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Abstract. We provide an explicit upper bound on the number of Reidemeister
moves required to pass between two diagrams of the same link. This leads to a
conceptually simple solution to the equivalence problem for links.

1. Introduction

It is one of the most fundamental theorems in low-dimensional topology that any two
diagrams of a knot or link in R

3 differ by a sequence of Reidemeister moves, illustrated
in Figure 1. Since Reidemeister’s seminal paper [22] in 1926, it has been speculated as
to whether there is an explicit upper bound for the number of moves that are needed,
as a function of the number of crossings in the initial and terminal diagrams. See [23]
or page 15 of [1] for example. In a celebrated paper [5], Hass and Lagarias provided
such a bound when the link in question is the unknot. In this paper we answer the
general question with the following theorem, which applies to all knots and links.

Theorem 1.1. Let D1 and D2 be connected diagrams for some knot or link in R
3,

and let n be the sum of their crossing numbers. Then D2 may be obtained from D1 by

a sequence of at most exp(cn)(n) Reidemeister moves, where c = 101,000,000.

Figure 1. Reidemeister moves

Here, a link diagram is a 4-valent graph embedded in R
2 with each vertex decorated

with ‘over’ and ‘under’ crossing information. If a knot or link is oriented, then its
diagrams have directed edges that agree with this orientation. Theorem 1.1 applies
to link diagrams with or without orientation. We view two diagrams as the same if
their decorated (oriented) graphs are ambient isotopic in R

2. The function exp(x) is
the exponential function 2x, and exp(r)(x) means iterate this function r times. Thus,
exp(cn)(n) is shorthand for a tower of 2s with an n at the top, the height of the tower
being cn. This upper bound is very large indeed, but it is explicit and computable.
It demonstrates for the first time that the number of Reidemeister moves required
is bounded by a primitive recursive function of the number of crossings in the two
diagrams. It furthermore leads to a conceptually very simple algorithm for solving the
equivalence problem for links. Given two links L1 and L2 with connected diagrams D1

and D2, one can decide whether they are the same link as follows. Let n be the sum of
their crossing numbers. Apply all possible sequences of Reidemeister moves to D1 of
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length at most exp(cn)(n). If L1 and L2 are equivalent links, one of these diagrams will
be ambient isotopic to D2, and this can readily be determined. On the other hand, if
L1 and L2 are inequivalent, then none of these diagrams will be isotopic to D2.

It is trivial that there is some function F : N×N → N such that any two connected
diagrams D1 and D2 of a link with n1 and n2 crossings differ by a sequence of at
most F (n1, n2) Reidemeister moves. This follows from the fact that there are only
finitely many connected diagrams with a given number of crossings, and Reidemeister’s
theorem. However, the existence of a computable function F is a much deeper result,
as the following simple theorem demonstrates.

Theorem 1.2. The following are equivalent:

(1) There is a computable function F : N×N → N such that for any two connected

diagrams D1 and D2 of a link with n1 and n2 crossings, there is a sequence of

at most F (n1, n2) Reidemeister moves that takes D1 to D2.

(2) There is an algorithm to solve the equivalence problem for links. In other words,

there is an algorithm that takes as input two link diagrams and determines

whether or not they represent equivalent links.

The proof of (1) ⇒ (2) is described above. For (2) ⇒ (1), we need to produce an
algorithm that, given natural numbers n1 and n2, computes a natural number F (n1, n2)
with the required properties. To do this, the computer enumerates all connected link
diagrams with at most max{n1, n2} crossings. Then using the hypothesised algorithm,
the computer arranges these into groups according to their link type. Then, the
computer searches for Reidemeister moves relating all diagrams of each type. Such
sequences of moves exist by Reidemeister’s theorem. Hence, eventually, an upper
bound on the number of moves will be computed.

We call a function F : N×N → N a Reidemeister move function for a link L (which
may be oriented or unoriented) if for any two connected diagrams D1 and D2 of L with
n1 and n2 crossings, there is a sequence of at most F (n1, n2) Reidemeister moves that
takes D1 to D2. Thus, Theorem 1.1 gives a Reidemeister move function that applies
to all links.

The equivalence problem for links was solved by Haken [4] and Hemion [9] in the
1960s and 1970s. In fact, an alternative solution to the homeomorphism problem for
hyperbolic link complements, and hence the equivalence problem for hyperbolic knots,
was given by Dahmani and Groves [3], based on work of Sela [24]. Theorem 1.2 thus
implies the existence a computable Reidemeister move function. The existence of an
explicit, primitive recursive Reidemeister move function, as exhibited in Theorem 1.1,
is a much stronger statement.

Theorem 1.1 is proved using triangulations and Pachner moves. Much as any two
diagrams of a link are related by a sequence of Reidemeister moves, any two triangu-
lations of a PL manifold are related by a sequence of Pachner moves [20, 21]. The
key theorem we use is an adaptation of a result of Mijatović [17], who provides an
explicit upper bound on the number of Pachner moves required to pass between two
triangulations of a knot exterior. However, the translation from a bound on Pachner
moves to a bound on Reidemeister moves is not a straightforward one.
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Starting with two connected diagrams D1 and D2 for a link, we pick embeddings L1

and L2 of the link in R
3 which project to these diagrams and which both lie in some

convex 3-ball. We use D1 and D2 to build two triangulations for the link exterior in
this 3-ball. Using an adaptation of Mijatović’s theorem, these are related by a bounded
number of Pachner moves. These induce an explicit PL homeomorphism between the
triangulated link exteriors. This extends to a homeomorphism of the 3-ball sending
L1 to L2. The bound on the number of Pachner moves provides some control on
this homeomorphism. We then apply Alexander’s trick to specify an ambient isotopy
sending L1 to L2, and this ambient isotopy is again of controlled complexity in a
certain sense. The bound on the complexity of this ambient isotopy is ultimately what
provides us with our upper bound for the number of Reidemeister moves required to
pass between D1 and D2.

A significant complication arises from the fact that Mijatović’s theorem is not quite
sufficient for our purposes. His result provides an explicit upper bound on the number
of Pachner moves required to pass between two triangulations of a link exterior, up
to a homeomorphism that is isotopic to the identity in the hyperbolic pieces of the
link’s JSJ decomposition. This is insufficient, for two reasons. Firstly, many link
exteriors have Seifert fibred pieces in their JSJ decomposition, and so the resulting
homeomorphism of the link exterior may act non-trivially on the boundary, in which
case it may not extend to a homeomorphism of the 3-ball. But Mijatović’s theorem
is not sufficient for our purposes even in the case of hyperbolic knots, because it only
provides a bound on the number of Pachner moves up to ambient isotopy, and yet it
is exactly an explicit ambient isotopy that we are aiming to construct.

It is therefore necessary for us to prove a strengthened version of Mijatović’s theorem.
This takes some effort, because it requires us to go through his proofs, originally
exposed in [14], [15], [16] and [17], and adapt them. We have thus endeavoured to give
an accessible outline of Mijatović’s work, highlighting the similarities and differences
between his methods and ours. The following is our result.

Theorem 1.3. Let M be a compact orientable irreducible 3-manifold with boundary

a non-empty collection of tori. Suppose that the closure of each component of the

complement of the characteristic submanifold of M satisfies at least one of the following

conditions:

• it does not fibre over the circle; or

• it is not a surface semi-bundle; or

• it has at least two boundary components.

Let T∂M be any triangulation of ∂M . Then there is a triangulation T ′

can of M with the

following properties. Its restriction to ∂M equals T∂M . Further, if T is any triangu-

lation of M with t tetrahedra, such that the restriction of T to ∂M also equals T∂M ,

then there is a sequence of at most exp(at)(t) interior Pachner moves, followed by a

homeomorphism of M that is the identity on ∂M , taking T to T ′

can. This homeomor-

phism is isotopic to one equal to the identity on the complement of the characteristic

submanifold of M . Here, a = 2162.
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By an interior Pachner move, we mean a Pachner move that does not affect the
triangulation of the boundary of M . See Section 2 for a precise definition. A surface

semi-bundle is a compact orientable 3-manifold obtained from two I-bundles over non-
orientable surfaces by identifying their horizontal boundaries via a homeomorphism.

We use the phrase ‘canonical triangulation’ for T ′

can. The word ‘canonical’ needs to
be used with some caution, because it depends on the given triangulation T∂M of ∂M ,
and arbitrary choices are made in its construction. It is built out of a collection of
surfaces in M , which is very nearly a hierarchy.

The above theorem can of course be used to bound the number of interior Pachner
moves required to pass between two triangulations of M that are equal on ∂M . We
call a function F : N × N → N a Pachner move function for a compact 3-manifold
M if for any two triangulations T1 and T2 for M , equal on ∂M and with at most n1

and n2 tetrahedra, there is a sequence of at most F (n1, n2) interior Pachner moves,
followed by a homeomorphism of M that is the identity on ∂M , that takes T1 to T2.
Thus Theorem 1.3 implies that if M is a 3-manifold satisfying the hypotheses of the
theorem, then (n1, n2) 7→ exp(an1 )(n1)+ exp(an2 )(n2) is a Pachner move function for M
where a = 2162. It is in this way that we will apply Theorem 1.3.

The bound on Pachner moves in Theorem 1.3 gives the bound on Reidemeister
moves in Theorem 1.1, via the following result.

Theorem 1.4. Let L be an oriented non-split link in S3. Suppose that PL : N×N → N

is a Pachner move function for the exterior of L in S3. Then RL : N× N → N given

by

RL(n1, n2) = exp(2)(400(PL(2
14(n1 + n2), 2

14(n1 + n2)) + 216(n1 + n2)))

is a Reidemeister move function for L.

An outline of this paper is as follows. In Section 2, we introduce some of the basic PL
machinery that we require. In Section 3, we explain how to work with triangulations
of the 3-ball rather than the 3-sphere. In Section 4, we explain how to construct,
starting with a connected diagram of a link L, an explicit triangulation T of a 3-ball
that contains L as a subcomplex and also possesses some other properties that we
will require. In Section 5, we review Alexander’s trick and use it to show how one
may pass from a homeomorphism of the 3-ball, of known complexity, sending L1 to
L2, to an ambient isotopy sending L1 to L2 also of known complexity. This ambient
isotopy induces a 1-parameter family of link projections interpolating between D1 and
D2. However these link projections may not be diagrams in the usual sense. Thus in
Section 6, we show how one may pass from a 1-parameter family of link projections
to a sequence of diagrams each related to the next by a single Reidemeister move. In
Section 7, Theorem 1.4 is proved, leading quickly to Theorem 1.1. In Sections 8 and
9, we state Mijatović’s result, compare it with Theorem 1.3, and summarise his proof
in the case of simple and Seifert fibred 3-manifolds. In Sections 10, 11, 12 and 13, we
give our proof of Theorem 1.3.
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2. Piecewise linear theory

Our main theorem is proved using piecewise linear techniques. We therefore start
by giving precise definitions from this theory.

For n ∈ N, let ∆n be the standard n-simplex. An abstract ∆-complex K is:

• an indexing set A(n), for each natural number n;
• a copy ∆n

α of the standard n-simplex for each α ∈ A(n);
• for each ∆n

α, where n > 0, an affine homeomorphism between each (n − 1)-
dimensional face of ∆n

α and some ∆n−1
β for β ∈ A(n− 1).

The term ∆-complex was also used by Hatcher in [7]. However, his use of the term
was slightly different. He ordered the vertices of each simplex ∆n

α and required that
each affine homeomorphism from a face of ∆n

α to ∆n−1
β preserved the ordering of the

vertices. We will not make that requirement.
The basic example of an abstract ∆-complex is a simplicial complex.
One forms the underlying space |K| of an abstract ∆-complex K by starting with

the disjoint union of the simplices, and identifying each face of each simplex ∆n
α with

the corresponding simplex ∆n−1
β . We shall use the term ∆-complex to denote either

an abstract ∆-complex or its underlying space.
A combinatorial isomorphism between abstract ∆-complexes K and K ′ is, for each

natural number n, a bijection between their indexing sets A(n) and A′(n), together
with a collection of affine homeomorphisms ∆n

α → ∆n
α′ for each α ∈ A(n) associated

with α′ ∈ A′(n), such that for each (n − 1)-dimensional face F of ∆n
α and F ′ of ∆n

α′

that correspond, the following diagram commutes:

F > F ′

∆n−1
β

∼=
∨

> ∆n−1
β′

∼=
∨

Here, the vertical maps are the affine homeomorphisms in the definition of a ∆-
complex. The top horizontal map is the restriction of the affine homeomorphism
∆n

α → ∆n
α′ . The bottom horizontal map is the affine homeomorphism arising from the

bijection between A(n − 1) and A′(n − 1). Put simply, a combinatorial isomorphism
is a bijection that preserves all the structure of the complex.

