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Abstract. We introduce a new real-valued invariant called the natural slope

of a hyperbolic knot in the 3-sphere, which is defined in terms of its cusp
geometry. We show that twice the knot signature and the natural slope differ

by at most a constant times the hyperbolic volume divided by the cube of

the injectivity radius. This inequality was discovered using machine learning
to detect relationships between various knot invariants. It has applications

to Dehn surgery and to 4-ball genus. We also show a refined version of the

inequality where the upper bound is a linear function of the volume, and the
slope is corrected by terms corresponding to short geodesics that link the knot

an odd number of times.

1. Introduction

In low-dimensional topology, there are two very different types of invariant: those
derived from hyperbolic structures on 3-manifolds, and those invariants with con-
nections to 4-dimensional manifolds. Of the latter type, one of the most fundamen-
tal invariants is the signature of a knot. Our main goal in this paper is to establish
a new and unexpected connection between these two fields. We will show that the
cusp geometry of a hyperbolic knot in the 3-sphere encodes information about the
signature of the knot.

One of the most important geometric features of a hyperbolic knot K is its
maximal cusp. The boundary of this cusp is a Euclidean torus that forms the
boundary of a regular neighbourhood of K. This torus is isometric to C/Λ for a
lattice Λ in C. The meridian and longitude of the knot give generators µ and λ
for Λ. The parallelogram in C spanned by 0, µ, λ, and µ+ λ forms a fundamental
domain for the action of Λ on C. We introduce a new geometric quantity called the
natural slope that measures how far this parallelogram is from being right-angled.
It can be defined by the following formula:

slope(K) = Re(λ/µ).

Alternatively, natural slope can be defined as follows. Pick a geodesic on the torus
C/Λ that represents a meridian. Choose any point on such a geodesic and send
off a geodesic orthogonally from this point. It runs along the knot and eventually
it comes back to the initial meridian; see Figure 1. In doing so, it has gone along
a longitude minus some number s of meridians. This number s is not necessarily
an integer because the geodesic may return to a different point along the meridian
from where it started. This real number s is the natural slope of K.

We remark that quantities with a resemblance to the natural slope have been
defined by other authors [2, 9]. However, these other quantities do not seem to
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Figure 1. A geodesic running in the direction µ⊥ that is perpen-
dicular to the meridian µ. By the time it returns to the meridian, it
has travelled one longitude minus some multiple s of the meridian.
This real number s is the natural slope of K.

Figure 2. A plot of signature versus the real part of the merid-
ional translation, Re(µ), coloured by longitudinal translation, for
a dataset of knots randomly generated by SnapPy.

be directly related to natural slope, and none of these previous articles seems to
provide a connection between hyperbolic geometry and signature.

Experimentally, starting from the plot in Figure 2, we have observed that the
natural slope of K is very highly correlated with 2σ(K), where σ(K) is the signa-
ture. See Figure 3 for plots of signature versus slope for knots up to 16 crossings
in the Regina census [5] and for random knots generated by SnapPy [8] having
10 to 80 crossings in their SnapPy-simplified forms. Our goal in this paper is to
prove that such a surprising connection holds and to explore its consequences. Our
first main result, which we prove in Section 4, establishes that slope(K) is ap-
proximately equal to 2σ(K), but with an additive error that can be bounded by
geometric quantities.

Theorem 1.1. There exists a constant c1 such that, for any hyperbolic knot K,

|2σ(K)− slope(K)| ≤ c1 vol(K) inj(K)−3.
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Figure 3. A plot of signature versus slope for knots up to 16
crossings in the Regina census (left) and for a dataset of knots
randomly generated by SnapPy having 10 to 80 crossings in their
SnapPy-simplified form (right).

Here, vol(K) is the hyperbolic volume of the complement of K. Also, inj(K) is
the injectivity radius of S3 \K, which we define to be

inj(K) = inf{ injx(S3 \K) : x ∈ (S3 \K) \N }.
In the above formula, N is a maximal cusp and injx(S3 \K) denotes the injectivity
radius of a point x in S3\K. Note that although inj(K)−3 appears in the inequality
in Theorem 1.1, in practice inj(K) tends not to be particularly small. (See Figure
12 for example.) Experimental evidence, which we provide in Section 7, suggests
that c1 should be quite small: perhaps c1 = 0.3 suffices. This is based on the largest
value 0.234 of |2σ(K) − slope(K)| inj(K)3/ vol(K) that we managed to obtain by
studying a class of knots that are closures of certain braids.

One might wonder whether there is a constant c2 such that

|2σ(K)− slope(K)| ≤ c2 vol(K)

for every hyperbolic knot K. However, we show in Corollary 5.1 that there cannot
exist such a constant. We achieve this by exhibiting a sequence of examples that
are obtained by twisting 3 strands of a hyperbolic knot. Nevertheless, we can
estimate σ(K) in terms of geometric quantities, with an error that is at most
a linear function of vol(K). The main term in this estimate is slope(K)/2, but
there are also correction terms that are defined using the complex length of short
geodesics. From the complex lengths, the following parameters are computed.

Definition 1.2. Let γ be a geodesic in a hyperbolic 3-manifold with complex
length cl(γ). Here, cl(γ) is chosen so that Im(cl(γ)) ∈ (−π, π]. The twisting param-
eter tw(γ) = (twp(γ), twq(γ)) is the pair (p, q) of coprime integers satisfying the
following:

(1) p is even and q is odd and non-negative;
(2) subject to this condition, the quantity |cl(γ)p+ 2πiq| is minimised;
(3) if there are several values of (p, q) for which this quantity is minimised, then

choose the one that is minimal with respect to lexicographical ordering.

Consider a hyperbolic knot K in S3. For any ε ∈ R+ less than the Margulis
constant ε3, let OddGeo(ε/2) denote the set of geodesics with length less than ε/2
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and having odd linking number with K. For p, q ∈ Z+, the signature correction
term κ(p, q) is given by Definition 4.2 and satisfies

κ(p, q) = −σ(T (p, q))− pq/2,
where T (p, q) is the (p, q) torus knot. Then we have the following refinement of
Theorem 1.1, which we prove in Section 6, that does not depend on the injectivity
radius:

Theorem 1.3. Let ε3 be the Margulis constant, and let ε ∈ (0, ε3). Then there is
a constant c4 (depending on ε) such that for any hyperbolic knot K, the quantities
σ(K) and

slope(K)/2−
∑

γ∈OddGeo(ε/2)

κ(twp(γ), twq(γ))

differ by at most c4 vol(K).

Figures 4 and 5 illustrate the relationship between signature and slope in Theo-
rem 1.1 for the knots 61 and 12a52, respectively.

Figure 4. Left: The stevedore knot 61, which is a slice knot.
Right: Its cusp torus, as provided by SnapPy [8]. The longitude
is 3.9279 and the meridian is 0.7237 + 1.0160i. Its natural slope is
1.8267 and its signature is 0.

Theorem 1.1 has applications in low-dimensional topology. On the one hand,
the signature of K controls the cusp shape, which in turn has consequences for the

Figure 5. Left: The knot 12a52. Right: Its cusp torus. The
longitude is 27.7228 and the meridian is −1.2838 + 0.5145i. Its
natural slope is −18.6064 and its signature is −8. Note how far
the parallelogram is from being right-angled; this is the defining
feature of having very positive or very negative slope.
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possible exceptional surgeries on K. On the other hand, the cusp shape controls
the signature, which has consequence for the 4-ball genus of K. We now provide
these applications.

1.1. An application to Dehn surgery. Cusp geometry is well known to control
the exceptional surgeries on a knot K. Recall that a slope s on ∂N(K) is said to be
exceptional if the manifold K(s) obtained by Dehn filling along s does not admit a
hyperbolic structure.

The length of a slope s = q/p ∈ Q, denoted `(s), is defined to be the length of
any geodesic representative of s = pλ + qµ in the boundary of the maximal cusp.
A theorem of Agol [1] and Lackenby [16] states that if `(s) > 6, then s is not
exceptional.

We relate slope length to natural slope, using the following simple geometric
lemma, which we will prove in Section 2.

Lemma 1.4. If K is a hyperbolic knot, then the length of the slope q/p satisfies

`(q/p) ≥ |p slope(K) + q|.

Hence, if q/p is exceptional, then

q/p ∈ [− slope(K)− 6/p,− slope(K) + 6/p].

Given that slope(K) and 2σ(K) are highly correlated, one would therefore expect
that any exceptional slope q/p should lie within a short interval around −2σ(K).
It is also known that |p| ≤ 8, by a theorem of Lackenby and Meyerhoff [17]. Hence,
we obtain a bounded set of slopes that contains all the exceptional ones, and that
is defined in terms of the signature.

