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Abstract

We provide two new proofs of a theorem of Cooper, Long and Reid which asserts

that, apart from an explicit finite list of exceptional manifolds, any compact orientable

irreducible 3-manifold with non-empty boundary has large fundamental group. The first

proof is direct and topological; the second is group-theoretic. These techniques are then

applied to prove a string of results about (possibly closed) 3-orbifolds, which culminate

in the following theorem. If K is a knot in a compact orientable 3-manifold M , such

that the complement of K admits a finite-volume hyperbolic structure, then the orbifold

obtained by assigning a singularity of order n along K has large fundamental group, for

infinitely many positive integers n. We also obtain information about this set of values

of n. When M is the 3-sphere, this has implications for the cyclic branched covers over

the knot. In this case, we may also weaken the hypothesis that the complement of K is

hyperbolic to the assumption that K is non-trivial.

1. Introduction

One of the key unresolved problems in 3-manifold theory is the Virtually

Haken Conjecture. This asserts that if M is a closed orientable hyperbolic 3-

manifold, then M has a finite-sheeted cover containing a properly embedded ori-

entable incompressible surface (other than a 2-sphere). There are a range of

stronger forms of this conjecture, possibly the strongest of which proposes that

the fundamental group of M is ‘large’. This means that it has a finite index

subgroup that admits a surjective homomorphism onto a non-abelian free group.

The covering space of M corresponding to such a finite index subgroup contains

the required incompressible surface. But large groups have many other nice prop-

erties. For example, they have finite index subgroups with arbitrarily large first

Betti number. In this paper, we will exhibit several classes of 3-manifolds and

3-orbifolds with large fundamental group. We start with a rapid and surprisingly

elementary proof of the following theorem of Cooper, Long and Reid.
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Theorem 2.1. [5] Let M be a compact orientable irreducible 3-manifold with

non-empty boundary. Then, either M is an I-bundle over a surface with non-

negative Euler characteristic or π1(M) is large.

The original proof by Cooper, Long and Reid relied on some delicate and

complicated 3-dimensional techniques. However, their aim was somewhat different

from ours. They first showed that a compact orientable hyperbolic 3-manifold M

with non-empty boundary (other than an I-bundle over a surface) has a finite-

sheeted cover that contains a closed embedded orientable incompressible surface

(other than a 2-sphere) that is not boundary parallel. Further work was then

required to ensure that this surface is non-separating, and yet more work was

necessary to find two such surfaces whose union is non-separating. This then

implies that π1(M) is large. Establishing these results were hard work, particularly

when ∂M does not consist entirely of tori. However, if one is content solely with

proving that π1(M) is large, without establishing the existence of a closed essential

surface in some finite cover, then most of the difficult 3-dimensional arguments

can be sidestepped, as we shall see.

It is interesting to note that, in fact, one can almost entirely dispense with the

topology and prove Theorem 2.1 using primarily group-theoretic techniques (at

least in the main case, when M is hyperbolic). We supply such a proof, which uses

a recent theorem of the author, that gives a criterion for a finitely presented group

to be large, in terms of the behaviour of its finite index subgroups [9]. However,

there is still topology lurking in the background, as this largeness criterion was

proved using topological methods.

One of the main reasons why the topological proof of Theorem 2.1 is useful is

that it naturally extends to certain 3-orbifolds. We pursue this line of investigation

in §3, and give a brief description of these results below. These provide new classes

of 3-orbifolds (and hence 3-manifolds) that have large fundamental group.

Throughout this paper, an orbifold is allowed to have empty singular locus,

and hence be a manifold. If O is a 3-orbifold and L is a link in O disjoint from the

singular locus and n is a positive integer, then we denote by O(L, n) the orbifold

obtained from O by adding singularities along L of order n. We will prove a

sequence of results about 3-orbifolds, which lead to the following.
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Theorem 3.6. Let O be a compact orientable 3-orbifold (with possibly empty

singular locus), and let K be a knot in O, disjoint from its singular locus, such

that O −K has a finite volume hyperbolic structure. Then, for infinitely many

values of n, π1(O(K, n)) is large.

Setting O to be the 3-sphere in Theorem 3.6, this applies to the much studied

case of cyclic branched covers over hyperbolic classical knots. In fact, by use of

the Orbifold Theorem and applying results from §3, we can obtain the following

information about branched covers over any non-trivial knot in the 3-sphere.

Theorem 3.7. Let K be a non-trivial knot in the 3-sphere, and let m be any

integer more than two. Then, for all sufficiently large n, the mn-fold cyclic cover

of S3 branched over K has large fundamental group.

Some parts of this paper present new proofs of known results; other bits give

new theorems. However, the outstanding paper of Cooper, Long and Reid [5] has

exerted a strong influence throughout.