The combinatorial isomorphism between K and K ′ determines a homeomorphism
|K| → |K ′| such that the interior of each simplex of |K| is sent to the interior of a
simplex of |K ′| via an affine homeomorphism. We shall also term this homeomorphism
a combinatorial isomorphism.

A subdivision of a ∆-complex K is a ∆-complex K ′ together with a homeomorphism
h : |K ′| → |K| such that each simplex σ of |K ′| is mapped into a simplex of |K| and
the restriction of h to σ is affine.

A triangulation T of a space M is a ∆-complex K together with a homeomorphism
M → |K|. (When M already has a PL structure, we insist that this homeomorphism
is PL.) We let |T | denote |K|. When K is actually a simplicial complex, we term
this a genuine triangulation. (In traditional PL theory, what we term a ‘genuine
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triangulation’ is just called a ‘triangulation’, and only these are considered. However,
it has become standard practice, particularly in low-dimensional topology, to work
with ∆-complexes rather than restrict to simplicial complexes.)

When K ′ is a subdivision of K, there is an induced homeomorphism M → |K ′|
which is the subdivided triangulation.

Two triangulations h : M → |K| and h′ : M → |K ′| of a space M are equal if there is
a combinatorial isomorphism c : |K| → |K ′| such that the following diagram commutes:

M

|K|
c

>

h
<

|K ′|

h′

>

This is a rather restrictive condition. If we are only given a combinatorial isomor-
phism c : |K| → |K ′|, there is an associated homeomorphism h′−1ch : M → M which
realises this combinatorial isomorphism. There is no guarantee that this is the identity.
We say that the two triangulations are isotopy-equivalent if this homeomorphism is
isotopic to the identity onM . We also say that two triangulations are homeomorphism-

equivalent if their ∆-complexes are combinatorially isomorphic, but with no restriction
on the commutativity of the above diagram. Thus, homeomorphism-equivalence of
triangulations is essentially the same concept as combinatorial isomorphism, but it is
useful to have two different terms.

It is helpful to consider an example. Suppose thatM is a space with infinite mapping
class group. Then it is immediate that if it admits a triangulation with N simplices,
it admits infinitely many such triangulations that are homeomorphism-equivalent but
isotopy-inequivalent, as follows. Starting with one such triangulation h : M → |K|, one
may apply non-isotopic homeomorphisms φi : M → M (i ∈ N) to obtain new triangu-
lations hφi. Since K is finite, there are only finitely many combinatorial isomorphisms
|K| → |K|, and these realise only finitely many isotopy classes of homeomorphisms
M → M . Hence, infinitely many of these triangulations of M are distinct, even up to
isotopy-equivalence. This lack of finiteness is an important phenomenon that occurs
often in the situations we will examine. For example, the torus has infinite mapping
class group, as does the exterior of every satellite knot.

We will be concerned with triangulations of manifolds. In this case, there is a well
known way to vary a triangulation, via Pachner moves, which are defined as follows.
Let T be a triangulation of an n-manifold M . Let ∆ be a standard (n + 1)-simplex.
Let D be a non-empty subset of ∂∆, consisting of i < n + 2 faces of dimension n.
Suppose that some subcomplex of T has interior that is combinatorially isomorphic to
the interior of D. (The typical case is when the subcomplex itself is combinatorially
isomorphic to D, but we wish to permit the possibility that it may be obtained from a
copy of D by identifying simplices on the boundary.) Then the operation of removing
from T the copy of the interior of D and inserting the interior of cl(∂∆ − D) is an
interior Pachner move. This is known as an (i, n + 2 − i) move, since it replaces i
n-simplices with n+ 2− i ones. See Figure 2.
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(2, 3)

(3, 2)

(1, 4)

(4, 1)

Figure 2. Three-dimensional Pachner moves

If triangulations T and T ′ are related by an interior Pachner move, then they have
a common subdivision. More precisely, one can also consider the triangulation T ′′

that is obtained by replacing the interior of D by the cone on ∂D. It is possible to
realize this cone as a subdivision of both D and cl(∂∆−D), in a way that is canonical
up to isotopy equivalence. We therefore obtain homeomorphisms h : |T ′′| → |T | and
h′ : |T ′′| → |T ′|, and hence a homeomorphism h′ ◦ h−1 : |T | → |T ′|. See Figure 3.

h h′

h′ ◦ h−1

T T ′

T ′′

Figure 3. T ′′ is a common subdivision of both T and T ′

If the n-manifold M has non-empty boundary, Pachner moves do not affect the
triangulation of ∂M . Thus, it is necessary to introduce a related move, which we
call a boundary Pachner move. Here, one starts with a standard n-simplex ∆ and a
non-empty subset D of ∂∆ consisting of i < n + 1 faces of dimension n − 1. One
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finds a subset of ∂M whose interior is combinatorially isomorphic to the interior of
D, and one attaches ∆ to it along D. Alternatively, one performs the reverse of this
procedure. This operation has the effect of changing the triangulation on ∂M by an
interior Pachner move.

A Pachner move refers to an interior or a boundary Pachner move.
The following key result about Pachner moves is due to Pachner [20, 21]. See also

[12].

Theorem 2.1. Let T and T ′ be two triangulations of a closed PL manifold M . Then,

up to homeomorphism-equivalence, there is a finite sequence of Pachner moves that

takes T to T ′.

One might then wish to determine a bound on this number of moves, solely in
terms of the number t and t′ of top-dimensional simplices in T and T ′. It trivially
holds that there is a function F : N × N → N such that any two triangulations T
and T ′ differ by a sequence of at most F (t, t′) Pachner moves, up to homeomorphism-
equivalence. However, any useful bound is impossible in general, as the following
theorem demonstrates. This is proved in much the same way as Theorem 1.2.

Theorem 2.2. Let M be a compact orientable PL m-manifold, where m ≤ 4. Then

the following are equivalent:

(1) There is a computable function F : N × N → N such that for any two trian-

gulations T1 and T2 of M , with t1 and t2 m-simplices respectively, there is a

sequence of at most F (t1, t2) Pachner moves that takes T1 to a triangulation

homeomorphism-equivalent to T2.

(2) There is an algorithm to recognize M among all triangulated compact PL m-

manifolds. In other words, there is an algorithm that takes as input the tri-

angulation of some compact m-manifold and determines whether or not this

manifold is PL homeomorphic to M .

Note that, by a theorem of Novikov, there are closed m-dimensional manifolds which
cannot be recognized among the set of all triangulated PL m-manifolds, provided
m ≥ 4. Indeed, the m-sphere falls in this class when m ≥ 5. (See the appendix to [18]
for example.) An explicit example of such a manifold when m = 4 is the connected
sum of 16 copies of S2 × S2 [25].

One might wonder why it is necessary to assume that m ≤ 4 in the above result.
This is required in the proof of (2) ⇒ (1). Here, one starts with a recognition algorithm
for M and from this, one constructs an algorithm to compute F (t1, t2) for any positive
integers t1 and t2. To do this, one constructs all spaces obtained from max{t1, t2}
m-simplices by identifying their (m − 1)-dimensional faces in pairs. But one must
then discard all spaces that do not form an m-manifold, and to do this, a recognition
algorithm for the (m−1)-sphere is required. This is only known to exist for m ≤ 4 [26].
Then, once one has constructed this collection of triangulated m-manifolds, one then
applies the recognition algorithm for M to discard the triangulations of manifolds not
PL homeomorphic toM . The resulting triangulations ofM are all related by sequences
of Pachner moves, which one can eventually construct. One defines F (t1, t2) to be the
maximum length of each such sequence of Pachner moves.
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The solution to the recognition problem for Haken 3-manifolds was established by
Haken [4] and Hemion [9]. Hence, for 3-manifoldsM in this class, there are computable
functions F as above. Moreover, Mijatović in [17] provided an explicit and easily
computed function F for a large class of Haken 3-manifolds that includes the exteriors
of all non-split links in the 3-sphere. It is Mijatović’s explicit upper bound, and the
technology behind it, that is the key to this paper.

3. Pachner moves on punctured 3-manifolds

In this section, we will deal with 3-manifolds which may have a 2-sphere boundary
component. Our goal is to prove the following theorem.

Theorem 3.1. Let T1 and T2 be triangulations of a 3-ball B. Suppose that in a col-

lar neighbourhood of ∂B, these triangulations are equal, and are the same standard

triangulation of ∂B × I. Let t1 and t2 be the number of 3-simplices in T1 and T2 re-

spectively. Suppose that links L1 and L2 are subcomplexes of T1 and T2 respectively, and

that they have triangulated neighbourhoods N(L1) and N(L2) that are combinatorially

isomorphic. Suppose that the homeomorphism from N(L1) to N(L2) that realises this
combinatorial isomorphism preserves the longitudal slope of each boundary component.

Suppose also that L1 and L2 are ambient isotopic, and that P : N×N → N is a Pachner

move function for the exterior of this ambient isotopy class of link in S3. Then there

exists a sequence of at most 100P (t1, t2) + 100(t1 + t2) Pachner moves, followed by a

combinatorial isomorphism, that takes T1 to T2, and N(L1) to N(L2). Furthermore,

none of the Pachner moves affect N(L1) or ∂B, and the combinatorial isomorphism

restricts to the identity on ∂B.

We say that the standard triangulation of the 2-sphere S is the boundary of a 3-
simplex.

Let TS×I be the following triangulation of S×I. Give each component of S×∂I the
same standard triangulation. For each edge e of this triangulation, insert e × I into
S × I. Place a vertex in the interior of this rectangle, and cone off the rectangle from
this vertex. These rectangles divide S × I into a collection of balls. Insert a vertex
in the interior of each such ball and cone off the ball from this vertex. The resulting
triangulation is TS×I , which we term the standard triangulation of S × I.

Theorem 3.1 will be a consequence of the following result.

Theorem 3.2. Let M be a compact orientable 3-manifold, and let S be a 2-sphere

boundary component of M . Suppose that the 3-manifold that results from attaching

a 3-ball to S has P : N × N → N as a Pachner move function. Let T1 and T2 be

triangulations of M with at most t1 and t2 tetrahedra respectively. Suppose that T1

and T2 are equal on ∂M , and that in a collar neighbourhood of S, T1 and T2 are equal

and combinatorially isomorphic to TS×I . Then there is a sequence of at most

100P (t1, t2) + 100(t1 + t2).

interior Pachner moves, followed by a homeomorphism that is the identity on ∂M ,

taking T1 to T2.

We shall need some terminology before embarking on the proof of Theorem 3.2.
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Definition 3.3. Let M̂ be a compact orientable 3-manifold, let T be a triangulation
φ : M̂ → |T | of M̂ , and let x be a point in M̂ that is disjoint from the image under φ−1

of the 2-skeleton. We define the following puncturing operation. Remove the interior
of the 3-simplex containing φ(x), and insert TS×I . Let P (M̂, T, x) be the resulting

triangulation of the manifold M̂ − int(N(x)).

Let T1 and T2 be triangulations of the same 3-manifold M̂ . Suppose that they differ
by a sequence of N interior Pachner moves

T1 = T 0
 T 1

 · · · TN = T2.

For each relevant integer i, let Ki be the ∆-complex associated with T i, and let
hi : |K

i−1| → |Ki| be the homeomorphism resulting from the Pachner move. Let x be

a point in M̂ disjoint from the inverse image in M̂ of the 2-skeleton of |K0|, |K1|, . . .
and |KN |.

Lemma 3.4. The triangulations P (M̂, T 0, x) and P (M̂, TN , x) differ, up to ambient

isotopy fixed on ∂M̂ ∪ ∂N(x), by a sequence of at most 100N interior Pachner moves.

Proof. It clearly suffices to prove that for each i, P (M̂, T i, x) and P (M̂, T i+1, x) differ
by a sequence of at most 100 Pachner moves. An example is shown in Figure 4, where
T i and T i+1 differ by a (1, 4)-move. (Note that, for clarity, not all simplices in these
triangulations are drawn.) Since there are only 4 types of move, it is clear that there

is a universal constant k such that P (M̂, T i, x) and P (M̂, T i+1, x) differ by at most
k interior Pachner moves. An elementary calculation, which is omitted, proves that
k = 100 suffices. �

P (M̂, T i, x) P (M̂, T i+1, x)

Figure 4

Lemma 3.5. Let T be a triangulation of a compact orientable 3-manifold M̂ with

t tetrahedra. Let x and x′ be points in M̂ that are in the complement of the 2-

skeleton. Then, P (M̂, T, x) and P (M̂, T, x′) are triangulations of M̂ − int(N(x)) and



AN UPPER BOUND ON REIDEMEISTER MOVES 11

M̂ − int(N(x′)) respectively, from which ∂N(x) and ∂N(x′) inherit triangulations. Let

h : ∂N(x) → ∂N(x′) be a simplicial isomorphism. Then, P (M̂, T, x) and P (M̂, T, x′)
differ by a sequence of at most 100t interior Pachner moves, followed by a homeomor-

phism M̂ − int(N(x)) → M̂ − int(N(x′)). We may arrange that this homeomorphism

equals h on ∂N(x), equals the identity on ∂M̂ , and extends to a homeomorphism

M̂ → M̂ that is isotopic to the identity.