An interesting case is the (−2, 3, 7)-pretzel knot 12n242. This has signature −8
and slope approximately −18.215. It has 7 exceptional slopes: 16, 17, 18, 37/2,
19, and 20. Observe that these slopes are concentrated in a short interval [16, 20]
that contains both − slope(K) and −2σ(K). This close correlation between the
exceptional slopes and −2σ(K) seems to be a phenomenon that had not previously
been observed. Specifically, we have the following consequence of our main theorem.

Corollary 1.5. If K is a hyperbolic knot and q/p is a slope satisfying

|q/p+ 2σ(K)| > (6/|p|) + c1 vol(K) inj(K)−3 or |p| > 8,

then the manifold K(q/p) obtained by q/p Dehn surgery along K is hyperbolic.

Theorem 1.3 gives a similar bound on slopes resulting in hyperbolic surgeries
that does not involve inj(K).

1.2. An application to 4-ball genus. One of the most important 4-dimensional
quantities associated to a knot K is its 4-ball genus g4(K). This is defined to be the
minimal possible genus of a smoothly embedded compact orientable surface in the
4-ball B4 with boundary K. One can also define the topological 4-ball genus gtop4 (K)
by considering locally-flat topologically embedded compact orientable surfaces with
boundary K. The inequality g4(K) ≥ gtop4 (K) is immediate.

The following result provides a lower bound on gtop4 (K) in terms of purely hy-
perbolic data. This follows immediately from our main theorem together with the
well-known inequality gtop4 (K) ≥ |σ(K)|/2.
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Corollary 1.6. The topological 4-ball genus gtop4 (K) of a hyperbolic knot K satisfies

gtop4 (K) ≥ | slope(K)|/4− (c1/4) vol(K) inj(K)−3.

This corollary seems to be the first time that information about the 4-ball genus
has been obtained in terms of hyperbolic geometry. Again, Theorem 1.3 gives a
similar lower bound on gtop4 (K) that does not involve inj(K).

1.3. Spanning surfaces. Theorem 1.1 is proved using a new construction of span-
ning surfaces with a specified slope. It is of independent interest.

Theorem 1.7. There is a constant c3 such that every hyperbolic knot K in S3 has
an unoriented spanning surface F satisfying

|χ(F )| ≤ c3 vol(K) inj(K)−3.

Moreover, the boundary slope of this surface is n/1, where n is an even integer that
is closest to slope(K).

We prove this in Section 3. The crosscap number of a knot K is the minimum
of b1(F ) for F an unoriented spanning surface of K. When K is hyperbolic, the
above theorem gives an upper bound on a version of the crosscap number where
∂F has slope n/1.

Theorem 1.1 is proved by combining this result with a theorem of Gordon and
Litherland [12], which asserts that one can compute the signature of a knot K using
any spanning surface F for K; see Theorem 4.1.

Note that slope also gives a lower bound on the Seifert genus:

1

4π
| slope(K)|+ 1

2
≤ g(K);

see Proposition 2.5.

1.4. Highly twisted knots. In Section 5, we show the following result for highly
twisted knots:

Theorem 1.8. Let K be a knot in the 3-sphere, and let C1, . . . , Cn be a collection
of disjoint simple closed curves in the complement of K that bound disjoint discs.
Suppose that S3 \ (K ∪ C1 ∪ · · · ∪ Cn) is hyperbolic. Let K(q1, . . . , qn) be the knot
obtained from K by adding qi full twists to the strings going through Ci, for each
i ∈ {1, . . . , n}. Let `i be the linking number between Ci and K, when they are both
given some orientation. Suppose that `1, . . . , `m are even and `m+1, . . . , `n are odd.
Then there is a constant k, depending on K and C1, . . . , Cn, such that the following
hold, provided each |qi| is sufficiently large:∣∣∣∣∣slope(K(q1, . . . , qn)) +

n∑
i=1

`2i qi

∣∣∣∣∣ ≤ k;

∣∣∣∣∣σ(K(q1, . . . , qn)) +

(
1

2

m∑
i=1

`2i qi +
1

2

n∑
i=m+1

(`2i − 1)qi

)∣∣∣∣∣ ≤ k.
The slight difference between the behaviour of σ(K(q1, . . . , qn)) and the be-

haviour of slope(K(q1, . . . , qn))/2 as the qi tend to infinity enables us to construct
families of knots that show the injectivity radius cannot be dropped from Theo-
rem 1.1.
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1.5. Methodology. One of the novel aspects of this work was the use of machine
learning. We embarked with the aim of discovering new relationships between
various 3-dimensional invariants. By using machine learning, we observed an un-
expected non-linear relationship between σ(K) and Re(µ), the real part of the
meridional translation µ. This led us to define the natural slope, which we ob-
served to have a strong linear correlation with σ(K). Theorems 1.1 and 1.3 are the
results of our attempts to prove this correlation.

2. Hyperbolic knots and natural slope

A knot K is hyperbolic if its complement S3 \ K admits a complete finite-
volume hyperbolic metric. By the Mostow rigidity theorem [21], the hyperbolic
structure is unique up to isometry, hence every geometric invariant of the hyperbolic
structure on S3 \K is a topological invariant of the knot. For example, the volume
vol(K) := vol(S3 \K) and the injectivity radius inj(K) defined in the introduction
are such invariants.

For a pair of coprime integers p, q, the torus knot T (p, q) is one that can be
drawn on the surface of the standard torus in the 3-sphere, and winds p times in
the longitude direction and q times along the meridian. Given a knot K in S3 and
a knot K ′ in the solid torus S1 ×D2, one can form the satellite of K with pattern
K ′ by mapping the solid torus in a neighbourhood of K, and considering the image
of K ′. By the work of Thurston [20], a knot is hyperbolic if and only if it is not
a torus knot or a satellite knot. In particular, every hyperbolic knot is prime; i.e.,
not the connected sum of two non-trivial knots. In other words, one can build all
knots from hyperbolic knots and torus knots using satellite operations.

Definition 2.1. For any hyperbolic knot K, the end of S3\K has a neighbourhood
called a cusp. The boundary ∂N of a maximal cusp neighbourhood N ⊂ S3 \K is
a Euclidean torus. Identify ∂N with C/Λ, where C is the complex plane and Λ is a
lattice in C. We arrange this identification so that the longitude lifts to a straight
line in C starting at 0 and ending at some λ ∈ R>0. This is the knot’s longitudinal
translation. Given this normalisation, the meridian lifts to a straight line starting
at 0 and ending at some complex number µ with Im(µ) > 0. This is the meridional
translation of K.

We remark that the real part of meridional translation Re(µ) in the KnotInfo [19]
data set for knots with at most 12 crossings is listed without signs. However,
SnapPy [8] does compute the sign for hyperbolic knots.

Note that |µ| ≤ 6, where |µ| denotes the length of the meridian. Indeed, by
work of Agol [1] and Lackenby [16], Dehn filling along a slope longer than 6 gives
a hyperbolic 3-manifold, while Dehn filling along the meridian is S3, which is not
hyperbolic. Furthermore, any curve on the cusp torus ∂N has length at least 1. In
particular, |µ| ≥ 1.

If S is an essential surface with connected boundary in a hyperbolic 3-manifold,
then `(∂S) ≤ −2πχ(S); see Cooper–Lackenby [7, Theorem 5.1] or Hass–Rubinstein–
Wang [14, Equation (6)]. When S is a Seifert surface for a knot K, then χ(S) =
1− 2g(S). Hence, if K is hyperbolic, then

(2.2) |λ| ≤ 4πg(K)− 2π,

where g(K) is the Seifert genus of K.
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For the maximal cusp neighbourhood N , we have

vol(∂N) = 2 vol(N) ≤ 2 vol(K),

and vol(∂N) ≤ |λ||µ|. On the other hand, by a result of Lackenby and Purcell [18],
there is a constant C such that, for K alternating,

C vol(K) ≤ vol(∂N).

Based on experimental data, one might ask if this also holds for random knots.

Definition 2.3. The natural slope slope(K) of a hyperbolic knot K is defined as
follows. Let µ⊥ be a unit vector at the origin of C orthogonal to µ. Then some
multiple of µ⊥ is equal to λ− sµ for some s ∈ R. Then slope(K) := s.

Lemma 2.4. We have

slope(K) = Re(λ/µ) = λRe(µ)/|µ|2.

