suppose that the
1-handle is separating in F . Then the quantities −χ(F ) + 1 and 2|∂X ∩ F | are
shared out between the two new components. So, the total complexity goes down
by one, unless a component is created that is a disc disjoint from X. But in this
case, the other component is a copy of F , and so complexity is unchanged.

Suppose now that a 0-handle of F ′ is removed. The incident 1-handles have
already been removed. Therefore, this procedure is simply the removal of a com-
ponent of F ′, which clearly does not increase complexity. �

10.9. Shrinking the handle structure to achieve crude normality. We now
give another modification to N ′. The end result will be that S′ is crudely normal
in (H′, X ′), as defined in Section 4.4. The moves that we make are versions of the
usual normalisation moves and hence are guaranteed to terminate. More precisely,
each move decreases the extended weight of S′, as defined in Section 4.3.

We saw in Lemma 8.1 that since S′ is weakly carried by N ′, it satisfies (1) in
the definition of crude normality.

Suppose that, contrary to (4′) in the definition of crude normality, there is an
arc α of intersection between S′ and a 0-handle of F ′ such one endpoint of α lies
in a 1-handle of F ′ and the other endpoint lies in ∂N ′. Suppose that one of the
arcs β in the boundary of the 0-handle of F ′ joining ∂α is disjoint from X and P
and from any other 1-handles of F ′. Let us assume that the interior of β is disjoint
from S′. Then α ∪ β bounds a disc in the 0-handle of F ′, and the product of this
disc with the interval forms a ball B1 in the incident 1-handle of H′. One of the
endpoints of α lies in a 2-handle of H′. This is divided into balls by S′. Let B2 be
the ball that intersects the interior of β. (See Figure 40.)

The modification we make is to remove a regular neighbourhood of B1∪B2 from
N ′. The intersection between B1∪B2 and S′ is a disc that intersects ∂S′ in a single
arc. The modification removes this disc from S′. This leaves S′ unchanged up to
isotopy in S.

Alternatively, suppose that there is an arc α of intersection between S′ and a
0-handle of F ′ that separates off a disc from F ′ that is disjoint from the 1-handles
of F ′ and from X, contrary to (3′) in the definition of crude normality. Let us
assume that the interior of this disc is disjoint from S′. The product of this disc
with the interval is a ball B1 in the incident handle of H′. The modification we
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Figure 40. Shrinking the handle structure

can then perform is to remove a regular neighbourhood of this ball from N ′. This
has the effect of boundary-compressing S along a clean boundary-compression disc
D. The intersection between D and ∂hN

′ misses X ′ and hence lies in Y ′. The
intersection between D and ∂vN

′ lies in those parts of ∂vN
′ intersecting ∂S′, which

again lie in Y ′. Hence, D ∩ ∂N ′ lies in Y ′, as required in the definition of nested
admissible envelopes.

These modifications may create handles of H′ that do not intersect S′. In this
case, we remove these handles. By Lemma 10.5, this does not increase c(H′).

Note that these are solely modifications to N ′, H′ and S′ and not N , H and S.

Lemma 10.6. Suppose that S′ is crudely normal in H′. Then, for each 0-handle
of F ′ lying in a 0-handle D2 × [−1, 1] of H′, one of the following must hold:

(1) it intersects both X ∩ (D2 × {1}) and X ∩ (D2 × {−1}), or
(2) it has 1-handles of F ′ on both sides of it.

Proof. Suppose that, on the contrary, there is a 0-handle D of F ′ that is disjoint
from X ∩ (D2 × {1}) or X ∩ (D2 × {−1}) and that has 1-handles emanating from
at most one side of it. We are identifying D with [−1, 1]× I with fibres of the form
∗ × I. By assumption, the 1-handles of F ′ are disjoint from some component of
{−1, 1}×I, say {−1}×I. They are also disjoint from [−1, 1]×∂I. The intersection
between S′ and this 0-handle of F ′ is a non-empty collection of arcs. Each arc of
S′ ∩ D intersects at most one 1-handle of F ′ since it is transverse to the fibres.
Consider an outermost such arc. It divides D into two discs, one of which, D′ say,
has interior disjoint from S′. We may choose the arc so that D′ also misses X. The
boundary of D′ cannot intersect an entire component of D ∩ (F ′)1, since S′ runs
over every 1-handle of F ′. Thus, we deduce that this arc violates (3′) or (4′) in the
definition of crude normality. �

10.10. Reduced handle structure. We say that H′ is reduced if both the follow-
ing hold:

(1) no 0-handle of F ′ is disjoint from ∂X and intersects the 1-handles of F ′ in
at most one arc, and
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(2) for each 0-handle H ′0 of H′, ∂H ′0 ∩ (F ′ ∪X ∪ P ) is connected.

We now show how to modify the handle structure H′ to make it reduced without
increasing its complexity c(F ′).

Suppose that there is a 0-handle of F ′ that is disjoint from X and intersects
the 1-handles of F ′ in at most one arc. Let H ′0 be the 0-handle of H′ containing
this 0-handle. Then any component of S′ ∩ H ′0 violates (1), (3′) or (4′) in the
definition of crude normality. Hence, S′ must be disjoint from this 0-handle. But
then the incident 1-handle of H′, and possibly an incident 2-handle, would have
been removed.

Thus we may assume that F ′ satisfies (1) in the definition of reduced. Suppose
that for some 0-handle H ′0 of H′, ∂H ′0 ∩ (F ′ ∪X ∪ P ) is disconnected. Then there
is a disc D properly embedded in H ′0 that separates the components of ∂H ′0∩ (F ′∪
X∪P ). We may assume that D intersects each disc of S′∩H ′0 in a (possibly empty)
collection of arcs. The modification we perform is to cut H ′0 along D. This has no
effect on the complexity c(F ′). But it does increase the number of 0-handles of H′.
Since each 0-handle of H′ contains a component of F ′, this process is guaranteed
to terminate. The effect on S′ is to boundary-compress it along clean boundary-
compression discs. Hence, S′ remains π1-injective in S, and S\\S′ still lies in a
collar on ∂S.

We need to justify why this modification maintains N ′ as a thickening of a
generalised branched surface weakly carrying S′. Recall that H ′0 is identified with
D2× [−1, 1]. The discs D2×{−1, 1} lie in ∂hN

′, and so are disjoint from F ′. Each
component of D2 × {−1, 1} either lies in X or is disjoint from X. We may also
assume that F ′∩ (D2×{−1, 1}) ⊂ X. Since ∂D is disjoint from X, we may isotope
∂D so that it lies in ∂D2 × [−1, 1]. We claim that ∂D is an essential curve in
∂D2 × [−1, 1]. If not, some component of F ′ lies within in a disc in ∂D2 × [−1, 1].
But this implies that some 0-handle of F ′ has 1-handles of F ′ emanating from
only one side of it and is disjoint from X, contradicting Lemma 10.6. Hence, ∂D is
essential in ∂D2×[−1, 1]. We may then isotope it so that it is everywhere transverse
to the I-fibres in ∂D2 × [−1, 1]. For the only obstruction to doing this would be
a 0-handle of F ′ with 1-handles emanating from only one side of it, and where
this component of F ′ prevented ∂D being pulled tight. So once ∂D is transverse
to the I-fibres, we can make all of D transverse to the I-fibres. Hence, cutting
the 0-handle along D creates two 0-handles that are still fibred with intervals and
hence copies of D2 × [−1, 1]. Therefore, cutting N ′ and S′ along D′ still results in
a 3-manifold that is a thickening of a generalised branched surface weakly carrying
the new S′.

Lemma 10.7. Suppose that H′ is reduced. Then F ′ contains no components that
are discs disjoint from X.

Proof. Let F ′ be such a component. The handle structure on F ′ is a thickened
graph. This graph is a tree, by the hypothesis that F ′ is a disc. Hence, it is either
an isolated vertex or contains a leaf. This contradicts the hypothesis that H′ is
reduced. �

Note that the disc components F ′ of F ′ disjoint from X were a special case in
the definition of complexity c(F ′). The first part of the formula for c(F ′) gives −1,
but this is upgraded to 0 by the fact that one takes a maximum. It is therefore
convenient to be able to assume that such components do not arise.
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We now give some consequences of crude normality.

Lemma 10.8. Suppose that H′ is reduced and that S′ is crudely normal. Then no
component of S′ ∩ F ′ is a simple closed curve that bounds a disc in F ′ or an arc
parallel to an in arc in ∂F ′ −X.

Proof. Consider first the case where a component of S′∩F ′ is a simple closed curve
that bounds a disc in F ′. An innermost such curve bounds a disc component of
F ′\\S′. This inherits a handle structure that is a thickened tree. This is either
a single 0-handle or it has a leaf. When it is a single 0-handle, then S′ fails to
be standard, since its intersection with the corresponding 1-handle of H′ has an
annular component. When the disc component of F ′\\S′ has a leaf, this implies
that the relevant component of S′ ∩ (H′)0 runs over a 1-handle of F ′ more than
once, contradicting crude normality.

Now suppose that a component of S′∩F ′ is an arc parallel to an arc in ∂F ′−X.
An outermost such arc separates off a disc D in F ′. Again this inherits a handle
structure that is a thickened tree. If this is a single 0-handle, then this contradicts
(3′) in the definition of crude normality. So suppose that this handle structure has
a leaf. This is a 0-handle of D that is incident to a single 1-handle of D. This 0-
handle intersects ∂D in an arc α. If α lies wholly in ∂F ′, then this implies that F ′
has a leaf, contradicting the assumption that H′ is reduced. If both the endpoints
of α lie in S′, then this contradicts (1) in the definition of crude normality. If one
endpoint of α lies in S′ and the other lies in ∂F ′, then this contradicts (4′) in the
definition of crude normality. The remaining possibility is that α contains ∂D ∩ S′
in its interior. But then D has at least one other leaf, and the intersection between
that leaf and ∂D lies wholly in ∂F ′, and again we have a contradiction. �

Lemma 10.9. Suppose that H′ is reduced and that S′ is crudely normal. Suppose
that two components of S′ ∩ F ′ are topologically parallel in F ′ −X. Then they are
normally parallel.

Proof. Suppose that two components of S′∩F ′ are topologically parallel in F ′−∂X,
and that these are arcs α1 and α2. Then these two arcs separate off a disc D from
F ′. This disc inherits a handle structure. One can define the index of a 0-handle
of D to be half the number of intersection components with the 1-handles of D
plus a quarter of the number of intersection points with ∂α1 ∪ ∂α2 minus 1. Then
the sum of the indices of the 0-handles of D is equal to 0. Each 0-handle of D has
non-negative index, since otherwise crude normality is violated. So, every 0-handle
of D has zero index. Thus, D consists of a line of 0-handles and 1-handles. Suppose
that there is at least one 1-handle, for otherwise α1 and α2 are normally parallel.
Then the end 0-handles each intersect ∂α1∪∂α2 in two points. There are then two
possibilities: either α1 ∩D and α2 ∩D each lie in a single 0-handle of D, or α1 and
α2 are normally parallel. We must rule out the former possibility. Consider the
1-handle of D incident to the 0-handle containing α1. This must have non-empty
intersection with S′. Hence, at least one arc of S′ runs from this 1-handle of D into
the 0-handle. But then crude normality is violated.

A similar but simpler argument applies when α1 and α2 are simple closed curves
of S′∩F ′ that are topologically parallel. They cobound an annulus A in F ′. Again
each 0-handle of A has index zero. So A is formed of a circle of 0-handles and
1-handles. Therefore, α1 and α2 are normally parallel. �
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10.11. Low-valence boundary vertices (revisited). Suppose that H′ is re-
duced and that S′ is crudely normal.

One can take advantage of parallelism in the case of wedge removal. Suppose
that s1, . . . , sn are low-valence boundary vertices of S′. Let Di be the star of si.
Suppose that these stars are parallel in H′. Then there is an embedding of D×[1, n]
in N ′, where Di = D×{i}, and where the remainder of S′ is disjoint from D×[1, n].
Then we make take a regular neighbourhood of D × [1, n] to be the wedge W that
is removed from N ′.

Thus, with a single wedge removal, the binding weight of S′ is reduced by n.
We can see from Figure 35 that each of these stars contains at most one interior

vertex of S′ in its boundary. The effect on N ′ and H′ is as follows:

(1) The component of F ′ containing the vertices s1, . . . , sn is sliced along its
intersection with W , which is a regular neighbourhood of a properly em-
bedded arc γ in F ′. This increases χ(F ′) by 1. We will show below that
this does not create any disc components of F ′ that are disjoint from X.
Hence, c(F ′) decreases by 1.

(2) If any vertices of the star other than s lie in ∂S′, then the effect on F ′
at these points is cut along an arc, with precisely one boundary point in
∂F ′. Thus, the topology of F ′ remains unchanged, and hence so does its
complexity.

(3) If there is an interior vertex in the star, then the component of F ′ containing
this vertex is cut open along an arc. This arc lies within the interior of F ′,
and so the effect on c(F ′) is to increase it by 1.

So, the overall effect is leave c(H′) unchanged. But we need to show that the
procedure in (1), where F ′ is sliced along an arc γ, does not create a disc component
disjoint from X. The arc γ is a component of S′ ∩ F ′ and so is not parallel
to a component of ∂F ′ − X, by Lemma 10.8. Moreover, it is not an essential
arc in an annular component of F ′ because its endpoints are joined by an arc of
S′ ∩ (∂(H′)0\\(F ′ ∪X ∪ P )). This establishes the claim.

Note also that, when we insert a wedge, we do not change N and H and so their
complexity remains unchanged.

10.12. Cut vertices. The operation of inserting a wedge shrinks S′ by a removing
discs incident to ∂S′. In doing so, ∂S′ may, at some stage, bump into itself. At
that point, a cut vertex may be created. This is a vertex in ∂S′ at which S′ is not
a surface with boundary. Instead, a neighbourhood of that point is a cone on at
least two closed intervals.

We can cut S′ at these points, giving a surface S′cut. When we do this, we do not
forget the remnants of the cut vertices in S′cut. The reason is that if a cut-vertex
of S′cut is a low-valence vertex, then we cannot insert a wedge along it.

The cut-adjusted Euler characteristic of S′cut, denoted χc(S
′
cut), is defined to be

χ(S′cut) minus half its number of cut vertices. Since S′cut is obtained from S′ by
cutting along some arcs, and because each such arc creates two cut vertices, we
deduce that χc(S

′
cut) = χc(S

′).

10.13. Justification for the measure of complexity. We can now justify the
measure of complexity c(F ′) that we chose for F ′. In some respects, it is an awkward
quantity, because certain components of F ′ have zero complexity. Hence, if one just
has a bound on c(F ′), then one cannot control the number of these components.
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These components come in two types: discs and annuli disjoint from X. The discs
disjoint from X can be dealt with using Lemma 10.7, and we therefore may assume
that H′ is reduced. However, annuli disjoint from X are harder to control. The
following example explains why.

Suppose that, initially, we have two components of F ′, an annulus disjoint from
X∪P and a pair of pants disjoint fromX∪P . (See Figure 41.) Suppose that a wedge
is inserted, thereby slicing the pair of pants along an arc, into two annuli. Suppose
also that the star contains an interior vertex and that the relevant component of
F ′ surrounding this interior vertex is the annulus disjoint from X ∪ P . Then a slit
is inserted into this annulus, forming a pair of pants. Thus, the wedge insertion has
created a pair of pants and two annuli from a pair of pants and a single annulus.
The conclusion that one must draw is that, whatever notion of complexity we have
for F ′, annuli disjoint from X ∪ P must have zero complexity if wedge insertion is
not going to increase complexity.

part of wedge

Figure 41. An example of the effect of wedge insertion on F ′

10.14. Approximate parallelism. Consider two normal simple closed curves α
and α′ in F ′. We say that they are approximately parallel if

(1) they have the same H-type; and
(2) when F ′ is decomposed along them forming a surface F ′′, the resulting

pieces of F ′′ lying in the annular region between them are just annuli in
which every 0-handle of F ′′ has two arcs of intersection with the 1-handles
of F ′′.

We say that two disjoint properly embedded discs in some 0-handle of H′ are
approximately parallel if their boundary curves lie in F ′ and are approximately
parallel. Similarly, we say that interior vertices of S′ are approximately parallel
if the discs of intersection between S′ and the 0-handles of H′ that contain these
vertices are approximately parallel.

When two curves, discs or vertices are approximately parallel, we also say that
they have the same approximate type.

10.15. Interior 2-valent vertices (revisited). We now examine the ‘parallel’
version of the modification in Section 8.1. Suppose that H′ is reduced.

Consider again a 2-valent interior vertex s of S′. We will now describe a mod-
ification to S and S′ which removes this vertex and all other vertices of S with
approximately parallel stars.

Let s1, . . . , sn be these vertices, and for each i, let si1 and si2 be the two vertices
in its star. Then these vertices occur along S1

φ in the order

. . . , s11, . . . , s
n
1 , s

n, . . . , s1, s12, . . . s
n
2 , . . .
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Let i : S1
φ → S1

φ map the interval (sn1 , s
n) linearly onto the interval (s1, s12), map

the interval (s1, s12) linearly onto the interval (sn1 , s
n), and fix everything else.

(1) Remove the stars of s1, . . . , sn from S.
(2) For any leaf of the foliation or arc of the link with an endpoint in φ ∈

(sn1 , s
n) ∪ (s1, s12), replace it with a leaf ending at i(φ).

(3) For the leaves of the foliation that ended at si1 or si2, but which were not
part of the star of si, replace them with a leaf ending at si.

Thus, a single generalised exchange move is performed, but the binding weight of
S is reduced by 2n. Furthermore, if m is the number of vertices among s1, . . . , sn

that lie in S′, then the binding weight of S′ is reduced by 2m.
Adjacent to s are two tiles, T1 and T2, say, each of which lies in a 2-handle of H.

Any other vertex with star that is H-parallel to that of s contains parallel copies
of T1 and T2. Consider a sequence of these stars, moving away from s in some
transverse direction. At some stage, we reach the last star parallel to s. Beyond
this may be a parallel copy of T1 or a parallel copy of T2, but not both. For the
sake of being definite, suppose that there is a parallel copy of T1. Then the first
stage of the procedure is to slice the 2-handle of H containing T1 into two handles,
thereby separating this parallel copy of T1 that is not part of a star parallel to that
of s from the stars that are parallel to that of s. We also slice the two 1-handles
that are incident to this 2-handle and that contain the separatrices incident to s.
This procedure is shown in Figure 42.

s

T1 T2

Figure 42. The 2-handle of H containing T1 is sliced into two 2-handles

We perform a similar procedure, but going away from s in the other transverse
direction. Again for the sake of being definite, suppose that in that direction, there
is a parallel copy of T2 but not T1. The effect of these two procedures on the 0-
handle containing s is to slice it into three 0-handles. The way that this affects F
in these 0-handles is shown in Figure 43.

Note that the original component of Fv near s is sliced along two arcs, thereby
forming three components. This decreases −χ(Fv) by 2, but it increases the number
of components by 2, and so the contribution to c+(Fv) from −χ(Fv) is unchanged.
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Figure 43. The effect on F near s

However, this is not the only effect on Fv. Let s1 and s2 be the vertices in the
star of s. These lie in vertex 0-handles which are also affected by this modification.
Each 0-handle intersects the 2-handle containing T1 or T2 in a 1-handle of Fv. This
1-handle of Fv is replaced by two 1-handles. When this performed in the two vertex
0-handles of H, this increases −χ(Fv) by 2, but it leaves the number of components
of Fv unchanged. So, the contribution to c+(Fv) from −χ(Fv) has increased by 2.

We must also analyse the contribution to c+(Fv) arising from Fv∩∂X. When the
2-handle of H containing T1 is sliced in two, this enlarges the horizontal boundary
of N . If any components of ∂hN containing X are enlarged, then we enlarge X
also. This moves ∂X but it does not increase the number of vertex 0-handles that
it runs over. So the contribution to c+(Fv) from Fv ∩ ∂X remains unchanged.

We now perform the procedure described above, which removes the star of s
and all parallel stars. This new surface is carried by a new handle structure. One
removes the vertex handle containing s, and all the incident handles. Thus, the
annular component of F in this 0-handle is removed, thereby decreasing the com-
plexity c+(F) by 1.

The vertex 0-handles containing v1 and v2 are amalgamated to form a single
0-handle. The way that this affects F is as follows. The two components of F in
these 0-handles are incident to a 2-handle that was removed because it contained T1
or T2. These two components of F are then combined to form a single component.
The effect here is leave −χ(F) unchanged but to reduce the number of components
by 1. The number of points of ∂X ∩ Fv remains unchanged. So the complexity
goes down by 1.

We see that the net effect of this process is to leave the complexity c+(F) un-
changed.
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We also observe that the complexity of F ′ is unchanged, as follows. The mod-
ifications to ∂X ∩ F ′v are exactly as described above. Hence, the only thing that
concerns us is the effect on Euler characteristic and whether the modifications create
or remove any components of F ′v that are discs disjoint from X.

The first stage is to increase −χ(F ′v) by 2, but it then decreases −χ(F ′v) by 2. At
no stage is a disc component of F ′v disjoint from X created. At the first stage, this
is because each component of F ′v is sliced along at most one arc that is parallel to
a component of S′ ∩ F ′v with endpoints on the same component of ∂F ′v. This does
not create a disc component of F ′v disjoint from X by Lemma 10.8. In the second
stage, a non-separating 1-handle of F ′v is removed from two components of F ′v, and
then these are combined into a single component of F ′v, which again cannot be a
disc disjoint from X.

In the above discussion, we assumed that, in one transverse direction from the
tiles parallel to s, there is a copy of T1 but not T2, and in the other transverse
direction, there is a copy of T2 but not T1. However, this is not the only possible
arrangement. For example, it might be the case that in both transverse directions,
there is a copy of T1 but not T2. Alternatively, in one or both transverse directions,
there might be neither a copy of T1 nor a copy of T2. In the former situation, the
0-handle is still sliced into three 0-handles. The above argument still applies to give
that the complexities of Fv and F ′v are unchanged. In the latter situation, where
in one or both transverse directions, there is neither a copy of T1 nor a copy of T2,
then the 0-handle is sliced into two 0-handles or is not sliced at all. Again it is easy
to deduce that the complexities of Fv and F ′v are unchanged.