Proof. Suppose that x and x′ lie in distinct 3-simplices ∆ and ∆′ that share a face.
Let ∆ ∪ ∆′ denote the 3-ball obtained by gluing ∆ and ∆′ along this face. There
may be other identifications on the boundary of this ball, but we do not yet make
these. The triangulations P (∆,∆, x) ∪∆′ and ∆ ∪ P (∆′,∆′, x′) are triangulations of
(∆ ∪∆′)− int(N(x)) and (∆ ∪∆′)− int(N(x′)) respectively. Pick a homeomorphism
φ : (∆∪∆′)− int(N(x)) → (∆∪∆′)− int(N(x′)) that restricts to h on ∂N(x), equals
the identity on ∂(∆∪∆′) and extends to a homeomorphism (∆∪∆′) → (∆∪∆′) that
is isotopic, relative to its boundary, to the identity. Then, using φ to pull back the
triangulation of (∆ ∪∆′)− int(N(x′)), we obtain another triangulation of (∆∪∆′)−
int(N(x)). It is clear that there is some number k of interior Pachner moves, followed
by an ambient isotopy that equals the identity on ∂(∆ ∪ ∆′) ∪ ∂N(x) taking one to
the other. One may easily check that k = 100 suffices. Since only interior Pachner
moves were used, any further identifications on the boundary of ∆ ∪∆′ do not affect
this argument.

Now suppose that x and x′ are arbitrary points in M̂ disjoint from the 2-skeleton.
There is a sequence of points x = x0, . . . , xr = x′ of points disjoint from the 2-skeleton,
where r ≤ t, and for each i, xi and xi+1 lie in distinct 3-simplices that share a face.
Thus, at most kr ≤ 100t Pachner moves, followed by a homeomorphism as described
in the lemma, suffice to take P (M̂, T, x) to P (M̂, T, x′). �

Proof of Theorem 3.2. Let M̂ be the result of attaching a 3-ball to M along S. Let
T̂1 and T̂2 be the result of removing the copy of TS×I from T1 and T2, and inserting
a 3-simplex, giving triangulations φ1 : M̂ → |T̂1| and φ2 : M̂ → |T̂2|. Thus, T1 =

P (M̂, T̂1, y) and T2 = P (M̂, T̂2, y), where y is a point in the interior of the newly
attached 3-ball. By assumption, there is a sequence of N ≤ P (t1, t2) interior Pachner
moves

T̂1 = T 0
 T 1

 · · · TN ,

where TN is homeomorphism-equivalent to T̂2, via a homeomorphism h : M̂ → M̂ that
is the identity on ∂M̂ . For each relevant integer i, let Ki be the ∆-complex associated
with T i, and let hi : |K

i−1| → |Ki| be the homeomorphism resulting from the Pachner

move. Let x be a point in M̂ disjoint from the inverse image of the 2-skeletons of
every |Ki|. By Lemma 3.4, the triangulations P (M̂, T̂1, x) and P (M̂, TN , x) differ by
a sequence of at most 100N interior Pachner moves, up to ambient isotopy fixed on
∂M̂ ∪∂N(x). By Lemma 3.5, P (M̂, TN , x) and P (M̂, TN , h−1(y)) differ by a sequence
of at most 100t2 Pachner moves, followed by a simplicial isomorphism that acts as
the identity on ∂M̂ . Now, P (M̂, TN , h−1(y)) and P (M̂, T̂2, y) are homeomorphism-

equivalent, via a homeomorphism that is the identity on ∂M̂ . The composition of the
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above homeomorphisms restricts to a simplicial isomorphism φ : ∂N(x) → ∂N(y). By

Lemma 3.5, T1 = P (M̂, T̂1, y) and P (M̂, T̂1, x) differ by a sequence of at most 100t1
interior Pachner moves, followed by a simplicial isomorphism that acts as the identity
on ∂M̂ . Moreover, we may ensure that the induced map ∂N(y) → ∂N(x) equals φ−1.
Thus, we have related T1 and T2 by a sequence of at most 100P (t1, t2) + 100(t1 + t2)
interior Pachner moves, followed by a homemorphism that acts as the identity on the
boundary of M . �

Proof of Theorem 3.1. We are given triangulations T1 and T2 of the 3-ball, B. The
links L1 and L2 and their regular neighbourhoods N(L1) and N(L2) are subcomplexes.
Let M = B − int(N(L1)). Then T1 restricts to a triangulation T ′

1 for M . Now, L1

and L2 are assumed to be equivalent, and so there is a homeomorphism h of B taking
N(L1) to N(L2). After an isotopy, we may assume that the restriction of h to N(L1)
realises the given combinatorial isomorphism between N(L1) and N(L2). Let T

′

2 be the
triangulation of M obtained by transferring the restriction of T2 to M via h−1. Thus,
we have two triangulations ofM , T ′

1 and T ′

2, and these restrict to equal triangulations of
∂M . Note that the number of tetrahedra in T ′

1 and T ′

2 is at most t1 and t2 respectively.

Let M̂ be the result of attaching a 3-ball to the 2-sphere boundary component of M .
By assumption, P : N×N → N is a Pachner move function for M̂ . Applying Theorem
3.2, we obtain a sequence of at most 100P (t1, t2)+100(t1+ t2) interior Pachner moves,
followed by a homeomorphism that is the identity on ∂M , taking T ′

1 to T
′

2. This induces
a sequence of at most this many interior Pachner moves, followed by a combinatorial
isomorphism that is the identity on ∂B, taking T1 to T2 and N(L1) to N(L2). This
completes the proof of Theorem 3.1. �

4. Constructing a triangulation from a link diagram

In this section, we show how a link diagram can be used to construct a triangulation
of the link’s exterior.

Definition 4.1. The standard triangulation of a cube is obtained as follows. Start by
inserting a vertex into each face, and coning off each face from this vertex. This gives
a triangulation of the boundary of the cube. Now place a vertex at the centre of the
cube, and cone off the triangulation of the boundary. See Figure 5.

Definition 4.2. For any positive integer n, the standard triangulation of the solid

torus with length n is obtained by gluing together n cubes in a circular fashion, with
their standard triangulations, where the intersection of a cube with its neighbours is
precisely a pair of opposite faces of the cube and where the other faces patch together
to form four annuli.

Theorem 4.3. Let L be a link in S3 with components L1, . . . , Lr. Let D be a connected

diagram of L with c(D) crossings. For 1 ≤ i ≤ r, let ci be the number of crossings in

which at least one strand is part of Li. Let n1, . . . , nr be integers satisfying ni ≥ 10ci
for each i, and let n = n1+ · · ·+nr. Then there is a triangulation T of a convex 3-ball

in R
3 with the following properties:

• it has at most 212c(D) + 120(n+ 11) tetrahedra;
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Figure 5

• it contains L as a subcomplex, and also a neighbourhood N(L) = N(L1)∪ · · ·∪
N(Lr) of L;

• the vertical projection of this copy of L onto the horizontal plane is the diagram

D;

• for each i, N(Li) has the standard triangulation of the solid torus with length

ni;

• each simplex of T is straight in the affine structure on R
3;

• a collar neighbourhood of the boundary of the ball is triangulated as TS×I.

Proof. Step 1. First suppose D is not the trivial unknot diagram. Let G be the
underlying 4-valent planar graph of D. We start by embedding G in a square Q in R

2

so that each edge of G is a union of at most 3 straight arcs. To find such an embedding,
we first collapse parallel edges of G to a single edge and remove edge loops, forming a
graph G. Using Fáry’s Theorem we may find an embedding of G in the plane in which
every edge is straight. Now reinstate the parallel edges of G with 2 straight arcs each
and the edge loops of G with 3 straight arcs. If D is the trivial unknot diagram then
let G be a triangle formed of three straight edges in the interior of Q.

Step 2. Replace each edge of G by 4 parallel edges. Replace each 2-valent vertex of
G by 4 vertices joined by 3 straight edges. Replace each 4-valent vertex of G by 9
parallelograms. See Figure 6. Call the resulting graph G+.

Step 3. We will use G+ to triangulate Q as follows. Into each complementary region
of G+ coming from the complementary regions of G we add straight edges until the
region is triangulated. Denote by E the union of these edges together with G+ and ∂Q.
An elementary Euler characteristic argument shows that E decomposes Q into at most
max(10c(D) + 2, 8) ≤ 10c(D) + 8 triangles and at most max(27c(D), 9) ≤ 27c(D) + 9
convex quadrilaterals. Into the quadrilateral shaped regions add a vertex and cone
from this vertex. The result is a triangulation of the square Q which we denote by TG.

Step 4. Insert 4 copies of Q with its triangulation TG into the cube Q× I, one being
the top face, one the bottom face, and two parallel copies between them. Insert a
copy of E × I, lying vertically in the cube, running from top to bottom. The union
of these copies of Q with E × I decomposes the cube into a collection of convex balls.
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G

G+

Figure 6

Triangulate each of the vertical faces by inserting a vertex into the centre of the face,
and coning off. Insert a vertex into each ball and cone off.

The result is a triangulation of the cube. It has at most 2364c(D)+ 984 tetrahedra.
However, it does not yet have all the required properties.

Step 5. We have triangulated the cube Q× I, but we actually require a triangulation
of a ball so that a collar neighbourhood of its boundary has the standard triangulation
TS×I . Place a large copy of TS×I around Q × I. We need to triangulate the space
between them. Do this by adding a cone over each face of Q× I, the cone point being
a vertex of TS×I . Then triangulate the remaining space. This certainly adds at most
300 + 236c(D) tetrahedra to the triangulation.

Step 6. Near each 4-valent vertex of G, there are 9 parallelograms which are comple-
mentary regions of G+. A copy of these 9 parallelograms lies in each of the 4 copies
of Q, and between these lies a parallelepiped made out of 27 smaller parallelepipeds
which together look like a Rubik’s cube. We remove the entirety of this parallelepiped,
and replace it with a fixed triangulation of the parallelepiped with the same bound-
ary. This triangulation contains two pairs of parallelepipeds, glued end-to-end, which
together form two thickened arcs that realise the crossing of L. We call these paral-
lelepipeds crossing parallelepipeds. See Figure 7. We triangulate each of these crossing
parallelepipeds using the standard triangulation of a cube. We triangulate the rest of
the large parallelepipeds using less than 300 tetrahedra each, with their boundaries
remaining unchanged from the start of this step.

Step 7. This new triangulation certainly has at most 212c(D) + 1284 tetrahedra. It
has all the required properties, with one exception. Each component N(Li) of N(L)
is a union of cubes, but the number of cubes is n′

i, say, where n′

i ≤ 10ci.
Thus, we remove each cube of N(Li), and replace it with the following triangulation.

Four of its outer faces have the same triangulation as in the standard case. However,
the faces F that are attached to other cubes of N(Li) are given the following triangu-
lation. It has a central square, coned off. There is an edge running from each vertex of
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Figure 7. Crossing parallelepipeds

this square to the corresponding vertex of F . This creates 4 trapeziums. A vertex is
inserted into each, and then we cone off. This specifies the boundary of each of these
new cubes. See Figure 8.

A portion of the boundary triangulation The interior cubes

Figure 8

Between opposite faces containing the new smaller squares, we insert ⌊ni/n
′

i⌋ or
⌈ni/n

′

i⌉ standard cubes. The union of these cubes will form the new N(L). Between
the boundary of the new N(L) and the old N(L), we insert 2-simplices and 3-simplices
so that the resulting triangulation has all the required properties. The number of
tetrahedra lying within the old N(L) is at most 120n. �
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5. Alexander’s trick and bounded isotopies

In this section we prove the following result.

Theorem 5.1. Let B be a convex 3-ball in R
3. Let h : B → B be a homeomorphism

that fixes ∂B pointwise and sends each straight arc in B to a concatenation of at most

m straight arcs. Then there is an ambient isotopy ht : B → B for t ∈ [0, 1] such that

h0 is the identity map on B, h1 = h and ht sends each straight arc to a concatenation

of at most m+ 2 straight arcs in R
3 for all t ∈ [0, 1].

