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1. Introduction

The spectrum of the Laplacian on a Riemannian manifold M has been the focus of

an enormous amount of study. Of particular importance is λ1(M), which is the infimum

of Spectrum(M) − {0}. This contains a good deal of geometric information about M ;

in particular, it is closely related to a geometric quantity, the Cheeger constant h(M)

(see [8]). A collection {Mi} of n-dimensional Riemannian manifolds (for some fixed

n) is known as an expanding family if inf λ1(Mi) > 0. When the Ricci curvature of

the manifolds Mi is bounded from below, this definition is equivalent to the condition

that inf h(Mi) > 0, by work of Cheeger [8] and Buser [7]. The construction of explicit

expanding families of manifolds has been a major topic of research, with applications

to such diverse fields as group theory [19], lattices in Lie groups [20], number theory [5]

and coding theory [21]. More recently, it has become important to understand the be-

haviour of λ1(M) when M is a hyperbolic 3-manifold, because this has connections with

the virtually Haken conjecture, which is a major unsolved problem in low-dimensional

topology (see [15]). The Lubotzky-Sarnak conjecture [20] proposes that any closed hy-

perbolic manifold has a tower of finite covers which does not form an expanding family.

This conjecture has major ramifications: it would imply, for example, that any arith-

metic lattice in PSL(2,C) has a finite index subgroup with a non-abelian free quotient,

by work of the author, Long and Reid [16].

It is the purpose of this paper to examine h(M) and λ1(M) for hyperbolic

3-manifolds M . Our main theorem imposes upper bounds on h(M) and λ1(M) in terms

of data from any surgery diagram of M . Applying this to the case of trivial surgery,

where no solid tori are attached, this gives upper bounds on h(M) and λ1(M) when M

is the complement of a hyperbolic link in the 3-sphere. There will be three main applica-

tions. Firstly, we will show that a sequence of hyperbolic alternating link complements

with volumes tending to infinity cannot form an expanding family. Secondly, we apply

this result to establish a finiteness theorem for alternating link complements that are

congruence arithmetic 3-manifolds. Thirdly, we utilise the existence of expanding fam-

ilies of hyperbolic 3-manifolds to prove that some 3-manifolds must have ‘complicated’

surgery diagrams.

* Supported by an EPSRC Advanced Research Fellowship
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In order to state our main theorem, we need some terminology. Let D be a link

diagram, and let G(D) be the underlying 4-valent planar graph. A bigon region is the

closure of a complementary region of G(D) with two edges in its boundary. A twist

region is either a maximal collection of bigon regions whose union is connected or a

single crossing adjacent to no bigon regions. The crossings of a diagram are canonically

partitioned into twist regions. The twist number t(D) is the number of twist regions.

Thus, t(D) is always at most the crossing number c(D) of the diagram.

twist regions
t(D) = 3




Figure 1

Recall that a compact orientable 3-manifold M is obtained by Dehn surgery on

a link L in the 3-sphere if there is a collection of properly embedded disjoint simple

closed curves in M , such that removing an open regular neighbourhood of these curves

results in the exterior of L. Equivalently, M can be constructed from the exterior of

L by attaching solid tori, where the boundary of each solid torus is homeomorphically

identified with a boundary component of the exterior of L. The essentially different

ways of attaching each solid torus are parametrised by an element of Q∪∞. A rational

surgery diagram for M is a diagram for L, plus an assignment of an element of Q∪{∞}
to some components of L. We permit some of the components of L to be unlabelled, in

which case no solid torus is attached to the relevant component of ∂N (L).

We say that a compact 3-manifold is hyperbolic if its interior admits a complete

finite volume hyperbolic structure. We say that a link L in S3 is hyperbolic if its exterior

is hyperbolic.

Our main theorem is as follows.

Theorem 1.1. Let D be a rational surgery diagram of a compact orientable hyperbolic

3-manifold M . Then the Cheeger constant h(M) satisfies

h(M) ≤ 4π
(24

√
2 + 16

√
3)

√

t(D)

Volume(M)
≤ 4π

(24
√

2 + 16
√

3)
√

c(D)

Volume(M)
.
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By applying this to the case where no component of the link is filled in, we obtain

the following corollary.

Corollary 1.2. Let D be a diagram of a hyperbolic link L in the 3-sphere. Then

h(S3 − L) ≤ 4π
(24

√
2 + 16

√
3)

√

t(D)

Volume(S3 − L)
≤ 4π

(24
√

2 + 16
√

3)
√

c(D)

Volume(S3 − L)
.