10.16. Interior 3-valent vertices (revisited). Consider a 3-valent interior ver-
tex s. It is contained within an elementary normal disc D in a 0-handle of H.
Its star contains three tiles, and hence D runs through three 1-handles and three
0-handles of F . Coming out of these three 0-handles are three 1-handles of H,
which end at other vertices s2, s3, s4. As in Section 9.2, suppose these vertices are
arranged around S1

φ in the order s, s2, s3, s4. Let x1 and x2 be the generalised sad-
dles that are defined in Section 9.2 and that have the same orientation, and let t1
and t2 be their θ-values.

We wish to perform the procedure described in Section 9.2, not just to the star
of s but to all the vertices with stars that are parallel (with respect to H). The
procedure in Section 9.2 can be viewed as taking place in three steps:

(1) Moving events occurring in the interval (t1, t2) into the future or past.
(2) Collapsing the tile with boundary s, x1, s3, x2 so that x1 and x2 are amal-

gamated to form a single generalised saddle.
(3) The process given in Section 9.1 for dealing with 2-valent interior vertices.

Step (1) can be achieved by an isotopy of H and H′, and so this does not affect
the complexities of H and H′. We have already seen in Section 10.15 that the
complexities of H and H′ are unchanged when dealing with parallel copies of a
2-valent interior vertex. So, it suffices to show that the complexities of H and H′
are unchanged by Step (2).

In Step (2), we collapse the 2-handle containing the tile. The 0-handles con-
taining the generalised saddles x1 and x2 are amalgamated into a single 0-handle.
These are not vertex 0-handles, and so do not contribute to the complexity of H.
The 1-handles of H running from s to x1 and from s to x2 are amalgamated into a
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single 1-handle. The 1-handles running out of s3 are similarly amalgamated. The
effect on the two relevant components of Fv is to collapse, in each component, a 1-
handle of Fv. This leaves Fv unchanged up to homeomorphism preserving X ∩Fv,
and so does not change its complexity c+(Fv). It also leaves F ′v unchanged up to
homeomorphism preserving X ∩ F ′v, and so does not change its complexity c(F ′v).

10.17. The number of star types.

Proposition 10.10. Suppose that H′ is reduced and that S′ is crudely normal.
Then the number of star types of non-cut vertices in ∂S′ is at most 3c(H′).

Proof. Each vertex s of S′ lies within a vertex 0-handle H0 of H′. The intersection
between S′ and H0 is a collection of elementary normal discs. Let E be the elemen-
tary normal disc containing s. This disc E intersects F ′ in a single arc or simple
closed curve, because s is a non-cut vertex. For the purposes of this proof, we call
such a disc relevant. We also call the intersection of the disc with F ′ a relevant arc.

We now show that a relevant disc E in H0 is determined (up to an isotopy of H0

preserving X, P and the handles) by its relevant arc E ∩ F ′. First observe that,
because H′ is reduced, H0 ∩ (F ′ ∪X ∪ P ) is connected, and hence its complement
is a collection of discs. The arc E\\F ′ intersects one or two such discs, depending
on whether it intersects P ∩ H0. (Note that there is at most one arc of P ∩ H0.)
Hence, the arc ∂E\\F ′ is determined by its endpoints, as required.

It therefore suffices to bound the number of such relevant arcs. By Lemma 10.8,
S′ ∩F ′ is essential in F ′, in the sense that no simple closed curve bounds a disc in
F ′ or no arc is parallel to an arc in ∂F ′ −X. By Lemma 10.9, whenever two arcs
are topologically parallel in F ′ −X, they are normally parallel.

So, when we consider a collection of disjoint relevant discs in H0, no two of
which are H′-parallel, we deduce that their intersection with F ′ forms a collection
of properly embedded arcs, no two of which are topologically parallel. Each arc
is essential in the complement of X. So, the maximal number of relevant non-
parallel discs in H0 is at most the number of disjoint non-parallel essential arcs in
(F ′ ∩H0)−X. This is at most 3 max{c(F ′ ∩H0), 1}, by Lemma 10.2. However, in
fact, the number of such arcs is bounded above by 3c(F ′ ∩ H0), for the following
reason. When the maximum is 1, then F ′∩H0 is a disc or annulus disjoint from X.
We saw in Lemma 10.7 that when H′ is reduced, F ′ has no disc components disjoint
from X. Any annular component of F ′ disjoint from X is composed of a string of
0-handles and 1-handles joined together in a circular fashion. Hence, any normal
arc in such an annulus must join distinct components of ∂H0\\F ′. Therefore such
an arc is not relevant, as it comes from a cut vertex. �

Proposition 10.11. Suppose that H′ is reduced and that S′ is crudely normal.
Then the number of approximate types of interior vertices in S′ is at most 2c+(H)+
c(H′).

Proof. Consider a maximal collection of interior vertices of S′, no two of which
have the same approximate type. Each gives rise to a simple closed curve in Fv.
None of these curves bounds a disc in Fv, by Lemma 10.8. The maximal number
of disjoint non-parallel simple closed curves in Fv, none of which bounds a disc,
is at most 2c+(Fv). To prove this, consider a component F of Fv, and maximal
collection of disjoint non-parallel curves in F , none of which bounds a disc in F .
Since F is planar, this is −2χ(F ) + 1 ≤ 2c+(F ).
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However, it may be the case that two closed curves in F are topologically parallel
but not of the same approximate type. Certainly, if they are topologically parallel
in F , then they have the same H-type. However, condition (2) in the definition of
approximate type may not hold. We may cut F ′ along these curves and one of the
resulting pieces of surface between them may not be an annulus. Note that we do
not in fact obtain any components of this surface that are discs disjoint from ∂X,
since these discs would then have been part of F ′v, contradicting the assumption
that H′ is reduced. Thus, when F ′v is cut along this collection of vertices, the result
is a collection F ′′ of surfaces, none of which is a disc disjoint from ∂X. Since we
are cutting along simple closed curves, χ(F ′′) = χ(F ′v). Therefore, the number of
components of F ′′ that are not annuli disjoint from ∂X is at most c(F ′v). These
components can increase the number of approximate types of interior vertices of S′

by at most c(F ′v). �

10.18. The approximate star types of tiles. Let T be a tile of S′ with vertices
v1 and v2 in its boundary, and let T ′ be another tile of S′ with vertices v′1 and v′2
in its boundary. We say that T and T ′ have the same approximate star type if at
least one of the following holds (after possibly relabelling v′1 and v′2):

(1) the stars of v1 and v′1 are parallel in H′, as are the stars of v2 and v′2;
(2) all their vertices lie in the interior of S′, and the stars of v1 and v′1 are

approximately parallel, as are the stars of v2 and v′2.

11. The Euclidean subsurface

We continue to consider the link K in an arc presentation, and an admissible
partial hierarchy H for the exterior of K. We denote the exterior of H by M .

We consider a generalised admissible surface S in M with no annular tiles. We
also assume that no component of S is a bigon tile. We suppose that S is part of
nested admissible envelopes (N,X, Y, P ∩N,H, S) and (N ′, X, Y ′, P ∩N ′,H′, S′).
In particular, S contains the π1-injective subsurface S′.

Let approx-type(S′) be the number of approximate star types of tiles of S′. We
will suppose that the following quantity is minimised, up to pattern-preserving
isotopy:

(wβ(S′), approx-type(S′)).

As usual, such pairs are compared using lexicographical ordering. More specifically,
suppose that there is no pattern-isotopy of M taking S and S′ to S2 and S′2,
and nested admissible envelopes (N2, X2, Y2, P ∩ N2,H2, S2) and (N ′2, X2, Y

′
2 , P ∩

N ′2,H′2, S′2) satisfying

(wβ(S′2), approx-type(S′2)) < (wβ(S′), approx-type(S′)),

c+(H2) ≤ c+(H), c(H′2) ≤ c(H′).
Now define the Euclidean subsurface E of S′ to be the result of removing the

interior vertices with valence other than 4, the vertices v on ∂S′ with 2di(v)+db(v) 6=
4, the intersection P ∩ S′, the generalised interior saddles that are not interior
saddles, and the generalised boundary saddles that are not boundary saddles. So,
E includes:

(1) The interior of each tile of S′.
(2) The interior of each separatrix of S′.
(3) Each interior vertex of S′ with valence 4.
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(4) Each boundary vertex v with 2di(v) + db(v) = 4 that is disjoint from the
boundary pattern P .

(5) Each interior saddle and boundary saddle of S′.

A similar Euclidean surface was considered in [17].
Each square tile in E has four arc separatrices in its boundary. We may therefore

realise this tile as the interior of a Euclidean square with side length 1, where the
separatrices form the sides. Each half tile of E is realised as a right-angled isosceles
triangle with side lengths 1, 1 and

√
2, where the hypotenuse lies in ∂S′. Thus, E

has a locally Euclidean Riemannian metric. The remainder S′ \E is a collection of
isolated points.

Define the degree of a point in S′ \E to be the number of separatrices to which
it is incident. The degree of S′ \ E, denoted deg(S′ \ E), is the sum of the degrees
of its points. A key part of the argument is to find a bound on the area of E in
terms of deg(S′ \ E). A simple geometric argument, analogous to Lemma 7.2 of
[17], gives the following.

Lemma 11.1. Suppose that each point of E is at a distance at most R from S′ \E.
Then the area of E is at most (π/4)R2deg(S′ \ E).

Proof. For each point y in E, there is a shortest path from y to S′ \ E, which is a
Euclidean geodesic with length at most R. Thus, E is covered by the union of the
geodesics emanating from S′ \E with length at most R. These geodesics sweep out
a region of area at most (π/4)R2deg(S′ \E). Thus, this forms an upper bound for
the area of E. �

Remark 11.2. Lemma 7.2 in [17] asserts that the area of E is bounded above by
π(R + 1)2`(∂E), where `(∂E) is the ‘combinatorial length’ of ∂E. The definition
of `(∂E) in [17] was however incorrect, and should instead have been the number
of separatrices in ∂E plus the sum of the degrees of the isolated points in ∂E.
With that corrected definition, the proof of Lemma 7.2 in [17] does not need to be
adjusted, and its application in the proof of Theorem 7.1 of [17] is valid.

Thus, it remains to control the distance of each point of E from S′ \ E. This is
achieved by the following theorem, which is the main result of this section.

Theorem 11.3. Let (N,X, Y, P ∩N,H, S) and (N ′, X, Y ′, P ∩N ′,H′, S′) be nested
admissible envelopes. Suppose that there is no homeomorphism h : N → N such that
all the following hold:

(1) h is equal to the identity on P ∩N and X (and so extends to M);
(2) h is a Dehn twist along a torus or clean annulus properly embedded in M ;
(3) (N,X, Y, P ∩ N,H, h(S)) and (h(N ′), X, h(Y ′), P ∩ N ′, h(H′), h(S′)) are

nested admissible envelopes;
(4) wβ(h(S′)) < wβ(S′).

Suppose also that there is no pattern-isotopy taking S and S′ to S2 and S′2, and
nested admissible envelopes (N2, X2, Y2, P∩N2,H2, S2) and (N ′2, X2, Y

′
2 , P∩N ′2,H′2, S′2)

satisfying

(wβ(S′2), approx-type(S′2)) < (wβ(S′), approx-type(S′)),

c+(H2) ≤ c+(H), c(H′2) ≤ c(H′).
Let e be the number of approximate star types of tiles of E \N2(S′ \E). Then, for
each point of the Euclidean subsurface E of S′, one of the following holds:
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(1) it has distance at most 4784e from S′ \ E, or
(2) it lies in a toral or clean annular component of S′ that lies in E and has

binding weight at most 23552e2.

The proof of this theorem relies heavily on work of the author in Section 9 of
[17]. We will need to spend some time recalling some of this material, but for more
details, the reader should refer to [17].

Note that we may assume that there is no homeomorphism h as in Theorem 11.3
for the following reason.

Lemma 11.4. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Let S be a properly embedded surface. If (M,P )
contains an essential clean annulus or essential torus, then suppose that S is the
JSJ tori and annuli. Let h : M → M be a Dehn twist along a properly embedded
torus or clean annulus. Then h(S) is strongly equivalent to S.

Proof. Let T be the torus or annulus along which the Dehn twist is performed. If
T is a torus, then h(S) is strongly equivalent to S. If T is an inessential annulus,
then h is pattern-isotopic to the identity and so h(S) is pattern-isotopic to S. On
the other hand, if T is an essential clean annulus, then S is the JSJ tori and annuli,
by hypothesis. Hence, S can be pattern-isotoped off T . Therefore, again h(S) is
pattern-isotopic to S. �

So, suppose that there is a homeomorphism h as in Theorem 11.3. Then by the
above lemma, we may replace S by h(S). We may also replace the nested admissible
envelopes by (N,X, Y, P ∩N,H, h(S)) and (h(N ′), X, h(Y ′), P ∩N ′, h(H′), h(S′)).
These handle structures have the same complexity as the original ones, because
c(h(H′)) = c(H′). This process decreases the binding weight of S′ by (4) of Theorem
11.3. So by choosing S′ to have smallest binding weight, we can assume that there
is no homeomorphism h.

11.1. A ‘Euclidean’ branched surface. Recall that S′ is properly embedded in
the manifold N ′. Let M ′ be obtained from N ′ by attaching M\\N . Thus, M ′ is
obtained from M by inserting wedges, but we suppose that when a wedge is inserted
in a way that creates a cut vertex, then we do not quite insert the full wedge, in
order to maintain M ′ as a 3-manifold.

The first step is to construct a branched surface BE lying in M . The principal
type of patch of BE arises from the tiles of the Euclidean surface E of S′. More
precisely, each approximate star type of tile in H of E \N2(S′ \E) gives rise a patch
of BE . But we also consider a slight enlargement of E \N2(S′ \E), consisting of a
regular neighbourhood of E \N2(S′ \E) in E, and parallel pieces of this also form
tiles of BE . This enlargement of E \N2(S′ \E) is carried by the branched surface
BE .

Let N(BE) be a thickening of BE , and let π : N(BE) → BE be the map that
collapses fibres. Lemma 8.1 in [17] gives that each cusp in ∂N(BE) is either an
annulus or a disc. Moreover, the cusps that are discs intersect π−1(∂BE) in two
arcs. (Lemma 8.1 in [17] has a couple of hypotheses which are easily checked for
the 3-manifold that is a slight enlargement of N(BE).)

In Lemma 9.1 of [17], it was shown that there are at most 24n2 types of Euclidean
tile (where n was the arc index of the arc presentation for K). This estimate does
not apply here. But the following gives an alternative upper bound.
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Lemma 11.5. The number of approximate star types of tiles of E −N2(S′ \E) is
at most

e = 16c+(H) + 32c(H′).

Proof. Pick a maximal collection of tiles in E − N2(S′ \ E), all having the same
approximate star type. Consider an outermost tile T of a given approximate star
type. One of its vertices must be outermost in its approximate star type. By
Propositions 10.10 and 10.11, there are at most 4c+(H) + 8c(H′) such vertices.
Since the tiles we are considering lying in E−N2(S′ \E), their vertices lie in E and
so have valence at most 4. Hence, each such vertex is incident to at most 4 tiles.
The required bound then follows. �

Hence, our branched surface BE has at most this many Euclidean patches.

Lemma 11.6. The cusps of BE are annuli and discs in ∂N(BE). The discs lie in
N ′.

Proof. An application of Lemma 8.1 in [17] gives that each cusp is either an annulus
or a disc. In the latter case, the disc is a copy of I × I, where each {∗} × I lies
in a fibre of N(BE). It was also shown that ∂I × I lies in ∂hN(BE). Now N(BE)
is obtained from N ′ by adding the spaces between tiles of S′ of the same star
approximate type. Tiles of S′ that are incident to ∂S′ have the same approximate
type if and only if they are parallel in N ′. Thus we deduce that ∂I × I lies in
N ′. Hence, ∂I × I is disjoint from the wedges making up N ′\\N . These wedges
intersect each cusp of N(BE) in regular neighbourhoods of arcs and curves that
are transverse to the fibres and disjoint from the horizontal boundary. Hence if
any wedge were to intersect a disc cusp of N(BE), it would do so in a regular
neighbourhood of arcs, each lying entirely in the interior of the cusp. Consider the
endpoint of one of these arcs. The tiles of S′ above and below it are not of the same
approximate star type, contradicting the definition of N(BE). Hence, we deduce
that the disc components of the cusps of N(BE) lie in N ′, as claimed. �

11.2. The monodromy homomorphism. For each component B0 of BE , there
is a homomorphism π1(B0) → O(2) where O(2) is the group of orthogonal trans-
formations of R2. To define this, one must consider a loop ` in B0 based at some
basepoint. As ` runs from one patch to another, one may parallel translate a
Euclidean 2-plane along with it. By the time that the loop has returned to the
basepoint, this 2-plane has been subjected to an orthogonal transformation, which
is the image of [`] under this homomorphism. Full details can be found in Section
9.3 in [17].

11.3. A finite cover of the branched surface. It is clear that the image of the
monodromy homomorphism lies in the subgroup of O(2) that preserves the unit
square centred at the origin. This is a dihedral group of order 8. Hence, the kernel
of π1(B0)→ O(2) is a finite index subgroup of π1(B0). This corresponds to a finite

cover B̃0 of B0. Let B̃E the union of these covers, as B0 varies over each component
of BE . This is a branched surface. Indeed, we may take a thickening N(BE) of BE ,

and if we take the corresponding cover of this, the result is a thickening N(B̃E) of

B̃E . Thus B̃E is a branched surface in the 3-manifold N(B̃E).

The principal type of patches of B̃ are lifts of Euclidean patches of BE . We term
these Euclidean patches of B̃E . Since the covering map B̃E → BE has degree at
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most 8 on each component of B̃E , we deduce that B̃E has at most 8e Euclidean
patches.

Let S̃′ be the inverse image of S′ in N(B̃E). The inverse image of E in N(B̃) is

a surface Ẽ made up of Euclidean tiles.
One may define a monodromy homomorphism π1(B̃0) → O(2) for each compo-

nent B̃0 of B̃E . But by the construction of B̃E , this monodromy homomorphism
is trivial. This implies that B̃E is transversely orientable, since if it were not, then
for some loop ` in B̃E , the image of ` under the monodromy homomorphism would
have determinant −1. We now fix a transverse orientation on B̃E , which induces a
transverse orientation on Ẽ.

11.4. Strategy of the proof. The main result of Section 9 in [17] was Proposition

9.8, which was as follows. If there is a point in Ẽ with distance more than 8000n2

from ∂Ẽ (where again n is the arc index of the link), then Ẽ has a torus summand,

when viewed as a surface carried by B̃E .
This then implied the result that each point in E has distance at most 8000n2

from ∂E. For if not, then some point of Ẽ would have distance more than 8000n2

from ∂Ẽ and hence Ẽ would have a torus summand. The projection of Ẽ to N(BE)
forms a non-zero multiple of E, and the torus projects to a torus carried by BE .
So, we deduce that some non-zero multiple of E has a torus summand. This then
implied that some non-zero multiple of S has a torus summand, as a normal surface.
(Here, S was a spanning disc for the unknot.) But, in [17], S was arranged so that
no multiple of S has a torus summand, because S is, in [17], a ‘boundary-vertex
surface’.

Unfortunately, the same strategy does not work in our setting, because we are
not assuming that S′ is a ‘boundary-vertex’ surface. In particular, there is no
obvious reason to prevent some multiple of S′ having a torus summand. Instead,
we will show the following.

Theorem 11.7. Suppose that there is some point in E that has distance more than
1196e from S′ \ E. Then there is a torus or clean annulus A properly embedded
in M that is normal in H and a homeomorphism h : M → M that is a power of a
Dehn twist along A that satisfies (1) - (4) of Theorem 11.3.

11.5. Doubling. Let E+ be the abstract double of cl(E) along ∂S′ ∩E. Let BE+

be the double of BE along ∂BE . Let N(BE+) be the double of N(BE) along
π−1(∂BE). Note that the cusps of N(BE+) are all annuli.

The covers B̃E → BE and Ẽ → E induce covers B̃E+ → BE+ and Ẽ+ → E+.

Similarly, we have a cover N(B̃E+)→ N(BE+).

11.6. Grids and annuli. A grid is a subsurface of Ẽ or E that is a union of tiles
glued together to form a square of odd side length. Since the side length is odd,
the centre of this square is at the centre of some tile. For a positive integer r and a
point x in Ẽ or E, we let D(x, r) denote a grid centred at a tile containing x with
side length 2r + 1.

The proof of Proposition 9.8 in [17] divided into two cases: either there is a

‘short’ closed geodesic ‘far’ from ∂Ẽ, or there is not. In [17], ‘short’ and ‘far’ were
measured in terms of the arc index n. Here, we instead measure in terms of e. We
similarly divide into two cases, but we work with E instead Ẽ. For this, we require
the following lemma.
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Lemma 11.8. Suppose that E−N4784e(S
′\E) is non-empty. Let E+ be the abstract

double of cl(E) along ∂S′ ∩E. Let W be the inverse image of S′ \E in E+. Then
one of the following holds:

(1) there is a closed geodesic α in E+−N1472e(W ) with length at most 736e such
that N1472e(α) is either invariant under the involution of E+ or disjoint
from its image under the involution;

(2) there is a grid in E+ − N1472e(W ) with side length 512e + 1 that is ei-
ther invariant under the involution or disjoint from its image under the
involution.

Proof. Since E−N4784e(S
′\E) is non-empty, so is E+−N4784e(W ). Let x′ be some

point in E+ − N4784e(W ). If x′ lies within distance 1840e of the copy of ∂S′ ∩ E
in E+, then there is a point x on ∂S′ ∩E+ that lies in E+ −N2944e(W ). If on the
other hand, x′ is more than 1840e from ∂S′ ∩E+, then we set x = x′. So, x either
lies on ∂S′ ∩ E+ or is more than 1840e from ∂S′ ∩ E+.