Proof. We will use Alexander’s trick. Let p be a point in the interior of B. For each
r ∈ [0, 1], let Br denote the result of linearly scaling B with centre p by a factor of r,
so that B1 = B and B0 = {p}. More precisely, for r > 0 let Br be the image of B
under the map sr : x 7→ r(x− p) + p.

Let gr : Br → Br be given by

gr(x) = sr ◦ h ◦ s−1
r (x)

for r > 0. The map gr essentially applies the homeomorphism h to the dilated copy
of B, namely Br, as shown in Figure 9.

BB

h

gr

Br Br

Figure 9. The map gr

Alexander’s trick may now be described as follows. Start with the identity map on
B and set this to be h0. As t increases ht acts by applying gt to Bt and leaving the
rest of B unchanged, as shown in Figure 10. When t reaches 1, h1 is the same as h
because B1 = B and g1 = h.

Formally, ht is given by

ht(x) =

{

gt(x) x ∈ Bt

x x /∈ Bt
.

Now, a straight arc in B will be sent under ht to a single straight arc if it lies entirely
outside Bt. It will be sent to at most m straight arcs if it lies entirely within Bt. If it
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BB

ht

Figure 10. The map ht

has one or both endpoints outside of Bt but part of its interior within Bt then it will
be sent to at most m+ 1 or m+ 2 straight arcs respectively. �

6. Continuous families of link projections

In order to prove Theorem 1.1, we will want to find a sequence of diagrams inter-
polating between two given diagrams for a link. However, in the course of the proof,
we will obtain not a sequence of diagrams, but a continuous family of link projections.
In this section, we will show how such a family can be used to produce a sequence of
diagrams.

We say that a piecewise linear map from a disjoint union of circles C to the plane is a
link projection if it can be factorised as C → R

3 → R
2, where C → R

3 is an embedding
and R

3 → R
2 is the standard vertical projection onto the first two co-ordinates. In

a link projection, one keeps track not just of the map C → R
2, also one records, for

any two points in C with the same image in R
2, their relative heights in R

3. Link
projections need not form diagrams in the usual sense. For example, more than two
points in C may map to the same point in R

2; indeed uncountably many points may
have the same image. However, a link projection induces a diagram if only finitely
many points in the plane have more than one inverse image point in the circles; each
such point has precisely two inverse image points; and near each such point in the
plane, the image of the link consists of two arcs intersecting transversely.

Definition 6.1. Let D be a link diagram. Suppose that D′ is obtained from D by
adding a small unknot summand at a point in the interior of an edge of D. Then we
say that D′ is obtained from D by adding an unknot summand. We say that D is
obtained from D′ by removing an unknot summand.

Proposition 6.2. Let H : B × [0, 1] → B be a piecewise linear isotopy of a convex

polyhedral 3-ball B in R
3. For each t ∈ [0, 1], let ht : B → B be H(·, t). Suppose that

h0 is the identity. Let L be a piecewise linear link in the interior of B. Suppose that,

for each t ∈ [0, 1], ht(L) consists of at most n straight arcs. Suppose also that the

projections of h0(L) and h1(L) are diagrams. Then, there is a sequence of diagrams

relating the projections of h0(L) and h1(L) with the following properties:

• successive diagrams are related by either a single Reidemeister move or the

addition or removal of an unknot summand;

• each diagram in the sequence has at most n2 crossings.
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Proving Proposition 6.2 is a fairly routine exercise in general position. Because of
this, we only give an outline.

Since H is piecewise linear, B × [0, 1] has a triangulation, T , such that H restricts
to a linear map on every simplex of T . Now, L × [0, 1] intersects every simplex of T
in a collection of affine pieces which we collectively call A. These affine pieces form a
cell structure on the annulus L× [0, 1]. Let t1, t2 . . . be the t-coordinates of the 0-cells
of A, arranged in increasing order. For every i, if t ∈ (ti, ti+1) then L × {t}, consists
of a fixed number of straight pieces, this number depending only on i.

Let Dt be the projection of the link ht(L) to the plane. By the discussion above, on
each interval (ti, ti+1), the projections Dt vary in a fashion determined by the motion
of the vertices of H(L× {t}), with the edges in between remaining affine throughout.

When t = ti, the projections Dt change in a way that is more complicated. Edges
of Dt can shrink to length zero as t increases to ti, and new edges and vertices can
appear where none existed before when t increases from ti. Thus it is at these values
of t that we may need to remove and then add unknot summands.

In order to complete the proof of Proposition 6.2 we need to arrange that Dt is a
diagram for every t apart from finitely many values of t ∈ (0, 1), at each of which
a single Reidemeister move takes place or an unknot summand is removed and then
another added. This we achieve by perturbing H .

First perturb H so that each 0-cell in the interior of A has a different t-coordinate.
Then 0 = t0, t1, . . . , tN = 1 are the t-coordinates of the 0-cells of A. Now introduce
two new vertices to each 1-cell in the interior of A. If the endpoints of the 1-cell have
times ti and tj, where ti < tj , then place the vertices at ti + ε and tj − ε, for some
small ε > 0. From now on, all perturbations of H will be achieved by slightly moving
the location in B of the images of the 0-cells of A.

The remainder of the proof of Proposition 6.2 will be in several steps. The first
step will be to ensure that each Dti is a diagram. Next we will ensure that for each i,
Dti±ε is, for small enough ε, a diagram related to Dti by the addition or removal of an
unknot summand. The third and final step will be to arrange that the link projections
between Dti+ε and Dti+1−ε are diagrams for all but finitely many times, t, at which a
single Reidemeister move takes place.

Step 1 - Ensuring each Dti is a diagram: We need to perturb H to ensure the
following:

• any two edges of the projection Dti intersect in at most one point;
• no three edges of Dti have a common point of intersection;
• no vertex of the link has image that lies in a non-adjacent edge of Dti .

This is a straightforward general position argument. Suppose that two non-adjacent
edges intersect in more than one point. The images of their four endpoints in B lie in a
12-dimensional vector space. The subspace consisting of configurations where the two
lines intersect in more than one point has dimension 10, for the following reason. The
first line is specified by 6 co-ordinates. The remaining line has projection that overlaps
with the projection of the first line, and so there are 4 co-ordinates that specify this
line. Since 10 is less than 12, we may perturb hti to avoid this subspace. Perturb H
to realize this perturbation of hti . We can make this perturbation sufficiently small
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so that no other bad configurations arise. We can deal with the other cases similarly,
and thereby ensure that each Dti is a link diagram. Note that the case where an edge
of the link is projected to a single point is ruled out by the third condition.

Step 2 - Perturbing each Dti±ε: As t increases from ti ∈ (0, 1), the diagram Dti

changes in the following way. All but one of the vertices of Dti move with constant
velocity. From the remaining vertex, v say, a collection of vertices are formed and
these all move away from v with constant velocity. The velocity of these new vertices
are the projected velocities of new vertices in ht(L) moving away from the pre-image
of v. Because Dti is a diagram, for ε small enough, Dti+ε is a diagram apart from
possibly near v. To ensure that Dti+ε is a diagram perturb it in a similar fashion
to Step 1. All the diagrams Dti+δ change, as δ varies in (0, ε], in a linear fashion
with their vertices moving with constant velocity. Thus as t increases from ti we have
arranged that near v we see a small unknot summand appear and grow in a linear
fashion. A similar argument applies at times immediately prior to each ti ∈ (0, 1). At
times t = 0 and t = 1 things are only slightly different, with possibly several unknot
summands appearing immediately after t = 0 and possibly several unknot summands
disappearing as t reaches 1.

Step 3 - Passing from Dti+ε to Dt(i+1)−ε with Reidemeister moves: So far we

have ensured that we may pass from the projection of h0(L) to the projection of h1(L)
by means of a sequence of diagrams where consecutive diagrams in the sequence are
related by the addition or removal of a small unknot summand, or by moving their
vertices with constant velocity, keeping the joining edges straight throughout. We
ensure that the latter 1-parameter families of link projections may be perturbed to
give rise to sequences of Reidemeister moves with the following proposition:

Lemma 6.3. We may perturb each Dti±ε slightly so that they remain diagrams, and so

that Dt fails to be a diagram for only finitely many values of t in each [ti + ε, ti+1− ε].
Moreover, at these values of t, a single Reidemeister move is performed.

Proof. We ensure that, for t in [ti + ε, ti+1− ε], the following conditions hold for every
link projection Dt:

• for any two non-adjacent edges of the link, their projections intersect in at most
one point;

• for any four edges of the link, their projections have no common point of
intersection;

• the link projection has at most one triple point;
• there is at most one vertex of the link that projects to a point in the image of
a non-incident edge;

• no two vertices have a common projection.

We will also ensure that the following possibilities arise for at most finitely many
link projections:

(1) the projection of some edge lies within the projection of an adjacent edge;
(2) a vertex of the link has image lying within the projection of a non-incident

edge;
(3) there is a triple point.
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Note that there will, in general, be moments when (1), (2) or (3) above do occur,
and typically then a Reidemeister move will be performed, as illustrated in Figure 11.

Move (1) Move (2)

Figure 11

We start by arranging the first of these conditions. We will perturb the image of
L under the homeomorphisms hti+ε and hti+1−ε, but keeping ti + ε and ti+1 − ε fixed.
Consider any two non-adjacent edges of the link. The images of their four endpoints
under hti+ε and hti+1−ε lie in a 24-dimensional vector space. We wish to consider the
subset of this space consisting of configurations where the projections of the two edges
intersect in more than one point. This subset lies in a subspace, the dimension of which
can be computed as follows. The two edges have bad projections at some point in time.
There is a one-dimensional family of possible times. One of the edges has arbitrary
image at this time, and so its position is specified by 6 co-ordinates. The remaining
edge must have projection lying in the same line as the first edge. Thus, there are two
parameters specifying the endpoints of its projection. Two further parameters give
the height of these endpoints in R

3. As one moves away from this time, the endpoints
of the edges vary linearly. Their derivatives are specified by 12 further parameters.
Thus, the subspace that we need to avoid has at most 23 dimensions. Hence, by a
small perturbation of hti+ε and hti+1−ε, we can avoid this subspace. Thus, we can
ensure that, throughout the isotopy, the projection of any two non-adjacent edges of
the link intersect in at most one point.

We next ensure that, throughout the isotopy, the projection of no four edges have
a common point of intersection. This time the ambient space, giving the position of
these four edges at times ti+ε and ti+1−ε is 48-dimensional. The subspace containing
the bad configurations has 47 dimensions: one giving the time of the bad configuration,
two parameters specifying the point of intersection in the projection, four parameters
give the angles of the lines emanating from this point, eight further parameters give
the lines themselves, eight parameters give the heights in R

3 of their endpoints, and
24 co-ordinates give the derivatives of these endpoints at that time.

Thus, we can ensure that only triple points arise. Using similar arguments to the
ones above, we can ensure the remaining conditions. �

This proves Proposition 6.2.
Of course, Proposition 6.2 is not sufficient for our purposes because the addition

or removal of unknot summands do not obviously induce a sequence of Reidemeister
moves. For this reason we will need to apply the following theorem, whose proof, which
we omit, is an easy adaptation of the methods used by Hass and Lagarias to prove the
main theorem of [5].
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Theorem 6.4. Let D and D′ be link diagrams and suppose that D′ is obtained from D
by the addition or removal of an unknot summand. Suppose that D and D′ both have

at most n crossings. Then there is a sequence of at most 210
11n Reidemeister moves

relating D and D′.

Thus, from a continuous family of link projections interpolating between D1 and D2,
we can find a sequence of Reidemeister moves taking D1 to D2. In order to efficiently
bound the number of moves required we will need the following theorem.

Theorem 6.5. Up to ambient isotopy, there are at most (24)n+1 connected, unoriented

link diagrams with at most n crossings.

Proof. This is an adaptation of an argument of Welsh [28]. We use a theorem of
Tutte from [27], which counts ‘rooted bicubic maps’. A map is a cell structure on the
2-sphere, or equivalently an embedded connected planar graph. It is trivalent if the
valence of each of its vertices is 3. It is bicubic if it is trivalent and bipartite. A map is
rooted if one of its edges is chosen and oriented, and the two faces on either side of this
edge are specified as lying on the left and right of the edge. The point of using rooted
maps is that they have no symmetries, and so they are easier to count. It is easy to
show that the faces of a bicubic map may be coloured using only three colours, and
so that adjacent faces have distinct colours. This colouring is unique once the colours
adjacent to some edge are chosen. If the bicubic map is rooted, then the root colour is
the face colour not adjacent to the specified edge. Tutte proved in 4.3 of [27] that the
number of rooted bicubic maps in which there are just n faces of the root colour is

2(2n)!3n

n!(n+ 2)!
.