Proof. Figure 7 shows a lift of the cusp torus to the complex plane C. The point
λ − sµ is shown (which is a multiple of µ⊥). If we apply the transformation to C
that is multiplication by 1/µ, then µ⊥ becomes purely imaginary. So λ/µ − s is
purely imaginary. Hence, s = Re(λ/µ). This is also equal to λRe(µ)/|µ|2. �

0 λ

μ

0 1

λ/μ

Re(λ/μ)
λ-sμ

Multiply by 1/μ

μ

Figure 6. The calculation of natural slope

We are now ready to prove Lemma 1.4 from the introduction:

Proof of Lemma 1.4. We have `(q/p) = |pλ+ qµ|. Since λ ∈ R,

`(q/p)2 = p2λ2 + 2pqλRe(µ) + q2|µ|2.
On the other hand, by Lemma 2.4, we have slope(K) = λRe(µ)/|µ|2. Hence

|p slope(K) + q|2 = p2λ2
Re(µ)2

|µ|4
+ 2pqλ

Re(µ)

|µ|2
+ q2 ≤ `(q/p)2

since |µ| ≥ 1. �

Slope gives a lower bound on the Seifert genus:

Proposition 2.5. If K is a hyperbolic knot in S3, then

1

4π
| slope(K)|+ 1

2
≤ g(K).
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Proof. By equation (2.2), we have |λ| ≤ 4πg(K) − 2π. Furthermore, |µ| ≥ 1.
Together with Lemma 2.4, we obtain that

| slope(K)| = |λ| |Re(µ)|
|µ|2

≤ |λ|
|µ|
≤ 4πg(K)− 2π,

and the result follows. �

3. Proof of Theorem 1.7

The key to proving Theorem 1.7 is the construction of a nice triangulation of a
hyperbolic knot complement:

Proposition 3.1. There is a constant c1 such that, for every hyperbolic knot K
in S3 with embedded cusp neighbourhood N , there is a triangulation T of M :=
S3 \ (K ∪ int(N)) with the following properties:

(1) The number t of tetrahedra of T is at most c1 vol(K) inj(K)−3.
(2) If n is a closest even integer to slope(K), then ν := λ − nµ (cf. Defini-

tion 2.3) is a normal curve in ∂M that intersects each edge at most once.

Proof. We remark that the validity of the conclusion in the proposition does not
depend on the choice of embedded cusp neighbourhood N . We will pick N as
follows. Let Nmax be the maximal cusp neighbourhood. Retract this to form the
embedded cusp neighbourhood N , so each point of ∂N has distance 0.5 from ∂Nmax.
Note that the Euclidean metric on ∂N is obtained from that of ∂Nmax by scaling
by the factor e−0.5 = 1/

√
e.

Let ε := inj(K)/2. We use a variation of Jørgensen’s and Thurston’s method
[22, §5.11] to build the triangulation T . (See also the work of Breslin [4] and
Kobayashi-Rieck [15].)

We pick a maximal collection of points in ∂M that are all at least ε/8 from each
other. We will extend this to a collection of points P in M without adding any
new points in ∂M . Our aim is to ensure that the Voronoi diagram for P in M
restricts to the Voronoi diagram for P ∩ ∂M in ∂M , where the latter is given its
Euclidean metric. Recall that the Voronoi diagram [23][24] corresponding to P is a
cell structure of M where the interior of every 3-cell consists of the set of points in
M that are closer to a specific point of P than any other point of P . Similarly, the
Voronoi diagram for P ∩ ∂M is a cell structure of M where the interior of every
2-cell consists of the set of points in ∂M that are closer (in the Euclidean metric)
to a specific point of P ∩ ∂M than any other point of P ∩ ∂M .

The Voronoi diagram for M can be constructed as follows. The universal cover
H3 → S3 \K restricts to the universal cover M̃ →M . This set M̃ is obtained from
H3 by removing the interior of the inverse image of N . We may arrange that one
component of this inverse image is a horoball N∞ = {(x, y, z) : z ≥ k} in the upper

half-space model for H3, for some k > 0. Let P̃ denote the inverse image of P in
M̃ . Each cell of the Voronoi diagram for M is the image of a cell for the Voronoi
diagram for P̃ in M̃ . Each 2-cell that does not lie in ∂M̃ is equidistant from two
points of P̃ . Hence, it is totally geodesic. Our aim is to ensure that each such 2-cell
that intersects the horosphere ∂N∞ is equidistant between two points of P̃ ∩ ∂N∞.
This will imply that the 2-cell intersects ∂N∞ in a Euclidean geodesic arc. The
union of these arcs forms the 1-skeleton of the Voronoi diagram for P̃ ∩ ∂N∞ in
∂N∞. Thus, we can deduce that the Voronoi diagram for P in M restricts to the
Voronoi diagram for P ∩ ∂M in ∂M .



THE SIGNATURE AND CUSP GEOMETRY OF HYPERBOLIC KNOTS 10

We now describe how the set P is chosen. We have already picked a maximal
collection of points in ∂M that are all at least ε/8 from each other. This set will be
P ∩ ∂M . We then add points to this set that lie in the interior of M , but subject
to the condition that each of these points in the interior of M has distance at least
ε/4 from the other points in the set. We stop when it is no longer possible to add
any further points with this property. Let P be the resulting set of points.

By our choice of P , each point in ∂M has distance less than ε/8 from some point
of P ∩ ∂M . It also has distance at least ε/8 from each point of P ∩ int(M). Thus,
for each point of ∂M , each of its closest points in P also lies in ∂M .

Now consider a 2-cell of the Voronoi diagram for M̃ that intersects ∂N∞ but
does not lie in ∂N∞. This is equidistant between two points p1 and p2 of P̃ . The
intersection between this 2-cell and ∂N∞ is an arc. Let x be any point in the
interior of this arc. Then x is equidistant between p1 and p2, and these are the
closest two points of P̃ to x. As argued above, any point of P̃ that is closest to
x must lie in ∂M̃ . We will show that, in fact, p1 and p2 lie in ∂N∞. Suppose
not. Then one of these points lies in ∂M̃ − ∂N∞. The shortest arc from x to
∂M̃ − ∂N∞ must run through the inverse image of ∂Nmax. One component of this
inverse image is a horosphere about the point at infinity, with distance 0.5 from
∂N∞. Hence, the length of this arc is at least 0.5. On the other hand, each point
in ∂M̃ has distance less than ε/8 from some point of P ∩ ∂M̃ . We will show below
that ε/8 < 0.12 < 0.5, and hence this is a contradiction.

Thus, we have indeed guaranteed that the restriction to ∂M of the Voronoi
diagram for P in M is the Voronoi diagram for P ∩ ∂M in ∂M , as claimed. We
now subdivide each 2-cell of the Voronoi diagram for M into triangles without
introducing any new vertices, and subdivide each 3-cell into tetrahedra by coning
off from the point of P lying in it, obtaining the triangulation T of M . Since the
restriction of the Voronoi diagram to ∂M agrees with that arising from its Euclidean
metric, this implies that each triangle of T in ∂M is straight.

Since the open balls of radius ε/16 about the points of P are pairwise disjoint,

|P | vol(B(ε/16)) ≤ vol(S3 \K),

where B(ε/16) is a ball in H3 of radius ε/16.
We claim that the number tp of tetrahedra of T incident to a point p ∈ P is at

most a universal constant k. Indeed, when p lies in the interior of M , tp is exactly
the number of triangles in the boundary 2-sphere S of the 3-cell of the Voronoi
diagram containing p. When p lies in the boundary of M , tp is the number of
triangles in this sphere that are not incident to p. When a vertex of one of these
triangles lies in the interior of M , it is equidistant from at least four points of P ,
one of which is p. When a vertex of the triangles lies on the boundary of M , it is
equidistant from at least three points of P , one of which is p. So, a vertex in S is
specified by choosing two or three other points of P , each of which is at most ε/2
from p. The ball B(p, ε/2) is embedded in S3 \K, since ε/2 = inj(K)/4, and hence
lifts to a ball B in H3. The balls of radius ε/16 about the inverse image of P in B
are disjoint, and lie within B(9ε/16). So, the number of points of P at most ε/2
from p is bounded above by

k0 :=

⌊
vol(B(9ε/16))

vol(B(ε/16))

⌋
.
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It follows that tp ≤ k :=
(
k0
3

)
. Then the total number of tetrahedra

t ≤ k|P | ≤ k vol(K)/ vol(B(ε/16)) ≤ c1 vol(K) inj(K)−3

for a universal constant c1.
We may pick the Euclidean geodesic representative for the slope ν so that it

misses the vertices of T . Hence ν is a normal curve, because it is a Euclidean
geodesic and each triangle of T in ∂M is straight. We now show ν does not
intersect any triangle in ∂M more than once. Let D be a fundamental domain in
∂Nmax with sides µ and ν. (See Figure 7.) We will show that the perpendicular
distance h between the sides of D that are parallel to ν is at least 0.55. Hence, the
perpendicular distance between sides of the corresponding fundamental domain in
∂N∞ is at least 0.55/

√
e > 0.33. On the other hand, we will show that the length

of each edge of T in ∂M is at most 0.23. This will imply that in the triangulation
of ∂M , no triangle can run in D between these opposite sides, and hence that T
satisfies property (2). This will complete the proof.