Another simple proof of Theorem 2.1 has appeared recently, due to Button

[3]. He showed that it can be deduced quite quickly from Howie’s criterion [7] for

a group to be large. Ratcliffe also established largeness in the case where M has a

boundary component with genus at least two in [14], providing a very quick proof

based on a theorem of Baumslag and Pride [1].

2. Bounded 3-manifolds

Our goal in this section is to provide two new proofs of the following theorem.

Theorem 2.1. [5] Let M be a compact orientable irreducible 3-manifold with

non-empty boundary. Then, either M is an I-bundle over a surface with non-

negative Euler characteristic or π1(M) is large.

The principle reason why compact orientable 3-manifolds with non-empty

boundary are more tractable than closed manifolds is the following result. This

gives a lower bound on the rank of their cohomology in terms of the genus of their

boundary. This result is a well known consequence of Poincaré duality.
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Proposition 2.2. Let M be a compact orientable 3-manifold, and let i:P → M

be the inclusion of a compact (possibly empty) subsurface of ∂M . Then

rank(ker(i∗:H1(M) → H1(P ))) ≥ 1

2
b1(∂M)− b1(P ).

To establish largeness, we will use the following well known lemma.

Lemma 2.3. Let M be a compact 3-manifold. Suppose that M contains two

disjoint, transversely oriented, properly embedded surfaces whose union is non-

separating. Then π1(M) admits a surjective homomorphism onto Z ∗ Z.

Proof. Let S1 and S2 be the two surfaces. There is the following collapsing map

f :M → S1 ∨ S1. The restriction of f to a regular neighbourhood N (Si) is the

composition of the homeomorphism N (Si) → Si × I with projection onto the I

factor, followed by the quotient map from I to the circle that glues the ends of the

interval together, composed with the inclusion into the ith circle of S1 ∨ S1. The

map sends the remainder of M to the central vertex of S1∨S1. Fix a basepoint in

M disjoint from N (S1)∪N (S2). It is clear that f∗: π1(M) → Z∗Z is a surjection,

because any element of Z ∗ Z may be realised by a based loop in M .

Proof of Theorem 2.1. First suppose that ∂M contains a 2-sphere. Then, by

irreducibility, M is a 3-ball, which is an I-bundle over a disc, verifying the theorem

in this case. Thus, we may assume that each component of ∂M has genus at least

one.

Consider first the case where each component of ∂M is a torus. A standard

argument then allows us to assume that M is hyperbolic. This argument can be

found in Cooper, Long and Reid’s paper [5], but we repeat it here for the sake

of completeness. When M is not hyperbolic, Thurston’s geometrisation theorem

[13] implies that M is either Seifert fibred or contains an essential embedded

torus. In the former case, the argument divides according to whether the base

orbifold of the Seifert fibration has positive, zero or negative Euler characteristic.

When it is positive, the manifold is a solid torus, which is an I-bundle over an

annulus. When it is zero, the manifold again admits some I-bundle structure over

a torus or Klein bottle. When the base orbifold has negative Euler characteristic,

it has a finite-sheeted cover which is an orientable surface also with negative Euler
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characteristic. This induces a finite covering M̃ → M . The Seifert fibration on

M̃ induces a surjective homomorphism from π1(M̃) onto the fundamental group

of this surface, which then admits a surjective homomorphism onto a free non-

abelian group. Hence, when M is Seifert fibred, it satisfies the conclusion of the

theorem.

If M contains an essential embedded torus, then it is a theorem of Kojima [8]

and Luecke [12] (see also the work of Niblo and Long in [10] and [11]) that either

π1(M) is large or M is finitely covered by a torus bundle over the circle, the torus

lifting to a fibre. The latter case cannot arise since M has non-empty boundary.

We may therefore assume (when ∂M consists entirely of tori) that the interior

of M is a finite-volume hyperbolic 3-manifold. A lemma of Cooper, Long and Reid

(Lemma 2.1 of [5]) asserts that, by passing to a finite-sheeted covering space if

necessary, we may assume that M has at least three boundary components.

All the above follows the argument of Cooper, Long and Reid, but here our

proofs diverge. We have reached the stage where either ∂M consists of tori and

there are at least three of these, or ∂M has a component with genus at least two.

In the former case, set P to be one these tori; otherwise let P be the empty set.

Then Proposition 2.2 gives that the kernel of i∗:H1(M) → H1(P ) has rank at least
1

2
b1(∂M) − b1(P ), which is positive. Let α be a non-trivial primitive element in

the kernel of i∗:H1(M) → H1(P ). Let S be a properly embedded oriented surface

in M , disjoint from P , dual to α. We may assume that S intersects each toral

component of ∂M in a (possibly empty) collection of coherently oriented essential

curves. Now, α induces a surjective homomorphism π1(M) → Z. Composing

this with the homomorphism Z → Z/nZ that reduces modulo n, we obtain a

homomorphism π1(M) → Z/nZ. Let Mn be the corresponding n-fold cyclic cover

of M . This contains n disjoint copies of S which can be labelled with the integers

modulo n. Let Fn be the union of the surface with label 0 and the surface with

label ⌊n/2⌋. This is a separating surface, dividing Mn into two 3-dimensional

submanifolds, which we will call A1
n and A2

n.