Now, given a connected link diagram, there is a simple way of creating a bicubic
map. One simply replaces each 4-valent vertex of the link projection with a square
consisting of four vertices and four edges. One can root the bicubic map by picking
one of the original edges of the diagram. The new squares are then assigned the root
colour. Hence, we deduce that the number of connected rooted embedded 4-valent
planar graphs with n vertices is also at most

2(2n)!3n

n!(n+ 2)!
.

There are 2n ways of assigning the crossing information and so there are at most

2(2n)!6n

n!(n + 2)!

connected link diagrams with n crossings. So, the number with at most n crossings is
no more than

n
∑

k=0

2(2k)!6k

k!(k + 2)!
≤

n
∑

k=0

2

(

2k

k

)

6k

(k + 1)2
≤

(

n
∑

k=0

24k

)(

∞
∑

k=1

1

k2

)

≤ 24n+1,

as required. �

Theorem 6.5 yields the following immediate corollary:
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Corollary 6.6. Up to ambient isotopy, there are at most (48)n+1 connected, oriented

link diagrams with at most n crossings.

We may combine Theorem 6.4 and Corollary 6.6 to obtain the following corollary.

Corollary 6.7. Suppose that there is a finite sequence of diagrams, starting with D1

and ending with D2, so that successive diagrams are related by either a Reidemeister

move or the addition or removal of an unknot summand. Suppose that each diagram

in this sequence is connected and has at most n crossings. Then, there is a sequence

of at most 210
12n Reidemeister moves joining D1 to D2.

Proof. Without loss of generality suppose that the hypothesized sequence of diagrams
is chosen to be as short as possible. Then no two diagrams are isotopic and so, by
Corollary 6.6, the sequence consists of at most (48)n+1 diagrams. By Theorem 6.4,

passing from one diagram to the next can be achieved with at most 210
11n Reidemeister

moves. The product of these two expressions is less than the desired bound. �

Combining Theorem 5.1, Proposition 6.2 and Corollary 6.7, we obtain the following.

Corollary 6.8. Let h : B → B be a PL homeomorphism of a convex polyhedral 3-ball

B, which fixes ∂B pointwise, and which has the property that it sends each straight arc

in B to a concatenation of at most m straight arcs. Let L be an non-split oriented link

in B that is the concatenation of at most n straight arcs. Suppose that L and h(L)
project to oriented diagrams D1 and D2. Then D1 and D2 differ by a sequence of at

most

210
12(n(m+2))2 ≤ 210

13(nm)2

Reidemeister moves.

7. Proof of the main theorem

In this section, we will prove Theorem 1.4. This will quickly yield Theorem 1.1,
assuming Theorem 1.3. All diagrams in this section will be oriented. Note that
Theorem 1.1 for unoriented diagrams follows from the version for oriented diagrams.

Let D1 and D2 be connected diagrams for some knot or non-split link L in the
3-sphere. Let n1 and n2 be their crossing numbers, and let n = n1 + n2. We wish to
find a sequence of diagrams taking D1 to D2, where successive diagrams are related
by a Reidemeister move.

We suppose that L is not the unknot, for in this case Theorem 1.4 follows from [5].
(Theorem 1.1 also follows immediately from [5] in this case.)

Start by applying type 1 Reidemeister moves to D1 and D2 so the writhes of cor-
responding components agree. Call the resulting diagrams D′

1 and D′

2 respectively.
They have at most 2n1 and 2n2 crossings respectively. The number of Reidemeister
moves required is at most n.

Use Theorem 4.3 to create triangulations T1 and T2 of the 3-ball B with L1 and L2

as subcomplexes. The vertical projections of L1 and L2 are the diagrams D′

1 and D′

2.
Theorem 4.3 ensures that the triangulations T1 and T2 contain neighbourhoods N(L1)
and N(L2) of L1 and L2 that are subcomplexes and that each have a standard triangu-
lation of the solid torus. By choosing the integers ni in Theorem 4.3 appropriately, we
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may arrange that these triangulations of the solid tori have the same length, and hence
are combinatorially isomorphic. Further, since D′

1 and D′

2 have the same writhes, we
may also ensure that the homeomorphism N(L1) → N(L2) that realises this combina-
torial isomorphism preserves longitudes. Since 213n1 + 120(40(n1 + n2) + 11) < 214n,
the triangulations T1 and T2 may be taken to contain at most t = 214n tetrahedra
each. Apply Theorem 3.1 to give a sequence of at most N = 100PL(t, t)+200t interior
Pachner moves, followed by a combinatorial isomorphism, that takes T1 to T2, and
N(L1) to N(L2). Further, none of the Pachner moves affect N(L1) or ∂B, and the
combinatorial isomorphism restricts to the identity on ∂B. This sequence of Pachner
moves gives a sequence of ∆-complexes joined by PL homeomorphisms

|T1| = |T 0|
h1−→ |T 1|

h1−→ · · ·
hN−→ |TN | = |T2|.

Let h = φ−1
2 hN . . . h1φ1 be the resulting homeomorphism B → B, where φ1 and φ2 are

the homeomorphisms associated with T1 and T2. Note that h(L1) = L2.
We will need the following concept. Let T be a triangulation of a 3-manifold. Then

an arc in |T | is said to be straight if it lies in a single simplex and is straight in the
affine structure on that simplex. We now apply the following straightforward lemma.

Lemma 7.1. Suppose that T i and T i+1 are triangulations of a 3-manifold that are

related by an interior Pachner move. Let hi+1 : |T
i| → |T i+1| be the resulting homeo-

morphism. Then, hi+1 sends each straight arc in |T i| to a concatenation of at most 4
straight arcs in |T i+1|.

Now, φ1 sends each straight arc in B to a concatenation of at most t straight arcs
in |T1|. By Lemma 7.1, this is sent to a concatenation of at most 4N t straight arcs in
|T2|. Each of these arcs is sent to a straight arc in B. Thus we obtain the following.

Corollary 7.2. Each straight arc in B is sent, via h, to a concatenation of at most

4N t straight arcs.

Now, since L1 lies in the 1-skeleton of T1, it consists of at most 6t = 6 · 214n straight
arcs in B. Hence we may apply Corollary 6.8 to conclude that there is a sequence of
at most

210
13(6t·4N t)2 ≤ exp(1015t424N)

Reidemeister moves taking D1 to D2.
This proves Theorem 1.4 since

exp(1015t424N) = exp(1015t424(100PL(t,t)+200t))

≤ exp(250+4t+4(100PL(t,t)+200t))

≤ exp(2400(PL(t,t)+4t))

= exp(2)(400(PL(2
14n, 214n) + 216n)).

Now, Theorem 1.3 may be applied to non-split link exteriors because the 3-sphere
cannot contain a 3-dimensional submanifold that has a single boundary component,
fibres over the circle, and is a surface semi-bundle. Indeed, no Z2-homology 3-sphere
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can contain such a submanifold. Hence Theorem 1.1 follows in the case where the link
is not split, assuming Theorem 1.3, because

exp(2)(400(2 exp(a
t)(t) + 4t)) ≤ exp(2) (exp(a

t+10)(t)) = exp(a
t+12)(t) ≤ exp(cn)(n),

where c = 2163·2
14
≤ 101,000,000.

It remains to prove Theorem 1.1 in the case where L is split. In this case, we apply
the following result.

Proposition 7.3. Let L be a split link, and write L = L1 ∪ · · · ∪ Lr, where each

Li is non-split, and when i 6= j, Li and Lj are separated by a sphere that lies in

the complement of L. Let D be a diagram for L with n crossings, and let Di be the

restriction of this diagram to Li. Then there is a sequence of at most 2(r−1) exp(kn)(kn)
Reidemeister moves taking D to the distant union of D1, . . . , Dr, where k = 2129.

Proof. It is a theorem of Hayashi [8] that if D is a diagram of a split link with n
crossings, then there is a sequence of at most exp(kn)(kn) Reidemeister moves taking it
to a disconnected diagram D′, where k = 2129. (We have simplified Hayashi’s bound,
at the cost of a slight increase to it.) Suppose that this disconnected diagram separates
the link into two subsets K1 and K2. Then, the restriction of D to each Ki is a diagram
Ei for Ki. We may now reverse some of these Reidemeister moves to take D′ to the
distant union of E1 and E2. We apply this argument r− 1 times, and we end with the
distant union of D1, . . . , Dr. �

Write L = L1 ∪ · · · ∪ Lr, where each Li is non-split, and when i 6= j, Li and Lj are
separated by a sphere that lies in the complement of L. From D1, we obtain diagrams
D1,1, . . . , D1,r for L1, . . . , Lr, by disregarding components not belonging to the relevant
Li. Let D′

1 be the distant union of the diagrams D1,1, . . . , D1,r. Similarly, we obtain
diagrams D2,1, . . . , D2,r from D2, and let D′

2 be their distant union. Let ni,j be the
number of crossings in Di,j. Thus, n1,1 + · · · + n1,r ≤ n1, and n2,1 + · · · + n2,r ≤ n2.
Let mj = n1,j + n2,j . By Theorem 1.1 in the non-split case, there is a sequence of at
most

exp(cm1 )(m1) + · · ·+ exp(cmr )(mr)

Reidemeister moves taking D′

1 to D′

2. By Proposition 7.3, there is a sequence of at
most 2(r − 1) exp(kn1 )(kn1) Reidemeister moves taking D1 to D′

1, and similar number
taking D2 to D′

2. The total number of moves is less than exp(cn)(n). This concludes
the proof of Theorem 1.1, assuming Theorem 1.3.

8. Overview of the proof of Mijatović’s theorem (Simple case)

The driving force behind this paper is Theorem 1.3, which is based on work of
Mijatović. As mentioned in the Introduction, Mijatović in fact proved the following
related result [17].

Theorem 8.1. Let M be a compact orientable irreducible 3-manifold, with boundary

a non-empty collection of tori. Suppose that the closure of each component of the

complement of the characteristic submanifold of M satisfies at least one of the following

conditions:
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• it does not fibre over the circle; or

• it is not a surface semi-bundle; or

• it has at least two boundary components.

Let T1 and T2 be two triangulations of M with t1 and t2 3-simplices respectively. Then

there is a sequence of at most exp(bt1 )(t1) + exp(bt2 )(t2) interior Pachner moves and

boundary Pachner moves, followed by an ambient isotopy, followed by a homeomor-

phism of M to itself that is supported in the characteristic submanifold, that leaves

each component of ∂M invariant, and that takes T1 to T2. Here, b ≤ 2200.

There are two main differences between the statements of Theorems 8.1 and 1.3.
Firstly, boundary Pachner moves are permitted in Theorem 8.1 but not in Theorem 1.3.
Secondly, the homeomorphism of M is not required to be the identity on the boundary
of M in Theorem 8.1. We will explain how to guarantee these extra requirements in
Sections 10 - 13, following a summary of Mijatović’s techniques in this and the next
section.

We briefly recall what is meant by the characteristic submanifold of M . We first
consider the case where M is compact, orientable and irreducible, and has boundary
a (possibly empty) collection of incompressible tori. A torus properly embedded in M
is canonical if it is essential and, moreover, any other essential torus can be isotoped
off it. If one takes one representative for each ambient isotopy class of canonical torus,
then these can be chosen to be disjoint. The resulting collection of tori is the JSJ tori,
and their union is well-defined up to ambient isotopy. A key result in the theory is
that if one cuts M along an open regular neighbourhood of the JSJ tori, the resulting
pieces are either Seifert fibred or simple. The union of the Seifert fibred pieces is the
characteristic submanifold of M .

When M has boundary that is incompressible, but not a union of tori, then one
must vary the above definition. Here, M is still assumed to be compact, orientable
and irreducible. One considers essential annuli and tori properly embedded in M ,
and again such a surface is canonical if any other essential annulus or torus can be
isotoped off it. To form the JSJ annuli and tori, one takes one representative of each
isotopy class of canonical annulus and torus, but one then discards certain annuli,
called matching annuli, which have Seifert fibred spaces on both sides with matching
Seifert fibrations. In this case, the JSJ annuli and tori divide M into pieces that are
simple, Seifert fibred or an I-bundle over a surface, and the characteristic submanifold

is the union of the Seifert fibred and I-bundle pieces. For further details on JSJ
decompositions of 3-manifolds, see [10] and [11]. See also [19].

The idea behind Theorem 8.1 is as follows. As in Theorem 1.3, a ‘canonical tri-
angulation’ Tcan for M is constructed. However, this is slightly different from the
triangulation T ′

can in Theorem 1.3. Like T ′

can, Tcan depends on a given triangulation of
∂M . However, its restriction to ∂M does not equal this triangulation.