We now give some applications of this corollary. If one wants to use this result to

find upper bounds on h(S3 − L) from the diagram D, one needs to find lower bounds

on the volume of S3 − L. Fortunately, such bounds are known for two large classes of

links: alternating links and highly twisted links.

We start with alternating links. If a link has an alternating diagram, then it has

one where the underlying 4-valent graph has no edge loops. This is because any such

loop may be removed to produce an alternating diagram of the same link with fewer

crossings. A diagram is twist-reduced if, for every simple closed curve that meets the

link projection transversely in four points away from the crossings, with two points of

intersection adjacent to one crossing and the other two points of intersection adjacent to

another crossing, the simple closed curve bounds a (possibly empty) collection of bigons

arranged end to end between the crossings (see Figure 2). If an alternating diagram is

not twist-reduced, then we may produce an alternating diagram of the same link with

the same number of crossings but smaller twist number.

U UV V�or = > 0 crossings

Figure 2

The main theorem of [13] is as follows.

Theorem 1.3. Let L be a hyperbolic link with a twist-reduced alternating diagram D

having no edge loops. Then

v3(t(D) − 2) ≤ Volume(S3 − L) < 16v3(t(D) − 1),

where v3 ≃ 1.0149 is the volume of a regular hyperbolic ideal tetrahedron.

In fact, the constants in this theorem have been improved upon. The upper bound

on the volume was reduced to 10v3(t(D)− 1) by Agol and D. Thurston [13]. The lower

3



bound on volume was increased to v8(t(D)/2− 1) by Agol, Storm and W. Thurston [2],

where v8 ≃ 3.6639 is the volume of a regular hyperbolic ideal octahedron. It is these

improved bounds that we use.

This result has been extended to another class of links by Futer, Kalfagianni and

Purcell [11]. A diagram is known as highly twisted if each twist region contains at least

7 crossings, and the diagram is alternating within each twist region. We say that a link

is highly twisted if it has a twist-reduced highly twisted diagram having no edge loops.

Their result is as follows.

Theorem 1.4. Let L be a hyperbolic link with a twist-reduced highly twisted diagram

D having no edge loops. Then

0.70735 (t(D) − 1) < Volume(S3 − L) < 10v3(t(D) − 1).

By combining Corollary 1.2, Theorem 1.3 and Theorem 1.4, we obtain the following

consequence for the geometry of these link complements.

Corollary 1.5. Let L be a hyperbolic link with an alternating or highly twisted diagram

D that is twist-reduced, has no edge loops and where t(D) > 2. Then

h(S3 − L) ≤ c1/
√

t(D)

h(S3 − L) ≤ c2/
√

Volume(S3 − L)

where c1 ≤ 1643 and c2 ≤ 1129.

Buser’s inequality [7] gives that λ1(S
3 − L) ≤ 4h(S3 − L) + 10(h(S3 − L))2, and

hence we have the following spectral consequence.

Corollary 1.6. Let L be a hyperbolic link with an alternating or highly twisted diagram

D that is twist-reduced, has no edge loops and where t(D) > 2. Then

λ1(S
3 − L) ≤ c3/

√

t(D) + c4/t(D)

λ1(S
3 − L) ≤ c5/

√

Volume(S3 − L) + c6/Volume(S3 − L),

where c3 ≤ 6572, c4 ≤ 2.7× 107, c5 ≤ 4516 and c6 ≤ 1.3 × 107.

This implies one direction of the following.

Theorem 1.7. A collection of alternating or highly twisted hyperbolic link complements

forms an expanding family if and only if their volumes are bounded.

For the other direction, suppose that an infinite collection of alternating or highly

twisted hyperbolic link complements have bounded volume, but do not form an expand-

ing family. Then, we may pass to a subsequence where the smallest positive eigenvalue of
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the Laplacian tends to zero. We may pass to a further subsequence Mi which converges

in the Gromov-Hausdorff topology to a fixed finite-volume hyperbolic 3-manifold M∞

(see Chapter E in [3] for example). By [9], the eigenvalues λ1(Mi) tend to λ1(M∞), and

hence are bounded away from zero, which is a contradiction.

This result can be interpreted in several different ways. On the one hand, it may

mean that expanding families of hyperbolic 3-manifolds are ‘rare’. If so, this would

provide support for the Lubotzky-Sarnak conjecture. On the other hand, it may mean

that alternating and highly twisted link complements are not representative of ‘generic’

hyperbolic 3-manifolds.

Given the above non-expansion results for two large classes of knot and link comple-

ments, it is natural to speculate about all hyperbolic knot and link complements. This

leads to the following interesting question:

Question. Does there exist a collection of hyperbolic link complements with volumes

that tend to infinity and which forms an expanding family?