Let r be the injectivity radius at x of E+. If r > 368e, then there is an embedded
grid with side length 512e+ 1 centred at x, since 512e+ 1 < 368

√
2e. When x lies

on ∂S′ ∩E+, we may choose the grid so that it is invariant under the involution of
E+. When x is more than 1840e from ∂S′ ∩ E+ then the grid is disjoint from its
image under the involution. Note that the grid lies in E+ −N2576e(W ), and hence
(2) is satisfied.

So suppose that r is at most 368e. Let γ1 and γ2 be distinct geodesics starting
at x with length r and having the same endpoint y in E+. Since r is exactly the
injectivity radius at x, these two geodesics patch together exactly at y to form a
smooth geodesic there. However, it need not be the case that they patch together
to form a smooth closed geodesic at x. Let γ be the concatenation γ1.γ2, which is
a geodesic based at x. The monodromy of γ lies in O(2). Indeed it lies in SO(2)
because E+ is orientable.

Case 1. µ(γ) is the identity.
Then γ is a closed geodesic that is smooth at x. It has length at most 736e

and lies in E+ − N1472e(W ). Hence, when x is disjoint from ∂S′ ∩ E+ and hence
N1472e(γ) is disjoint from ∂S′ ∩ E+, γ is the required geodesic.

However, when x lies on ∂S′ ∩ E+, we need to verify that γ is invariant under
the involution of E+. In this case let D be the open disc of radius r about x.
This is a Euclidean disc that is invariant under the isometric involution of E+.
Hence, the involution acts by reflection in a straight line through x. We deduce
that D ∩ (∂S′ ∩ E+) is this straight line. If γ′(0) points in the direction of this
line or is orthogonal to it, then γ is invariant under the involution as required. So
suppose, for a contradiction, that γ′(0) makes an angle strictly between 0 and π/2
with ∂S′ ∩ E+. Within D, the only intersection between γ and ∂S′ ∩ E+ is at x.
However, γ1 lies in one half of E+ and γ2 lies in the other half, where these two
halves are swapped by the involution. We deduce that ∂S′∩E+ must also lie at the
endpoint of γ1. It is therefore tangent to ∂D at that point. However, the Euclidean
subsurface is made of squares and ∂S′ ∩ E+ follows the sides of these squares. We
deduce that the only possible angles between ∂S′ ∩E+ and γ at the endpoint of γ1
are multiples of π/2. This is a contradiction.

Case 2. µ(γ) is a rotation of order 2.
Then γ1 and γ2 are equal, contradicting the assumption that they are distinct.
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Case 3. µ(γ) is a rotation of order 4.
Then γ4 can be developed onto a closed curve in the Euclidean plane. We may

shorten this curve in the plane, as shown in Figure 44. This is achievable within
E+ −W unless the curve hits W . But in this case, x would lie within distance at
most 1472e from W , which is contrary to assumption. But if we can shrink γ4 to
length 0, it is homotopically trivial in E+. Hence so is γ, since the fundamental
group of E+ is torsion free. This is a contradiction, since µ(γ) is non-trivial. �

x γ

γ

γ

γ

x x x

Figure 44. Shrinking γ4

The proof of Theorem 11.3 divides into the two cases in the above lemma. We
leave the first case for a while, and now consider the case where there is a grid
in E+ − N1472e(W ) with side length 512e + 1 and that is either invariant under
the involution of E+ or disjoint from its image. This lifts to a grid D(x̃, 256e) in

Ẽ+ − N1472e(W̃ ) also with side length 512e + 1, where Ẽ+ is the double of cl(Ẽ)

along the inverse image of ∂S′ ∩ E, and W̃ is the inverse image of W in Ẽ+.

11.7. First-return maps. For a subsurface F of Ẽ or Ẽ+, we may define a first-
return map rF : dom(F ) → F as follows. Its domain of definition is a subsurface
dom(F ) of F .

For a point y of F , one considers the fibre αy of N(B̃E) or N(B̃E+) through y.
This intersects F in a number a points. We consider the closest such point along αy
in the specified transverse direction on B̃E or B̃E+. If there is no point of αy ∩F in
this transverse direction, then rF (y) is not defined. But otherwise, we take rF (y)
to be this point.

We will consider surfaces F that are a union of tiles. In this situation, the
interior of each tile of F is either in dom(rF ) or is disjoint from it. Each tile of the

latter sort is outermost in the patch of N(B̃E) or N(B̃E+) that contains it. Since

there are at most 8e Euclidean patches of B̃E , we deduce that all but at most 8e
Euclidean tiles of F ⊂ Ẽ lie in dom(rF ). Similarly, all but at most 16e Euclidean

tiles of F ⊂ Ẽ+ lie in dom(rF ).

11.8. The first-return map for large grids. As described above, we are cur-
rently considering the case where there is a grid D(x̃, 256e) in Ẽ+−N1472e(W̃ ) with
side length 512e+ 1. We are assuming that this grid projects homeomorphically to
a grid in E+ and that it is invariant under the involution of E+.

Proposition 11.9. Every point ỹ ∈ D(x̃, 174e) lies in dom(rD(ỹ,81e)).

This is very similar to Proposition 9.14 in [17], and their proofs follow the same
lines. A key step is the following, which is an analogue of Proposition 9.15 in [17].
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Proposition 11.10. Let D1, . . . , Dm be a collection of disjoint grids in Ẽ+, each
with side length at least 64e + 1. Suppose that the restriction of the covering map
Ẽ+ → E+ to each Di is a homeomorphism onto its image. Assume also that each

Di is either invariant under the involution of Ẽ+ or disjoint from its image under
the involution. Let di be the supremal distance of the points in Di from ∂Di at
which rẼ+

is not defined. Then
∑
i di ≤ 16e.

Note that Proposition 11.10 has a hypothesis that was not present in Proposition
9.15 in [17]. This is that the restriction of the covering map Ẽ+ → E+ to each Di

is a homeomorphism onto its image. This hypothesis is required because here we
not assuming that S or S′ is a ‘boundary-vertex’ surface.

Proof. Consider the cusps of B̃E+, and let ∂−C denote the 1-manifold in Ẽ+ lying
directly above these cusps. By ‘above’, we mean that the transverse orientation
on Ẽ+ at ∂−C points towards the cusps. Note that ∂−C divides Ẽ+ into two

subsurfaces: dom(rẼ+
) and E+\\dom(rẼ+

). Transversely orient ∂−C in Ẽ+ so

that it points towards dom(rẼ+
). The 1-manifold Di ∩ ∂−C consists of properly

embedded arcs and simple closed curves.
We claim that each simple closed curve of Di ∩ ∂−C points into the disc in Di

that it bounds. This is an analogue of Claim 2 in the proof of Proposition 9.15 in
[17]. Suppose that, on the contrary, there is a simple closed curve β− in Di ∩ ∂−C
that points out of the disc that it bounds in the grid Di. This is an embedded curve
in the grid Di and hence it projects to an embedded curve β− in E+. Therefore,

the cusp of B̃E+ directly below β− projects homeomorphically to a cusp of B+. Let

β+ be the curve in Ẽ+ directly below β−. Then β+ projects homeomorphically to
a simple closed curve β+ in E+. This restricts to a simple closed curve or properly

embedded arc γ+ in E. Similarly, β− restricts to a simple closed curve or properly

embedded arc γ− in E. The disc bounded by β− restricts to a disc D− in S′

separated off by γ−
Suppose first that γ+ and γ− are simple closed curves. Thus the union of the

portions of the fibres between them is an annulus A containing an annular cusp
of N(BE). The union of A ∪D− is a disc bounded by γ+ lying in M . Since S is
incompressible, we deduce that γ+ bounds a disc D+ in S. The boundary of this
disc lies in S′, and hence all of D+ lies in S′. Then D− ∪ A ∪D+ is a sphere that
bounds a ball in M .

Now suppose that γ+ and γ− are arcs. Thus the union of the portions of the
fibres between them is a disc D containing a disc cusp of N(BE). By Lemma 11.6,
D lies in N ′. Hence, after a small isotopy, D+ ∪D is a disc in M ′, with boundary
consisting of an arc in S′ and an arc in ∂M ′, and with interior disjoint from S′. By
the boundary-incompressibility of S′, we deduce that γ+ separates off a clean disc
D+ in S′. Hence, D− ∪ A ∪ D+ is a disc properly embedded in M ′ disjoint from
the pattern. So by the boundary-irreducibility of M ′, we deduce that D−∪A∪D+

separates off a 3-ball disjoint from the pattern. The interior of this ball is disjoint
from S′ and S.

We can assume that D− and D+ have the same binding weight, as otherwise
we could isotope S′ and S, replacing one disc by the other to reduce the binding
weight of S′. Note that in the case where γ+ and γ− are simple closed curves,
there may be components of intersection between S \ S′ and the ball bounded by
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D−∪A∪D+. But we may replace these by discs parallel to D− or D+. This might
introduce new 2-sphere components of S \ S′, in which case these are discarded.

Now replace as many parallel copies of D+ as possible by parallel copies of
D−. Eventually, this must stop when some approximate tile type of S′ has been
removed. Hence, we have found a surface S′2 that is pattern-isotopic to S′ having
the same binding weight, but where approx-type(S′2) < approx-type(S′), contrary
to an assumption of Theorem 11.3. This proves the claim.

We claim that any point of Di ∩ ∂−C that is furthest from ∂Di lies on an arc
component of Di ∩ ∂−C. This is an analogue of Claim 1 in the proof of in the
proof of Proposition 9.15 in [17]. Cut Di along the arc components of Di ∩ ∂−C
and let D′i be the disc containing the centre of Di. Since the arc components have
length at most 32e, D′i contains a grid with side length 32e + 1. So, D′i contains
at least (32e+ 1)2 tiles. We will rule out the possibility that there are any simple
closed curves of ∂−C in D′i. Let δ be the union of those simple closed components
of D′i ∩ ∂−C that are outermost, in other words, that do not lie within another
simple closed component of D′i ∩ ∂−C. The total length of δ is at most 32e, and
so the total number of tiles that it can bound is at most (8e)2. But by the above
claim, dom(rẼ+

) ∩D′i lies within γ. So at least (32e + 1)2 − (8e)2 tiles do not lie

in dom(rẼ+
). However, rẼ+

is defined on all but at most 16e tiles of Ẽ+. This is a

contradiction, proving the claim.
We are now in a position to complete the proof of Proposition 11.10. Consider

a point on Di ∩ ∂−C that is furthest from ∂Di. By the above claim, this lies on an
arc component of Di ∩ ∂−C, and hence its distance from ∂Di is at most 16e. So,
we deduce that the grid with side length 32e + 1 with the same centre as Di has
interior disjoint from ∂−C and so either lies in dom(rẼ+

) or disjoint from dom(rẼ+
).

But this grid contains at least (32e+ 1)2 tiles whereas rẼ+
is defined on all but at

most 16e tiles. So we deduce that a point in Di\\dom(rẼ+
) furthest from ∂Di has

distance from ∂Di that is at most half the length of ∂−C ∩Di. So, di is at most
half the length of ∂−C ∩Di. Thus,

∑
i di is at at most half the length of ∂−C, and

hence at most 16e. �

Proof of Proposition 11.9. The proof is a direct analogue of that of Proposition 9.14
in [17]. Let ỹ be a point in D(x̃, 81e). We will show that there is a non-negative

integer m and a map D(ỹ, 32e)× [0,m′ + 1]→ N(B̃E+) such that

(1) the restriction to D(ỹ, 32e)× [0,m′ + 1) is an embedding;
(2) the image of D(ỹ, 32e)× {0} is D(ỹ, 32e);

(3) the inverse image of Ẽ+ is D(ỹ, 32e)× ([0,m′ + 1] ∩ Z);
(4) for each point z in D(x̃, 32e), the image of {z}× [0,m′ + 1] is a subset of a

fibre of N(B̃E+);
(5) the image of D(ỹ, 32e)×{m′+1} has non-empty intersection with D(ỹ, 48e).

We define two increasing sequences mi and ki of non-negative integers and maps
D(ỹ, 48e − ki) × [0,mi] → N(B̃E+) with properties analogous to (1)-(4) above.
The procedure starts with k0 = 0 and m0 = 0. Then the following procedure is
performed:

(1) If D(ỹ, 48e−ki)×{mi} intersects D(ỹ, 48e) and mi > 0, then the procedure
terminates; otherwise we pass to the next step.
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(2) If rẼ+
is defined on all ofD(x̃, 48e−ki)×{mi}, let rẼ+

(D(x̃, 48e−ki)×{mi})
be D(x̃, 48e−ki)×{mi+1}, increase mi by 1, and between these two grids
there is a product which is added to the product region. Then return to
step (1).

(3) Suppose that rẼ+
is not defined for all of D(x̃, 48e − ki) × {mi}. This

means that there is at least one cusp of N(B̃E+) below D(x̃, 48e − ki) ×
{mi}. Let di be the maximal distance of such cusps from the boundary
of D(x̃, 48e − ki) × {mi}. Applying Proposition 11.10 to the images of

D(x̃, 48e− k0)× {m0}, . . . , D(x̃, 48e− ki)× {mi} gives that
∑i
j=1 dj is at

most 16e. Set ki+1 =
∑i
j=1 dj , and define mi+1 = mi + 1. Increase i by 1

and return to step (1).

Note that our application of Proposition 11.10 in step (3) is permitted. This is

because restriction of the covering map Ẽ+ → E+ to each of the grids D(x̃, 48e −
k0)× {m0}, . . . , D(x̃, 48e− ki)× {mi} is an embedding. For suppose that this was
not the case, and that two points in one of these grids had the same image in E+.
Then, translating these two points along the fibres towards D(x̃, 48e), we would
deduce that two distinct points in D(x̃, 48e) had the same image in E+. However,

the restriction of Ẽ+ → E+ to D(x̃, 48e) is a homeomorphism onto D(x, 48e), and
in particular is injective. Thus, we have shown that there is the required map
D(ỹ, 32e)× [0,m′ + 1]→ N(B̃E+).

Let ỹ be a point inD(x̃, 174e). Around ỹ, there is the gridD(ỹ, 32e) ⊂ D(x̃, 256e).

Let D(ỹ, 32e)× [0,m′ + 1]→ N(B̃E+) be the above map. By (5), there is a point
z in D(ỹ, 32e) such that {z} × {m′ + 1} has image equal to a point in D(ỹ, 48e).
Now {ỹ} × {m′ + 1} lies in the grid D({z} × {m′ + 1}, 32e) and hence lies in
D(ỹ, 1 + 80e) ⊂ D(ỹ, 81e). There may be other points of D(ỹ, 81e) on the fibre
between {ỹ} × {0} and {ỹ} × {m′ + 1}. But the first return map for D(ỹ, 81e) is
certainly defined at ỹ. �

11.9. Translation invariance of the first-return map. As in the previous
subsection, let D(x̃, 256e) be a grid in Ẽ+ − N1472e(W̃ ). We are assuming that

D(x̃, 256e) is either invariant under the involution of Ẽ+ or disjoint from its image
under the involution. We are also assuming that D(x̃, 256e) projects homeomor-
phically to a grid in E+. By Proposition 11.9, for each ỹ ∈ D(x̃, 174e), the points ỹ
and rD(ỹ,81e)(ỹ) both lie in the disc D(x̃, 256e) and so there is a well-defined vector

vỹ in Tx̃Ẽ+ taking ỹ to rD(ỹ,81e)(ỹ).

Proposition 11.11. The vector field {vỹ : ỹ ∈ D(x̃, 48e)} is covariant constant.

This was Proposition 9.16 in [17], with essentially the same proof, which we
briefly sketch. First consider moving ỹ within a tile. Then D(ỹ, 81e) remains the

same grid as ỹ varies. The map rD(ỹ,81e) sends ỹ to a point in N(B̃E+) directly

below it. Because B̃E+ has trivial monodromy, the vector in D(ỹ, 80e) from ỹ to
its image remains unchanged.

Now consider what happens when ỹ moves to a point ỹ′ in an adjacent tile. Then
D(ỹ, 81e) also moves, and a new tile of D(ỹ′, 81e) appears below ỹ′. This is again

because B̃E+ has trivial monodromy. The image of ỹ′ under rD(ỹ′,81e) lies in this
tile, and again the vector in D(ỹ′, 81e) from ỹ′ to its image remains unchanged.

This argument then gives the following result.
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Proposition 11.12. There is a positive integer m with the following property. For
any point ỹ ∈ D(x̃, 174e), there is a map D(ỹ, 81e) × [0,m + 1] → N(B̃E+) such
that

(1) the restriction to D(ỹ, 81e)× [0,m+ 1) is an embedding;
(2) the image of D(ỹ, 81e)× {0} is D(ỹ, 81e);

(3) the inverse image of Ẽ+ is D(ỹ, 81e)× ([0,m+ 1] ∩ Z);
(4) for each point z in D(x̃, 81e), the image of {z} × [0,m+ 1] is a subset of a

fibre of N(B̃E+);
(5) the image of D(ỹ, 81e)×{m+1} has non-empty intersection with D(ỹ, 81e).

11.10. The monodromy of paths. In Section 11.2, we defined the monodromy
of a closed loop in BE+. We now use this to define the monodromy of certain paths
in E+.

Let p be a path in E+ such that πp(0) = πp(1) where π : N(BE+) → BE+ is
the projection map that collapses each fibre to a point. Then there is a unique
embedded path ε in a fibre joining p(1) to p(0). We define the monodromy µ(p)
of p to be the monodromy of p.ε. Note that if p is a closed loop, then the two
notions of monodromy coincide and so no confusion can arise. Note also that the
monodromy of a path p is unchanged if a homotopy is applied to p in E+ that fixes
its endpoints.

11.11. Paths with close endpoints. Let p be a path in D(x, 174e) such that
p(0) and p(1) lies in the same fibre of N(BE+) and with the property that p lies
in D(p(0), 81e). Let ε be the part of the fibre between these two points. Suppose
that ε lies in the image of D(p(0), 81e)× [0,m+ 1) or D(p(0), 81e)× (0,m+ 1] in
N(BE+) for the map described in Proposition 11.12 composed with the covering

map N(B̃E+)→ N(BE+). Then we say that p has close endpoints. Our aim is to
prove the following.

Proposition 11.13. No path p in D(x, 81e) has close endpoints.

It suffices to consider the case where p is a geodesic in D(x, 174e).

Lemma 11.14. Let p be a geodesic in D(x, 174e) with close endpoints. Then the
following are homotopically trivial loops in N(BE+):

p.ε.(−µ(p)p).− ε if det(µ(p)) = 1;
p.ε.(−µ(p)p).ε if det(µ(p)) = −1.

Here, −µ(p)p denotes the the geodesic that starts at p(0) with initial vector −µ(p)p′(0)
and with length equal to that of p. Also, −ε denotes the embedded arc in the same
fibre as ε that ends at ε(1), that intersects E+ the same number of times as ε and
that intersects ε only at ε(1).

Proof. Let p̃ be a lift of p to D(x̃, 174e). Let ε̃ be the lift of ε starting at the endpoint
of p̃. Then p̃.ε̃ lies in the image of D(p(0), 81e)×[0,m+1) or D(p(0), 81e)×(0,m+1].
The lift of (−µ(p)p). − ε or (−µ(p)p).ε (as appropriate) starting at the endpoint
of ε̃ runs along a path parallel to p̃ but in reverse and then closes up, ending at
p̃(0). Hence, the composition of these 4 paths is a homotopically trivial loop in
D(p(0), 81e) × [0,m + 1) or D(p(0), 81e) × (0,m + 1]. Thus, the image of these 4
paths is a homotopically trivial loop in N(BE+). �
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Therefore, when p is a path in D(x, 174e) with close endpoints, the following
paths are homotopic relative to their endpoints:

p.ε ' −ε.(−µ(p)p) if det(µ(p)) = 1;

p.ε ' ε.(−µ(p)p) if det(µ(p)) = −1.

Here, the overline denotes the reverse of a path.

11.12. Paths in grids with close endpoints have positive determinant.

Lemma 11.15. Any path in D(x, 81e) with close endpoints has monodromy with
positive determinant.

Proof. Suppose that the monodromy of p has negative determinant. Therefore,
p.ε is a homotopically non-trivial loop in N(BE+). Therefore, p.ε.p.ε is also, since
N(BE+) has torsion free fundamental group (being a compact 3-dimensional sub-
manifold of the 3-sphere). But

p.ε.p.ε ' p.ε.ε.(−µ(p)p) ' p.(−µ(p)p).

However p.(−µ(p)p) remains within D(x, 174) which is a grid and which therefore
does not contain any homotopically non-trivial loops. �

11.13. Paths in grids with close endpoints have trivial monodromy.

Lemma 11.16. Any path in D(x, 81e) with close endpoints has trivial monodromy.

Proof. Let p be a path in D(x, 81e) with close endpoints and non-trivial mon-
odromy. By Lemma 11.15, this monodromy has positive determinant and is there-
fore a rotation of order 2 or 4. By assumption, the endpoints of p lie in the same
fibre of N(BE+). Indeed, the part of the fibre between p(0) and p(1) lies in the
image of D(x̃, 81e) × [0,m + 1) or D(x̃, 81e) × (0,m + 1]. We may homotope p
relative to its endpoints to a geodesic. Let p2 be the geodesic starting at p(1),
with length and direction given by µ(p)(p′(0)) translated to p(1). Then p2 fellow
travels with p, in the sense that they have the same images under the projection
map N(BE+) → BE+. Define p3 and p4 similarly. Then p.p2.p3.p4 has distinct
endpoints in the same fibre of N(BE+). However, p.p2.p3.p4 is a homotopically
trivial loop in D(x, 174e), and in particular, it ends where it starts. This is a
contradiction. �

Proof of Proposition 11.13. Suppose that on the contrary there is a path p in
D(x, 81e) with close endpoints. Let p̃ be a lift to D(x̃, 81e). Let ε be the path
in N(B) between p(0) and p(1). By Lemma 11.16, p.ε has trivial monodromy, and

so lifts to a loop in N(B̃) starting at p̃(0). So either p̃(1) is a point in D(p̃(0), 81e)
that lies strictly between p̃(0) and rD(p̃(0),81e)(p̃(0)), or p̃(0) is a point inD(p̃(1), 81e)
that lies strictly between p̃(1) and rD(p̃(1),81e)(p̃(1)). This contradicts the definition
of the first-return map. �

11.14. An embedded annulus in N(B̃+). We can now form an embedded an-

nulus C̃ in N(B̃+). This is constructed as follows.