Mijatović’s triangulation Tcan is constructed from a collection of surfaces in M .
These include the JSJ tori of M . In each component of the complement of the JSJ
tori, the choice of surfaces depends on whether that piece is simple or Seifert fibred.
Therefore, in this section, we will focus on the case where M is simple. In the next
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section, we will examine the case where M is Seifert fibred. In Section 10, we will
consider the general case.

Suppose therefore thatM is a compact orientable simple Haken 3-manifold satisfying
the conditions of Theorem 8.1. A partial hierarchy for M is a sequence

M = M0
S1
 M1

S2
 · · ·

Sn

 Mn,

where each Mi is a 3-dimensional submanifold of M , each Si is a properly embedded
incompressible surface in Mi−1, and Mi is obtained from Mi−1 by cutting along Si. A
hierarchy is a partial hierarchy where the final manifold is a collection of 3-balls. At
each stage, one keeps track of a boundary pattern Pi for Mi. Here, we are using this
term to mean a collection of disjoint simple closed curves and graphs embedded in
∂Mi. This boundary pattern is defined as follows.

One considers the union of the surfaces S1, . . . , Si as a 2-complex in M , so that each
Sj has boundary that runs over S1 ∪ · · · ∪ Sj−1. Each surface Sj is required to be in
general position with respect to the previous surfaces, in the sense that its boundary
is required to be transverse to the union of the boundaries of the earlier surfaces. In
general, one also wants to ensure that when two parts of ∂Sj intersect because they lie
on different sides of some previous surface, then they also are required to be in general
position. However, this situation will never in fact arise in this paper, because we will
always cut along separating surfaces. The boundary pattern Pi for Mi is defined to be
the image of ∂S1 ∪ · · · ∪ ∂Si in ∂Mi. This boundary pattern is essential which means
that ∂Mi − Pi is incompressible in Mi.

Mijatović’s canonical triangulation Tcan is constructed as follows. The union of ∂M
and the surfaces S1, . . . , Sn is a 2-complex. Triangulate each face of this complex, by
inserting a vertex in its interior, and then coning off. The boundary of each 3-ball in
Mn then inherits a triangulation. Triangulate this 3-ball by coning off this boundary
triangulation. Provided one uses the right hierarchy, the result is Tcan.

Not any choice of hierarchy will work here. It is important that whenever Mi−1 is
given some triangulation, then Si can be realised as a normal surface in that triangu-
lation with an estimable number of triangles and squares. It is also important that
there is a bound on the length n of the hierarchy, in terms of the number of tetrahedra
in any given triangulation of M . The reason for this will shortly become apparent.

To prove Theorem 8.1 or 1.3, one starts with a triangulation T for M . Let’s also
call this triangulation T0(M) and T0(M0). One realises S1 as a normal surface in
this triangulation, with control over the number of triangles and squares. Then one
applies Pachner moves to T0(M), creating a triangulation T1(M) in which S1 is a
subcomplex. This restricts to a triangulation T1(M1) of M1. Then one repeats, by
realising S2 as a normal surface in T1(M1), and so on. At each stage, the boundary
pattern Pi is required to be a subcomplex of the triangulation Ti(Mi). The final result
is a triangulation Tn(Mn) of Mn, the components of which patch together to form a
triangulation of Tn(M) of M in which S1 ∪ · · · ∪ Sn is a subcomplex. Now one applies
Pachner moves to Tn(M) so that the triangulation on the 2-complex S1 ∪ · · · ∪ Sn

agrees with that of Tcan. Thus, on each component of Mn, we have two triangulations
of the 3-ball which agree on their boundaries. Then Mijatović applies an earlier result
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(Theorem 5.2 of [16]), which allows one to bound the number of interior Pachner moves
required to pass between two such triangulations of a 3-ball.

The precise choice of hierarchy made by Mijatović is rather delicate. The surfaces
that he uses are designed to ensure that one can give an upper bound on the number
of triangles and squares of the normal surface Si in any given triangulation of Mi−1,
and also to provide a bound on the length of the hierarchy.

The first surface S1 must be chosen with particular care. In order that later stages
of the hierarchy can be chosen canonically, it is important that the exterior of S1 is not
a union of I-bundles. In other words, S1 must be neither a fibre in a fibration of M
over the circle nor a fibre in a surface semi-bundle. The hypotheses on M in Theorem
8.1 are there to ensure that it is possible find a properly embedded essential surface
satisfying this condition. For when M is a compact orientable irreducible atoroidal
3-manifold with boundary a single incompressible torus, then a theorem of Culler and
Shalen [2] gives that M contains a properly embedded connected essential surface that
is either separating or closed. Thus, it is not a fibre. It may be a semi-fibre, but
our hypotheses on M then ensure that M does not fibre over the circle and so one
may instead use a non-separating surface. When M has more than one boundary
component and is not homeomorphic to S1 ×S1× I, one may use Culler and Shalen’s
theorem to find an essential properly embedded surface that intersects at most one
component of ∂M . Hence, in this case, it is neither a fibre nor a semi-fibre. See
Corollary 3.2 in [17] for more details. It is possible to find such a surface in normal
form, with a bound on its number of triangles and squares using Propositions 4.1 and
4.2 of [17].

At each of the later stages of the hierarchy, one of the following types of surface is
used:

(1) the boundary of a regular neighbourhood of a closed, connected, properly em-
bedded, π1-injective surface of maximal Euler characteristic in some component
of Mi−1 minus its characteristic submanifold (such a surface is only used in the
initial stages when the boundary pattern is empty);

(2) a canonical annulus in some component of Mi−1, and which is also disjoint from
the boundary pattern Pi−1 (here, canonical is defined in terms of the boundary
pattern Pi−1);

(3) an incompressible annulus (or two parallel copies of such an annulus) in a com-
ponent of Mi−1 that is either an I-bundle over a surface or a compression body,
which joins different boundary components, and which has minimal intersection
number with Pi−1 (such a surface is only used when the component of Mi−1,
with its boundary pattern, has no canonical annuli and empty characteristic
submanifold);

(4) a meridian disc (or perhaps two parallel copies of such a disc) for a handle-
body component of Mi−1, and which has minimal intersection number with
Pi−1 (again such a surface is only used when the component of Mi−1, with its
boundary pattern, has no canonical annuli and empty characteristic submani-
fold).
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We refer the reader to [15] for the precise order in which these surfaces are used.
There, it is also shown that Si may be realised as a normal surface in Ti−1(Mi−1) with
bounded complexity, and a bound on the length of the hierarchy is also given.

We now explain how one passes from the triangulation Ti−1(M) to the triangulation
Ti(M). The surface Si is a normal surface in Ti−1(Mi−1). The triangulation Ti(M)
is chosen so that Si is simplicial in it. More precisely, Si intersects each tetrahedron
of Ti−1(M) in a collection of triangles and squares. A vertex is inserted into each of
these triangles and squares, and then the triangle or square is coned off. The surface
Si divides each face of Ti−1(M) into discs. A vertex is inserted into each of these discs,
and this too is coned off. Now, each tetrahedron of Ti−1(M) is divided into balls by
Si. A vertex is placed in the interior of each of these, and then the ball is coned off.
The resulting triangulation of M is Ti(M). Its restriction to Mi is Ti(Mi).

We now give Mijatović’s sequence of Pachner moves which takes Ti−1(M) to Ti(M).
This takes place in 6 steps:

(1) Perform a (1, 3) boundary Pachner move on each triangle in ∂M , by attaching
a tetrahedron to it. Then, in a similar fashion, make a (2, 2) boundary Pachner
move for each 1-simplex of Ti−1(M) in ∂M .

(2) Add a vertex into each tetrahedron of Ti−1(M) (but not the newly attached
tetrahedra from Step 1) by performing a (1, 4) Pachner move. Then add a
vertex to each triangle of Ti−1(M) by performing a (1, 4) move on an adjacent
tetrahedron and then a (2, 3) move.

(3) Subdivide the 1-skeleton of Ti−1(M) so that it becomes a subcomplex of Ti(M),
and keep the triangulation of the 3-simplices of Ti−1(M) coned. The precise
details of how to do this are in Step 2 in Section 5 of [14].

(4) Subdivide the 2-skeleton of Ti−1(M) to get a subcomplex of Ti(M), and keep
the triangulation of the 3-simplices of Ti−1(M) coned. The process here is
described in Lemma 4.2 of [14].

(5) Chop up the tetrahedra of Ti−1(M) along the normal triangles and squares of
Si and triangulate the complementary regions by coning them from points in
their interiors. One uses Lemma 5.1 of [14] to do this.

(6) Finally, remove the tetrahedra that are not contained in any of the 3-simplices
of Ti−1(M) by performing boundary Pachner moves.

We will not need all the details of this process. But the following observation will
be important for us. The boundary Pachner moves that are used depend only on the
intersection between ∂Si and ∂M . In fact, the way they arise is precisely as follows:

(1) A (1, 3) move is performed on each triangle of Ti−1(M) ∩ ∂M , which attaches
a tetrahedron.

(2) A (2, 2) move is performed on each edge of Ti−1(M)∩∂M , which again attaches
a tetrahedron.

(3) The newly introduced tetrahedra are then modified using interior Pachner
moves. However, these moves are determined entirely by ∂Si ∩ ∂M .

(4) Boundary Pachner moves are then performed which remove the tetrahedra
not included in Ti(M). Once again, these moves are determined entirely by
∂Si ∩ ∂M .
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We term the boundary Pachner moves arising from the above procedure the specified

sequence of boundary Pachner moves.
Note that no (3, 1) boundary Pachner moves that attach a tetrahedron were per-

formed.

9. Overview of the proof of Mijatović’s theorem
(Seifert fibred case)

In this section, we give an outline of the proof of Theorem 8.1 in the case where M
is Seifert fibred, following [16].

In [16], Mijatović also dealt with many closed Seifert fibre spaces, but we will not do
so here. We will assume (as stated in Theorem 8.1) that M has non-empty boundary.

We will not consider here the case where the base orbifold of the Seifert fibration
has zero Euler characteristic. In other words, we will exclude the case where M is
homeomorphic to an I-bundle over a torus or Klein bottle. These spaces required
a separate argument in [16] because they admit properly embedded essential annuli
which cannot be made vertical in the Seifert fibration after an ambient isotopy.

As in the simple case, the goal is to build the triangulation Tcan of M from a
collection of surfaces. However, these surfaces do not exactly form a hierarchy. They
are as follows:

(1) The first surface S1 is a union of properly embedded disjoint tori, which bound
a collection of solid tori that together form a regular neighbourhood of the
singular fibres. The exterior of these solid tori, which we denote by M−, is a
union of regular fibres and hence a circle bundle over a surface.

(2) The second surface S2 is a union of meridian discs, one for each of the solid
tori from (1). At this stage, Mijatović gives the tori S1 a certain triangulation,
arising from these meridian discs and from the regular fibres in the Seifert
fibration. We will not dwell on the details of this triangulation, because we
will follow a slightly different approach in our proof of Theorem 1.3.

(3) The third surface is a horizontal section S3 of the circle bundle M−. Now, M−

may contain many horizontal sections, even up to ambient isotopy. The section
S3 is chosen so that its boundary is normal in the given triangulation of ∂M−

and has least weight among all such normal simple closed curves.
(4) The fourth surface S4 is a maximal collection of disjoint non-parallel vertical

annuli properly embedded in M−, each of which intersects S3 in a single arc.

Thus, this fails to be a hierarchy for two reasons. Firstly, S1 is compressible in M .
Secondly, S4 is not properly embedded in the exterior of S3. Nevertheless, S1 ∪ S2 ∪
S3 ∪ S4 is a 2-complex, and the complementary regions of this complex are balls. To
construct the triangulation Tcan, first a vertex is introduced into the interior of each
face of the 2-complex, and this face is coned off. Then a vertex is placed in the interior
of each complementary ball, and this too is coned off.

Just as in this previous section, it is important that this 2-complex is constructible,
given an arbitrary triangulation T of M that restricts to the given triangulation T∂M

on ∂M . In the previous section, we realised the first surface as a normal surface in
T with bounded weight (as a function of the number of tetrahedra in T ), and then
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we performed a sequence of Pachner moves to T , taking it to a triangulation in which
the surface is simplicial. In the case here, it is not immediately clear that the tori
S1 can be placed into normal form in T , because they are compressible. Instead, one
must construct them in stages. The first step is to find a maximal collection of disjoint
non-parallel essential vertical tori in the Seifert fibration that are in normal form with
respect to T . Then Pachner moves are performed on T , after which these tori are
simplicial. These tori decompose M into pieces, each of which is Seifert fibred. There
are a limited range of possibilities for these pieces. The base orbifold may be a pair of
pants containing no singularities; an annulus containing one singular point; a Mobius
band with no singularities; or a disc with two singularities. In each case, the piece
contains one or two properly embedded essential vertical annuli, which decompose the
piece into one or two solid tori. A subset of these solid tori are regular neighbourhoods
of the singular fibres, and the boundaries of these solid tori are the required surface
S1.