A consequence of Theorem 1.7 is the following finiteness result. We refer the reader

to [1] for the definition of a congruence arithmetic 3-manifold. According to Theorem

5.9 of [1] (see also Corollary 1.3(a) of [6]), any such 3-manifold M has λ1(M) ≥ 3/4.

Also, by [4], there are only finitely many arithmetic 3-manifolds with volume less than

any given real number. Thus, we obtain the following corollary.

Corollary 1.8. There are only finitely many alternating or highly twisted link comple-

ments that are congruence arithmetic hyperbolic 3-manifolds.

This leads to the following interesting question.

Question. Are there only finitely many alternating or highly twisted link complements

that are arithmetic?

The methods of this paper cannot be immediately applied here, since there exist

arithmetic 3-manifolds with arbitrarily small Cheeger constant. However, any arithmetic

3-manifold finitely covers a congruence arithmetic 3-manifold. So, this may perhaps give

a route to tackling this question.

We now return to surgery diagrams for 3-manifolds. It is natural to ask how complex

must a surgery diagram of a 3-manifold be. In this direction, Constantino and D.

Thurston have the following theorem [10].

Theorem 1.9. There is a positive constant c such that any closed hyperbolic 3-manifold

M has a rational surgery diagram with at most c(Volume(M))2 crossings.
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It is not hard to show that the number of crossings required in such a surgery

diagram D is at least Volume(M)/(10v3). This is because the exterior of the link

specified by D has Gromov norm at most 10c(D) by the appendix in [13]. Gromov

norm does not increase under Dehn filling [23], and so the Gromov norm of M is at most

10c(D). But the Gromov norm of a hyperbolic 3-manifold M is equal to Volume(M)/v3,

by [23]. This establishes the required bound.

Given this linear lower bound on crossing number, it is natural to ask whether the

quadratic upper bound of Constantino and Thurston is sharp. Here, we show that it is,

by applying Theorem 1.1 to an expanding family of hyperbolic 3-manifolds.

Theorem 1.10. Let {Mi} be an expanding family of finite-volume orientable hyperbolic

3-manifolds. Then, there is a positive constant c such that any rational surgery diagram

for Mi requires at least c(Volume(Mi))
2 crossings.

Such expanding families of 3-manifolds are known to exist. Indeed, the following

result of Long, Lubotzky and Reid [18] shows that they arise as covering spaces of any

given finite-volume hyperbolic 3-manifold.

Theorem 1.11. Any finite-volume hyperbolic 3-manifold has an infinite sequence of

distinct finite-sheeted regular covers that forms an expanding family.

The proof of our main result, Theorem 1.1, utilises the relationship between the

following various notions of ‘width’:

1. The max-width of a link in the 3-sphere. This is closely related to a concept

introduced by Gabai in his proof of the Property R conjecture [12]. We give its

definition below.

2. The width of an abstract graph. (By ‘abstract’ here, we just mean that the graph is

not necessarily embedded anywhere, and if it is, then this embedding is immaterial.)

This notion was first defined by the author in [14], where it was used to prove a

group-theoretic result. We recall it in Section 2.

3. The Morse width of a planar graph. This is a new concept, which measures the

interaction between a graph embedded in the 2-sphere and Morse functions for that

sphere. We will define it in Section 3.

4. The Heegaard width of a compact orientable 3-manifold M . This measures the

complexity of generalised Heegaard splittings for M . A very closely related concept

was defined by the author in [15] (and was denoted c+(M) there). We will give its

definition in Section 5.

6



Let us start with the definition of the max-width of a link. One considers diagrams

D for the link in R2. The max-width of D is the maximum, over all t ∈ R, of the number

of intersections of R×{t} with the link projection. The max-width of the link is defined

to be the minimal max-width of any of its diagrams. This is a slight variant of Gabai’s

definition in [12]. He considered the sum of the number of intersections, over a finite

collection of representative level sets R×{t}. We call this the sum-width of the diagram.

(See Section 6 where the definition of sum-width is recalled in detail.) However, here, it

is more appropriate to consider the maximum rather than the sum.

Let D be a rational surgery diagram for a compact orientable hyperbolic 3-manifold

M , and let G(D) be the underlying 4-valent planar graph. For convenience, we assume

that D is a diagram in the 2-sphere rather than R2. The first step in the proof of

Theorem 1.1 is to bound the width of G(D) as an abstract graph. To do this, we use

a famous result of Lipton and Tarjan [17] that provides an efficient ‘separator’ for a

planar graph. This is a collection of vertices in the graph with relatively small size,

which divides the graph into two subgraphs, each with relatively large size. Using an

inductive argument involving these separators, we can find an upper bound on the width

of G(D) as an abstract graph. This is then used to construct a Morse function on the

diagram 2-sphere, so that each level set of the function has relatively few intersections

with the graph. This extends to a Morse function on the 3-sphere, in which level sets

have relatively few intersections with the link. We arrange that this Morse function

is equivalent to the standard Morse function on the 3-sphere, and so this provides an

upper bound on the max-width of the link, as defined above. This leads to the following

result, which is of independent interest.