Let α̃ be the geodesic in D(x̃, 81e) from x̃ to x̃′ = rD(x̃,81e)(x̃). Let β̃ be a
geodesic starting at x̃ with length 32e that is parallel to a side of D(x̃, 81e) and

that has angle between π/2 and 3π/4 from α̃. Let β̃′ be the result of translating

β̃ using the vector vx̃, so that it runs through x̃′. The region Q̃ between β̃ and
β̃′ is a Euclidean parallelogram. By the way that we have chosen β̃, Q̃ lies within
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D(x̃, 81e). All of interior angles lie between π/4 and 3π/4. Note also that when α̃

is invariant under the involution of Ẽ+, so too is Q̃.

The two sides β̃ and β̃′ of Q̃ have the same image in B̃E+. Hence, we can insert

a rectangle R̃ between these two sides of Q̃, that is vertical in N(B̃E+) in the sense

that it is a union of arcs that lie in fibres of N(B̃E+). The union of Q̃ and R̃ is an

annulus C̃.
When D(x̃, 256e) is invariant under the involution of N(B̃E+), then x̃ and x̃′ are

fixed points. Hence in this case, α̃ is fixed pointwise by the involution and so C̃ is
invariant under the involution.

Lemma 11.17. C̃ is embedded in N(B̃+).

Proof. The annulus C̃ consists of the parallelogram Q̃ and a vertical rectangle R̃.
Both Q̃ and R̃ are embedded. So the only way that C̃ could fail to be embedded
is if there is a point z1 in Q̃ and a point z2 in the interior of R̃ that coincide in
N(B̃E+). Let z3 be a point in R̃ that lies in the same fibre as z2 and that also

lies in Q̃. Then rQ̃(z3) is a point lying between z3 and z2 (possibly equalling z2
but not z3). Hence, rD(z3,81e)(z3) also lies between z3 and z2. So the number of

points of Ẽ+ strictly between z3 and rD(z3,81e)(z3) is less than m, the constant from
Proposition 11.12, which is a contradiction. �

Lemma 11.18. C̃ is disjoint from its covering translates under the action of the
covering group for N(B̃E+)→ N(BE+).

Proof. Suppose that on the contrary, C̃ intersects some image g(C̃) under some
non-trivial covering transformation g. This covering translate is made up of a
covering translate g(Q̃) of Q̃ and a covering translate g(R̃) of R̃. Let z in C̃ be

a point of intersection between C̃ and g(C̃). There are several possible cases to
consider.

Suppose first that z lies in Q̃ and g(Q̃). Then g−1(z) lies in Q̃, and there is a path

p̃ in Q̃ from g−1(z) to z. This projects a closed loop in N(BE+) with non-trivial

monodromy. However, this path lies in the image of Q̃, which lies in D(x, 81e), and
every closed loop in this grid has trivial monodromy. This is a contradiction.

Now suppose that z lies in Q̃ and g(int(R̃)). Now g(R̃) consists of a union of
arcs, each of which is a subset of a fibre. Let z2 be an endpoint of the arc containing
z, with z2 lying in g(Q̃). So, g−1(z2) lies in Q̃. Let p̃ be a geodesic in Q̃ joining
z to g−1(z2). Let p be the image of p̃ under the projection map to N(B). Then
p is a path in D(x, 81e) with close endpoints, contradicting Proposition 11.13. An

analogous argument also rules out the case where z lies in g(Q̃) and int(R̃).

The final case is where z lies in int(R̃) and g(int(R̃)). However, if we move z

along the fibre it lies in, then we can find a point z′ of intersection between C̃ and
g(C̃) that lies in Q̃ or g(Q̃) (or both). This has been ruled out in the previous
cases. �

Thus, C̃ projects to an embedded annulus C in N(BE+). This is either disjoint
from its image under the involution of N(BE+) or invariant under this involution.

11.15. Return to the annular case. In Lemma 11.8, we showed that either there
is a closed geodesic in E+ −N1472e(W ) with length at most 736e or there is a grid
D(x, 256e) in E+ − N1472e(W ) with side length 512e + 1. We have so far focused
on the second case. However, we now consider the first case.
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Let α be a simple closed geodesic in E+ −N1472e(W ) with length at most 736e,
such that N1472e(α) is either invariant under the involution or disjoint from its
image under the involution.

The following is a version of Lemma 9.9 in [17], which essentially the same proof,
which is omitted.

Lemma 11.19. Suppose that α is a simple closed geodesic in E+−N1472(W ) with
length at most 736e. Suppose also that the component of E+ containing α is not
a torus with binding weight at most 23552e2. Then for all r ≤ 16e, Nr(α) is a
Euclidean annulus with core curve α.

Note that the monodromy along α is in SO(2) because E+ is orientable. Note
also that the monodromy preserves the unit tangent vector to α since α is a closed
geodesic. So the monodromy along α is in fact trivial. Hence, the inverse image of
α in Ẽ+ is a disjoint union of copies of α. Let α̃ be one such component.

Let x̃ be a point on α̃, and let β̃ be a geodesic through x̃ that is orthogonal to
α̃ and that runs for distance 16e in both directions from x̃. Let Q̃ be the rectangle
that results from cutting N16e(α̃) along β̃. Let Q be its image in E+. We refer to

the edges of Q̃ that are identified in Ẽ+ by β̃ and β̃′. Note that Q̃ is either invariant

under the involution of N(B̃E+) or disjoint from its image under the involution.
We now consider the two cases of Lemma 11.8 simultaneously.

11.16. Another vertical rectangle. The following was proved in Section 9.8 of
[17].

Lemma 11.20. There is a translate γ̃ of α̃ that starts on β̃ and ends on β̃′ and
a map γ̃ × [0,K + 1] → N(B̃E+), for some integer K ≥ 0, with the following
properties:

(1) the restriction to (γ̃ − ∂γ̃)× [0,K + 1) is an embedding;
(2) if x1 and x2 are the start and endpoints of γ̃, then the restriction to each

xi × [0,K + 1) is an embedding;
(3) the images of (x1, y1) and (x2, y2) coincide if and only if y1 − y2 is the

integer m from Proposition 11.12;
(4) the image of γ̃ × {0} is γ̃;

(5) the inverse image of Ẽ+ is γ̃ × ([0,K + 1] ∩ Z);
(6) for each point z in γ̃, the image of {z} × [0,K + 1] is a subset of a fibre of

N(B̃E+);

(7) the image of γ̃ × [0,K + 1) is disjoint from Q̃;
(8) there is a point y in the interior of γ̃ such that the image of y×{K + 1} is

equal to a point y′ in Q̃.

Moreover when α̃ is invariant under the involution of N(B̃E+), then so are γ̃, y
and y′.

Let Ṽ be the image of γ̃ × [0,K + 1] in N(B̃E+). By construction, its interior is

disjoint from C̃.

Lemma 11.21. C̃ ∪ Ṽ is disjoint from its covering translates.

Proof. Suppose that, on the contrary, the image of C̃ ∪ Ṽ under some non-trivial
covering transformation g has non-empty intersection with C̃ ∪ Ṽ . Let z be a point
in the intersection.
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We know by Lemma 11.18 that g(C̃)∩ C̃ is empty. So, there are three remaining

cases: z can lie in g(C̃) ∩ Ṽ , g(Ṽ ) ∩ C̃ or g(Ṽ ) ∩ Ṽ . In the third case, we can slide

z vertically in Ṽ until it lies in g(C̃) or C̃. So if the third case holds, then so does
one of the first two cases. Furthermore, the first two cases are essentially identical.
So, we may assume that z ∈ g(C̃) ∩ Ṽ .

Consider a horizontal path q̃ in Ṽ starting at z, running in the direction of α̃. (See

Figure 45.) Its image g−1(q̃) starts at g−1(z) ∈ C̃ and runs along a horizontal path

in Q̃. Since we have applied a non-trivial covering transformation, this path g−1(q̃)
has had a non-trivial element of O(2) applied to it. By the time we have reached
the end of q̃, we reach a point that is in the same fibre as the start of q̃ and there
are m points of Ẽ directly between the start and end of q̃, where m is the integer
from Proposition 11.12. Hence, the same is true of g−1(q̃). But g−1(z) lies in the
grid D(x̃, 81e). So, by Proposition 11.11, the first point of D(g−1(z), 81e) that lies
in the same fibre as g−1(z) in the specified transverse direction differs from g−1(z)
by translation in the direction of α̃. So, g−1(q̃) must run in the same direction as
α̃. Hence, g must preserve the α̃ direction and the specified transverse orientation
on N(B̃E+). But this implies that g represents the trivial element of O(2), and
hence g was the identity covering transformation. This is a contradiction. �
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Figure 45. An arrangement from the proof of Lemma 11.21

11.17. An embedded torus in N(B+). Let γ be the image of γ̃ in Q. Let γ′ be
its translate that goes through y′. Let δ be the subset of β that lies between β ∩ γ
and β ∩ γ′. Define δ′ ⊂ β′ similarly.

Then γ ∪ δ ∪ γ′ ∪ δ′ forms an embedded parallelogram Q′ in N(BE+). The sides
δ and δ′ follow the same itinerary in N(BE+), and have a portion of the vertical
rectangle R between them. Thus, these close up to form an embedded annulus.

The opposite sides of this annulus have the image of Ṽ between them. Attaching
Ṽ to these two boundary components gives an embedded torus T in N(BE+). (See
Figure 46.)

Let σ be a curve in T that is the union of a parallel copy of γ and a fibre in R.
This torus T is either disjoint from its image under the involution of N(BE+) or

invariant under the involution. In the case where T is disjoint from its image, let
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Figure 46. The torus T

T ′ be the union of T and this image. When T is invariant under the involution, let
T ′ = T .

11.18. Removing a multiple of the summand T ′. This torus or tori T ′ is a
summand of E+, because of the following lemma, which is Lemma 8.2 in [17].

Lemma 11.22. Let S1 and S2 be normal surfaces carried by a branched surface.
Suppose that in each patch of the branched surface, the weight of S2 is at least the
weight of S1. Then S1 is a summand of S2.

In the case where x̃ lies in the grid D(x̃, 256e), let m be the number of sheets

of Ẽ+ strictly between x̃ and rD(x̃,81e)(x̃). (This is the constant from Proposition
11.12.) In the case where α̃ is a closed geodesic, let m be zero.

Lemma 11.23. (m+ 1)T ′ is a summand of E+.

Proof. When m = 0, this is a consequence of Lemma 11.22. So let us assume that
x̃ lies in the grid D(x̃, 256e). By Lemma 11.22, it suffices to show that (m + 1)T ′

is carried by the branched surface N(BE+) and that in each patch, the weight of

E+ is at least that the weight of (m+ 1)T ′. At each point z in Q̃, rD(z,81e)(z) and

z lie in the same patch of N(B̃E+). If any part of Ẽ+ lies between them, this also

lies in the same patch. Just as Q̃ was used to create the torus T ′, so these parts of
E+ therefore may be used to create the tori (m + 1)T ′, which is then a summand
of E+. (See Figure 47.) �

Let E+ be the surface carried by BE+ satisfying E+ = E+ + (m+ 1)T ′.

11.19. Dehn twisting along T ′.

Proposition 11.24. The surface E+ is obtained from E+ by Dehn twisting some
number of times around T ′.

We will need the following.

Lemma 11.25. Let S be a surface carried by a branched surface B, and let T be a
torus carried by B. Suppose that S ∩ T consists of k curves that are essential on T
and so that the summation directions are all coherently oriented around T . Then
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Figure 47. Other parts of E+ may lie between z and rD(z,81e)(z)
but these remain parallel to Q

for any multiple n of k, S + nT is obtained from S by Dehn twisting some number
of times around T .

Proof. Consider a simple closed curve on T that intersects each curve of S∩T once.
Then in a regular neighbourhood of this curve, the surfaces S and T sit as shown in
Figure 48. It is now clear that, when n is a multiple of k, then S + nT is obtained
from S by Dehn twisting about T n/k times. �

T

S

S

S

S

Figure 48. The case k = 4

Thus, to prove Proposition 11.24, we just need to show that E+ ∩ T ′ consists of
essential curves in T ′ and that, for each component T of T ′, |E+ ∩ T | is a multiple
of m+1. The following lemma will be used to deal with the number of these curves.

Lemma 11.26. Let ζ ′ be a collection of parallel essential simple closed curves on
a torus T . Let ζ be a simple closed curve of T with slope other than that of ζ ′ and
that intersects each component of ζ ′ in points of the same sign. Then |ζ ′| divides
|ζ ∩ ζ ′|.
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Proof. The assumption that intersects each component of ζ ′ in points of the same
sign implies that the number of such points is just the modulus of the intersection
between the slopes. Hence, |ζ ∩ ζ ′| is just |ζ ′| times this intersection number. �

Proof of Proposition 11.24. Let σ be the curve on the torus T defined in Section
11.17. We see that all the intersection points between σ and E+ ∩ T have the
same sign and respect the direction of the normal summation. Hence, ζ = σ and
ζ ′ = E+ ∩ T satisfy the hypotheses of Lemma 11.26. So for each component T
of T ′, |E+ ∩ T | divides |σ ∩ E+|, which is m + 1. Hence, by Lemma 11.25, E+ is
obtained from E+ by Dehn twisting some number of times about T ′. �

11.20. The case where T is disjoint from its image. Suppose now that T is
disjoint from its image under the involution of N(BE+). Hence, it restricts to a
torus, which we will also call T , in N(BE). This is disjoint from the boundary of
M . The Dehn twist defined in Proposition 11.24 restricts to a Dehn twist about
T in M . Let E be the result of removing (m+ 1) summands of T from E, viewed
as a surface carried by BE . Then E is obtained from E by applying some power h
of this Dehn twist about T . Let S′2 be the surface (S′\\N(BE)) ∪ E. Then S′2 is
obtained from S′ by applying h. The surface S\\S′ may intersect N(B), but near
T , it runs parallel to S′. Hence, we may also obtain a surface S2 from S by applying
h. Similarly, we can obtain the 3-manifold h(N ′) and handle structure h(H′). So,
(N,X, h(Y ), P ∩N,H, h(S)) and (h(N ′), X, h(Y ′), P ∩N ′, h(H′), h(S′)) are nested
admissible envelopes. (See Figure 49.) Note that the binding weight wβ(h(S′)) is
strictly less than the binding weight wβ(S′), since we have removed (m+ 1)wβ(T ),
which is positive. This contradicts one of the assumptions of Theorem 11.3. So,
the theorem is proved in this case.

T

P

S\\S'
S'

h(S\\S')
h(S')

N' h(N')

Dehn twist

about T

Figure 49. Dehn twisting along the torus T in M

11.21. The case where T is invariant under the involution. In this case, T
restricts to an annulus A in N(BE). The Dehn twist about T restricts to a Dehn
twist about A. Since we doubled N(BE) along ∂M ′ ∩ N(B), this annulus A has
boundary lying in ∂M ′.

When T was disjoint from its image under the involution, there may have been
parts of S\\S′ lying between the sheets of E near T . However, in the current case,
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this does not arise, for the following reason. If there was any part of S\\S′ between
the sheets of E near T , then they would run parallel to E, and so would have to
intersect ∂M ′. Consider such a point of intersection. Above and below this point
would be tiles of S′ that are of the same approximate type. However, these tiles
intersect ∂M ′, and so must actually be parallel in N ′, and so there cannot in fact
be S\\S′ between them.

If any component of ∂A does not lie in ∂M , then we may extend A to an
annulus Ã properly embedded in M by attaching a collar in the wedge region
N\\N ′. This annulus Ã lies in N and is carried by the branched surface of which

N is thickening. The Dehn twist about A extends to a Dehn twist h about Ã.
Again, (N,X, h(Y ), P ∩N,H, h(S)) and (h(N ′), X, h(Y ′), P ∩N ′, h(H′), h(S′)) are
nested admissible envelopes. Again, the binding weight wβ(h(S′)) is strictly less
than the binding weight wβ(S′), since we have removed (m + 1)wβ(A), which is
positive. Again this proves Theorem 11.3 in this case.

12. The thin part of the surface

In Section 10.12, the cut vertices of S′ were defined. These are the non-manifold
points of S′. Modifications to S′ were given, but it was important that these took
place away from the cut vertices. As a result, the surface S′cut was defined in Section
10.12, which is obtained from S′ by cutting along its cut vertices. The remnants of
the cut vertices in S′cut are not forgotten. We can view the modifications in Section
10 as being applied to S′cut. We will see later that we can apply these modifications
until the binding weight of the non-bigon components of S′cut is small, in the sense
that it is bounded above by a polynomial function of the initial arc index of the
link. However, this does not imply that the binding weight of S′ is small, since
there may be parts of S′ that consist of long lines of bigons joined up in a row. We
call these the ‘thin’ parts of S′. In this section, we explain how to modify these
thin parts so that they too have small binding weight.

12.1. The thin part. The thin part of the surface S′ consist of the union of the
bigon components of S′cut, together with the cut vertices of S′ that are incident to
two bigons and no other tiles. See Figure 50. We denote the thin part by S′thin.

thin part

Figure 50. The thin part of S′

Recall that S′ is properly embedded in the manifold N ′. Let M ′ be obtained
from N ′ by attaching M\\N . Thus, M ′ is obtained from M by inserting wedges,
but we suppose that when a wedge is inserted in a way that creates a cut vertex,
then we do not quite insert the full wedge, in order to maintain M ′ as a 3-manifold.

The following is the main result of this section.

Proposition 12.1. Suppose that the component of M ′ containing S′ is not an I-
bundle over a compact surface with P lying in the vertical boundary as a collection of
essential simple closed curves. Suppose also that if the component of M ′ containing
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S′ has any JSJ annuli, then S′ is the JSJ annuli. Let ebigon be an upper bound for
the number of H′-parallelism types of bigons in S′. There is a pattern-isotopy of S′

taking it to a nearly admissible surface S′′′ with binding weight at most

(2ebigon + wβ(∂M ′) + 1)wβ(S′\\S′thin).

Remark 12.2. This proposition refers to the number of H′-parallelism types of
bigons in S′. This is at most the number of approximate star types of tiles of S′.
This is because when two bigons have the same approximate star type, then they
are actually parallel in H′, as their vertices lie on ∂M ′.

12.2. The thin bundle. The thin bundle B is a 3-dimensional submanifold of
M ′, constructed as follows. Take a regular neighbourhood of the thin part of S′.
Between any two bigon tiles of S′thin that are H′-parallel, insert the space between
them. Between any two vertices of the thin part of S′ that areH′-parallel, insert the
space between them. This is an I-bundle over a surface, for the following reason.
Each bigon tile of S′thin is a product I × I, where the second factor is given by the
θ value. A regular neighbourhood of each vertex in the thin part of S′ is again a
product I × I, when this vertex has been suitably enlarged so that the surface is
properly embedded in M ′. When we form regular neighbourhoods of these bigon
tiles and these vertices, the result is still an I-bundle, and it remains so when we
attach the spaces between them.

12.3. Annular simplifications. We now describe a modification to M ′. Suppose
that there is a clean annulus A properly embedded in M ′. Suppose also that there
is a clean annulus A′ in ∂M ′ such that ∂A = ∂A′. Assume that A ∪ A′ bounds a
3-manifold G such that

(1) either G is product region between A and A′, or G lies in a 3-ball in M ′;
(2) the intersection between G and the thin bundle B is a union of components

of B;
(3) A is a vertical boundary component of B.

Removing the interiors of G and A′ from M ′ is called an annular simplification.
Note that an annular simplification can be achieved by an isotopy of an earlier

surface in the partial hierarchy, as follows. Since A′ is disjoint from the boundary
pattern, it lies within some surface Si of the partial hierarchy. If we replace Si by the
surface (Si\\A′)∪A, then this new surface is isotopic to Si. All the vertices of A are
vertices of A′, and so this does not increase the binding weight of the hierarchy. This
isotopy of the surface has the effect of removing G from M ′. However, G is added
to the part of the 3-manifold on the other side of Si. Note that when constructing
the partial hierarchy, we always ensured that it was adequately separating, and we
therefore guaranteed that on the two sides of A′, there were different components
of M ′. Thus, whenever we perform an annular simplification to the component of
M ′ containing S′, we reduce the number of components of B in that component of
M ′.

So let us suppose that no further annular simplifications can occur to the com-
ponent of M ′ containing S′.

12.4. The generalised thin bundle. By using arguments analogous to ones in-
troduced in [16], we will now enlarge B to a bigger I-bundle B+, which we call the
generalised thin bundle. Throughout this enlargement process, B+ will have the
following properties:



AN UPPER BOUND ON REIDEMEISTER MOVES FOR EACH LINK TYPE 105

(1) B+ is an I-bundle over a compact surface;
(2) the horizontal boundary of B+ is B+ ∩ ∂M ′, and is clean;
(3) the vertical boundary of B+ is a union of vertical boundary components of

the thin bundle.

Proposition 12.3. Suppose that B+ is maximal with the above properties. Suppose
also that the component of M ′ containing S′ admits no annular simplifications.
Then each component of B+ either is an I-bundle over a disc or has incompressible
vertical boundary.

Proof. Let B′+ be the union of the components of B+ that are not I-bundles over
discs. We will show that the vertical boundary of B′+ is incompressible.