The rest of the argument follows the lines of the simple case fairly closely. One
new feature that arises in the Seifert fibred case is that it is not possible to isotope
the section S3 to a normal surface with bounded weight. Instead, one must also use
homeomorphisms of M that are supported in the interior of M . This is because of the
presence of incompressible normal tori. It is for this reason that the conclusions of The-
orems 8.1 and 1.3 make reference to a homeomorphism supported in the characteristic
submanifold of M .

Another new feature in the Seifert fibred case is that S4 is not properly embedded in
the exterior of S1∪S2∪S3. Instead, it is properly embedded in the exterior of S1∪S2.
Thus, one must ensure that the horizontal section S3 intersects each vertical annulus
of S4 in a single arc. This is clearly possible topologically, but one must be careful to
ensure that it holds, while at the same time making S3 and S4 normal surfaces with
bounded complexity.

The procedure in the Seifert fibred case for taking the given triangulation T to the
canonical triangulation Tcan is very similar to that used in Section 8. In particular,
the sequence of boundary Pachner moves that is used depends only on the intersection
between the curves ∂S1, ∂S2, ∂S3, ∂S4 and ∂M .

10. The construction of the canonical triangulation

In this section, we consider a general compact orientable Haken 3-manifold M ,
satisfying the hypotheses of Theorem 1.3. In particular, it may have JSJ tori. We
start with a given triangulation T∂M for ∂M . The goal is to define the canonical
triangulation T ′

can for M which agrees with T∂M on ∂M . However, our first step is to
build a slightly simpler triangulation Tcan, which does not agree with T∂M on ∂M . We
use the terminology Tcan because in the case where M is simple or Seifert fibred, it
agrees with Mijatović’s triangulations described in the previous two sections.

Again, the aim is to build a 2-complex in M , for which each complementary region
is a 3-ball. From this, Tcan is built, by coning off each face of the complex, and then
coning off each complementary ball. The 2-complex is, as in the previous sections,
constructed from a collection of surfaces, in a number of steps.
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Step 1. The first surface S1 is built from the JSJ tori, which divide the manifold
into simple and Seifert fibred pieces. When a JSJ torus has simple pieces on both
sides (possibly the same simple piece), two parallel copies of the torus are used in S1.
Similarly, when a JSJ torus has Seifert fibred pieces on both sides, two parallel copies
of it are used. However, when a torus has a simple piece on one side and a Seifert
fibred piece on the other, only one copy of the torus is used.

Step 2. The next surfaces are hierarchies for the simple pieces, as described in Section
8.

Step 3. When a JSJ torus has simple pieces on both sides, we have taken two copies
of the torus. Between these lies a region homeomorphic to T 2 × I. The boundary
of this region has inherited a boundary pattern from the hierarchies in the adjacent
pieces. The next surface is a vertical annulus in each T 2 × I region, which intersects
the boundary pattern transversely and in as few points as possible. This cuts T 2 × I
into a solid torus. The next surface is a meridian disc for each such solid torus, which
again intersects the boundary pattern transversely and minimally.

Step 4. We now turn to the JSJ tori that have Seifert fibred pieces on both sides.
We have taken two copies of each such torus, which bound a region homeomorphic
to T 2 × I. We insert two vertical annuli into T 2 × I, with respective slopes those of
the regular fibres in the adjacent Seifert fibred pieces. We arrange for these annuli to
intersect transversely and minimally.

Step 5. We now tackle the Seifert fibred pieces. For each such piece, its boundary
components which do not lie in the boundary of M have inherited some boundary
pattern, which decompose the tori into discs. We now use a similar sequence of surfaces
to that described in Section 9. At one stage, a slight variant of the procedure is
required. Recall that in Step 3 in Section 9, a section S3 for the circle bundle M− is
chosen, and this is required to have minimal intersection number with the edges of the
given triangulation of ∂M−. This triangulation of ∂M− was constructed in Step 2 of
Section 9. For those components of ∂M− that are actually components of ∂M , they
are just assigned the given triangulation, which is the restriction of T∂M . For those
components of ∂M− which bound a solid torus neighbourhood of a singular fibre, a
certain triangulation was constructed using the regular fibres and a meridian disc of
the solid torus. However, in our case, we pursue a slightly different approach. We have
already assigned a boundary pattern to each component of ∂M− − ∂M , which fills the
surface. We pick the section S3 to have minimal intersection number with the union of
this boundary pattern and the 1-skeleton of ∂M . In fact, the whole purpose of Step 4
above was to ensure that every component of ∂M−−∂M picks up a boundary pattern
that chops up the torus into discs.

The union of the above surfaces with ∂M is a 2-complex. Once again, we form Tcan

from this 2-complex, by coning its faces and then the complementary 3-balls.
Now, the restriction of Tcan to ∂M clearly does not equal T∂M . We now fix this, by

introducing T ′

can, which is the canonical triangulation required by Theorem 1.3.
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Let S1, . . . , Sn be the above sequence of surfaces, described in Steps 1 - 5. For 0 ≤ i ≤
n, we will keep track of a triangulation Ti(∂M) for ∂M , in which ∂M ∩ (S1 ∪ · · · ∪ Si)
is simplicial. The initial triangulation T0(∂M) will be the given triangulation T∂M .
Each surface Si intersects ∂M in a collection of disjoint simple closed curves and arcs.
We realise these as normal curves and arcs in the triangulation Ti−1(∂M), with the
property that they intersect the 1-simplices in as few points as possible. The new
triangulation Ti(∂M) is chosen as follows. Each triangular face of Ti−1(∂M) is divided
up by arcs which are subsets of ∂Si. We declare that these arcs are 1-simplices in
Ti(∂M). The regions in the complement of these arcs are discs. A vertex is inserted
into each such disc, and then the disc is coned off. The result is Ti(∂M).

At this stage we make a specific choice of 2-dimensional Pachner moves taking
Ti−1(∂M) to Ti(∂M), as follows. A (1, 3) move is performed on each triangle of
Ti−1(∂M). Then, at each of the original edges e of Ti−1(∂M), a (2,2) move is per-
formed. Then, at each such edge e, an alternating sequence of (1,3) and (2,2) moves is
performed. The number of (1,3) moves is equal to the number of points of intersection
between ∂Si and e. The result of this is that each of the original triangles of Ti−1(∂M)
has been transformed into a cone. (See Figure 12.) The triangulation of this cone is
now modified without changing its boundary any further, using 2-dimensional Pachner
moves, so that it becomes Ti(∂M). We term this the specified sequence of Pachner
moves taking Ti−1(∂M) to Ti(∂M). In Section 8, a sequence of boundary Pachner
moves on M , also called the specified sequence, was defined. Note that the specified
sequence of boundary Pachner moves given in Section 8 induces the specified sequence
of 2-dimensional Pachner moves defined here.

Associated to any sequence of 2-dimensional Pachner moves on a triangulated surface
F , there is a 3-dimensional space constructed as follows. One starts with F . Each
time a 2-dimensional move is performed, a 3-simplex is attached onto one side of F .
Call this the ‘top’ side. This top side is a copy of F with its new triangulation. After
a sequence of these moves, the resulting space is approximately a copy of F × I. The
bottom has the original triangulation of F , and the top has the new triangulation. We
say ‘approximately’ F × I, because this space need not in fact be a 3-manifold. This
is because it is possible that some simplices of F are left untouched by the sequence
of 2-dimensional Pachner moves, in which case these simplices lie in both the top and
bottom copy of F . We call this space a generalised product. When F is the boundary
of a 3-manifold, we also call this space a generalised collar.

We have defined above a specified sequence of 2-dimensional Pachner moves which
takes T∂M to Tn(∂M). Associated with this sequence, there is a generalised product.
Now Tn(∂M) is the boundary triangulation of Tcan. Thus, we can attach the generalised
product to Tcan, to create a triangulation of M with boundary triangulation T∂M . This
is T ′

can, the canonical triangulation for M .

11. From boundary Pachner moves to interior ones

Let M be a compact orientable 3-manifold with a triangulation T . Suppose that
we are given a sequence of Pachner moves, starting with T = T0 and ending with
a triangulation Tn. We want to use this sequence to specify a sequence of interior
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(1-3) moves (1-3) and

(2-2) moves

retriangulate

triangle

triangle
of T   (M)i-1

arcs of ∂Si

Figure 12

Pachner moves to M , giving triangulations T = T ′

0, . . . , T
′

n of M . At each stage, the
triangulation T ′

i of M will contain a triangulated generalised collar on ∂M . If we
form the closure of the complement of this generalised collar, the result will be the
triangulation Ti.

We say that such a sequence of interior Pachner moves and generalised collars are
associated with the given sequence of Pachner moves.

The case we have in mind is where Tn = Tcan. A sequence of Pachner moves taking T
to Tn = Tcan arises from the proof of Theorem 8.1. The associated sequence of interior
Pachner moves will take T to T ′

n = T ′

can, and will be the moves required by Theorem
1.3.

We start with the motivating case, where Ti is obtained from Ti−1 by a boundary
Pachner move which attaches a simplex. Suppose, for simplicity, that this has the effect
of performing a (1, 3) move on the boundary. Now, embedded within T ′

i−1 is a copy
of Ti−1. The boundary Pachner move attaches on a single tetrahedron to a triangle
in Ti−1. A copy of this triangle is in T ′

i−1, lying between Ti−1 and the generalised
collar. What we do is insert two tetrahedra into T ′

i−1 at the location of this triangle.
These two tetrahedra are glued to each other along three faces. The tetrahedron that
is adjacent to the generalised collar is included in the generalised collar of T ′

i . This
procedure which inserts the two tetrahedra can clearly be achieved by interior Pachner
moves. One simply performs a (1, 4) move on the tetrahedron of T ′

i−1 which is adjacent
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(1-3) boundary
Pachner move

∂M

M with
triangulation i-1

i-1T

i-1T ’

generalised
collar (1-4) move

(3-2) move

include this tetrahedron in

the generalised collar

T

include these
tetrahedra in Ti

replacemen

Figure 13

to the triangle and which is not part of the generalised collar. Then one performs a
(3, 2) move. This is illustrated in Figure 13.

We now deal with some easy cases.
When an interior Pachner move is performed on Ti−1, we do the same move to T ′

i−1

and do not change the generalised collar.
When a boundary Pachner move is performed on Ti−1, and this removes a tetrahe-

dron, then we do not perform a Pachner move to T ′

i−1. Instead, we simply enlarge its
generalised collar to include the relevant tetrahedron.

There are still two cases to consider. The triangulation Ti may be obtained from
Ti−1 by a boundary Pachner move that adds a tetrahedron, and which performs a (2, 2)
move or a (3, 1) move on the boundary. We will not in fact consider the (3, 1) case,
because it is more complicated, and we will not need it in this paper. So, suppose
that a (2, 2) move is performed on the boundary of Ti−1. Two triangles are involved
in this move, and there are two corresponding triangles in T ′

i−1. These triangles are
glued along an edge, and their union is a disc (possibly with identifications along its
boundary). What we do is ‘blow air’ into this disc, creating two copies of the disc.
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Figure 14. A sequence of (2, 3) moves followed by a (3, 2) move

In the space between these two discs, we insert two tetrahedra. These two tetrahedra
are glued to each other along two triangles. The tetrahedron that is adjacent to the
generalised collar of T ′

i−1 is included in the generalised collar of T ′

i . The other new
tetrahedron is included in the copy of Ti in T ′

i .
We need to explain how the insertion of these two tetrahedra, which takes T ′

i−1

to T ′

i , can be achieved using interior Pachner moves. First apply a (1, 4) to every
tetrahedron of T ′

i−1. After this, the tetrahedra incident to the interior of any face are
distinct. Consider the two triangles involved in the boundary Pachner move. These
two triangles are adjacent to distinct tetrahedra because of the (1, 4) moves we have
just applied. Consider these two tetrahedra. Apply some (2, 3) moves until they are
adjacent. Now apply two (2, 3) moves in the resulting adjacent tetrahedra to insert
the two tetrahedra in the place of the two triangles that get split open. This process
is illustrated in Figure 14. Now apply (3, 2) moves and (4, 1) moves to undo the initial
moves. Note that if Ti contains t tetrahedra, then the number of interior Pachner
moves in this process is at most 4t.

We close with an important observation. The generalised collar constructed above,
which is a subset of T ′

n, only depends on the boundary Pachner moves in the original
sequence.