Theorem 1.12. Let D be a diagram of a link L in the 3-sphere. Then the max-width

of L is at most

2 + (24
√

2 + 16
√

3)
√

t(D).

Note that we are not claiming here that the max-width ofD, or any diagram ambient

isotopic to it, is bounded by the above function.

A theorem of Thompson [22] relates the width of a knot to its bridge number,

provided that the knot is not tangle-composite. However, some care is required here,

because Thompson used the sum-width of a knot (as defined by Gabai) rather than

max-width. In Section 6, we show how these notions are related, and apply Theorem

1.12 to prove the following.
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Theorem 1.13. Let D be a diagram of a knot K in the 3-sphere that is not tangle-

composite. Then the bridge number of K is at most

1 + (12
√

2 + 8
√

3)
√

t(D).

We now return to the proof of Theorem 1.1. By Theorem 1.12, the link specified by

D has a diagram with max-width at most 2+(24
√

2+16
√

3)
√

t(D). Using this diagram,

we construct a generalised Heegaard splitting of the link exterior, with control over the

Euler characteristic of the splitting surfaces. This extends to a generalised Heegaard

splitting of the filled-in 3-manifold M . Finally, we use a result of the author from [15]

which places an upper bound on the Cheeger constant of a hyperbolic 3-manifold in

terms of data from a generalised Heegaard splitting.

2. The width of planar graphs

In this and the following two sections, we give the proof of Theorem 1.12. The first

step is as follows. Given a link diagram D, let G(D) be its underlying planar graph.

Let T (D) be the corresponding twist graph, which has a vertex for each twist region of

G(D) and an edge for each edge of G(D) not lying in a twist region. Thus, T (D) is a

planar graph which is obtained by collapsing G(D). (See Figure 3.)

D T(D)

Figure 3

The width of a finite graph G was defined in [14]. We recall the definition here. Let

V (G) be the vertex set of G with cardinality v(G). For any subset A of V (G), let ∂A

denote the set of edges with one endpoint in A and one endpoint not in A. We consider

all possible bijections φ: [1, v(G)] ∩ N → V (G). (Such a bijection is effectively just a

total ordering on the vertices.) The width of φ is

width(φ) = max
i∈[1,v(G)]∩N

|∂(φ([1, i]∩ N))|.
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The width of G, denoted width(G), is the minimum, over all such φ, of width(φ).

Although it is not strictly relevant here, there is an attractive pictorial interpretation

of the width of a finite graph G (without loops and without isolated vertices). Given a

bijection φ: [1, v(G)]∩N → V (G), draw the graph in R2 so that the vertices have height

given by φ−1, and so that the height function on each edge has no critical points and

so that the edges intersect transversely. Then, the width of φ is equal to the maximal

number of intersections, over all t ∈ R, between the graph and R×{t}. Hence, the width

of G is the minimum of this maximum, over all such realisations of G in R2. There are

obvious analogies with the max-width of a link defined in Section 1.

3

4

4

3

ordering
on vertices

number of
intersections

Figure 4

One reason for studying the width of a graph G is its relation to the graph’s Cheeger

constant. Recall [19] that this is defined to be

h(G) = min

{ |∂A|
|A| : A ⊂ V (G), 0 < |A| ≤ v(G)/2

}

.

Setting i to be ⌊v(G)/2⌋ in the definition of graph width, we obtain the inequality

h(G) ≤ width(G)

⌊v(G)/2⌋ .

The following result is central to this paper. It gives an upper bound on the width

of a planar graph G, which grows as a function of
√

v(G).

Theorem 2.1. Let G be a finite planar graph, with v(G) vertices and maximal vertex

degree ∆(G). Then

width(G) ≤ (6
√

2 + 4
√

3)∆(G)
√

v(G).

The proof relies heavily on the important work of Lipton and Tarjan on separators

for planar graphs [17]. Recall that a set of vertices S in a graph G separates G into
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disjoint graphs G1 and G2 if one obtains G1 ∪G2 by removing S and all adjacent edges

from G, and if there is no edge joining G1 to G2. (We do not require either Gi to be

connected.)