According to a theorem of Cao and Meyerhoff [6], the area A of the boundary
of the maximal cusp is at least 3.35. Let θ be the angle of two of the four corners
of D satisfying 0 < θ ≤ π/2. Say that this angle is at the vertex v1 of D, and label
the remaining vertices v2, v3, v4, so that the line joining v1 to v2 has slope µ.

Let b be the perpendicular projection of v4 onto the line joining v1 and v2. We
claim that b lies between v1 and v2, or possibly equals one of these vertices. Place
v1 at the origin in the complex plane. Then v2 = ±µ and v4 = λ − nµ. Now, by
the definition of s = slope(K), the perpendicular projection of λ− sµ onto the line
through v1 and v2 is v1. Hence, the perpendicular projection b of λ− nµ onto this
line has distance |n − s| |µ| from v1. But n is a closest even integer to s, and so
|n− s| ≤ 1. Therefore, b lies between v1 and v2, or is equal to one of these points,
as claimed.

v1

v2

v3

v4

θ

μ

ν

h

b

Figure 7. A fundamental domain D in ∂Nmax with sides µ and ν

Hence,

tan θ ≥ A/|µ|2

and so

sec2 θ = 1 + tan2 θ ≥ A2 + |µ|4

|µ|4
.
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Therefore,

sin2 θ = 1− cos2 θ ≥ 1− |µ|4

A2 + |µ|4
=

A2

A2 + |µ|4
.

So, the distance h satisfies

h = |µ| sin θ ≥ |µ|A√
A2 + |µ|4

.

The square of the reciprocal of this expression is

A2 + |µ|4

|µ|2A2
=

1

|µ|2
+
|µ|2

A2
.

It is easy to check that this is a convex function of |µ| and hence its maximal value
over the interval 1 ≤ |µ| ≤ 6 occurs when |µ| = 1 or 6. It also is maximised by
taking A as small as possible, in other words A = 3.35. We deduce that h is at
least

6× (3.35)√
(3.35)2 + (36)2

≥ 0.55.

Hence, the perpendicular distance between sides of the corresponding fundamental
domain in ∂N∞ is at least 0.55/

√
e > 0.33.

We now compare this to the maximal length of an edge of T in ∂M . Each
triangle of T in ∂M lies within a disc centred at a point of P ∩ ∂M with radius
at most ε/8. Hence each triangle has side length at most ε/4 = inj(K)/8. Now
the length L of the shortest slope s on ∂Nmax is at most |µ| ≤ 6. This gives an
upper bound on inj(K), as follows. By applying an isometry to hyperbolic space,
we may arrange that a component of the inverse image of Nmax in upper half
space is {(x, y, z) : z ≥ 1}. We may also arrange that a covering transformation
corresponding to s is (x, y, z) 7→ (x+L, y, z). It therefore sends (0, 0, 1) to (L, 0, 1).
The hyperbolic distance between these points is at most

2 ln

(
6 +
√

40

2

)
≤ 3.64.

Hence, inj(K) is at most 1.82 and ε/4 is at most 0.23. This completes the proof. �

Proof of Theorem 1.7. Let the triangulation T and the curve ν be as in Proposi-
tions 3.1. Since ν = λ − nµ for n even, [ν] = [λ] ∈ H1(∂M ;Z2), so ν bounds
an unoriented surface S in M . If we make S transverse to the 1-skeleton of T , it
defines a simplicial 1-cocycle c ∈ C1(M ;Z2) via c(e) = |S ∩ e| mod 2 for each edge
e of T . If we connect the midpoints of the edges e of T such that c(e) = 1, we
obtain a surface F that intersects each tetrahedron T of the triangulation T in at
most one triangle or square. In particular, F is a normal surface. Furthermore,
∂F = ν as ν is a normal curve that intersects each triangle in ∂M at most once.
Discard any closed components of F .

Let t be the number of tetrahedra of T . Furthermore, write v, e, and f for the
number of vertices, edges, and faces of F , respectively. By the above, f ≤ t. Then
χ(F ) = v − e + f , and since F is not a disk, |χ(F )| = e − f − v. Since every face
of F is a triangle or a quadrilateral,

e ≤ 4f + e∂
2

≤ t+ f +
e∂
2
,
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where e∂ is the number of edges of F in ∂M . As v ≥ e∂ , we obtain that

|χ(F )| ≤ t ≤ c1 vol(K) inj(K)−3,

where the second inequality is property (1) of T in Proposition 3.1. �

4. The knot signature

Another fundamental knot invariant is the signature σ(K). Given a Seifert
surface S for K; i.e., a compact, oriented, and connected surface with boundary K,
one can define the Seifert form

QS : H1(S)×H1(S)→ Z
as follows: Given a, b ∈ H1(S), we write b+ for the positive push-off of b into S3 \S.
Then QS(a, b) = lk(a, b+). If V is a matrix of QS , then σ(K) is the signature of
V + V T . The signature is a 4-dimensional invariant, in the sense that it gives a
lower bound on the topological 4-ball genus gtop4 (K), which is the minimal genus
of a compact, oriented, locally-flat, connected surface bounded by K in the 4-ball
B4.

One can also compute the signature of a knot from unoriented surfaces using
the work of Gordon and Litherland [12]. Let F be an unoriented surface bounding
a knot K in S3. Let {b1, . . . , bn} be a basis of H1(F ), and let b′i be the double
push-off of bi into S3 \ F . Then the Goeritz matrix GF is an n × n symmetric
matrix with (i, j)-th entry lk(bi, b

′
j) for i, j ∈ {1, . . . , n}. Furthermore, the normal

Euler number e(F ) of F is defined to be −lk(K,K ′), where K ′ is the framing of K
given by F . Gordon and Litherland proved the following:

Theorem 4.1. Let F be an unoriented surface bounding the knot K in S3. Then

σ(K) = σ(GF ) +
e(F )

2
,

where σ(GF ) is the signature of the Goeritz matrix.

We are now ready to show how Theorem 1.1 follows from Theorem 1.7.

Proof of Theorem 1.1. Let F be the surface provided by Theorem 1.7, with bound-
ary slope ν = λ−nµ, where n is a closest even integer to slope(K). Let GF be the
Goeritz matrix of F . Since

|χ(F )| ≤ c1 vol(K) inj(K)−3,

we deduce that
b1(F ) ≤ c1 vol(K) inj(K)−3 + 1,

and so |σ(GF )| ≤ c1 vol(K) inj(K)−3 + 1. Therefore,

|2σ(K)− slope(K)| ≤ |2σ(K)− n|+ 1

= |2σ(K) + lk(K, ν)|+ 1

= |2σ(GF )|+ 1

≤ 2c1 vol(K) inj(K)−3 + 3

≤ c2 vol(K) inj(K)−3,

for the absolute constant

c2 := 2c1 +
3 · (1.82)3

2.0298
< 2c1 + 8.92.
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Indeed, for any hyperbolic knot K, we have inj(K) ≤ 1.82 as shown in the proof
of Proposition 3.1, and vol(K) > 2.0298, with the figure eight knot having the
smallest volume, by Cao and Meyerhoff [6]. �

In the following definition, we introduce the signature correction κ(p, q) for in-
tegers p and q, which is related to the signature of the (p, q)-torus knot. The
correction terms in Theorem 1.3 are defined in terms of κ(p, q).

Definition 4.2. For any pair of positive integers (p, q), we define the signature
correction κ(p, q) recursively as follows.

(1) If p > 2q and q is odd, then κ(p, q) = κ(p− 2q, q)− 1.
(2) If p > 2q and q is even, then κ(p, q) = κ(p− 2q, q).
(3) If p = 2q, then κ(p, q) = −1.
(4) If q ≤ p < 2q and q is odd, then κ(p, q) = −κ(q, 2q − p)− 1.
(5) If q ≤ p < 2q and q is even, then κ(p, q) = −κ(q, 2q − p)− 2.
(6) If p < q, then κ(p, q) = κ(q, p).

We extend κ to non-zero integers p, q by defining κ(−p, q) = κ(p,−q) = −κ(p, q).
When one of p or q is zero, then κ(p, q) = 0.

It is reasonably clear that this gives a well-defined value of κ(p, q). This is
because it defines κ(p, q) uniquely when p = q, and when p 6= q, it defines κ(p, q)
in terms of some κ(p′, q′) where either q′ < q, or q′ = q and p′ < p. However, the
rationale for the definition comes from the following fact due to Gordon, Litherland,
and Murasugi [13]:

Theorem 4.3. The signature of the (p, q)-torus link T (p, q) satisfies

σ(T (p, q)) = −pq/2− κ(p, q).

The signature correction κ(p, q) arises naturally as the signature of the Goeritz
form of a surface bounding the (p, q)-torus knot, as follows.

Lemma 4.4. Let V be the standard solid torus in S3, and let T (p, q) be the curve
on ∂V that is the (p, q)-torus knot, where p is even and q is odd. Thus, p is the
winding number of T (p, q) in V . Then there is a compact unoriented surface F in
V with boundary T (p, q), and σ(GF ) = −κ(p, q) for any such F .