Suppose that T is a triangulation of M , and that its restriction to ∂M is the given
triangulation T∂M . Suppose that we have found a sequence of Pachner moves which
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takes T to Tcan. Suppose also that the boundary Pachner moves in this sequence
precisely induce the specified sequence of 2-dimensional Pachner moves on ∂M , defined
in Section 10. Then we deduce that the associated sequence of interior moves takes T
to T ′

can. This important observation will be crucial in our proof of Theorem 1.3, which
we now come to.

12. Proof of Theorem 1.3

We are given a triangulation T for ∂M , and we need to use interior Pachner moves,
plus possibly a homeomorphism supported in the interior of M , to take T to T ′

can. This
will be achieved by performing a sequence of Pachner moves that takes T to Tcan, and
so that the boundary Pachner moves in this sequence precisely induce the specified
sequence in Section 10. Then, as we observed at the end of the previous section, the
associated sequence of interior Pachner moves will take T to T ′

can, as required.
In Mijatović’s proof and Section 8, a sequence of Pachner moves was given, which

takes T to Tcan. But we need to ensure that the boundary Pachner moves in this
section are the specified sequence from Section 10.

Let S1, . . . , Sn be the sequence of surfaces used in the definition of Tcan. Suppose
that we have subdivided the triangulation T to Ti−1(M) using Pachner moves. Then
S1, . . . , Si−1 are simplicial in Ti−1(M), and so Ti−1(M) restricts to a triangulation
Ti−1(Mi−1) of Mi−1. We want to realise Si as a normal surface in Ti−1(Mi−1) with
bounded complexity. The precise result that we use depends on what type of surface
Si is. For example, it may be the JSJ tori, or it may be a surface where −χ(Si) is
minimised, or it may be one of several other possibilities. However, in each case, there
is an ambient isotopy taking Si to a normal surface with at most 2350t

2
triangles and

squares, where t is the number of tetrahedra of Ti−1(Mi−1). (See Lemma 4.5 in [15].)
However, there is a complication. In Section 10, we have already specified the

intersection between Si and ∂M . Recall that we have already chosen the sequence of
triangulations T∂M = T0(∂M), T1(∂M), . . . , Tn(∂M), where the restriction of Ti−1(M)
to ∂M is Ti−1(∂M). The simple closed curves and arcs Si∩∂M need to be the specified
normal arcs in Ti−1(∂M). However, when the usual normalisation procedure is applied
to Si in Ti−1(Mi−1), ∂Si may need to be moved. We therefore require the following
result, which we will prove in Section 13.

Theorem 12.1. Let M be a compact orientable irreducible 3-manifold with an essential

boundary pattern P . Let T be a triangulation of M , in which P is simplicial, and which

consists of t tetrahedra. Let F be a normal surface properly embedded in M , essential

with respect to P , consisting of n normal discs. Let X be the closure of the union of

some non-adjacent components of ∂M − P . Suppose that ∂F ∩X is ambient isotopic

to a collection of normal curves and arcs c in X, and that c has minimal weight in

its ambient isotopy class in X. Then F is ambient isotopic in M to a normal surface

F ′ whose boundary agrees with c in X and which consists of at most 8000n4t2 normal

discs.

Recall that ∂Si has been chosen so that its intersection with ∂M minimizes weight in
its ambient isotopy class. Let c be ∂Si∩∂M . Now, according to Mijatović’s arguments,
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Si can be isotoped in Mi to a normal surface with a bounded number of normal discs,
n say. This isotopy may move ∂Si. By the above result, we may find a normal surface
isotopic to Si, with boundary that agrees with Si on ∂M , and with at most 8000n4t2

normal discs, where t is the number of tetrahedra in Ti−1(Mi−1).
We now apply Pachner moves, as described in Section 8, taking Ti−1(M) to Ti(M).

As explained in Section 8, the boundary Pachner moves that are used only depend on
the intersection between ∂M and Si. And we have ensured that these are fixed as in
Section 10. Thus, the boundary Pachner moves precisely induce the specified sequence
of 2-dimensional Pachner moves on ∂M defined in Section 10. Hence, the associated
sequence of interior moves creates T ′

can, as required.
We close this section by bounding the number of Pachner moves used. To provide

such a bound, it suffices to bound the number of moves required to pass from T ′

i−1(M)
to T ′

i (M), and also to bound the number n, where S1, . . . , Sn is the sequence of surfaces
used to define Tcan. We start with the former estimate.

Suppose that Ti−1(M) has t tetrahedra. In [15], Mijatović argues that at most
exp(2)(t) Pachner moves are required to pass to the next triangulation. However, as
we have seen, his triangulations and ours are a little different. Nevertheless, we will
now show that we also can pass from T ′

i−1(M) to T ′

i (M) using at most exp(2)(t) interior
Pachner moves.

Let us focus on the case where Si is a surface from Step 2. In other words, suppose
that it is part of a hierarchy in one of the simple pieces. Proposition 4.2 of [17] or
Lemma 4.5 of [15] gives that Si can be realised as a normal surface in Ti−1(Mi−1)

with at most 2350t
2
triangles and squares. However, because the intersection Si ∩ ∂M

is specified in advance, then in fact we only get a bound of at most 8000 21400t
2
t2

triangles and squares, using Theorem 12.1. Then using Lemma 4.1 in [16], there is a

sequence of at most 160000 21400t
2
t3 Pachner moves taking Ti−1(M) to Ti(M), in which

Si is simplicial. However, boundary Pachner moves may be used in this process, and
so we need to bound the number of interior Pachner moves required in the associated
sequence that takes T ′

i−1(M) to T ′

i (M). The boundary Pachner moves in this sequence
are precisely those from the specified sequence described in Section 8. Recall that
first a boundary (1, 3) move is performed on each triangle of Ti−1(M) ∩ ∂M . The
number of such moves is at most 4t, and hence the number of interior moves in the
associated sequence is at most 8t. Then a (2, 2) move is performed along each edge
of Ti−1(M) ∩ ∂M . There are at most 6t such edges. Using the bound at the end of
Section 11, the number of interior Pachner moves in the associated sequence is at most
6t(4t). After this, the only boundary Pachner moves that are performed are those
that remove tetrahedra, and these do not create any interior moves in the associated
sequence. So, the number of interior Pachner moves taking T ′

i−1(M) to T ′

i (M) is at
most

8t+ 6t(4t) + 160000 21400t
2

t3 ≤ exp(2)(t),

as claimed. Note that the inequality holds because the values of t for which we are
making this estimate are sufficiently large. The number of tetrahedra in T ′

i (M) is also
at most exp(2)(t).
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An easy induction gives that, for i ≥ 1, the number of tetrahedra in T ′

i (M) is at
most exp(2i)(t), and that the number of Pachner moves required to take T ′

i−1(M) to

T ′

i (M) is also at most exp(2i)(t).
Thus, all we need to do now is bound the number n of surfaces in the sequence

S1, . . . , Sn. In Step 1, only one surface (which may be disconnected) is used. The
number of surfaces in Step 2 is at most 2160t, by a bound of Mijatović in Section 5 of
[15]. In Step 3, two surfaces are used. In Step 4, two surfaces are also used. The final
step is Step 5, which deals with the Seifert fibred pieces. Only four surfaces are used,
but in fact the first surface should be counted as two, because it is built in two stages.
So, we can certainly take n ≤ 2161t.

Thus, the number of interior Pachner moves taking T to T ′

can is at most exp(at)(t),
where a = 2162. This proves Theorem 1.3.

13. Adjusting boundaries of normal surfaces

In this section we prove Theorem 12.1. Our strategy will be to isotope F so that its
boundary is in the correct place and has controlled edge degree. Then we shall apply
to the resulting surface a standard normalization procedure that doesn’t increase edge
degree and which, by the hypotheses on c, does not affect the intersection with X . The
bound on the edge degree of this surface will yield the required bound on the number
of normal discs in F ′.

Observe that ∂F ∩X certainly consists of at most 4n normal arcs. Hence c consists
of at most 4n normal arcs. Without loss of generality pick c so that every normal
arc of c intersects each normal arc of ∂F in at most one point. Then the number of
intersection points between ∂F and c is at most (4n)2 = 16n2. Label the components
of ∂F ∩X as {α1, . . . , αm} and the components of c as {β1, . . . , βm} so that there is an
ambient isotopy ofX that takes αi to βi for each i. Consider α1 and β1. These intersect
in at most 16n2 points. We will now isotope F about in a small collar neighborhood
of X to obtain a new surface where the image of α1 is equal to β1. This is achieved
as follows. Note that for convenience we will refer to the surfaces obtained from F
by our isotopies as F , with the same notation for the components of ∂F ∩ X . By
Lemma 3.1 of [6] applied to the double of X along its boundary, either α1 and β1 are
disjoint, or there is a bigon of α1 ∪ β1 in the interior of X that bounds a disc B whose
boundary consists of a subarc of α1 and a subarc of β1 and whose interior is disjoint
from α1 ∪ β1, or there is a triangle, B′, in X whose boundary consists of a subarc of
∂X , a subarc of α1 and a subarc of β1 and whose interior is disjoint from α1 ∪ β1. In
the latter two cases, we would like to isotope α1 across B or B′, but we are impeded
by the fact that there may be arcs of ∂F other than α1 running though B. Pick one
of these arcs that is outermost on B or B′ and label the disc it cuts off G. This is a
bigon or triangle whose interior is disjoint from ∂F ∪ c and whose boundary consists
of a subarc, σ, of αi, for some i, a subarc, τ , of β1 and possibly a subarc, γ, of ∂X .
Now isotope F by sliding αi across G in a small collar neighborhood of ∂M to form
a new surface. More precisely, choose a product structure X × I, where I = [0, 1],
on a small regular neighborhood of X in M so that (∂F ∩ X) × {0} = ∂F ∩ X , the
components of F ∩ (X × I) are vertical in X × I and the arcs of 1-skeleton emanating
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away from X into the interior of M or parts of ∂M outside X are at most a small
deviation away from being vertical. Also suppose that (∂X × I) ∩ ∂M = ∂X × I.
The new surface obtained by sliding F across G is then obtained by removing σ × I,
inserting (G × {1}) ∪ (τ × I) and then pushing the resulting surface a little further
to make it disjoint from G. Note that performing this operation increases the edge
degree of F by at most 12t+ 4n, the first term being an upper bound on the number
of possible new intersections of F with the arcs of 1-skeleton not entirely in X , and
the second term being an upper bound on the number of new intersections of F with
arcs entirely in X . Repeat this operation to remove all arcs of intersection of B or B′

with ∂F and then slide F across B or B′ itself. Repeat this proceed until α1 and β1

are disjoint. The edge degree has been increased by at most 16n2(12t + 4n). Now, F
has been arranged so that α1 is disjoint from β1. Hence α1 and β1 cobound an annulus
or, together with two arcs of ∂X , a disc. Call this annulus or disc A. We wish to
isotope α1 across A to make α1 equal to β1. This time we may be impeded by arcs of
intersection of ∂F with A, which may be removed as before, or by entire curves or arcs
of intersection of ∂F with A, which may be removed by sliding across annuli or discs
in a fashion similar to sliding across bigons and triangles. The effect of the removal of
bigons and triangles on edge degree is already incorporated in our previous estimate.
Sliding across an annulus or disc increases edge degree by at most 12t + 4n and we
need to do this at most m− 1 ≤ 4n− 1 times before ∂F is disjoint from the interior of
A. The final isotopy we perform at this stage is across A itself, except we do not make
the final push away from A. Thus the edge degree since our last estimate has increased
by at most 4n(12t+ 4n). To recap, we have isotoped F about so that α1 = β1 and so
that the edge degree of F has increased by at most (16n2 + 4n)(12t+ 4n).

We may now repeat the above procedure with the other components of ∂F ∩ X ,
treating them one at a time and keeping components fixed once they have been isotoped
to equal the corresponding component of c. Thus we form a surface whose boundary
components intersect X in a way that agrees with c and whose edge degree increases
overall by at most m(16n2 + 4n)(12t + 4n) ≤ 4n(16n2 + 4n)(12t + 4n). The initial
surface F , before any isotopies were performed, had edge degree at most 4n. Hence
the total edge degree of our surface is at most 4n+4n(16n2+4n)(12t+4n) ≤ 3844n4t.
Now apply the normalization procedure as in Theorem 3.3.21 of [13]. Our hypotheses
mean that this procedure does not affect the isotopy class of F , nor does it affect
the intersection of F with X . Further, edge degree does not increase. The resulting
surface is F ′. The valence of an edge in T is at most 6t and so the number of normal
discs in F ′ is certainly at most 6t

3
3844n4t < 8000n4t2. �
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