Theorem 2.2. (Lipton-Tarjan [17]) Any finite planar graph has a set of vertices S

which separates G into G1 and G2, such that

v(G1) ≤ (2/3)v(G), v(G2) ≤ (2/3)v(G), |S| ≤
√

8v(G).

Proof of Theorem 2.1. We prove this by induction on v(G). For brevity, set n = v(G).

The induction starts trivially with n = 1. Let us therefore prove the inductive step. Let

S be the set of vertices provided by Lipton and Tarjan’s theorem, which separates G into

G1 and G2. By induction, for j = 1 and 2, there is a bijection φj : [1, v(Gj)]∩N → V (Gj)

with width at most

(6
√

2 + 4
√

3)∆(Gj)
√

v(Gj) ≤ 4(
√

3 +
√

2)∆(G)
√
n.

We use these to define a bijection φ: [1, n] ∩ N → V (G), as follows. Send the first |S|
integers to S via some arbitrary bijection. Then send the next v(G1) vertices to V (G1)

via φ1. (In other words, define φ(i) = φ1(i− |S|) in this part of the domain.) Then send

the final v(G2) vertices to V (G2) via φ2. It is clear that

width(φ) ≤ ∆(G)|S|+ max{width(φ1),width(φ2)}.

To see this, consider some integer i between 1 and v(G), and let A = φ([1, i] ∩ N). If

i ≤ |S|, then any edge in ∂A is adjacent to a vertex in S. There are at most ∆(G)|S|
such edges. If i lies between |S| + 1 and |S| + v(G1), any edge in ∂A is either adjacent

to S or runs between two vertices in G1. In the latter case, this edge contributes to

width(φ1). A similar argument holds when i lies between |S| + v(G1) + 1 and v(G).

Thus,

width(G) ≤ width(φ) ≤ ∆(G)
√

8n+ 4(
√

3 +
√

2)∆(G)
√
n = (6

√
2 + 4

√
3)∆(G)

√
n,

as required.

We will apply this result to the twist graph T (D) of a diagram D. The following

can then be used to provide an upper bound on the width of G(D).

Lemma 2.3. Let D be a link diagram. Then width(G(D)) ≤ width(T (D)) + 2.

Proof. Start with a total ordering φ on the vertices of T (D), with minimal width. Use

this to construct a total ordering on the vertices of G(D), as follows. The first vertex
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of T (D) corresponds to a twist region of G(D). We set the vertices of this twist region

to be the first vertices in the ordering, taken in order along the twist region. Then

consider the second vertex of T (D), and so on. At each stage, we need to choose which

end of the relevant twist region that we start at, and we need to be a little careful how

we make this choice. We ensure that we start at a vertex in the twist region that is

adjacent to some earlier vertex in another twist region, if possible. Let ψ be the resulting

bijection [1, c(D)]∩N → V (G(D)). Then, for each positive integer i, ψ([1, i]∩N) consists

of the vertices in the twist regions of φ([1, j] ∩ N), for some positive integer j, plus a

proper (possibly empty) subset of the vertices in a single twist region. Thus, the edges

in ∂(ψ([1, i]∩ N)) correspond to the edges in ∂(φ([1, j]∩ N)), except possibly for edges

that lie in or are adjacent to the twist region. It is easy to see that the total number of

edges in ∂(ψ([1, i]∩ N)) is therefore at most

max{|∂(φ([1, j]∩ N))|+ 2, |∂(φ([1, j+ 1] ∩ N))| + 2}.

Hence, the width of ψ is at most width(φ) + 2, which equals width(T (D)) + 2.

3. The Morse width of planar graphs

Let G be a finite graph embedded in the 2-sphere, in which each vertex has valence

at most 4. In this section, our goal is to construct a Morse function f :S2 → R, starting

from a total ordering of the vertices of G.

Let f :S2 → R be a Morse function. We say that f is generic with respect to G if its

critical points have distinct values, and the vertices of G have distinct values. However,

we allow the possibility that a critical point and a vertex take the same value; indeed,

we allow vertices to be critical points of f . The width of G with respect to f is defined

to be max{|f−1(t) ∩ G| : t ∈ R}. The Morse width of the embedded graph G is the

minimal width of G with respect to f , over all generic Morse functions f .

Proposition 3.1. Let G be a finite graph embedded in S2, in which each vertex has

valence at most 4. Then the Morse width of G is equal to its width as an abstract graph.