Proof. Since p is even, T (p, q) is trivial in H1(V ;Z2). It therefore bounds an un-
oriented surface F in V . Applying Gordon and Litherland’s signature formula
(Theorem 4.1) to F , we deduce that

σ(T (p, q)) = σ(GF ) +
e(F )

2
.

The push-off K ′ of ∂F into F has linking number pq with ∂F . To see this, observe
that K ′ is homologous in V to p times a core curve γ′ of V . Similarly, ∂F is
homologous in the solid torus cl(S3 \ V ) to q times its core curve γ, which is a
meridian of γ′. Thus

lk(∂F,K ′) = pq lk(γ, γ′) = pq,

hence e(F ) = −pq. So

σ(GF ) = σ(T (p, q)) + pq/2 = −κ(p, q),

where the final equality is Theorem 4.3. �
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Lemma 4.5. Let A be a non-singular square matrix with real entries. Let A+ be a
non-singular matrix obtained from A by adding a final row and final column. Then
σ(A+) is either σ(A)− 1 or σ(A) + 1.

Proof. Let λ1 ≤ · · · ≤ λn be the eigenvalues of A, and let λ+1 ≤ · · · ≤ λ+n+1 be the
eigenvalues of A+. Cauchy’s interlacing theorem states that

λ+1 ≤ λ1 ≤ λ
+
2 ≤ · · · ≤ λn ≤ λ

+
n+1.

Hence, the number of negative eigenvalues of A+ is at least the number of negative
eigenvalues of A, and similarly the number of positive eigenvalues of A+ is at least
the number of positive eigenvalues of A. �

Lemma 4.6. Let V be a solid torus embedded in S3. Pick a slope λ on ∂V that
has winding number 1 in V . Let K be the knot on ∂V that has slope pλ + qµ,
where µ is the meridian of V , and where p is even and q is odd. Then K bounds
a compact unoriented surface F in V with the property that the Goeritz form GF
satisfies |σ(GF ) + κ(p, q)| ≤ 2.

Proof. Because p is even, K bounds a compact surface F in V . We may pick a basis
e1, . . . , en for H1(F ) so that e1, . . . , en−1 have zero winding number around V . Let
V ′ be an embedding of V in S3 such that K is sent to T (p, q). Let F ′ be the image
of F .

We claim that the Goeritz forms GF and GF ′ agree on the first n− 1 rows and
columns. To prove this, we view V ′ as the regular neighbourhood of a standard
unknot embedded in the horizontal plane. Then, up to isotopy, V can be obtained
from V ′ by applying Reidemeister moves and crossing changes to this unknot. None
of these moves affects the first n− 1 rows and columns of the Goeritz form, for the
following reason. Any given entry of the Goeritz form is lk(bi, b

′
j) for a suitable curve

bi in the surface and b′j the double push-off of another curve in the surface. When
the entry of the Goeritz form lies in the first n− 1 rows and columns, these curves
bi and b′j have zero winding number around the solid torus. Hence, geometrically,
bi winds an equal number of times around the solid torus in opposite directions,
as does b′j . So, when we perform a Reidemeister move or a crossing change to the
solid torus, and we compare the resulting projections of bi ∪ b′j to the horizontal
plane, the sum of the signs of the crossings between bi and b′j remains unchanged.
This sum is 2 lk(bi, b

′
j). This proves the claim.

Hence, by Lemma 4.5, we have |σ(GF ) − σ(GF ′)| ≤ 2. But σ(GF ′) = −κ(p, q)
by Lemma 4.4. �

5. Highly twisted knots

The following is Theorem 1.8 from the introduction:

Theorem 1.8. Let K be a knot in the 3-sphere, and let C1, . . . , Cn be a collection
of disjoint simple closed curves in the complement of K that bound disjoint discs.
Suppose that S3 \ (K ∪ C1 ∪ · · · ∪ Cn) is hyperbolic. Let K(q1, . . . , qn) be the knot
obtained from K by adding qi full twists to the strings going through Ci, for each
i ∈ {1, . . . , n}. Let `i be the linking number between Ci and K, when they are both
given some orientation. Suppose that `1, . . . , `m are even and `m+1, . . . , `n are odd.
Then there is a constant k, depending on K and C1, . . . , Cn, such that the following
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hold, provided each |qi| is sufficiently large:∣∣∣∣∣slope(K(q1, . . . , qn)) +

n∑
i=1

`2i qi

∣∣∣∣∣ ≤ k;

∣∣∣∣∣σ(K(q1, . . . , qn)) +

(
1

2

m∑
i=1

`2i qi +
1

2

n∑
i=m+1

(`2i − 1)qi

)∣∣∣∣∣ ≤ k.
One can use this to show that the factor inj(K)−3 cannot simply be dropped

from Theorem 1.1 (cf. Conjecture 7.4 for what we expect for random knots):

Corollary 5.1. There does not exist a constant c2 such that

|2σ(K)− slope(K)| ≤ c2 vol(K)

for every hyperbolic knot K.

Proof. Pick n = 1 and `1 = 3. Then slope(K(q1)) ∼ −9q1, whereas 2σ(K(q1)) ∼
−8q1. On the other hand vol(K(q1)) is bounded. �

Proof of Theorem 1.8. The knot K(q1, . . . , qn) is obtained by performing −1/qi
surgery on Ci, for each i ∈ {1, . . . , n}. Let L denote the link K ∪C1 ∪ · · · ∪Cn. By
Thurston’s Hyperbolic Dehn Surgery theorem, as all the |qi| tend to infinity, the
hyperbolic structures on S3 \K(q1, . . . , qn) tend in the geometric topology to the
hyperbolic structure on S3 \L. In fact, more it true. Fix a horoball neighbourhood
N of the cusps of S3 \ L that is small enough so that the cusp torus T surround-
ing K lies in the complement of N . Then, if all the |qi| are sufficiently large, the
inclusion (S3 \L) \N → S3 \K(q1, . . . , qm) is a bi-Lipschitz homeomorphism onto
its image, with bi-Lipschitz constants that tend to 1 as all the |qi| tend to infinity.
(See [3] for instance.)

Let λ(K) be the longitude and µ(K) the meridian of K. These form a basis of
the lattice Λ(K), where the cusp torus of K in S3 \ L is C/Λ(K). Let γ be the
image of λ(K) and µ the image of µ(K) on the cusp torus C/Λ(K(q1, . . . , qn)) of
K(q1, . . . , qn). The curves γ and µ form a basis of the lattice Λ(K(q1, . . . , qn)). So,
we may assume that γ and µ are approximately constant complex numbers when
|qi| are large. However, we have not normalised the lattice so that γ is real. We
know that there is some N ∈ R+ such that

Nµ⊥ = γ − s′µ

for some s′ ∈ R. Here, N , µ⊥, γ, s′, and µ all depend on q1, . . . , qn. But N and s′

tend to fixed real numbers as the |qi| go to infinity.
The key observation is that γ is not necessarily the longitude λ for K(q1, . . . , qn).

In fact, the linking number between γ and K(q1, . . . , qn) is
∑
i `

2
i qi; see Figure 8.

For suppose that the disc bounded by Ci intersects K in p− points of negative sign
and p+ points of positive sign. So, `i = p+−p−. Then, when we perform a full twist
about Ci, we introduce 2(p+ +p−)2 new crossings between γ and K(q1, . . . , qn). Of
these, 2(p2+ + p2−) have positive sign and 4p+p− have negative sign. So the linking
number between γ and K(q1, . . . , qn) changes by

p2+ + p2− − 2p+p− = `2i .
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Figure 8. Each full twist about Ci changes the linking number
between γ and K(q1, . . . , qn) by `2i .

It follows that

γ = λ+

(
n∑
i=1

`2i qi

)
µ,

and hence

Nµ⊥ = λ−

(
s′ −

n∑
i=1

`iq
2
i

)
µ.

We conclude that slope(K(q1, . . . , qn)) = s′ −
∑n
i=1 `iq

2
i . On the other hand, there

is a constant k such that |s′| ≤ k if |q1|, . . . , |qn| are sufficiently large, which implies
the first inequality of the theorem.

Recall that `m+1, . . . , `n are odd. Suppose that qm+1, . . . , qr are even and that
qr+1, . . . , qn are odd. Let µm+1, . . . , µr be meridians for Cm+1, . . . , Cr, respectively.
Let F be a spanning surface for

K ∪ µm+1 ∪ · · · ∪ µr ∪ Cr+1 ∪ · · · ∪ Cn.