Suppose that, on the contrary, it has a compression disc D. Let A be the vertical
boundary component containing ∂D. By the definition of B′+, D does not lie entirely
in B′+. Its interior is disjoint from B′+ (by the definition of a compression disc), but
it may intersect B+ − B′+.

Now, A compresses along D to give two discs D′1 and D′2 properly embedded
in M ′. Their boundaries are clean. Since (M ′, P ) is irreducible and boundary-
irreducible, D′1 and D′2 are parallel to discs D1 and D2 in ∂M ′ − P , via 3-balls B1

and B2. There are two cases to consider: where B1 and B2 are disjoint and where
they are nested.

Let us suppose first that they are disjoint. Then, A ∪D1 ∪D2 bounds a 3-ball
B, by the irreducibility of M ′. Since the interior of D is disjoint from B′+, this ball
B does not lie in B′+. So, we may extend the I-bundle structure of B′+ over B,
contradicting the maximality of B+.

Let us now suppose that B1 and B2 are nested; say that B2 lies in B1. Let A′

be D1\\D2. Then, A′ is a clean annulus in ∂M ′ such that ∂A = ∂A′. Let G be
the 3-manifold bounded by A ∪ A′. This lies in the 3-ball B1. So, M ′ admits an
annular simplification, which is a contradiction.

Thus, the vertical boundary of B′+ is incompressible. �

Proof of Proposition 12.1. Let ∂vB+ be the vertical boundary of the generalised
thin bundle. It is a union of components of the vertical boundary of B.

We claim that the binding weight of ∂vB+ is at most 2ebigon, where ebigon is an
upper bound for the number of H′-parallelism types of bigons in S′. It is composed
of a union of bigon tiles of S′, and each such tile is outermost in its H′-parallelism
class. The claim follows immediately.

We will show that, after a pattern-isotopy, S′ intersects B+ in discs that are
vertical with respect to the I-bundle structure on B+. Furthermore, this does
increase the binding weight of the surface outside of B+ and it does not increase the
number of components of S′∩∂vB+. First note that, because the vertical boundary
of B+ is equal to a union of vertical boundary components of B, and S′ intersects B
in bigons, we may perform a small isotopy of S′ so that afterwards it intersects ∂vB+
in vertical arcs. Suppose now that S′∩B+ has a boundary compression disc D that
intersects ∂B+ in ∂hB+. Since S′ is boundary-incompressible (with respect to the
pattern), the arc S′ ∩D separates off a clean disc in S′. This and D separate off a
ball disjoint from the pattern, and we may isotope S′ across this ball. This has the
effect of reducing the number of components of S′∩∂vB+. It also does not increase
the binding weight of S′ outside of B+. Note also that S′∩B+ is incompressible. For
suppose that it had a compression disc D. Since S′ is incompressible, ∂D bounds
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a disc D′ in S′. This misses the boundary of M ′, and hence does not intersect
∂vB+. But it must then lie in B+, which is a contradiction, proving the claim.
Thus S′ ∩ B+ is now incompressible and has no boundary compression disc that
intersects ∂B+ in ∂hB+. The only such surfaces are, up to isotopy preserving ∂hB+
and ∂vB+, vertical or horizontal in B+. However, since S′ ∩ ∂vB+ is vertical, we
deduce that S′ ∩ B+ must be vertical, as required.

Let Ba+ be those components of B+ that are I-bundles over annuli, and where
both vertical boundary components are inessential in M ′. We now isotope S′ off
B+ − Ba+. We do this first for the components of B+ − Ba+ that are I-bundles over
discs. In any such D2 × I component, its intersection with S′ is isotopic to α× I,
where α is a collection of arcs properly embedded in D2. Pick an outermost such
arc, and replace it by a disc parallel to a subset of ∂vB+. Repeating this process,
we eventually isotope S′ off the D2 × I components of B+.

Now consider the components of B+ −Ba+ that are not I-bundles over discs. By
Proposition 12.3, their vertical boundary is a union of incompressible annuli. A
component B of B+ − Ba+ cannot have all its vertical boundary components being
inessential in M ′, for the following reason. If any is inessential, then it is parallel to
an annulus in ∂M ′ that intersects the pattern in a (possibly empty) union of core
curves. If all the product regions between these annuli and the vertical boundary
are disjoint from the interior of B, then this component of M ′ is an I-bundle, and
the boundary pattern intersects each vertical boundary component in a (possibly
empty) collection of parallel core curves, which is contrary to assumption. On the
other hand, if one of these product regions contains B, then ∂vB is an essential
subsurface of an annulus, and hence is a collection of annuli. This implies that B
must be an I-bundle over an annulus, which is a contradiction. Hence, B+ − Ba+
is non-empty, then we deduce that M ′ contains a clean essential annulus. In this
situation, we are assuming that S′ consists of the JSJ annuli. Therefore, S′ can
be pattern-isotoped off the incompressible vertical boundary of B+. So, there is a
product region between S′ and this vertical boundary. We can pattern-isotope S′

across this product region, so that part of it runs parallel to a subset of the vertical
boundary. It is possible that this product region does not lie in B+, in which case,
the new part of S′ lies in B+. However, it remains the case that S′ intersects B+
in vertical discs, or possibly annuli parallel to some vertical boundary components
of B+. It also remains the case that S′ is disjoint from the components of B+ that
are I-bundles over discs. Hence, we may repeat this process until S′ is disjoint
from the vertical boundary of B+. If any components of S′ are parallel to a vertical
boundary component of B+, they may be pattern-isotoped off B+.

At the end of this process, the resulting surface S′′′ is disjoint from B+ − Ba+.
In each component of Ba of Ba+, the surface is vertical. If any component S′′′ is
inessential in Ba, we may isotope it out of Ba, so that it runs parallel to a subset
of the vertical boundary. The remaining essential components of S′′′ ∩ Ba may be
arranged so that they intersect each vertex in ∂hBa at most once. The resulting
surface differs by an isotopy and some power of a Dehn twist about one of the
boundary components of ∂vBa. This Dehn twist is pattern-isotopic to the identity
on M ′.

Each component of S′′′\\S′ in B+ − Ba+ runs parallel to a vertical subset of
∂vB+. It therefore has binding weight at most 2ebigon. Each such component
starts and ends on a vertex of S′\\S′thin that is not in its thin part. Hence, the
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total binding weight of S′′′\\S′ in B+ − Ba+ is at most 2ebigon wβ(S′\\S′thin). In
Ba+, each component of S′′′\\S′ also starts and ends on a vertex of S′\\S′thin that
is not in its thin part. So the binding weight of those components is at most
wβ(∂M ′)wβ(S′\\S′thin). The remainder of S′′′ is S′\\S′thin, and so we obtained our
required upper bound on the binding weight of S′′′. �

13. The Euler characteristic argument

Theorem 13.1. Let (M,P ) be a compact orientable irreducible boundary-irreducible
3-manifold with boundary pattern. Suppose that M is a subset of S3 with ∂M in
alternative admissible form and P in an arc presentation. Let S be a properly em-
bedded surface in M in generalised admissible form. Let (N,X, Y, P ∩N,H, S) and
(N ′, X, Y ′, P ∩N ′,H′, S′) be nested admissible envelopes. Suppose that there is no
homeomorphism h as in Theorem 11.3. Let e be the number of approximate star
types of tiles of S′. Let S′\S′thin be obtained from S′ by cutting along its cut vertices
and then discarding any bigon tiles. Let S′′ be obtained from S′thin by discarding any
toral or annular components that lie in E and have binding weight at most 23552e2.
Let S+ be the double of S′′, which inherits a singular foliation. Then the number
of non-cut vertices of S+ with valence at most 3 is at least

wβ(S′′)

31π(2392e)2
+

72

31
χ(S)− 5

31
|S ∩ P |.

Proof. Recall that the cut-adjusted Euler characteristic χc was defined in Section
10.12 and that χc(S

′′) = χc(S
′ \ S′thin) = χc(S

′
cut) = χ(S′). Also define the cut-

adjusted Euler characteristic χc(S+) of S+ to be χ(S+) minus its number of cut
vertices. Then χc(S+) = 2χc(S

′′) = 2χ(S′). Note that S′ is homeomorphic to S
plus possibly some clean discs, and so χ(S′) ≥ χ(S). Form a cell complex on S+ by
declaring that each vertex of S+ is a 0-cell and each generalised saddle is a 0-cell.
Each separatrix is a 1-cell. Each tile is a 2-cell. Let E and F be the edges and
faces of this cell complex. Let C be the cut vertices of S+. Since the vertices V
and generalised saddles X form the 0-cells of this complex, then obviously

|V |+ |X| − |E|+ |F | − |C| = χc(S+) ≥ 2χ(S).

Since each tile of S+ has four separatrices in its boundary, 2|E| = 4|F |, and so
|E| = 2|F |. Each edge runs from a vertex to a generalised saddle, and so contributes
1 to d(v)/2 + d(x)/2 for some vertex v and generalised saddle x, where d is their
valence. So

|E| = 1

2

∑
v∈V

d(v) +
1

2

∑
x∈X

d(x).

Therefore,

2χ(S) ≤ |V |+ |X| − |E|+ |F | − |C|
= |V |+ |X| − |E|/2− |C|

=
∑
v∈V

(
1− d(v)

4

)
+
∑
x∈X

(
1− d(x)

4

)
− |C|.

We now introduce the cut-adjusted valence of a vertex v in S+ to be

dc(v) =

{
d(v) + 4 if v is a cut vertex

d(v) otherwise.
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So,

2χ(S) ≤
∑
v∈V

(
1− dc(v)

4

)
+
∑
x∈X

(
1− d(x)

4

)
.

For each integer k ≥ 2, let vk be the number of vertices in S+ with cut-adjusted
valence k. Then

3v1 + 2v2 + v3 =
∑
v∈V

dc(v)<4

(4− dc(v)) ≥ 8χ(S) +
∑
v∈V

dc(v)>4

(dc(v)− 4) +
∑
x∈X

(d(x)− 4) .

Note that∑
v∈V

dc(v)>4

(dc(v)− 4) =
∑
k>4

∑
v∈V

dc(v)=k

(dc(v)− 4) =
∑
k>4

vk(k − 4) ≥ 1

5

∑
k>4

kvk.

Similarly, because each generalised saddle has valence that is an even integer at
least 4, ∑

x∈X
(d(x)− 4) ≥ 1

3

∑
x∈X
d(x) 6=4

d(x).

So,

3v1 + 2v2 + v3 ≥

1

5

∑
k>4

kvk +
1

3

∑
x∈X

d(x) 6=4

d(x)

+ 8χ(S).

In particular,

(1) 3v1 + 2v2 + v3 ≥
1

5

∑
k>4

kvk + 8χ(S) ≥
∑
k>4

vk + 8χ(S),

and

3v1 + 2v2 + v3 ≥
1

3

∑
x∈X

d(x)6=4

d(x) + 8χ(S).

We now wish to bound deg(S+ \ E+) from above in terms of the valence of

the non-Euclidean saddles and vertices. Let v
E+

4 be the number of 4-valent non-cut
vertices in the interior of E+. Each of these vertices in the interior of E+ contributes
1 to the area of E+ and so by Lemma 11.1 and Theorem 11.3,

v
E+

4 ≤ π(2392e)2deg(S+ \ E+).

The remaining 4-valent non-cut vertices lie in the copy of S∩P in S+, and therefore

v4 ≤ vE+

4 + |S ∩ P |.

Each point in S+ \ E+ is a generalised saddle that is not a saddle, a vertex with
cut-adjusted valence other than 4 or a point in S ∩ P with cut-adjusted valence 4.
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So, we deduce that

deg(S+ \ E+)

≤ 4|S ∩ P |+
∑
k 6=4

kvk +
∑
x∈X

d(x)6=4

d(x)

≤ 4|S ∩ P |+ 3v1 + 2v2 + v3 +
∑
k>4

kvk +
∑
x∈X

d(x) 6=4

d(x)

≤ 4|S ∩ P |+ 3v1 + 2v2 + v3 + 15v1 + 10v2 + 5v3 − 40χ(S) + 9v1 + 6v2 + 3v3 − 24χ(S).

Therefore,

27v1 + 18v2 + 9v3 ≥ deg(S+ \ E+) + 64χ(S)− 4|S ∩ P |

≥ v
E+

4

π(2392e)2
+ 64χ(S)− 4|S ∩ P |

≥ v4
π(2392e)2

+ 64χ(S)− 5|S ∩ P |.

(2)

Adding (1) to (2), we deduce that

31v1 + 21v2 + 11v3 ≥
v4

π(2392e)2
+
∑
k 6=4

vk + 72χ(S)− 5|S ∩ P |.

Therefore,

31v1 + 21v2 + 11v3 ≥
|V |

π(2392e)2
+ 72χ(S)− 5|S ∩ P |.

Finally note that each vertex in S′′ gives rise to one or two vertices in V , and each
vertex in V arises in this way. Therefore,

wβ(S′′) ≤ |V | ≤ 2wβ(S′′).

Hence, the number of non-cut vertices of S+ with valence at most 3 is at least

wβ(S′′)

31π(2392e)2
+

72

31
χ(S)− 5

31
|S ∩ P |.

�

14. Modifications in the case of a broken section

In the hierarchy described in Section 3, the final surface might be a broken
section. Recall that this is where the exterior of the partial hierarchy is a collection
of 3-balls and solid tori with clean longitudes. The solid tori patch together to form
a circle bundle. The intersection between any two such solid tori is a collection of
annuli that are unions of circle fibres. The intersection of any three such solid tori
is a union of finitely many fibres. We let M denote the circle bundle, we let A be
these annuli and we let C be the union of the fibres meeting three solid tori and
the fibres meeting ∂M and two solid tori. The broken section is obtained from a
section of M by perturbing it a little in each component of M\\A. Thus in each
component of M\\A, it is a meridian disc and the discs are all disjoint from each
other. Let P be the boundary pattern for M .

In this section, we present the minor modifications to our previous arguments
that are needed to deal with broken sections.
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Some components of M are dealt with in a different way from others. We let
Mst be the union of the solid toral components of M , and let Mnst be the union of
the remaining components.

14.1. The handle structure K. We are considering the situation where the penul-
timate manifold of the hierarchy is M\\A plus some 3-balls. As previously, we
create the polyhedral decomposition ∆ for the exterior of K that contains the par-
tial hierarchy H has a subcomplex. This also collapses to a triangulation T . This
restricts to a triangulation TM for M . The annuli A are simplicial in T and TM .
As in Section 6.5, we enlarge TM to ∆̂M , and we let K be the dual handle structure
for M . Since A was simplicial in TM , it naturally intersects K in the 1-handles,
2-handles and 3-handles. In particular, for each 1-handle, A is either disjoint from
it or A intersects the 1-handle in a co-core.

14.2. The components that are not solid tori. For the moment, we focus on
Mnst.

Lemma 14.1. Each component of ∂Mnst\\P is a disc.

Proof. Each component of M\\A is a solid torus with a clean longitudinal annulus
in its boundary. Hence, ∂Mnst\\P consists of discs and annuli, where the annuli
are a union of fibres. So if any component of ∂Mnst\\P is an annulus, it lies in
∂N(K), since otherwise it would be incident to another solid toral component and
hence would lie in A rather in ∂Mnst. So there is an incompressible clean annulus
A′ properly embedded in Mnst that is not parallel to a clean annulus in ∂Mnst.
A core curve of A′ is a fibre of the circle bundle, and hence is π1-injective in the
exterior of K. So, A′ is incompressible in the exterior of K. It is disjoint from
the JSJ tori of the exterior of K, since we cut along those in an earlier step in the
partial hierarchy, and it does not lie in the Seifert pieces, since these have been
decomposed into solid tori by the partial hierarchy. Hence, A′ is boundary parallel
in the exterior of K. Consider the product region between A′ and the relevant
annulus in ∂N(K). The first surface in the partial hierarchy to intersect this region
would have to be inessential, contrary to the construction of the hierarchy. This
contradiction proves the lemma. �

14.3. The branched surface B and its natural handle structure. According
to Proposition 2.23, some section S of Mnst can be pattern-isotoped, via an isotopy
preserving A, to a weakly fundamental surface in TM . Moreover, this surface in-
tersects P as few times as possible, and among such surfaces, it has least extended
weight. As in Section 8.5, the branched surface B is constructed, which has a patch
for each tile type of S. The annuli A intersect N(B) in a union of fibres. Let H
denote the natural handle structure on N(B).

14.4. The arc index of ∂S ∩Mnst.

Lemma 14.2. The arc index of ∂S∩Mnst is at most |S∩P |96w(w−
∑n
i=1 χ(Si)),

where w is binding weight of the partial hierarchy before S.

Proof. The curves ∂S ∩Mnst are cut into arcs by P . Each such arc lies in a disc
component of ∂Mnst\\P . Since S has minimal extended weight up to pattern-
isotopy, each arc of ∂S ∩Mnst must intersect therefore each edge of TM at most
once. The number of edges of TM is at most 96w(w −

∑n
i=1 χ(Si)) by Lemma

6.3. �
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14.5. New boundary pattern. Define P ′ to be the boundaries of the tiles of the
partial hierarchy in ∂Mnst. Then |S ∩ P ′| is at most the arc index of ∂S ∩Mnst,
which is bounded above by Lemma 14.2.

14.6. Modifications arising from low-valence interior vertices. In Section
9, various modifications were made to the next surface in the partial hierarchy. In
this case, we make these modifications to the section S. Note that we never insert
a wedge, since this is only performed around low-valence vertices in ∂S that are
disjoint from the pattern. However, every vertex in ∂S is a vertex of ∂M , and is
therefore in the pattern P ′.

The modifications that we make will move the section S, but they will not move
A. Hence, the relative position of S and A may change. In particular, S\\A need
not remain meridian discs for the solid tori M\\A. We will adjust A suitably in
Section 14.10.

As in Section 10, we keep track of an admissible envelope (N,X, Y, P ∩N,H, S).
In order to maintain consistency with the early argument, we will also consider an-
other surface S′ and another admissible envelope (N ′, X, Y ′, P ∩N ′,H′, S′). How-
ever, since we will not be performing any wedge insertions, S′, N ′, Y ′ and H′ will
be equal to S, N , Y and H.

The annuli A initially intersect N(B) in a union of fibres, and we will maintain
this property for the intersection with N .

When we consider interior 2-valent vertices as in Section 10.15, we need to be
careful also to consider the annuli A. The only situation where care is required here
is when A intersects the star of each vertex si in an arc that runs from si1 to si2 via
si. But after the modification in Section 10.15, there remains a copy of si1 and si2,
and we simply ensure that A includes the fibre between them.

The modification involving 3-valent interior vertices is also easy to handle. There
a tile that is incident to the vertex is collapsed, thereby combining two generalised
saddles. If A intersects that tile, it does so in a fibre, and we can ensure that after
the modification, A runs through the new combined generalised saddle.

14.7. The Euclidean subsurface. As before, we must consider the Euclidean
subsurface of S′ = S. This is defined in the same way as previously, except that E
also does not include the intersection S ∩ C. The branched surface BE is disjoint
from ∂M∪C, as is E\N2(S′\\E). It therefore lies in the manifold MC = M \N(C).
This is a circle bundle over the circle, and we can view the annuli A as properly
embedded in MC .

We need to ensure that the conclusion of Theorem 11.3 still holds. That theorem
had two hypotheses, which we vary to the following. The first hypothesis is that
there is no homeomorphism h : N → N such that all the following hold:

(1) h is equal to the identity on P ∩N and X (and so extends to MC and M);
(2) h is a Dehn twist along a torus properly embedded in M ;
(3) (N,X, Y, P ∩N,H, h(S)) is an admissible envelope;
(4) wβ(h(S)) < wβ(S).

The second hypothesis is there is no pattern-isotopy taking S to a surface S2, and
a nested admissible envelope (N2, X2, Y2, P ∩N2,H2, S2) satisfying

(wβ(S2), approx-type(S2)) < (wβ(S), approx-type(S)),

c+(H2) ≤ c+(H), c(H2) ≤ c(H).



AN UPPER BOUND ON REIDEMEISTER MOVES FOR EACH LINK TYPE 112

We now explain why the conclusion of Theorem 11.3 remains true with these
modified hypotheses.

The second hypothesis is used in the proof of Proposition 11.10. There, a collec-
tion of disjoint grids in Ẽ+ are considered. In the proof, a disc D− in one of these
grids is analysed. Its boundary is a boundary component of an annulus that is
vertical in N . The other boundary component of this annulus lies in S and bounds
a disc D+ in S. If the discs have different binding weights, then we may replace
one by the other to reduce the binding weight of S. On the other hand, if they
have the same binding weight, then we can replace as many parallel copies of D+

as possible by parallel copies of D−. This reduces the number of approximate star
types of tiles of S.

The proof proceeds by constructing a torus T carried byN(B+). In our situation,
T is actually carried by N . Then a power of a Dehn twist h about T reduces the
binding weight of S. This contradicts our first hypothesis.

14.8. The thin part. In our previous argument, the insertion of wedges may in-
troduce cut vertices to S′. As a result, the surface S′cut was defined. However, in
our situation, no wedges are inserted, and therefore no cut vertices are introduced.
Hence, S′cut = S′ = S, and the thin part of S′ is empty.

14.9. The Euler characteristic argument. This is almost unchanged. The only
variation is that we have modified the boundary pattern from P to P ′, and we have
also declared that the Euclidean subsurface is disjoint from C. Hence, the revised
statement of Theorem 13.1 is that the number of interior vertices of S with valence
at most 3 is at least

wβ(S)

31π(2392e)2
+

72

31
χ(S)− 5

31
|S ∩ P ′| − 5

31
|S ∩ C|.

14.10. Controlling the annuli A. As we will see in Section 15, we will modify
S until its weight is bounded. These modifications all take place away from C and
so are contained in the manifold MC = M\\N(C). Let F = S ∩MC and let F ′

be the resulting surface in MC . We have not moved A, and so F ∪ A might not
be isotopic to F ′ ∪ A. We now explain how to remedy this. We will consider the
following modifications.