Proof. We first show that the width of G is at most its Morse width. Consider a generic

Morse function f on the 2-sphere. The vertices are ordered according to their values

under f , and so this defines a bijection φ: [1, v(G)] ∩ N → V (G). Let ti be the value

under f of the ith vertex. If t ∈ (ti, ti+1), then clearly, any edge in ∂(φ([1, i]∩ N)) must

go through f−1(t). Hence, |f−1(t) ∩ G| is at least |∂(φ([1, i] ∩ N))|. The width of φ

is therefore at most the width of G with respect to f , which establishes the required

inequality.
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To prove the inequality in the other direction, suppose that we are given a bijection

φ: [1, v(G)] ∩ N → V (G). We will extend φ−1 to a Morse function f on S2 with the

same width. First define f to be monotonic on the edges. Since each vertex has valence

at most 4, we may extend f to a regular neighbourhood of G. (See Figure 5 for some

examples.) Then extend f over each complementary region of G to create a generic

Morse function. Clearly, the width of G with respect to f is equal to the width of φ, as

required.

=  G
=  level set of f
=  direction of increasing f

Figure 5

An example of an embedded planar graph G is given in Figure 6. There, a Morse

function on S2 is constructed from a bijection [1, v(G)]∩N → V (G), using the recipe in

the above proof.

1 2

3

4

Ordering of vertices Morse function
level sets

Figure 6

4. The max-width of links

In Section 1, we gave the definition of the max-width of a link L in the 3-sphere.

We now give an interpretation of max-width which is slightly more topological. Let

f :S3 → R be the standard Morse function with a single maximum, a single minimum
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and no other critical points. Let L be a link embedded in S3 so that f |L is a Morse

function. The max-width of this embedding is max{|f−1(t)∩L| : t ∈ R}. It is clear that

the minimum max-width over all links ambient isotopic to L is equal to the max-width

of L, as defined in Section 1.

We now give a bound on the max-width of L in terms of Morse width, as defined

in Section 3.

Proposition 4.1. Let D be a diagram of a link L. Then the max-width of L is at most

the Morse width of the embedded graph G(D).

Proof. Let f :S2 → R be a Morse function that is generic with respect to G(D) and

which realises the Morse width of G(D). From this, we will construct a Morse function

F :S3 → R, equivalent to the standard Morse function, such that the max-width of L

with respect to F is equal to the width of G(D) with respect to f . Some care is required

here, because f may have many critical points, whereas we require F to have just two.

Let us first rescale f so that its image lies in (−1, 1).

Let S2× [−3, 3] be a regular neighbourhood of the equatorial sphere in S3. We may

pick an embedding of L in S2 × [−1, 1] as specified by the diagram D. More specifically,

we may arrange that the projection of L onto the first factor S2 of the product is equal

to the link projection in D, and that the behaviour of L near the inverse image of the

double points coincides with the crossing information of D.

We will now specify a foliation of S2 × [−3, 3] by 2-spheres. The leaves will be

indexed by t ∈ [−1, 1], and will be denoted by S2
t . This foliation will be equivalent to

the product foliation, and so the leaves S2
t can be viewed as the level sets of a smooth

function F :S2 × [−3, 3] → [−1, 1] without critical points. We can then extend this to a

Morse function on S3 that is equivalent to the standard Morse function.

For values of t away from small neighbourhoods of the critical values, we define S2
t

initially to be

(f−1[t, 1]× {t− 2}) ∪ (f−1(t) × [t− 2, t+ 2]) ∪ (f−1[−1, t]× {t+ 2}).

See Figure 7 for an example of such an S2
t . It is clear that for regular values of t, S2

t is

a 2-sphere. For it is obtained by cutting S2 along f−1(t) to give f−1[−1, t] and f−1[t, 1]

and then inserting annuli between the corresponding boundary components of these

surfaces. It is also straightforward to check that these spheres are pairwise disjoint.
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f   (t)-1

f   ([t,1])-1

f   ([-1, t])-1

S2
t

behaviour of
f : S      R2 associated leaf of the foliation

Figure 7

Near the critical values of f , we need to modify this definition slightly, in order

that S2
t is genuinely a sphere. (For example, if a local maximum of f has value t, then

S2
t as defined above would be the union of a sphere and an interval.) However, this

modification can clearly be done. We also need to modify the entire foliation so that it

is smooth. Again, this is clearly possible.

An example is given in Figure 8. In the first diagram, the level sets of the Morse

function are shown. In the second diagram, a cross-section of the preliminary ‘foliation’

is depicted. In the third diagram, the modification that makes the foliation smooth is

shown.
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0.6

0.8

0.7

0.6

2S

0.9
2S
1.0
2S

0.8
2S

0.7
2S

0.6
2S

0.9
2S
1.0
2S

0.8
2S

0.7
2S

cross-section smooth

Figure 8

For any value of t in [−1, 1], the number of intersections between S2
t and L is equal

to the number of intersections between f−1(t) and G(D). Hence, the max-width of L

with respect to F is indeed equal to the width of G(D) with respect to f , as required.