Since this link has even linking number with each component of C1∪· · ·∪Cr, we may
choose this spanning surface to be disjoint from these components. We can view
this surface as properly embedded in the exterior of K ∪C1∪ · · ·∪Cn. It is disjoint
from ∂N(C1) ∪ · · · ∩ ∂N(Cm). We have F ∩ ∂N(Ci) = µi for i ∈ {m + 1, . . . , r}.
For i ∈ {r + 1, . . . , n}, the curve F ∩ ∂N(Ci) has slope equal to a longitude plus
an odd number of meridians. By choosing the surface appropriately, we can ensure
that this odd number is 1.

Now perform surgery along C1, . . . , Cn. The surface becomes a surface in the
exterior of the new link. On ∂N(Ci) for i ∈ {m+ 1, . . . , r}, it now has slope equal
to a meridian plus qi longitudes. On ∂N(Ci) for i ∈ {r+ 1, . . . , n}, it is a meridian
plus qi + 1 longitudes. Since we are assuming that |qi| is sufficiently large, we can
suppose that qi 6= 0,−1 and hence that this slope is not meridional. Within each



THE SIGNATURE AND CUSP GEOMETRY OF HYPERBOLIC KNOTS 18

solid torus N(Cm+1), . . . , N(Cn), we can now insert a surface, as shown in Figure 9.
Let F ′ denote the resulting spanning surface of K(q1, . . . , qn).

Figure 9. The part of the spanning surface in N(Ci) for i ≥ m+1.
Here, qi = 5 or 6.

Also shown in Figure 9 is a collection of generators for H1(F ′ ∩ N(Ci)) for
i ≥ m + 1. Note that H1(F ′ ∩ N(Ci)), for i ≥ m + 1, form direct summands of
H1(F ′). So we can extend this set of generators to a basis of H1(F ′), by adding
further elements of H1(F ). The associated Goeritz form GF is diagonal when
restricted to the rows and columns corresponding to H1(F ′ ∩ N(C1 ∪ · · · ∪ Cn)).
Each Ci gives rise to |qi|/2 diagonal entries when m + 1 ≤ i ≤ r and |qi + 1|/2
entries when r + 1 ≤ i ≤ n. These entries are +1 when qi is positive and −1 when
qi is negative. Hence, the signature of this matrix differs from

∑n
i=m+1 qi/2 by at

most (n− r)/2. So, applying Lemma 4.5,∣∣∣∣∣σ(GF ′)−
n∑

i=m+1

qi/2

∣∣∣∣∣
is bounded.

Theorem 4.1 due to Gordon and Litherland states that

σ(K(q1, . . . , qn)) = σ(GF ′) +
e(F ′)

2
.

Here

e(F ′) = −lk(K(q1, . . . , qn), ∂F ′) = −lk(K, ∂F ′)−
n∑
i=1

`2i qi.

The second inequality of the theorem follows immediately. �

6. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 from the introduction:
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Theorem 1.3. Let ε3 be the Margulis constant, and let ε ∈ (0, ε3). Then there is
a constant c4 (depending on ε) such that for any hyperbolic knot K, the quantities
σ(K) and

slope(K)/2−
∑

γ∈OddGeo(ε/2)

κ(twp(γ), twq(γ))

differ by at most c4 vol(K).

Note that if we set ε = ε3/2, then c4 then becomes a universal constant. However,
given the present uncertainty about the precise value of ε3, we do not specify ε
definitively.

Definition 6.1. Let γ be an embedded closed geodesic in the hyperbolic 3-manifold
M , and let N(γ) be a regular neighbourhood of γ consisting of points at most a
certain distance r from γ. Let γ̃ be a component of the inverse image of γ in H3,
which we can take to be {(0, 0, z) : z > 0} in the upper half-space model. Let N(γ̃)
be the component of the inverse image of N(γ) containing γ̃. We let λ be the slope
on ∂N(γ) that has winding number one around N(γ) and that lifts to a path in
N(γ̃) starting on the half-plane {(x, y, z) : y = 0, x ≥ 0} and with interior that is
disjoint from the half plane {(x, y, z) : y = 0, x ≤ 0}. In the event that this path
ends precisely on the half plane {(x, y, z) : y = 0, x ≤ 0}, λ is chosen so that it
avoids {(x, y, z) : y ≤ 0, x = 0}. Then λ is called the canonical longitude of γ. Note
that it does not necessarily have zero linking number with γ.

There is the following alternative interpretation of the canonical longitude in
terms of the complex length of γ. We give T = ∂N(γ) its inherited Riemannian
metric. This is homogeneous, since any two points of T differ by an isometry
of T . The metric on T therefore has constant curvature, which must be zero by
the Gauss–Bonnet theorem. It is therefore Euclidean. We can represent it as the
quotient of the Euclidean plane E2 by a lattice L. Each slope on T corresponds to
a lattice point. We can assume that the lattice point corresponding to the meridian
is a purely imaginary number µ. As the circumference of a radius r circle in the
hyperbolic plane is 2π sinh(r), we have

µ = 2π sinh(r)i,

where r is the radius of the tube around γ. Let ν be a geodesic in T that is
perpendicular to a meridian and that starts and ends on the meridian (but not
necessarily at the same point). Then

`(ν) = cosh(r) Re(cl(γ)),

where cl(γ) is the complex length of the geodesic γ and Re(cl(γ)) = `(γ); see [10,
Equation (2.2)]. Then the canonical longitude of T is

λ = cosh(r) Re(cl(γ)) + sinh(r)Im(cl(γ))i.

The significance of the twisting parameter arises from the following lemma.

Lemma 6.2. Let M be a hyperbolic 3-manifold and ε ∈ (0, ε3). Let γ be a geodesic
in M with `(γ) < ε/2. Let T be the toral boundary component of M(0,3ε/4] that
encloses γ, let µ ⊂ T be a meridian of γ and let λ be the canonical longitude. If
(p, q) = (twp(γ), twq(γ)), then

`(pλ+ qµ) ≤ c5 Area(T )

for some constant c5 depending only on ε.
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Proof. By the Margulis lemma, the component V of M(0,3ε/4] containing T is a
solid torus, with γ as a core curve. We claim that the tube radius r of V satisfies
r > ε/8. Indeed, note that γ has length `(γ) < ε/2, whereas at each point y ∈ T ,
the open ball B(y, 3ε/8) is embedded. If r < 3ε/8 and x ∈ γ satisfies d(x, y) = r,
then B(x, 3ε/8− r) ⊂ B(y, 3ε/8) is an embedded ball about x. So

3ε/8− r < `(γ)/2 < ε/4,

and hence r > ε/8, as claimed.
Suppose that γ0 is a shortest geodesic on T , and let L := `(γ0). We claim that

L ∈ [k0, k
′
0]

for constants k0, k′0 ∈ R+ depending only on ε. Since T ⊂ ∂M(0,3ε/4], every point

p ∈ T has two lifts to H3 that are exactly 3ε/4 apart, and no two lifts of p are less
than 3ε/4 apart. The meridian of T has length

`(µ) = 2π sinh(r) > 2π sinh(ε/8).

If s is a slope different from the meridian, then [s] = m[γ] ∈ π1(M) for m 6= 0. As
[γ] has infinite order in π1(M), the lift s̃ of s to H3 satisfies s̃(0) 6= s̃(1). Then

`(s) ≥ dH3(s̃(0), s̃(1)) ≥ 3ε/4,

so we can set k0 := min(3ε/4, 2π sinh(ε/8)).
We now give an upper bound on L. Let s be a slope on T whose lift s̃ to H3

satisfies dH3(s̃(0), s̃(1)) = 3ε/4. This is again possible since T ⊂ ∂M(0,3ε/4]. If
r ≤ 2ε, then L ≤ |µ| ≤ 2π sinh(2ε). Now suppose that r > 2ε. Let N(γ) ⊂ V be a

regular neighbourhood of γ of radius r − ε. Let β̃ be a geodesic in H3 connecting
s̃(0) and s̃(1), and let β be its projection to M . Then β is a geodesic homotopic
to s of length 3ε/4, which hence lies in V \ N(γ). The nearest point projection
ϕ : V \N(γ)→ T satisfies `(ϕ(β)) ≤ l0`(β) = l0(3ε/4) for a constant l0 depending
only on ε. Hence

L ≤ k′0 := max(2π sinh(2ε), 3l0ε/4),

as claimed.
A consequence of L ≥ k0 is that Area(T ) ≥ a0 for a constant a0 depending

only on ε. Indeed, a disc D of radius L/2 on T about an arbitrary point of T is
embedded, so

Area(T ) ≥ Area(D) = (L/2)2π ≥ (k0/2)2π =: a0.

We claim the length of the shortest curve in any nontrivial class in H1(T ;Z2) is
at most k1 Area(T ) for a constant k1 depending on ε. Indeed, let γ⊥0 : I → T be
a geodesic arc starting and ending on the shortest geodesic γ0 and orthogonal to
it. Then `(γ⊥0 ) = Area(T )/L. The points γ⊥0 (0) and γ⊥0 (1) divide γ0 into two arcs,
one of which has length at most L/2. Let γ1 be a geodesic representative of the
closed curve that runs along γ⊥0 and then along the shorter of the two arcs in γ0.
We obtain that

`(γ1) ≤ L/2 + Area(T )/L.