Let S1 and S2 be two surfaces properly embedded in a 3-manifold MC and
intersecting transversely. Suppose there is a simple closed curve of S1 ∩ S2 that
bounds a disc in one of the surfaces. Suppose that the disc is D1 ⊂ S1. Suppose
also that the interior of D1 is disjoint from S2. Assume also that ∂D1 bounds a
disc D2 in S2, which might have interior intersecting S1. Then removing D2 from
S2 and replacing it by a parallel copy of D1, thereby removing ∂D1 from S1 ∩ S2,
is known as disc swap.

Lemma 14.3. Let MC be a compact orientable 3-manifold that is a circle bundle
over the circle. Let A be a collection of properly embedded vertical annuli so that
MC\\A is a collection of solid tori. Let F be a section of MC . Let F ′ be obtained
from F by a homeomorphism of MC supported in the interior of MC , and suppose
also that F ′ intersects A transversely. Suppose that F ′′ and A′′ are obtained from
F ′ and A by a sequence of disc swaps until no more such disc swaps are possible.
Then there is a homeomorphism of MC , supported in the interior of MC and taking
F ′′ ∪A′′ to F ∪A.
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Proof. Since F is a section, it intersects each component of ∂A exactly once. As
F ′′ is obtained from F by a homeomorphism of MC supported in the interior of
MC , F ′′ also intersects each component of ∂A exactly once. Hence, F ′′ intersects
each component of A in an essential arc plus possibly some inessential simple closed
curves. However, because no further disc swaps are possible, there are no simple
closed curves of F ′′ ∩ A. By a further isotopy preserving A, we may assume that
the arcs F ′′ ∩A are transverse to the circle fibres.

Let N(A∪∂MC) be a thin regular neighbourhood of A∪∂MC . We may assume
that F ′′ ∩N(A∪ ∂MC) is homeomorphic to F ∩N(A∪ ∂MC). Now, F is obtained
from F ∩ N(A ∪ ∂MC) by attaching discs. Since F and F ′′ have the same Euler
characteristic, F ′′ must also be obtained from F ′′∩N(A∪∂MC) by attaching discs.
These must be one such disc in each component of MC\\A, forming a meridian disc
for that component. Thus, there is an isotopy preserving A and supported in the
interior of MC taking F ′′ to a section. Hence there is a homeomorphism of MC ,
supported in the interior of MC and taking F ′′ ∪A′′ to F ∪A. �

Thus, the procedure that we use is as follows. We have applied a homeomorphism
of MC taking F to F ′, until it has controlled weight. We have not moved A, and
so its weight is unchanged. Suppose that F ′ and A admit a disc swap. Then it
is possible to perform a disc swap without increasing the binding weight of the
surfaces, as follows. Consider a simple closed curve of F ′ ∩A that bounds a disc D
in one of the surfaces, and suppose that among all such curves, the binding weight
of D is minimal. Then we may assume that the interior of D is disjoint from F ′∩A.
By the incompressibility of the surfaces, ∂D bounds a disc D′ in the other surface.
By our minimality assumption, the binding weight of D′ is at least the binding
weight of D. Hence, the disc swap that removes D′ and replaces it by D does not
increase the binding weight of the surfaces.

So, we may perform disc swaps to F ′ and A without increasing the binding
weight, until no more disc swaps are possible. Then by Lemma 14.3, the resulting
surfaces are strongly equivalent to F ∪A.

14.11. The solid toral components. The above argument dealt with Mnst. The
solid toral components must be handled in a different way, since they do not neces-
sarily contain a clean incompressible annulus that is not parallel to a clean annulus
in ∂M . However, unlike other circle bundles, a solid torus has the advantage that
cutting along a section decomposes it into a ball. Hence, we simply remove A and
C from Mst, let Sst be a section in Mst, and then treat Sst in the same way as the
remaining surfaces in the hierarchy.

15. Realising the hierarchy with polynomially bounded binding
weight

In this section, we prove the following result, which arranges an exponentially
controlled hierarchy into admissible form with polynomially bounded binding weight.
This key result is central to this paper, and relies on all the machinery developed
so far, including normal surface theory and the structure of arc presentations.

Theorem 15.1. Let K be a non-split link in S3, other than the unknot. Assign
boundary pattern to ∂N(K) as described in Theorem 3.3. Let H = {S1, . . . , S`} be
an adequately separating, (λ, 215)-exponentially controlled hierarchy for the exterior



AN UPPER BOUND ON REIDEMEISTER MOVES FOR EACH LINK TYPE 114

of K, where

λ =
∑̀
i=1

−3χ(Si) + 6|Si|+ 6|Si ∩ Pi|.

Here, Pi is the boundary pattern in the exterior of the first i−1 surfaces. Let H ′ be
obtained from S1 ∪ · · · ∪ S` by the procedure in Section 14, which at the final stage
removes the intersection between H and the interior of the solid toral components
of the relevant circle bundle and then inserts weakly fundamental meridian discs.
Let

q(x) = (1080λ8)
∑`

i=0 22ix22
`

.

Let D be an arc presentation for K with arc index n. Then there is a sequence of
at most n2q(n) exchange moves and cyclic permutations, and a homeomorphism of
the exterior of K that equals the identity on ∂N(K) and that takes ∂N(K)∪H ′ to
an admissible hierarchy with binding weight at most q(n).

Proof. Let k be a positive integer that is at most the length of the hierarchy H.
For k < `, let Hk be the partial hierarchy consisting of the first k surfaces of H,
including S0 = ∂N(K). Let H` = H ′. Let

qk(x) = (1080λ8)
∑k

i=0 22ix22
k

.

We will show by induction on k that there is a sequence of at most n2qk(n) exchange
moves and cyclic permutations and an isotopy of the exterior of K that takes
∂N(K)∪Hk to an admissible partial hierarchy with weight at most qk(n). Setting
k to be the length ` of the hierarchy will clearly then prove the theorem.

The induction starts by performing at most n + 1 stabilisations to D so that,
for each component of ∂N(K) with non-empty boundary pattern, the slope of this
pattern equals the writhe of the relevant component of K. We then place ∂N(K)
into admissible form. We may do this simply by taking a thin regular neighbourhood
of K. This requires no exchange moves or cyclic permutations, and the resulting
binding weight of ∂N(K) is at most 4n+ 2. Note that q0(n) ≥ 4n+ 2.

We now establish the inductive step. Let {S0, . . . , Sk} be the surfaces of the
partial hierarchy Hk, where k < `, and let S = Sk+1 be the next surface. Let P be
the boundary pattern on the exterior of Hk. Suppose that Hk is admissible, and
has binding weight at most w. We will show that there is a sequence of at most
1040λ4w11 steps that takes ∂N(K)∪Hk+1 to an admissible hierarchy with binding
weight at most 1080λ8w22. Thus, the binding weight is at most

1080λ8(qk(n))22 = 1080λ8(1080λ8)
∑k+1

i=1 22in22
k+1

= (1080λ8)
∑k+1

i=0 22in22
k+1

= qk+1(n).

Each step will use at most n2 exchange moves and cyclic permutations. So, the
number of exchange moves and cyclic permutations so far is at most

n2qk(n) + n21040λ4(qk(n))11 < n21080λ8(qk(n))22 = n2qk+1(n).

This will establish the inductive step.
So, we now suppose that Hk is in admissible form with binding weight at most

w. In particular, it has no annular tiles.

Step 1. Modify Hk so that it is well-spaced.
We use the procedure described in Section 7.2 to make the hierarchy well-spaced.

This increases its binding weight to at most 7w.

Step 2. Constructing a triangulation for the exterior of Hk.
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A triangulation for the exterior M of Hk is described in Section 6.2. Lemma 6.3

states that it has at most t = 112w(7w−
∑k
i=1 χ(Si)) ≤ 112w(7w+ λ) tetrahedra.

Step 3. Realising S as an exponentially controlled normal surface.
By assumption, S can be realised as a (λ, 215)-exponentially controlled surface,

and so the weight of S is at most λ215t.

Step 4. Homotope S to a nearly embedded surface Ŝ with boundary in an arc
presentation.

As in Section 6.7, we now homotope S to a nearly embedded alternative admis-
sible surface Ŝ with binding weight at most 200(7w)3(7w + λ)2λ215t. It is normal
with respect to the handle structure K.

Step 5. Forming the branched surface B that carries S.
In Section 8.5, a branched surface B was described that carries S. Let N =

N(B) be its thickening and let H be its natural handle structure. We set X to be
∂hN , and set Y to be empty. In Section 10.2, we defined the admissible envelope
(N,X, Y, P ∩N,H, S). We also initially set (N ′, X, Y ′, P ∩N ′,H′, S′) to be equal
to (N,X, Y, P ∩N,H, S) and note that these form nested admissible envelopes. In
Section 10.6, we defined complexities for these handle structures. By Lemma 10.4,
these complexities satisfy

c(H) ≤ c+(H′) ≤ 11648(7w)2(7w + λ).

We will modify the envelopes as described in Section 10, but their complexities will
not increase. The surface S′ may have some cut vertices. We let S′ \ S′thin be the
result of cutting S′ along these cut vertices and discarding any bigon tiles. Let
E be the Euclidean subsurface of S′ \ S′thin. Let S′′ be obtained from S′ \ S′thin
by removing any toral or clean annular components of S′ lying in E with at most
23552e2 vertices. Let e be the number of approximate star types of tiles of S′′. By
Propositions 10.10 and 10.11,

e ≤ 16c+(H) + 32c(H′) ≤ 559104(7w)2(7w + λ).

Step 6. Finding many vertices with small valence.
Let S+ be the double of S′′. By Theorem 13.1, when k < `, the number of

non-cut vertices of S+ with valence at most 3 is at least

wβ(S′′)

31π(2392e)2
+

72

31
χ(S)− 5

31
|S ∩ P | ≥ wβ(S′′)

31π(2392e)2
− λ.

At the final step, we might be dealing with a broken section, in which case, the
number of non-cut vertices of S+ with valence at most 3 is (in the terminology of
Section 14) at least

wβ(S′′)

31π(2392e)2
+

72

31
χ(S)− 5

31
|S ∩ P ′| − 5

31
|S ∩ C|

≥ wβ(S′′)

31π(2392e)2
− λ− 5

31
|S ∩ P |96(7w)(7w + λ)

≥ wβ(S′′)

31π(2392e)2
− 388w2λ.
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Their stars come in at most e approximate types. Thus, in S′′, we may find a
collection of at least

1

e

(
wβ(S′′)

62π(2392e)2
− 194w2λ

)
low-valence vertices all with parallel stars.

Step 7. Modifying S and S′ and their nested admissible envelopes.
In Section 10, procedures were described which reduced the binding weight. Each

was applied to a collection of parallel stars with low valence. Thus, the binding
weight of S′′ reduces by at least

1

e

(
wβ(S′′)

62π(2392e)2
− 194w2λ

)
≥ 1

e

(
wβ(S′′)

1010e2
− 194w2λ

)
So wβ(S′′)− 194 · 1010λw2e2 decreases by at least a factor (1− 1/(1010e3)), for the
following reason:

wβ(S′′)− 194 · 1010λw2e2 − wβ(S′′)/(1010e3) + 194λw2/e

≤ (1− 1/(1010e3))(wβ(S′′)− 194 · 1010λw2e2).

We perform these operations until wβ(S′′) − 194 · 1010λw2e2 < 1, in other words
until wβ(S′′) ≤ 194 · 1010λw2e2.

Step 8. Reintroducing the toral and annular components.
When forming S′′, toral and annular components of S′thin were removed. Each

had binding weight at most 23552e2. The number of such components is at most
2e, since this is an upper bound for the maximal number of disjoint surfaces carried
by BE . The above modifications have not increased their binding weight. So, we
may add them back to the surface, giving a surface with binding weight at most

194 · 1010λw2e3 + 47104e3 ≤ 2 · 1012λw2e3.

Step 9. Counting the number of iterations.
Let x be the number of times that we applied Steps 6 and 7. Each time such a

step was repeated, wβ(S′′)− 194 · 1010λw2e2 was multiplied by a factor of at most
(1− 1/(1010e3)). The initial binding weight was at most

200(7w)3(7w + λ)2λ215t ≤ 200(7w)3(7w + λ)2λ21792w(7w+λ) ≤ 211760w(w+λ).

Since, after x− 1 steps, the binding weight is still more than 1, we deduce that

211760w(w+λ)(1− 1/(1010e3))x−1 ≥ 1

and hence that

(log 2)11760w(w + λ) + (x− 1) log(1− 1/(1010e3)) ≥ 0.

Rearranging and using the inequality log(1− y) ≤ −y for 0 < y < 1 gives

(x− 1)/(1010e3) ≤ (log 2)11760w(w + λ).

Hence,

x ≤ 1 + 1010(log 2)11760(559104)379w7(w + λ)4 ≤ 1040λ4w11.

The final inequality uses that x+ y ≤ xy for integers x, y ≥ 2. As explained above,
the total number of exchange moves and cyclic permutations is therefore at most
n2qk+1(n).

Step 10. Bounding the binding weight of the partial hierarchy.
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Each step increases the binding weight of the hierarchy {S0, . . . , Sk} by at most
6. Hence, after these steps, it has binding weight at most w + 6 · 1040λ4w11 ≤
7 · 1040λ4w11.

Step 11. Controlling the thin part of S′.
By Proposition 12.1 and Remark 12.2, there is a pattern-isotopy of S′′ ∪ S′thin

taking it to a surface Sk+1 with binding weight at most

(2e+ 1 + 7 · 1040λ4w11)wβ(S′′) ≤ (2e+ 1 + 7 · 1040λ4w11) · 2 · 1012λw2e3

≤ 1054λ5w13e3 ≤ 1079λ8w22.

In the case of where Sk+1 is a broken section, we need to do disc swaps with Sk+1

and the annuli A so that Sk+1\\A is meridian discs for the solid tori forming the
circle bundle. As explained in Section 14.10, this can be achieved without increasing
the binding weight of Sk+1 and A. Furthermore, since this isotopy takes place in
the exterior of K, no exchange moves or cyclic permutations are required. Finally,
the section is perturbed to a broken section, which might increase its weight by a
factor of at most 3, but it remains at most 1080λ8w22. �

16. Isotoping a link through a handle structure

Let H be a handle structure of the 3-sphere. We say that a link K respects the
handle structure H if the following all hold:

(1) K lies in the union of the 0-handles and 1-handles of H;
(2) it intersects each 0-handle in a properly embedded 1-manifold;
(3) it intersects each 1-handle D1 × D2 in arcs, each of which is of the form

D1 × {∗} for some point ∗ ∈ int(D2).

Our aim in this section is to start with a link K that respects H and to perform
an ambient isotopy of K taking it into a single 0-handle. This can clearly be
done. However, we wish to perform this isotopy in a controlled way. We therefore
introduce the following moves. Each starts and ends with K respecting the handle
structure.

Move 1 : Sliding across a 2-handle
Let H2 be a 2-handle ofH, and let N(H2) be a small regular neighbourhood of it.

So, for each 0-handle and 1-handle to which H2 is attached, N(H2) intersects that
handle in a collection of balls. Note that N(H2) has a natural product structure
as D2 ×D1. Suppose that K ∩N(H2) consists of a single arc of the form α× {∗},
where α is an arc in ∂D2 and {∗} is a point in int(D1). Suppose also that this
arc K ∩N(H2) lies in a single 0-handle. Then we isotope α × {∗} across the disc
D2 × {∗}, replacing it with the arc (∂D2\\α)× {∗}. (See Figure 51.)

Move 2 : Sliding along a 1-handle
Let H1 be a 1-handle of H, and let N(H1) be a regular neighbourhood of H1.

This has a product structure D1×D2. Suppose that all but one arc of K ∩N(H1)
is of the form D1 × {∗} for some point ∗ ∈ int(D2). Suppose that the remaining
arc γ is a concatenation of three arcs α × {p1}, α × {p2} and {q} × β, where α is
an arc in D1 such that α ∩ ∂D1 is a single point, where q is the remaining point
∂α\∂D1, and where β is an arc in the interior of D2 joining p1 to p2. Suppose also
that γ intersects H1 in two arcs. Then, we replace γ by an arc γ′ that is disjoint
from H1. Once again, γ′ is the concatenation of three arcs α′×{p1}, α′×{p2} and
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2-handle

0-handles

1-handles

K

Figure 51. Sliding across a 2-handle

{q′} × β, where α′ is a subarc of α. We also permit the reverse of this move. (See
Figure 52.)

α x {p }1 {q} x βα x {p }2

0-handle 1-handle

Figure 52. Sliding across a 1-handle

Move 3 : Handle-preserving isotopy
The final move consists of an ambient isotopy of the 3-sphere, that preserves

each handle, and such that K respects H throughout.

Proposition 16.1. Let K be a link that respects a handle structure H on the 3-
sphere. Then there is a sequence of the above moves, after which K lies in the
interior of a single 0-handle.

Proof. We start by defining a system of arcs and discs embedded in H, which we
term the specified arcs and discs. The specified arcs are easily defined: they are
just the co-cores of the 2-handles. In other words, for a 2-handle D2 × D1, the
specified arc is {0} ×D1, where {0} is the central point in D2.

We now need to define the specified discs. Each disc will include the co-core of
a 1-handle, which is {∗} × D2 for some point {∗} in int(D1). The specified discs
will also include parts lying in the 2-handles, as follows. For a 2-handle D2 ×D1,
the intersection with the co-cores of the 1-handles is of the form P ×D1, where P
is a finite collection of points in ∂D2. For each point p in P , there is a radial arc α
in D2 running in a straight line from p to 0. We term α ×D1 ⊂ D2 ×D1 a strip.
(See Figure 53.) For each co-core of a 1-handle, we attach all the strips to which it
is incident. The result is a specified disc. (See Figure 54.)

Using the specified arcs and discs, one can form a handle structure H′ for the
3-sphere as follows. The 3-handles of H′ and H are the same. A thin regular
neighbourhood of each specified arc forms a 2-handle of H′. A thickening of each
specified disc forms a 1-handle. The remainder of the manifold is the 0-handles of
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specified arc

strip

intersection
with 1-handle

intersection
with 0-handle

Figure 53. The specified arc and strips within a 2-handle

strips

core of
1-handle

attaching locus
of 2-handles

Figure 54. A specified disc associated with a 1-handle

H′. Now H and H′ are, in some sense, the same handle structure. More precisely,
there is a homeomorphism h : S3 → S3 taking each handle of H′ to a handle of H.
This homeomorphism expands each 2-handle of H′ until it fills the 2-handle of H
that contains it. It also lengthens each 1-handle of H′.

We now pick an isotopy of S3 that takes h−1(K) into a 0-handle of H′. By
general position, we may assume that the link misses the specified arcs, except at
finitely many points in time, when it crosses through some specified arc transversely.
Hence, we may also arrange that, at this point in time, it moves across a 2-handle
of H′ in a single slide. Similarly, the link intersects each specified disc transversely
in finitely many points, except at finitely many instances, where one of two possible
things happens. One possibility is that the link approaches the specified disc, then
just touches it, and then goes through it, creating two new points of intersection.
Hence, the link moves across a 1-handle of H′ in a slide. The other possibility is the
reverse of this. This isotopy of S3 gives a 1-parameter family of homeomorphisms
of S3 that starts at the identity. Applying h to each of these gives an isotopy, that
moves K into the interior of a 0-handle of H, and that is of the required form. �
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17. From the isotopy to Reidemeister moves

In this section, we complete the proof of our main theorem. We are given a
diagram D of a link, with link type K, where D has c crossings. We pick a fixed
diagram D′ for K. We need to prove that there is a polynomial pK such that D
and D′ differ by a sequence of at most pK(c) Reidemeister moves.

Let µ be the constant in Theorem 3.6. We first pick a fixed (µ, 215)-exponentially
controlled hierarchy H for the exterior of K, which exists by Theorem 3.6. We also
ensure that it is adequately separating.

We isotope D to form a rectangular diagram. By Lemma 5.1, we can arrange
that this rectangular diagram has arc index n where n ≤ (81/20)c. Since only an
isotopy of the plane was used, no Reidemeister moves are needed at this stage. This
rectangular diagram determines an arc presentation also with arc index n. Theorem
15.1 provides a polynomial q, which depends only on K and H, such that, after
at most n2q(n) cyclic permutations and exchange moves, the hierarchy has been
placed in admissible form with binding weight at most q(n).

17.1. The handle structure arising from the hierarchy. The hierarchy H
determines a handle structure for the exterior of K, as follows. The union of
∂N(K) and H is a 2-complex. Thicken this to a handle structure. The remainder
of the exterior of K is a collection of 3-balls, which we take to be 3-handles of the
handle structure.

We now extend this to a handle structure H for S3, as follows. Pick a small
regular neighbourhood of K, denoted Nsmall(K), lying in the interior of N(K). So
N(K)\\Nsmall(K) is a disjoint union of copies of T 2×I, one for each component of
K. We give each component of Nsmall(K) a handle structure as a 0-handle and a 1-
handle. Pick a meridional simple closed curve on each component of ∂N(K), as well
as a simple closed curve on ∂N(K) that has slope equal to a longitude plus some
number of meridians. Let m and l be these meridian and integral curves. On each
component of ∂N(K), pick m and l so that they respect the handle structure on
this torus, and so that they intersect in a single point p in some 0-handle. Between
p and a point on the 0-handle of Nsmall(K), attach a 1-handle that is vertical in
the T 2 × I region. Now attach a 2-handle that runs along m − p, then along this
1-handle, then around the 0-handle intersecting K, and then back along the 1-
handle. Similarly attach a 2-handle than runs along l − p, then along the vertical
1-handle, then along the 1-handle intersecting K, then back along the vertical 1-
handle. These two 2-handles and the vertical 1-handle have decomposed the T 2×I
region into a ball, which we take to be a 3-handle.

We term H as the handle structure arising from H. It depends on H as well as
the choice of curves m and l. Note that K respects H, in the sense of Section 16.