We can now complete the proof of Theorem 1.12.

Proof. Let D be a diagram of a link L in the 3-sphere. By Proposition 4.1, the max-

width of L is at most the Morse width of G(D). By Proposition 3.1, this is equal to the

width of G(D) as an abstract graph. By Lemma 2.3, this is at most width(T (D)) + 2.

This is at most (24
√

2 + 16
√

3)
√

t(D) + 2, by Theorem 2.1.
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5. The Heegaard width of 3-manifolds

LetM be a compact orientable 3-manifold. In this section, we will study an invariant

of M known as its Heegaard width. This is defined in terms of the complexity of surfaces

in generalised Heegaard splittings of M .

Recall that, for a compact connected surface S, χ−(S) is max{0,−χ(S)}. When S

is a compact, possibly disconnected surface, χ−(S) is defined to be the sum of χ−(Si),

as Si ranges over all the components of S.

Let {C1, . . . , Cn} be a generalised Heegaard splitting for M . Thus, each Ci is a dis-

joint union of compression bodies; M is union of these compression bodies; their interiors

are disjoint; their boundary components are either properly embedded or components

of ∂M ; and, for each relevant odd integer i, ∂+Ci = ∂+Ci+1 and ∂−Ci ∩ int(M) =

∂−Ci−1 ∩ int(M). We define the width of the splitting to be maxi χ−(∂+Ci). The Hee-

gaard width of M is the minimal width of any generalised Heegaard splitting. We denote

it by Heeg-width(M).

In this section, we will prove the following.

Proposition 5.1. Let L be a link in the 3-sphere. Then the Heegaard width of the

exterior of L is at most max-width(L) − 2.

Proof. Let f :S3 → R be the standard Morse function, and place L so that it has

minimal max-width with respect to f . We may assume that f |L is a Morse function

and that the critical points of f |L occur at distinct heights. Let S1, . . . , Sn be a minimal

collection of level sets of f , with increasing values under f , so that each Si avoids the

critical points of f |L and so that between Si and Si+1 only local minima or only local

maxima of f |L appear. In other words, if we view the critical points of f |L as a sequence

of local minima, followed by a sequence of local maxima, followed by a sequence of local

minima, and so on, then the surfaces Si occur between the local minima and the local

maxima, and between the local maxima and the local minima. From the surfaces Si, we

construct closed surfaces Fi in the exterior of L, as follows.

Around L, place n parallel tori T1, . . . , Tn, where T1 is closest to ∂N (L), T2 is

adjacent to T1, and so on. For each i, the intersection Ti ∩ Si is a collection of simple

closed curves, which bound discs in Si. Remove the interiors of these discs, and attach

the parts of Ti that lie above Si. Let Fi be the resulting surface. (See Figure 9.)

We claim that the surfaces F1, . . . , Fn separate the exterior of L into compression

bodies C1, . . . , Cn+1. To see this, consider the submanifold Ci+1 between Fi and Fi+1.

This is a modification of the region between Si and Si+1. Suppose first that this region
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only contains local maxima of L and that i 6= n. For each local maximum of L between

Si and Si+1, there is a disc D such that L∩D is an arc in ∂D running from Si up to the

local maximum of L and back down to Si, and such that the remainder of ∂D is an arc

in Si. We may arrange that these discs are all disjoint and that the intersection between

each disc and Ci+1 is a compression disc for Fi. If we cut Ci+1 along these discs, the

resulting manifold is homeomorphic to Fi+1 × I (see Figure 10).

S1

S2

S3

F1

F2

F3

Figure 9

Fi+1

Ci+1

F
compression disc

i

Figure 10

Suppose now that the region between Si and Si+1 contains only local minima of

L and that i 6= 1. As previously, for each local minimum, there is a disc D such that

L∩D is an arc in ∂D running from Si+1 down to the local minimum of L and back up

to Si+1, and such that the remainder of ∂D is an arc in Si+1. Let N be a big regular

neighbourhood of D, and let D′ be ∂N ∩ Ci+1. Then, provided N was big enough, D′

is a disc properly embedded in Ci+1 with boundary in Fi+1 (see Figure 11). We may
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arrange that these discs D′ are all disjoint. If we cut Ci+1 along these discs, the result

is a collection of copies of T 2 × I and a copy of Fi × I . Thus, Ci+1 is a compression

body. Similarly, C1 and Cn+1 are compression bodies.