The curves γ0 and γ1 give a basis for H1(T ;Z2). Hence, the shortest representative
of every nontrivial class in H1(T ;Z2) is at most L + (L/2 + Area(T )/L). As L ∈
[k0, k

′
0] and Area(T ) ≥ a0, we have

L+ (L/2 + Area(T )/L) ≤ k1 Area(T )
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for k1 := 3
2
k′0
a0

+ 1
k0

. Indeed,

3

2
L ≤ 3

2
k′0 =

(
k1 −

1

k0

)
a0 ≤

(
k1 −

1

L

)
Area(T ).

So there is some slope (a, b) on T with a even and b odd such that

`(aλ+ bµ) ≤ k1 Area(T )

for some constant k1 depending on ε.
Let T ′ be the torus obtained from T by scaling by tanh(r) in the ν-direction. As

r > ε/8, we have tanh(r) ∈ (tanh(ε/8), 1). Since tanh(r) < 1, the shortest slope
(p, q) on T ′ with p even and q odd has length at most k1 Area(T ). The lattice that
specifies T ′ is generated by

λ′ := tanh(r) cosh(r) Re(cl(γ)) + sinh(r)Im(cl(γ))i = sinh(r)cl(γ)

and µ = 2π sinh(r)i. So

`(pλ′ + qµ) = |cl(γ)p+ 2πiq|| sinh(r)|.
Hence, by Definition 1.2, the slope pλ′ + qµ on T ′ is the shortest among slopes for
which p is even and q is odd. Therefore, its length on T ′ is at most k1 Area(T ). So

`(pλ+ qµ) ≤ (k1/ tanh(r)) Area(T ) < (k1/ tanh(ε/8)) Area(T ).

So we can set c5 := k1/ tanh(ε/8), which concludes the proof of the lemma. �

Proof of Theorem 1.3. We claim that we can build a triangulation T of M[3ε/4,∞)

with the following properties:

(1) The number of tetrahedra of T is at most c vol(K), where c depends on ε.
(2) If n is a closest even integer to slope(K), then some Euclidean geodesic with

slope λ−nµ on ∂N(K) is a normal curve in ∂M[3ε/4,∞) that intersects each
edge of T at most once.

(3) On the component T of ∂M[3ε/4,∞) corresponding to ∂N(K), the edges of
T are Euclidean geodesics with length at most ε/15.

We follow the construction in the proof of Proposition 3.1, but with different
constants. We pick a maximal collection of points in ∂M[3ε/4,∞) that are at least
ε/30 apart. We then add points to this collection in the interior of M[3ε/4,∞) that
have distance at least ε/15 from each other and from the earlier points. We stop
when it is not possible to add any further points, and denote the resulting collection
by P . We then form the associated Voronoi diagram, subdivide the 2-cells of this cell
structure into triangles without adding any new vertices, and then triangulate each
3-cell by coning from the relevant point of P . Let T be the resulting triangulation
of M[3ε/4,∞).

Exactly the same argument as in the proof of Proposition 3.1 gives that the
number of tetrahedra of T is at most c vol(K), where c depends on ε. The length of
each edge in ∂M[3ε/4,∞) is now at most ε/15, because we took points that were at
least ε/30 apart, rather than at least ε/8 apart. Thus, all that needs to be proved
are that the edges of T in T are Euclidean geodesics and that there is a Euclidean
geodesic with slope λ− nµ on ∂N(K) which is a normal curve in ∂M[3ε/4,∞) that
intersects each edge of T at most once.

We start by showing that the edges of T in T are Euclidean geodesics. Following
the proof of Proposition 3.1, we need to show that, for each point x on T , its closest
points in P all lie in T and have distance at most ε/30 from x. We also need to
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show that the shortest geodesic joining x to any of these points remains within the
cusp. The first of these statements holds by our choice of P .

Note that T lies within M(0,ε]. By definition of the Margulis constant, M(0,ε]

consists of a cusp and some regular neighbourhoods of geodesics with length at
most ε. The Euclidean metrics on T and the cusp component of ∂M(0,ε] differ by
a Euclidean scale factor of 4/3, and hence are hyperbolic distance ln(4/3) > 0.287
from each other. On the other hand, the 3-dimensional Margulis constant satisfies
ε3 < 0.775. (See the discussion in [11, Section 1.1].) Hence, ε/30 < ln(4/3). We
deduce that for each point x in T , any shortest geodesic to a closest point in P must
lie in the cusp. This implies that the restriction to T of the Voronoi diagram for P
in M is equal to the Voronoi diagram for P ∩ T in T with its Euclidean metric. In
particular, the edges of T in T are Euclidean geodesics, as claimed in (3).

Let Nmax be a maximal cusp neighbourhood around K. Then Nmax contains T .
This torus T is a scaled copy of ∂Nmax. It is scaled so that for each point on T ,
two lifts of this point in H3 are exactly 3ε/4 apart and no two lifts of this point are
any closer than this. Say that d is the hyperbolic distance between T and ∂Nmax.
Then the scale factor taking ∂Nmax to T is e−d. Now the meridian slope on ∂Nmax

has length at most 6. Hence, the meridian slope on T has length at most 6e−d. So
any point on T has two lifts to H3 that are less than 6e−d apart, and therefore,
3ε/4 ≤ 6e−d. As in the proof of Proposition 3.1, let h be the length in ∂Nmax of a
Euclidean geodesic that starts and ends on a geodesic with slope λ−nµ and that is
orthogonal to this geodesic. It was shown there that h ≥ 0.55. Hence, the length of
the corresponding geodesic on T is at least 0.55e−d ≥ (0.55/6)(3ε/4). On the other
hand, the length of each edge of T on T is at most ε/15, and ε/15 < (0.55/6)(3ε/4).
Hence, each such edge can intersect any geodesic with slope λ− nµ at most once.
This establishes the claimed properties of T .

Let T1, . . . , Tm be the components of ∂M[3ε/4,∞), where Ti encircles a geodesic
γi ∈ OddGeo(ε/2). Let tw(γi) = pλi + qµi, where λi is the canonical longitude on
Ti and µi is the meridian, and let Ci be a curve on Ti with this slope. Then

`(Ci) ≤ c5 Area(Ti)

by Lemma 6.2. Let

C :=
m⋃
i=1

Ci.

Realise each Ci as a Euclidean geodesic in Ti missing the vertices of Ti, and hence
as a normal curve in Ti. Since `(Ci) ≤ c5 Area(Ti) and by property (3) of the
triangulation T , the normal representative of Ci intersects each edge of T at most
c′5 Area(Ti) times for a constant c′5 depending only on ε.

We claim that there is a connected normal curve C ′i in Ti for i ∈ {1, . . . ,m} with
the following properties:

(1) C ′i and Ci are equal in H1(Ti;Z2);
(2) C ′i intersects each edge of T at most once.

This is constructed as follows. For each edge of T that intersects Ci an odd number
of times, replace this intersection by a single point of intersection. These will be the
points of intersection between C ′i and the 1-skeleton of T . Since |Ci∩∂t| is even for
each triangle t of T , we have |C ′i ∩ ∂t| ∈ {0, 2}. If |C ′i ∩ ∂t| = 2, join the two points
of C ′i ∩ ∂t by a normal arc of C ′i. The result is a collection of simple closed curves
in Ti that are mod 2 homologous to Ci. If any of these curves are inessential in Ti,
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remove them. The resulting curves are essential in Ti. Since they are non-trivial
in mod 2 homology, they consist of an odd number of parallel copies of a curve. If
this odd number is greater than one, remove all but one of these curves. The result
is C ′i, and we write

C ′ :=

m⋃
i=1

C ′i.

Let C ′′ be the union of C ′ and a normal curve CK of slope (1,−n) on ∂N(K),
where n is a closest even integer to slope(K). We claim that C ′′ bounds an un-
oriented surface in M[3ε/4,∞). As n is even, there is a compact surface properly
embedded in the exterior of K with boundary slope (1,−n). It intersects each
geodesic with length at most ε/2 in a collection of meridians. For a geodesic with
odd linking number with K, the number of these meridians is odd. For the others,
it is even. As C ′i is homologous to the meridian of Ti over Z2, we may modify the
surface so that its boundary is precisely C ′′. This proves the claim.