We now pick another fixed copy K ′ of K lying within a single 0-handle of H. By
Proposition 16.1, there is a sequence of moves, as described in Section 16, which
take K to K ′. Since H has polynomially bounded weight, it is not very surprising
that one should be able to pass from the rectangular diagram for K to a diagram
for K ′ using a polynomially bounded number of Reidemeister moves. So, if D′ and
K ′ are chosen so that a suitable projection of K ′ is D′, then this will complete the
proof of Theorem 1.1. In the remainder of this section, we give some further details
of this argument.
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17.2. From an arc presentation to a rectangular diagram. We have K sitting
inside the 3-sphere in a specific way, arising from its arc presentation. We now recall
the construction from [6] that arranges K so that its projection to a plane is the
associated rectangular diagram.

The 3-sphere is the join S1
φ ∗ S1

θ , where S1
φ is the binding circle. Since K is an

arc presentation, it intersects the binding circle at finitely points, the vertices of K,
and it intersects each page Dt either in the empty set or in a single open arc joining
distinct vertices of K. We can arrange that each such open arc is a concatenation
of two arcs, each of which runs straight from a vertex of K to the point Dt ∩ S1

θ .
We may also assume that the vertices of K avoid the value φ = 0, and that the
pages Dt intersecting K avoid θ = 0.

We now perturb K off S1
φ and S1

θ as follows. We view each page Dt as an open
unit disc. We replace an arc of intersection K ∩ Dt, by removing its intersection
with some small disc around the origin in Dt and replacing it by an arc going around
the circumference of this disc. We choose the arc so that it avoids taking the value
φ = 0. We do something similar near the binding circle. Instead of going straight
to a vertex on the binding circle and then away again, we replace this by an arc
transverse to the pages with constant φ value. We choose this arc so that it avoid
the value θ = 0.

Thus, K is now disjoint from S1
θ ∪ S1

φ. The complement of S1
θ ∪ S1

φ is a copy of

S1
θ ×S1

φ× (0, 1), where the first two factors are parametrised by the θ and φ coordi-
nates respectively. Projection onto the first two factors will give the diagrammatic
projection map for K. In fact, because K avoids θ = 0 and φ = 0, its image lies in
(0, 2π)× (0, 2π).

We have arranged that K is a concatenation of three types of arc. One type
has constant θ and φ values and so projects to a point in (0, 2π) × (0, 2π). One
type, lying in a page and staying near S1

θ , has constant θ value. So it projects
to a vertical arc in (0, 2π) × (0, 2π). The third type of arc lies near S1

φ and has
constant φ value, and so projects to a horizontal arc. Thus, we have a projection of
K to (0, 2π)× (0, 2π) consisting of a concatenation of horizontal and vertical arcs.
Moreover, when two such arcs cross, the vertical arc is the over-arc. This is the
required rectangular diagram for K.

When K is in this form, it inherits a natural framing from the diagram, and
hence each component has a writhe, which is the integral slope of its framing. We
perform some initial stabilisations to the rectangular diagram, so that the writhe
of each component is equal to the integral slope of the relevant component of l.

17.3. A projection of the 1-skeleton. The hierarchy H determines a cell struc-
ture for the exterior of K. We will now create a projection for its 1-skeleton.

Each 0-cell lies on the binding circle S1
φ. It therefore has a specific φ-value s. So

it corresponds to an arc (0, 2π)×{s} in (0, 2π)× (0, 2π). A regular neighbourhood
of this 0-cell is a 0-handle of H. We may initially assume that the projection of this
0-handle to the plane is a small regular neighbourhood of this arc. We may also
identify the 0-handle with D2 × I, so that its projection onto the first factor is the
diagrammatic projection map.

Each 1-cell of the cell structure is an arc in the boundary of some surface of the
hierarchy. It is therefore in arc presentation. Hence, it projects to a concatenation
of horizontal and vertical arcs in the plane. We thicken each 1-cell so that it projects
to a regular neighbourhood of the union of these arcs.
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This specifies the projection of the 0-cells and 1-cells in the exterior of K. In
addition, there are the 0-handles and 1-handles that form Nsmall(K) and the 1-
handles that are vertical in N(K)\\Nsmall(K). We may assume that each 0-handle
is a regular neighbourhood of a vertex of K. Each 1-handle in Nsmall(K) runs
along the remainder of a component of K, which is in an arc presentation. So
this specifies its projection. Each vertical 1-handle can be chosen so that it is a
regular neighbourhood of an arc with constant φ-value. So it projects to a regular
neighbourhood of a horizontal arc in the plane.

17.4. Location of the 2-handles. Aside from the 2-handles lying in N(K), each
other 2-handle is a thickened 2-cell, and this 2-cell is made up of a union of tiles. So
it suffices to explain the location of each tile. A tile has a product foliation. Each
leaf has a constant θ-value and runs between two vertices. Thus, as long as θ 6= 0,
the leaf specifies a vertical arc in the diagram. Thus, when the leaf where θ = 0 is
removed, the tile is a union of such arcs.

The two 2-handles in each component of N(K) interpolate between an arc in
∂N(K) of slope m or l and a corresponding arc in ∂Nsmall(K). Initially, before
the hierarchy is constructed, K is in an arc presentation with arc index n and
N(K) is a thin regular neighbourhood of it. If this had remained the case, it would
be easy to realise the 2-cells in N(K) as a union of tiles with binding weight at
most 2n. However, as we build the hierarchy H, we modify N(K) in two ways.
One modification is to perform exchange moves and cyclic permutations to K, and
these have a corresponding effect on N(K) and Nsmall(K). This modification has
no effect on the binding weight of the 2-cells in N(K). The other modification is to
perform wedge insertions along ∂N(K). These expand N(K) but leave Nsmall(K)
unchanged. So at each wedge insertion, the 2-handles in N(K) might expand. This
expansion increases the binding weight of their constituent 2-cells by at most 2. So
the total binding weight after these modifications is at most 2q(n), because q(n) is
an upper bound for the number of wedge insertions.

17.5. Shrinking the 0-handles. As described above, it is natural to take each
0-handle so that it projects to the regular neighbourhood of a horizontal arc in the
plane. It is convenient to shrink this 0-handle, so that it actually projects to a little
disc, with the property that the interior of the disc is disjoint from the projection of
the interior of the 1-handles. We need to extend the 1-handles attached to this 0-
handle, but this can be achieved by adding a regular neighbourhood of a horizontal
arc to each endpoint of each 1-handle.

17.6. From slides to Reidemeister moves. We have picked a sequence of slides
across handles and handle-preserving isotopies that takes the initial copy of K in
H to the copy K ′ that lies in a 0-handle. We can realise each of these moves in
3-space. Projecting, we obtain a sequence of diagrams that starts with D and
ends with D′. We therefore need to bound the number of Reidemeister moves that
relate successive diagrams in this sequence. We will arrange that these diagrams
are actually rectangular diagrams.

It will useful to have an upper bound d on the arc index of in each rectangular
diagram of this sequence. Each diagram arises from a fixed realisation of the link
in the handle structure H. Each 0-handle of H is a copy of D2× I and is embedded
in (0, 2π)× (0, 2π)× (0, 1) in a way that respects their product structures. So, the
intersection of the link K with this 0-handle has a specific projection to (0, 2π) ×
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(0, 2π). In particular, this projection consists of a bounded number of straight
arcs, and we may assume that each of these is vertical or horizontal. This bound
depends only on the arrangement of K in H, and does not depend on the way that
H is embedded in 3-space. We now consider the intersection of the link with a 1-
handle of H. As observed in Section 17.3, this 1-handle is a regular neighbourhood
of an arc α that is in an arc presentation, with arc index bounded above by the
binding weight of the hierarchy. Now, K respects the product structure on this
1-handle, and therefore each arc of intersection between K and the 1-handle runs
in a thin regular neighbourhood of α. Its diagrammatic projection is therefore a
concatenation of at most w horizontal and at most w vertical arcs, where w is
the binding weight. We may also ensure that the projections of the 0-handles are
disjoint from each other. We can also arrange that the projection of each 1-handle
avoids the projection of each 0-handle, except at the points where the 1-handle
is attached to a 0-handle. However, distinct 1-handles may have projections that
overlap. We therefore deduce that each rectangular diagram in this sequence has
arc index at most d = c1w + c2, where c1 and c2 are constants depending only on
K, and w is the binding weight of the hierarchy.

We now find an upper bound on the number of Reidemeister moves that result
from each of the moves described in Section 16. We start with the process of sliding
along a 1-handle, because this is the simplest. Here, the knot remains in the union
of the 0-handles and 1-handles. Moreover, its intersection with the 0-handles barely
changes. In particular, the projections of the part of the link that lies in the 0-
handles does not change, apart from near a small regular neighbourhood of the
1-handle that is involved in the move. As K is slid through the 1-handle, a series
of type 2 Reidemeister moves are performed. These occur when the core curve α of
the 1-handle and some other point of K have the same projection. Therefore, the
number of type 2 Reidemeister moves is at most the number of points of intersection
between the projections of α and K, which is at most 2wd.

We next consider the case of handle-preserving isotopy. This changes the position
of the link within the 0-handles and the 1-handles. However, we can perform these
isotopies separately, first of all changing the position with the 0-handles and then
changing the position within a small regular neighbourhood of the 1-handles. The
isotopies supported within the 0-handles have the effect of isotoping the link, and in
so doing, result in Reidemeister moves. The way that the diagram changes within
the image of a 0-handle depends only on the choice of isotopy within H, and not
on the way that it is embedded. Thus, we deduce that the number of Reidemeister
moves for this part of the process is a constant, independent of w. The next part of
the process isotopes the link in a regular neighbourhood of the 1-handles, respecting
the product structure on the 1-handles throughout. This may be achieved using
a Reidemeister 2 move, followed by several Reidemeister 3 moves. The number of
type 3 moves is equal to the number of points of projection between the core α of
the 1-handle and the projection of the link in the remaining handles. Hence, the
number of moves is at most a quadratic function of w.

Finally, we consider the situation where the link is slid across a 2-handle. It is
convenient to consider the reverse of this move. This will require the same number
of Reidemeister moves. The 2-handle is a thickening of a 2-cell C that is nearly
admissible. Initially, K runs around ∂C. We will isotope K across C, one tile at a
time. Let C− be the union of the tiles that have not been moved across. Then we
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will arrange that C− is a disc (except after the final step, when it is empty). We
will also arrange that K runs around ∂C−.

We may pick a tile T in C−, such that after removing this tile from C−, the
result is still a disc. This is for the following reason. Consider any tile that shares
at least one edge with ∂C−. If we were to remove this tile from C− and create
something other than a disc, then at least one edge of the tile would start and end
on ∂C− and with its interior lying in the interior of C−. Consider the union of
all such arcs, over all tiles sharing at least one edge with ∂C−. Each is properly
embedded in C− and the interiors of these arcs are disjoint. So we may find such
an arc β that is outermost in C−. It separates off a sub-disc of C− with interior
disjoint from the arcs. Pick any tile in that disc that shares at least one edge with
∂C−. (Avoid the tile containing β, unless it is the only tile in that sub-disc.) Then
we can let T be this tile.

Suppose first that T has exactly two edges of ∂C− in its boundary, and that
these intersect at a saddle of C. Then we may slide K across this tile, maintaining
it is an arc in a page throughout. In the diagram, each such arc is vertical. Hence,
we obtain a 1-parameter family of vertical arcs. As the arc passes over some other
vertical arc, this is achieved by an exchange move. By Lemma 5.2, this can be
performed using at most d Reidemeister moves. It might be the case that one of
the arcs in the tile has θ = 0. At this point, the arc in the diagram switches from a
vertical arc with θ just above 0 to one just below 2π, or vice versa. This is a cyclic
permutation, using at most d2 Reidemeister moves. Hence, in total, the number of
Reidemeister moves is at most 2d2.

Now suppose that T has exactly one edge in ∂C−. This runs between a saddle
and a vertex. Consider the other edge of the tile emanating from this saddle. Then
we may introduce a finger to K so that it runs along this edge and back again. This
is achieved by sliding across a 1-handle. In doing so, we need at most 2wd type 2
Reidemeister moves. We can now slide K across the tile, as above.

The situation where there are three or four edges of ∂C− is similar. We can slide
K across the tile, and then perform the reverse of a finger move. When the tile has
two edges of ∂C− in its boundary, but they intersect in a vertex, we introduce a
finger running along one the remaining edges, then we slide across the tile, and then
we remove a finger. This requires at most 2d2 + 4wd type 2 Reidemeister moves.

Each 2-handle is a thickening of a 2-cell C, and this consists of at most 4w tiles,
for the following reason. The number of tiles in C is at most the number of half-
tiles plus twice the number of full square tiles. This is equal to 4xi(C) and 2xb(C),
where xi(C) and xb(C) denote the number of interior saddles and boundary saddles
in the 2-cell. By Lemma 5.5, this is equal to 4vi(C) + 2vb(C)− 2 where vi(C) and
vb(C) denote the number of vertices in the interior and boundary of C. This is at
most 4w.

Sliding across each tile uses at most 2d2 + 4wd Reidemeister moves, we have
used at most 8d2w + 16w2d Reidemeister moves in total, which is at most a cubic
function of w.

Thus, we have proved the following.

Proposition 17.1. Let K be a non-split link, and let H be a hierarchy for the ex-
terior of K. Let D′ be a fixed diagram for K. Then there is a constant k, depending
only on K, H and D′ with the following property. If K is an arc presentation, and
H is in admissible form with binding weight w, then there is a sequence of at most
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kw3 Reidemeister moves taking the rectangular diagram for K that arises from the
arc presentation to D′.

17.7. Split links. We are nearly in a position to prove the main theorem of this
paper, Theorem 1.1. But first we explain how to deal with links that are split.

Theorem 17.2. Let L be a split link that is a distant union L1 t · · · t Ls of non-
split links. Let D be a rectangular diagram for L with arc index n. Then there is
a sequence of at most (11n)11 exchange moves, cyclic permutations and destabili-
sations taking D to a disconnected rectangular diagram, where the components are
diagrams of L1, . . . , Ls.

Proof. Theorem 1.4 of [17] provides a sequence of at most (14n)10 exchange moves,
cyclic permutations and destabilisations taking D to a disconnected rectangular
diagram. Note that these moves do not increase the arc index of the rectangular
diagram, and so this is still at most n. If any of the components of this diagram
represents a split link, then at most (14n)10 further such moves makes this dis-
connected. Repeating in this way, we eventually reach the required rectangular
diagram where the components are diagrams of L1, . . . , Ls. Since each component
has arc index at least 2, the number of times we repeat is at most n/2. So the total
number of moves is at most (n/2)(14n)10 ≤ (11n)11. �

17.8. Proof of the main theorem.

Proof of Theorem 1.1. Let D be some diagram for K with crossing number c. In
the case of the theorem we will consider D = D1 or D = D2. Let D′ be some fixed
diagram for K. We will provide an upper bound on the number of Reidemeister
moves needed to relate D to D′. Hence, this will give an upper bound on the
number of Reidemeister moves needed to relate D1 to D2.

If K is split, then write it as a distant union L1 t · · · tLs of non-split links. We
may assume that D′ is a distant union of diagrams for L1, . . . , Ls. The given dia-
gram D can be isotoped to a rectangular diagram with arc index n ≤ (81/20)c, by
Lemma 5.1. By Theorem 17.2, this may be converted to a disconnected rectangular
diagram, where the components are diagrams of L1, . . . , Ls, using at most (11n)11

exchange moves, cyclic permutations and destabilisations. It therefore suffices to
consider these diagrams individually.

Thus, we may assume that K is non-split. We may also assume that K is not
the unknot, since the main result of [17] establishes that pK(c) = (236c)11 works in
this case.

Let H be a fixed adequately separating, (µ, 215)-exponentially controlled hier-
archy for the exterior of K, which exists by Theorem 3.3 and Remark 3.7. Here,
µ is the constant from Theorem 3.6. This determines a handle structure for the
exterior of K. Also let m and l be fixed curves on each component of ∂N(K) that
intersect once, that have meridional and integral slope, and that respect the handle
structure. These then determine an associated handle structure H for the 3-sphere.
Let f be the sum of the absolute values of the integer slopes of l.

As above, the diagram D can be isotoped to a rectangular diagram with arc
index at most (81/20)c, by Lemma 5.1. We then perform stabilisations so that
each component of K has writhe equal to the framing of the relevant component of
l. This requires at most f + c stabilisations. Let n ≤ f + (101/20)c be the resulting
arc index. Theorem 15.1 provides a polynomial q, which depends only on K, H
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and D′, such that, after at most n2q(n) cyclic permutations and exchange moves,
the hierarchy has been placed in admissible form with binding weight at most q(n).
Each of these modifications to the diagram requires at most n2 Reidemeister moves.

By Proposition 17.1, this diagram can be converted to D′ using at most k(q(n))3

Reidemeister moves, where k depends only on K, H and D′.
So we have convertedD toD′ using at most the following number of Reidemeister

moves:

f + c+ (f + (101/20)c)4q(f + (101/20)c) + k(q(f + (101/20)c))3

≤ 2k(q(f + (101/20)c))3.

So we may set pK(c) = 2k(q(f + (101/20)c))3. �

Remark 17.3. The constant k in the above proposition is algorithmically com-
putable. Using the hierarchy H and the choice of meridians m and integral curves
l, the handle structure H for the 3-sphere may be constructed. The initial position
of the link K within H is determined. There is certainly some isotopy of the 3-
sphere taking K to a link K ′ that lies within a 0-handle of H. Such an isotopy can
always be found eventually, since the isotopy is a level-preserving simplicial map
S3 × [0, 1] → S3 × [0, 1] and all possible such simplicial maps can be enumerated.
Eventually one will be found that forms an isotopy taking K into a 0-handle. We
can then let K ′ be the resulting link in the 0-handle. The 0-handle has a product
structure as D2 × [0, 1], and the projection onto D2 gives a diagram D′′ for K,
possibly after a small perturbation of K ′. The procedure that is used above for
creating the moves from the isotopy is deterministic, and so it specifies a sequence
of Reidemeister moves taking D to D′′. Finally, since D′′ and D′ are both diagrams
of the same link K, and so some sequence of Reidemeister moves relating them may
always be found.

The final step is algorithmic, but it does not provide a good a priori bound for
the number of Reidemeister moves relating D′′ and D′. However, if instead we had
initially chosen D′ to be equal to D′′, then this step would not have been required.

18. Explicit polynomials

We will want to determine an actual value for the constant k for the figure-
eight knot and for torus knots. In order to do so, we will need a more quantified
argument.

In the previous section, we defined the handle structure of the 3-sphere arising
from a hierarchy. It will be helpful to introduce the following slightly more general
version. As previously, we start with the handle structure on the exterior of K
arising from the hierarchy and then attach handles in N(K). Also as before, we
pick a union l of integral curves, one on each component of ∂N(K), that respects
the handle structure on the boundary. But now we pick multiple disjoint meridians
m on ∂N(K), where we require each component of ∂N(K) to contain at least one
of these meridians, but maybe more than one. Each of the meridians respects the
handle structure and we require that each intersects l exactly once.

We now give Nsmall(K) a handle structure consisting of |m| 0-handles and |m| 1-
handles, where |m| is the number of meridians. In N(K)\\Nsmall(K), we inserts |m|
vertical 1-handles, each running from one of the 0-handles of Nsmall(K) to a point
of intersection between m and l. Now insert |m| 2-handles, each running around
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some component of m, down a vertical 1-handle, around a 0-handle in Nsmall(K)
and then back up the vertical 1-handle. Also insert |m| 2-handles, each running
along a component of l\\m, then along a vertical 1-handle, then along a 1-handle
in Nsmall(K) and then back up another vertical 1-handle. Finally, we insert |m|
3-handles into N(K)\\Nsmall(K). We also say that this is a handle structure on
the 3-sphere arising from the hierarchy. As before, it also depends on extra data,
specifically the choice of integral curves l and meridians m.

We will also make an extra hypothesis on the handle structureH on the 3-sphere,
which we now describe.

Let H be a handle structure of 3-manifold satisfying Convention 4.1. A handle
structure H′ is obtained from H by a collapse if:

(1) there are handles H− and H+ of H, where the index of H+ is one more
than the index of H−, and where the core of H+ intersects the co-core of
H− once; H− ∪H+ is therefore a 3-ball; let D− be the union of points in
∂(H−∪H+) where H− and H+ are attached to handles of lower index, and
let D+ be ∂(H− ∪H+)\\D−;

(2) the handles H− and H+ are removed;
(3) any handles of higher index that are incident to D+ are instead attached

along D− using the natural identification between D− and D+.

Thus, we permit handle pairs to be collapsed even when handles of higher index are
attached to them. We say that a collapse is elementary if, in the above definition,
D+ lies in the boundary of the 3-manifold, or equivalently, H− and H+ are disjoint
from any other handles of higher index. We say that H is completely collapsible if
there is a sequence of collapses that takes it to a single 0-handle.

Proposition 18.1. If a handle structure H of a 3-manifold is collapsible, then
there is a sequence of elementary collapses that takes it to a single 0-handle.

Proof. This is by induction on the number of handles. The induction starts trivially
when H has a single handle, which must be a 0-handle, and so no elementary
collapses are required.

So consider a collapsible handle structure H, and suppose that the lemma is true
for all collapsible handle structures with fewer handles than H.

By assumption, H has a sequence of collapses taking it to a 0-handle. We claim
that there is such a sequence where all the 3/2 collapses happen first, then all the 2/1
collapses and then all the 1/0 collapses. This just follows from the easy observation
that we may interchange the order of successive collapses if a 1/0 collapse happens
just before a 3/2 or 2/1 collapse or a 2/1 collapse happens before a 3/2 collapse.
The handle structure that results after performing such a pair of collapses does not
depend on the order in which they happen. So, we now assume that the collapses
to H are ordered in this way.