These compression bodies form a generalised Heegaard splitting for the exterior of

L. Its width is maxi{|Si ∩ L| − 2}, which equals max-width(L) − 2.

Fi+1

Fi
D'

Ci+1

Figure 11

The key relationship between the Heegaard width of a finite-volume hyperbolic

manifold and its Cheeger constant is contained in the following result. The following is

a slight variant of Theorem 4.1 in [15], and it has essentially the same proof, which we

will not repeat here.

Theorem 5.2. Let M be a compact orientable finite-volume hyperbolic 3-manifold.

Then

h(M) ≤ 4π
Heeg-width(M)

Volume(M)
.

Proof of Theorem 1.1. Let D be a rational surgery diagram of a compact orientable

hyperbolic 3-manifold M . Let L be the link defined by D. By Proposition 5.1, the

Heegaard width of the exterior of L is at most max-width(L) − 2. By Theorem 1.12,

this at most (24
√

2 + 16
√

3)
√

t(D). Now, the Heegaard width of a compact orientable

3-manifold does not increase under Dehn filling, since a generalised Heegaard splitting

for the unfilled manifold becomes a generalised Heegaard splitting for the filled-in one.

Hence,

Heeg-width(M) ≤ (24
√

2 + 16
√

3)
√

t(D).

Applying Theorem 5.2 gives the required upper bound on h(M).

17



6. Other notions of link width

In this section, our goal is to prove Theorem 1.13, which places an upper bound on

the bridge number of any tangle-prime knot, in terms of the twist number of any of its

diagrams. In order to do this, we need to investigate yet more notions of the width of a

link. We have already defined the max-width of a link in Section 1. We now give some

variants of this.

Sum-width

This is the original version of width which Gabai introduced in his proof of the

Property R conjecture. Let D be a diagram for a link L in R2. Projection onto the

second co-ordinate of R2 gives a height function. Let us suppose that the restriction to

the link of this height function is Morse, and the critical points of the link have distinct

values. These values divide R into open intervals, and for each value of t in one of

these intervals, the number of intersection between the link projection and R × {t} is

constant. Let us define the sum-width of D to be the sum of the number of intersection

points, over each of these intervals. The sum-width of L is the minimal sum-width of

any diagram for L.

Lex-width

Although sum-width is very useful and elegant, one loses a certain amount of in-

formation when performing the summation. Instead, one can combine the intersection

numbers of the intervals into a multi-set (that is, a set where repetitions are retained),

called the lex-width of D. One compares two multi-sets using the usual lexicographical

ordering. Here, one re-orders each multi-set into a descending sequence. One compares

the first two integers of each multi-set. If they are the same, one passes to the second

two, and so on. The minimal lex-width (with respect to this ordering) over all diagrams

D for L is known as the lex-width of L. Unlike sum-width and max-width, this is not a

single integer, but is a multi-set of integers. The following is trivial.

Lemma 6.1. The largest integer in the multi-set lex-width(L) is max-width(L).

Proof. Let D be a diagram for L with minimal lex-width. The max-width of D is the

maximum integer in the multi-set lex-width(D), which equals lex-width(L). Thus, the

max-width of L is at most this maximum.

Conversely, let D′ be a diagram for L with minimal max-width. The lex-width

of D′ is an upper bound for the lex-width of L. But when comparing multi-sets, one

compares their largest integers first. So, the maximal integer in lex-width(L) is at most

the max-width of D′, which equals the max-width of L.
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A diagram for a link L is a bridge diagram if projection onto the second factor of

R2 restricts to a Morse function on L, in which all the local maxima occur above all the

local minima. The bridge number b(L) is the minimal number of local maxima in any

bridge diagram. Hence, we trivially have that max-width(L) ≤ 2b(L). We will now see

that this is, in fact, an equality for tangle-prime knots.

It is a theorem of Thompson [22] that, when K is a tangle-prime knot, then every

diagram for K of minimal sum-width is a bridge diagram. However, exactly the same

argument gives the following related result.

Theorem 6.2. If a knot K is tangle-prime, then every diagram for K of minimal

lex-width is a bridge diagram.

Corollary 6.3. If K is a tangle-prime knot, then max-width(K) = 2b(K).

Proof. The largest integer in the multi-set lex-width(K) is max-width(K), by Lemma

6.1. But, in a bridge diagram, the maximal number of intersections between R×{t} and

the link projection is at least 2b(K). Thus, by Theorem 6.2, max-width(K) ≥ 2b(K).

Since the opposite inequality always holds, this must be an equality.

We can now prove Theorem 1.13.

Proof. Let D be a diagram of a knot K in the 3-sphere that is not tangle-composite. By

Corollary 6.3, the bridge number of K is equal to half the max-width of K. By Theorem

1.12, this is at most 1 + (12
√

2 + 8
√

3)
√

t(D).
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