As C ′′ intersects each edge of T at most once, we can find a surface F ′′ in
M[ε/2,∞) that it bounds such that

−χ(F ′′) ≤ c6 vol(K)

for some constant c6, just like in the proof of Theorem 1.7. Now Ci and C ′i are
equal in H1(Ti;Z2). Hence, we may insert a compact connected surface Fi into a
regular neighbourhood N(Ti) of Ti with ∂Fi = Ci ∪ C ′i. Since Ci and C ′i intersect
each edge of T at most c′5 Area(Ti) times, this surface may be chosen so that

−χ(Fi) ≤ c′′5 Area(Ti)

for a constant c′′5 depending only on ε. Hence, the surface

F := F ′′ ∪
m⋃
i=1

Fi ⊂M[3ε/4,∞)

satisfies ∂F = CK ∪ C, and

(6.3) − χ(F ) ≤ c6 vol(K) +

m∑
i=1

c′′5 Area(Ti) ≤ c7 vol(K)

for a constant c7 that depends only on ε. Here, the last inequality follows from the
observation that Area(Ti) ≤ c8 vol(N(Ti)) for some constant c8, where

N(Ti) := {x ∈ Vi : d(x, Ti) ≤ ri/2 },

and Vi is the solid toral component of M(0,3ε/4] of tube radius ri that encloses the
geodesic γi ∈ OddGeo(ε/2).

In each Vi, we construct the surface provided by Lemma 4.6 with boundary
Ci = C ∩ Vi. We attach these surfaces to F to form a surface F+. We now specify
a basis for H1(F+). We start by picking a basis for H1(V1 ∩ F+). We arrange that
all but one of these basis elements have zero winding number around V1. We then
continue to V2, and so on. We then extend this to a basis for H1(F+) by adding
some oriented curves in F . We order this basis as follows into n+ 1 blocks. In the
first block, we place all the basis elements of H1(V1 ∩ F+) that have zero winding
number around V1. In the second block, we do the same for V2, and so on. In
the final block, we place all the remaining basis elements. We saw in the proof of
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Figure 10. The distribution of

c1(K) := |2σ(K)− slope(K)| inj(K)3/ vol(K)

for knots up to 16 crossings in the Regina census.

Lemma 6.2 that there is a constant a0 depending only on ε such that Area(Ti) ≥ a0.
As
∑m
i=1 Area(Ti) ≤ c8 vol(K), we have

|OddGeo(ε/2)| ≤ c8 vol(K)/a0.

This, together with equation (6.3), imply that the number of elements in this final
block is bounded above by a linear function of vol(K).

Let G be the submatrix of the Goeritz form GF+
consisting of the first n blocks.

By Lemma 4.5, σ(G) and σ(GF ) differ by at most the number of elements in the
final block. Note that G is block diagonal. For the block corresponding to Vi, the
signature differs from σ(GF+∩Vi) by at most one by Lemma 4.5. On the other hand,

|σ(GF+∩Vi
) + κ(twp(γi), twq(γi))| ≤ 2

by Lemma 4.6. Hence,∣∣∣∣∣∣σ(GF+) +
∑

γ∈OddGeo(ε/2)

κ(twp(γi), twq(γi))

∣∣∣∣∣∣ ≤ c9 vol(K)

for some constant c9. By Gordon and Litherland’s theorem (Theorem 4.1),

σ(K) = σ(GF+) + e(F+)/2 = σ(GF+) + n/2.

The result follows as n is a closest even integer to slope(K). �

7. Experimental data and some conjectures about random knots

We set out to find links between hyperbolic and 4-dimensional knot invariants.
Initial scatter plots compared some 4-dimensional invariants (the signature and
Heegaard Floer invariants τ , ν, and ε), the crossing number, and several hyperbolic
invariants (volume, meridional and longitudinal translations, and the Chern–Simons
invariant). As σ is strongly correlated to τ , ν, and ε, we decided to only focus on
σ, which is more classical and easier to compute.

The strongest and most surprising correlation was between the signature and
the real part of the meridional translation; see Figure 2. There were some more
predictable relationships among the hyperbolic invariants.
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Figure 11. The maximum (left) and the mean (right) of c1(K)
as functions of the crossing number for knots up to 16 crossings in
the Regina census.

Figure 12. A scatter plot of injectivity radius versus volume for
random knots of 10-80 crossings.

Figure 10 shows the distribution of

c1(K) := |2σ(K)− slope(K)| inj(K)3/ vol(K),

which indicates that the constant c1 appearing in Theorem 1.1 is typically quite
small. The largest value of this quantity we managed to obtain is less than 0.234,
and we conjecture it is always at most 0.3. The left of Figure 11 shows the maximum
and the right the mean of c1(K) by crossing number for the Regina census of knots
of at most 16 crossings. See Figure 12 for a scatter plot of injectivity radius versus
volume for random hyperbolic knots of 10-80 crossings. This suggests that the
injectivity radius is typically not too small as the volume increases.

We will say that a property P holds asymptotically almost surely, or a.a.s., in
short, if the probability that P holds for knots of n crossings tends to 1 as n→∞.

It is known that there is a constant A such that vol(K) ≤ Ac(K), where c(K)
is the crossing number of K. From scatter plots, one might conjecture that there
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is a constant a such that a c(K) ≤ vol(K) a.a.s. Such an inequality cannot hold
for all hyperbolic knots K. For example, consider twist knots. More generally, the
highly twisted knots considered in Section 5 have bounded volume but unbounded
crossing number.

We now consider the behaviour of the signature σ(K) for random knots K. By
Theorem 4.1, σ(K) can be computed from the black surface of a checkerboard
colouring of a diagram of K. Hence, it is the signature of a c(K) × c(K) matrix.
If the signs of the eigenvalues of this matrix were independently distributed, then
the expected value of |σ(K)| would be C

√
c(K) for some constant C. From com-

putational evidence, it appears the constant is about 2. Based on this heuristic, we
introduce the following definition:

Definition 7.1. The normalised signature of a hyperbolic knot K is

σ̂(K) :=
σ(K)√
vol(K)

.

We use the volume instead of the crossing number as it is easier to compute
using SnapPy and is more regular.

Based on Figure 2, we initially conjectured that for any hyperbolic knot K in S3

with |σ̂(K)| > 1, the signature σ(K) and Re(µ(K)) have the same sign. However,
this turns out not to be true.

Corollary 7.2. There exists a hyperbolic knot K with |σ̂(K)| > 1, but with σ(K)
and Re(µ(K)) having opposite signs.

Proof. We start with a hyperbolic link K ∪C1 ∪C2 in S3 where C1 and C2 bound
disjoint embedded discs, and where `1 = lk(K,C1) = 2 and `2 = lk(K,C2) = 3.
We then build the highly twisted knots K(q1, q2) as in Theorem 1.8. Set q1 = 17q
and q2 = −8q, where q is a large positive integer. Then

slope(K(q1, q2)) ∼ −4 · 17q + 9 · 8q = 4q, whereas

σ(K(q1, q2)) ∼ −2 · 17q + 4 · 8q = −2q.

Hence, for q sufficiently large, σ(K(q1, q2)) and slope(K(q1, q2)) have opposite signs,
and hence σ(K(q1, q2)) and Re(µ(K(q1, q2))) also have opposite signs by Lemma 2.4.
Note that σ̂(K(q1, q2)) > 1 if q is sufficiently large, because |σ(K(q1, q2))| tends to
infinity whereas vol(K(q1, q2)) is bounded. �

However, we do conjecture the following:

Conjecture 7.3. If K is a hyperbolic knot in S3 with |σ̂(K)| > 1, then σ(K) and
Re(µ(K)) have the same sign asymptotically almost surely.

We also state the following conjecture, which proposes a more precise relationship
between slope and signature.

Conjecture 7.4. There are constants b and c such that, for any hyperbolic knot
K in S3, we have

(7.5) |2σ(K)− slope(K)| ≤ b
√

vol(K) + c

asymptotically almost surely.
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Figure 13. The distribution of

(2σ(K)− slope(K))/
√

vol(K)

for knots up to 16 crossings in the Regina census.

By Corollary 5.1, this does not hold for all knots either. In fact, there are families
of hyperbolic knots for which |2σ(K)−slope(K)| is not bounded by a linear function
of the volume.

The proof of Theorem 1.1 provides some heuristic for Conjecture 7.4. Indeed,
if we assume that the signs of the eigenvalues of the Goeritz matrix GF are inde-
pendent, then the signature on average is of order

√
c(K). This justifies the factor√

vol(K) in the upper bound.
If b < 2 (and the data supports this; see Figure 13), then Conjecture 7.4 implies

Conjecture 7.3 for knots K with sufficiently large volume a.a.s. This is because
equation (7.5) is equivalent to the inequality∣∣∣2σ̂(K)−

(
slope(K)/

√
vol(K)

)∣∣∣ ≤ b+ c/
√

vol(K).

If b < 2, then b + c/
√

vol(K) < 2 for all knots with sufficiently large volume. So,
if |σ̂(K)| > 1, then σ̂(K) and slope(K) have the same sign.
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