We may similarly interchange the order of the 3/2 collapses, and we will feel
free to do so, for the following reason. We form a graph, using only the 2-handles
and 3-handles that are removed in the 3/2 collapses. The vertices of the graph
correspond to the 3-handles and to the components of intersection between the
boundary of the manifold and the 2-handles that are involved in the 3/2 collapses.
The edges of the graph correspond to the 2-handles that are removed in these
collapses. Each 2-handle that is removed in the 3/2 collapses must be incident to
at least one 3-handle. When a 3/2 collapse is performed, the homotopy type of this
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graph is unchanged, except when a 3/2 collapse removes an entire component of the
graph. Hence, the graph is forest. In particular, it has more vertices than edges.
However, there is the same number of 2-handles as 3-handles involved in the 3/2
collapses. Therefore, there is a vertex corresponding to a component of intersection
between the manifold boundary and a 2-handle involved in a 3/2 collapse. Hence,
this 2-handle and the adjacent 3-handle admit an elementary collapse. In this way,
there is a sequence of elementary collapses that removes all the 3-handles.

We now consider the first 2/1 collapse. Say this involves handles H2 and H1,
and let H′ be the resulting handle structure. If this was the final 2/1 collapse, then
it was in fact an elementary collapse. Then, inductively, H′ admits a sequence of
elementary collapses taking it to a 0-handle. So, we may assume that the next
collapse is also a 2/1 collapse. Inductively, H′ admits a sequence of elementary
collapses taking it to a 0-handle. So, we may assume that the next collapse to H′
is an elementary collapse, involving handles H ′2 and H ′1. Note that H ′1 and H ′2 are
also handles in H.

Suppose first H ′2 ∪H ′1 is disjoint from H2 ∪H1 in H. Then we may interchange
the order of the collapses. Let H′′ be the handle structure obtained from H by
collapsing H ′2 and H ′1. Note that H′′ is obtained from H by an elementary collapse.
Since H′′ collapses to H′, it is also totally collapsible. Hence, by induction, there
is a sequence of elementary collapses taking H′′ to a 0-handle, as required.

So suppose now that H ′2 ∪ H ′1 intersects H2 ∪ H1. Since handles of the same
index are disjoint, there are two possibilities: H ′2 runs over H1, or H2 runs over H ′1.

Suppose that H ′2 runs over H1, but that H2 does not run over H ′1. The collapse
of H2 and H1 does not change the components of intersection between H ′1 and the
2-handles. So, in H, H ′1 only has H ′2 running over it once and is not incident to
any other 2-handles. Hence, H ′1 and H ′2 admit an elementary collapse in H. The
resulting handle structure is completely collapsible, since we may collapse H2 and
H1 and then follow the remaining collapses that were applied to H. Hence, by
induction, it completely collapses using only elementary collapses. So the same is
true of H.

Now suppose that H2 runs over H ′1. The collapse of H1 and H2 then introduces
new components of intersection between H ′1 and the 2-handles. But in H′, H ′1 inter-
sects the 2-handles just once. We therefore deduce that in H, H1 either is disjoint
from the 2-handles other than H2 or has just a single component of intersection
with these handles. In the former case, the collapse of H1 and H2 is an elementary
collapse, and the proof is complete then. On the other hand, when H1 intersects
the other 2-handles exactly once, this intersection must be with H ′2. We deduce
that H2 runs over H1 once and H ′1 once, and that H ′2 runs over H1 once. Further-
more, H ′1 intersects the 2-handles just once, in H2. So we perform an elementary
collapse to H2 and H ′1. The resulting handle structure is completely collapsible,
since we may then collapse H1 and H ′2, and then perform the remaining collapses
that were applied to H′\\(H ′1∪H ′2). Hence, again inductively, H admits a sequence
of elementary collapses taking it to a 0-handle.

Thus, we are reduced to the final case where only 1/0 collapses are performed.
Thus, H is a thickened tree. In particular, it may collapsed to a single 0-handle
by collapsing the leaves of the tree one at time. This is a sequence of elementary
collapses. �
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Proposition 18.2. Let K be a non-split link, and let H be a hierarchy for the
exterior of K. Let l be a collection of integral curves on ∂N(K), one on each
component of ∂N(K). Let m be a collection of disjoint meridians, with at least
one on each component of ∂N(K). We require that these curves respect the handle
structure and that each component of m intersects l in a single point. Let H be the
associated handle structure of the 3-sphere. Suppose that, when some 3-handle is
removed from H, the result is completely collapsible. This determines an isotopy of
the 3-sphere taking the complement of the 3-handle to a 0-handle of H. Let K ′ be
the image of K after this isotopy, and suppose that the projection of the 0-handle
D2 × I onto the first factor gives a diagram D′ for K ′. Let a be the number of
1-cells in this cell structure, and let b be the maximal number of 1-cells that any
2-cell runs over, counted with multiplicity. Then the constant k in Proposition 17.1
may be taken to be 216a4b3a+3.

Proof. By Proposition 18.1, we may remove the 3-handle from H and then perform
a sequence of elementary collapses to reach a single 0-handle.

When a 2-handle and a 3-handle are collapsed, this has no effect on the link,
since the link respects the handle structure. This collapse also does not affect the
number of 1-cells that the remaining 2-cells run over. So we ignore these collapses.
Each of the remaining collapses removes a 1-cell, and so there are a of these.

After the ith such collapse, each 0-handle intersects K in a tangle, which will
project to a union of vertical and horizontal arcs. Let ti be the total number of
these arcs. Initially, exactly |m| of the tangles contain three vertical and horizontal
arcs, and the rest are empty. So initially, t0 = 3|m| ≤ 3a.

Let mi be an upper bound for the number of times that the link runs over each
1-handle after the ith collapse. This only increases when a 1-handle and a 2-handle
are collapsed. Before such a collapse, the link needs to be slid off the 1-handle.
Each such slide may increase the number times it runs over the other 1-handles by
at most b. Initially, m0 = 1. Then mi+1 ≤ bmi. Hence, after i collapses, we have
mi ≤ bi.

After all the 3-handles have been removed, we may then perform all the collapses
involving a 1-handle and a 2-handle. As discussed above, before the collapse, we
first slide at most mi arcs of K across the 2-handle. Each slide introduces at most
b components to the tangles, and each such component is a concatenation of three
vertical and horizontal arcs. Hence, ti+1 ≤ ti+3bmi ≤ ti+3bi+1. So inductively, ti
is at most 3a+ 3bi+1, which is at most 3abi+1. Therefore, the arc index is at most
ti + 2miw ≤ 3abi+1w. Set di to be this upper bound 3abi+1w.

Consider the case where a 1-handle and a 2-handle are collapsed. Before the
collapse, we first slide at most mi arcs of K across the 2-handle. As explained in
the proof of Proposition 17.1, the number of Reidemeister moves performed in each
such slide is at most 8d2iw + 16w2di ≤ 24d2iw ≤ 216a2b2i+2w3.

Consider now when a 0-handle and a 1-handle are collapsed. We retract the
1-handle, taking the 0-handle with it. In doing so, we pass at most ti arcs in the
projection of the 0-handle past at most di other arcs, at most w times. This is
achieved using at most tidiw exchange moves, each of which requires at most di
Reidemeister moves. Hence, the number of Reidemeister moves is at most tid

2
iw ≤

27a3b3i+3w3. After this, the two 0-handles are merged into a single 0-handle, and
the diagrams in these 0-handles are merged into a single diagram. This does not
increase ti or mi.
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We deduce that the total number of Reidemeister moves is at most 216a4b3a+3w3.
�

Remark 18.3. Each 1-cell of the cell structure, other than the 1-cells with interior
in int(N(K)), arises where three surfaces of the hierarchy meet or where a surface
in the hierarchy meets ∂N(K). At the endpoints of such a 1-cell are points where
some Si meets the pattern Pi. Also taking into account the 1-cells with interior in
int(N(K)), we have

a = 2|m|+ 2
∑
i

|Si ∩ Pi|.

Moreover, each 2-cell lying in the hierarchy or ∂N(K) can run over each 1-cell at
most once. There are other 2-cells lying in N(K), and these run over the 1-handles
at most length(l) + 3 and length(m) + 2 times. Hence,

b ≤ max{a, length(l) + 3, length(m) + 2}.

Combining these estimates with Theorem 15.1, Proposition 18.2 and the proof
of Theorem 1.1, we obtain the following.

Theorem 18.4. Let K be a non-split link other than the unknot. Let S1, . . . , S`
be a hierarchy for the exterior of K as in Proposition 18.2 and that is adequately
separating and (λ, 215)-exponentially controlled, where

λ =
∑̀
i=1

−3χ(Si) + 6|Si|+ 6|Si ∩ Pi|.

Let m and l be curves on ∂N(K) as in Proposition 18.2, and let f be the sum of
the absolute values of the integral slopes of l. Suppose that the resulting handle
structure of the 3-sphere is totally collapsible once some 3-handle is removed. Let

a = 2|m|+
∑̀
i=1

2|Si ∩ Pi|,

b = max{a, length(l) + 3, length(m) + 2}
Then we may set

pK(c) = 512a4b3a+3(1080λ8)3
∑`

i=0 22i(f + (101/20)c)3·22
`

.

19. The figure-eight knot

Theorem 19.1. For K the figure-eight knot, we may set pK(c) = (10108c)15460896.

Proof. The figure-eight knot is shown in Figure 55 (i). We now construct an ad-
equately separating, (λ, 215)-exponentially controlled hierarchy for its exterior M ,
using the procedure given in Section 3. The length ` of this hierarchy will be 5.
The constants λ and a defined in Theorem 18.4 will be λ = 492 and a = b = 128.
The framing f is 4. The resulting handle structure on S3 will be totally collapsible,
once a suitable 3-handle has been removed. Hence, by Theorem 18.4,

512a4b3a+3(1080λ8)3
∑`

i=0 22i(f + (101c/20))3(22)
`

would work as pK(c). This is bounded above by (10108c)15460896, which we may set
as pK(c).

Since M is hyperbolic, we may jump straight to Step (3) in Section 3. Let S1

be the orientable double cover of the surface shown in Figure 55 (ii). Note that
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(i) (ii)

(iii)

(v) (vi)

(iv)

Figure 55. Some of the surfaces used to build a weakly funda-
mental hierarchy for the figure-eight knot exterior

−χ(S1) + 2|S1|+ 2|S1 ∩ P1| = 4. It was shown by Hatcher and Thurston [11] that
S1 is incompressible and boundary-incompressible. Note that it is not a fibre in a
fibration of M over the circle, since it is separating and connected. Thus, we are
permitted to cut along this surface in Step (3). This surface intersects ∂N(K) into
two curves, each with integral slope 4.

This creates a manifold M2, which has two components. One component, which
we denote by M ′2, consists of the exterior of the surface shown in Figure 55 (ii).
The other component, which we denote by M ′′2 is a regular neighbourhood of this
checkerboard surface. Now M ′′2 is an I-bundle chamber, and so it cannot be de-
composed at this point. The component M ′2 is shown in Figure 55 (iii). It has a
non-trivial JSJ decomposition, as follows. It contains a properly embedded disc
that intersects the pattern four times, as shown in Figure 55 (iv). A regular neigh-
bourhood of this disc is an I-bundle over the disc. Attach onto this I-bundle a
regular neighbourhood of ∂M ′2 ∩ ∂N(K). The result is an I-bundle over a surface,
which we denote by M ′3. One can compute that the base surface is a once-punctured
Möbius band. Let M ′′3 be M ′2\\M ′3. This is shown in Figure 55 (v). Then M ′3 and
M ′′3 intersect in an annulus S2, which we claim is the JSJ annulus for M ′2. Note
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that M ′′3 is a solid torus, and its boundary pattern consists of two curves, each of
which winds three times around the solid torus. Thus, M ′′3 is Seifert fibred, whereas
M ′3 is an I-bundle, and so these do indeed form the pieces of the JSJ decomposition
of M ′2. As required by Step 3 (iii), we let this annulus S2 be the next surface in the
hierarchy.

Since M ′′3 is a Seifert fibred solid torus with boundary pattern equal to a union
of fibres, it is simple. Hence, Step 4(v) applies to it. We therefore let S3 be two
parallel copies of a meridian disc for this solid torus, each of which can be chosen
to intersect the pattern 6 times.

The I-bundle M ′′2 has now inherited some boundary pattern in its horizontal
boundary. One can check that this contains no clean essential annulus, and hence
is simple. Thus, Step 4(v) can be applied to it. We decompose along S4, two
parallel copies of the discs shown in Figure 55 (vi). Two of these discs intersects
the pattern 8 times and two intersects the pattern 6 times.

The only remaining component that is not a 3-ball is M ′3, which is an I-bundle
over a once-punctured Möbius band. Again one can check that this contains no
clean annuli. We can decompose along S5, which is two parallel copies of two
vertical discs. Each of these discs each intersects the pattern 4 times. We choose the
location of these discs carefully as follows. As observed above, ∂N(K) intersected
S1 in two curves, each with slope 4. These divide ∂N(K) into two annuli. There
is a product structure on N(K) as the product of an annulus A and an interval I
for which A × ∂I is a copy of each of these annuli. When further decompositions
were made, one of these annuli inherited further boundary pattern. Specifically,
when we decompose along S4, one of the annuli inherits 8 new arcs of pattern,
which come in four parallel pairs. We choose the eight discs S5 so that the eight
arcs S5 ∩ (A× ∂I) are almost parallel to the existing eight arcs of pattern, via the
product structure A× I.

After these decompositions, the resulting manifolds are 3-balls and so the hier-
archy terminates.

We may set l to be a curve of slope 4 running along one of the components of
∂S1. Its length is 16. The framing f is therefore 4. We pick m to consist of 8
meridians, each running along an arc in ∂S5, an arc in ∂S4 and two short arcs in
∂S1. We chose the location of S5 carefully so that we could set m to be these 8
meridians.

We now briefly explain how to verify the collapsibility hypothesis in Proposition
18.2. We must first pick a 3-handle to be removed. We pick one of 3-handles lying
in M ′′3 , the one containing the point at infinity in Figure 55.

We will shortly give the sequence of collapses that takes the resulting handle
structure to a single 0-handle. But first we present a simplified example. Consider
the handle structure of the 3-ball shown in Figure 56. This is a thickening of the
following cell structure. Start with a standardly embedded closed orientable genus
two surface. Then attach compression discs for its complementary handlebodies.
We use two compression discs in each handlebody, as shown in Figure 56. These
discs decompose the ‘inside’ handlebody into a 3-ball, which we take to be a 3-cell.
The boundaries of these discs decompose the genus two surface into an annulus.
We pick an essential arc in this annulus, as shown in Figure 56, and declare that
this is a 1-cell. Thus, the surface has now been decomposed to a disc, which we take
to be a 2-cell of the cell structure. It is not hard to collapse this cell structure, as
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follows. First, collapse the 2-cell which lies in the genus two surface with the inside
3-cell. Then collapse each compression disc along with a 1-cell in its boundary.
Then finally retract the resulting tree to a point.

Figure 56. A collapsible handle structure of a 3-ball

Our aim is to retract the given handle structure of the 3-ball to the one shown
above. We start with the handle structure on N(K). We collapse the eight ver-
tical 1-handles in N(K)\\Nsmall(K) with the eight 0-handles intersecting K, and
collapse the 1-handles through which K runs with the 2-handles incident to l. We
also collapse the sixteen 1-handles that contain the arcs of intersection between
m and ∂S1. After these collapses, the handle structure on N(K) is quite simple.
It consists of sixteen 0-handles and sixteen 1-handles, which combine to give two
thickened circles running along ∂S1. It consists of 16 further 1-handles, eight lying
in each component of A × ∂I. It also consists of eight 2-handles, each forming a
meridian, as well as eight further 2-handles in each component of A× ∂I. Finally,
it contains eight 3-handles. We may collapse this handle structure first of all onto
one component of A× ∂I, and then onto a single component of ∂S1. After this, it
just consists of eight 0-handles and eight 1-handles glued in a circular fashion.

We now consider M ′3, which was an I-bundle that has been decomposed along
eight vertical discs. After this decomposition, it has become seven balls, each of
which is an I-bundle over a disc. One of these balls contains the disc shown in Figure
55 (iv), and in the boundary of that ball, there are two copies of that disc. We
collapse each of the remaining six balls onto one of their components of intersection
with S1 ∩ S2. We then collapse the remaining 3-ball onto one of the copies of the
disc shown in Figure 55 (iv).

The two discs in S3 are parallel, with a 3-handle between them. We collapse one
of these discs with the 3-handle. Similarly, the discs S4 come in two pairs, with
each pair cobounding a 3-handle. We collapse these two 3-handles with two of the
discs.

The handle structure that we have reached is very close to the simple one de-
scribed above. We have the genus two surface, to which four compression discs as
shown in Figure 56 are attached. The genus two surface is subdivided into 2-cells
by its intersection with the four discs, but also by other remaining cells, for ex-
ample the ones running along N(K). But we can collapse these extraneous cells,
until we have exactly the handle structure in Figure 56. As described above, this
is completely collapsible. �
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20. Torus knots

Theorem 20.1. When K is a torus knot, we may set pK(c) = (1080c)21962.

Proof. Let K be an (r, s)-torus knot with 0 < r < s. We present an exponentially
controlled hierarchy for the exterior of K with length 3. The exterior of K is Seifert
fibred and so we give ∂N(K) boundary pattern that is a single longitude. The torus
knot K lies on a standardly embedded torus. The intersection between this torus
and the exterior of K is an annulus, which we take to S1. It intersects the longitude
2rs times. By Proposition 2.16, this is weakly fundamental and hence, by Corollary
2.7, it is (2 + 4rs, 215)-exponentially controlled. This decomposes the exterior of
K into two solid tori. Pick one of them, and let S2 be two copies of a meridian
disc for it that intersects the pattern as few times as possible. This number is 2r,
say. By Theorem 2.8, it can be made weakly fundamental and hence (4 + 8r, 215)-
exponentially controlled. The other solid torus now inherits a boundary pattern,
where every complementary region is a disc. A meridian disc intersects this pattern
2s times. Let S3 be two copies of this surface. This is weakly fundamental by
Theorem 2.8 and hence is (2 + 8s, 215)-exponentially controlled. For this hierarchy,
λ = 6 + 12rs+ 24r + 24s. Thus, the polynomial q provided by Theorem 15.1 is

q(x) = (1080(42 + 12rs+ 24r + 24s)8)
∑3

i=0 22ix22
i

= (1080(6 + 12rs+ 24r + 24s)8)11155x10648.

Thickening this hierarchy gives a handle structure on the exterior of K. We
extend this to a handle structure H on S3, using the method described in Section
17.1. This requires a choice of simple closed curves m and l on ∂N(K). For l,
we pick a curve lying in ∂N(S1), which has slope equal to a longitude plus rs
meridians. For m, we take it to be some meridional curve that respects the handle
structure and that intersects l once.

We will not use the estimate in Proposition 18.2, since this will not be strong
enough. Instead, we will construct an isotopy of K through H explicitly. We first
slide K across the 2-handle that is vertical in N(K)\\Nsmall(K) and that runs
along l. The 2-handle is a thickening of a 2-cell with binding weight at most 2q(n),
and hence comprised of at most 8q(n) tiles. As we slide over the 2-handle, the arc
index of K remains at most d ≤ n+ 8q(n) ≤ 9q(n). Each slide across a tile uses at
most 2d2+4wd Reidemeister moves, where w is the binding weight of the hierarchy.
So, the number of Reidemeister moves is at most 1296(q(n))3 + 288w(q(n))2.

We then slide K across the 1-handle that is vertical in N(K)\\Nsmall(K). This
requires at most 2wd Reidemeister moves. After this, the knot runs along the
0-handles and 1-handles containing l. It runs along each such handle once.

Now consider one of the discs in S2 and one of the discs in S3. Extend them
a little so that their boundaries are on the standard torus containing K. Their
boundaries intersect once and hence the union of these boundaries is a wedge W
of two circles. We will isotope the knot so that afterwards it lies in a small regular
neighbourhood of W . We can think of the standard torus as a square with side
identifications, with the sides of the square form W . Currently, the knot lies on
this torus as a curve of slope (r, s). The two curves ∂S1, together with ∂S2 and
∂S3 divide the torus into discs. We can slide the knots across these discs until it
lies in the boundary W of the square. There are r+ s+ 1 of these discs. The knot
is divided up into r + s arcs. Each arc of K is slid across each 2-cell at most once.
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So we need to perform at most (r + s + 1)(r + s) slides of L across 2-cells to get
into a regular neighbourhood of the wedge of circles. It then goes r times round
one circle in the wedge and s times round the other. We now slide K across the
discs bounded by these circles. We need to perform r + s slides. As described in
Section 17.6, each slide across a 2-handle is achieved by at most 24w3 Reidemeister
moves. Here, w is the binding weight of the hierarchy. After this, the knot lies in
a single 0-handle as required. Its projection is in fact the standard diagram D′ for
the torus knot with crossing number (r − 1)s.

Thus, as argued in the proof of Theorem 1.1, the number of Reidemeister moves
needed to convert an arbitrary diagram D to a standard diagram D′ is at most

rs+ c+ (rs+ (101/20)c)4q(rs+ (101/20)c) + k(q(rs+ (101/20)c))3,

where k = 1602 + 24(r + s)(r + s+ 2). We can now use the fact that the crossing
number of the torus knot is (r−1)s and so c ≥ (r−1)s. So c ≥ rs/2 and c ≥ r+s+2.
So, k ≤ 24c2. Thus, the number of Reidemeister moves is at most

rs+ c+ (rs+ (101/20)c)4q(rs+ (101/20)c) + k(q(rs+ (101/20)c))3

≤ 3c+ (141/20)4c4(1080(6 + 12rs+ 24r + 24s)8)11155(141c/20)10648

+ (1602 + 24c2)(1080(6 + 12rs+ 24r + 24s)8)33465(141c/20)31944

≤ (1011c)299666.

So we may set pK(c) = (1011c)299666, as claimed. �
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