When ∂M consists only of tori, A1
n and A2

n each contain at least ⌊n/2⌋ copies

of P . Hence, for j = 1 and 2, b1(∂A
j
n) → ∞ as n → ∞. When ∂M contains

a non-toral component, the same is true, since ∂Aj
n consists of Fn and at least
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⌊n/2⌋ copies of ∂M cut along S, with their boundary components glued in pairs.

However, in both cases, b1(Fn) remains independent of n. Therefore, when n is

sufficiently large, 1

2
b1(∂A

j
n) > b1(Fn) for both j = 1 and 2. Let us fix an integer

n where these inequalities hold. Proposition 2.2 then gives that the kernel of

i∗:H1(Aj
n) → H1(Fn) is non-trivial. Let W j

n be a connected oriented surface,

properly embedded in Aj
n, disjoint from Fn, dual to a non-trivial primitive class

in this kernel. (See Figure 1 for the case where ∂M is a union of tori.) Then W 1
n

and W 2
n are disjoint oriented surfaces the union of which is non-separating in Mn.

By Lemma 2.3, π1(M) is large.

FF

n

nn

n n

n

W

W

A

A

1 1

2
2

copies of P

copies of S

Figure 1.

We now provide an alternative group-theoretic proof of Theorem 2.1 that uses

the following recent theorem of the author (Theorem 1.2 of [9]).

Theorem 2.4. Let G be a finitely presented group, and suppose that, for each

natural number n, there is a tripleHn ≥ Jn ≥ Kn of finite index normal subgroups

of G such that

(i) Hn/Jn is abelian for all n;

(ii) limn→∞((log[Hn : Jn])/[G : Hn]) = ∞;

(iii) lim supn(d(Jn/Kn)/[G : Jn]) > 0.

Then Kn admits a surjective homomorphism onto a free non-abelian group, for

infinitely many n.
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Here, d( ) denotes the rank of a group, which is the minimal size of a gener-

ating set.

Alternative proof of Theorem 2.1. As before, we may assume either that ∂M

consists entirely of tori and there are at least three of these, or that ∂M contains

a higher genus component. Let Mn be as in the previous proof.

We now wish to apply Theorem 2.4. Let G be π1(M), and set Hn to be

G, for each n. Let Jn be the subgroup of G corresponding to the cover Mn,

and set Kn to be J2
n, the subgroup generated by the squares of elements in Jn.

We must check the various conditions of Theorem 2.4. Now, Jn is a normal

subgroup of G by construction. As Kn is a characteristic subgroup of Jn, it is

therefore also normal in G. Now, Hn/Jn is isomorphic to Z/nZ. In particular, it

is abelian, verifying (i), and its order tends to infinity which gives (ii). Finally,

Jn/Kn is isomorphic to H1(Mn; Z/2Z), which has rank at least n, by Proposition

2.2. Therefore, d(Jn/Kn)/[G : Jn] ≥ 1, for each n, which gives (iii). Hence, by

Theorem 2.4, π1(M) is large.

3. Orbifolds with large fundamental group

In this section, we show that the techniques in the topological proof of The-

orem 2.1 can be applied to 3-orbifolds. This is because we dealt in §2 with cyclic

covers of large degree, and orbifolds also have have such covers, provided their

singularities has sufficiently large singularity order.

We start with the following theorem, where the orbifold contains at least

three distinguished components of its singular locus. All subsequent theorems will

follow from this result.

Theorem 3.1. Let O be a compact orientable 3-orbifold, and let L be a link in

O, disjoint from the singular locus of O, with at least three components. Then,

for all sufficiently large n, π1(O(L, n)) is large.

Proof. Let |O| denote the underlying manifold of O. The natural map O → |O|

induces a surjective homomorphism π1(O(L, n)) → π1(|O|(L, n)). Hence, if the

latter group is large, then so is the former. It therefore suffices to consider the

case where O is a manifold M , say.
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Let X denote the 3-manifold M − int(N (L)). Pick a component L1 of L.

Since L has at least three components, Proposition 2.2 implies that i∗:H1(X) →

H1(∂N (L1)) has non-trivial kernel. Let S be a properly embedded, connected,

oriented surface in X disjoint from ∂N (L1) dual to a non-trivial primitive element

in this kernel. We may assume that S intersects each toral component of ∂X in a

(possibly empty) collection of coherently oriented essential curves. Let Xn → X

denote the associated n-fold cyclic cover of X . This extends to a cover On →

M(L, n). Note that there is an inclusion map Xn → On. There are n copies of

S in Xn which we may label with the integers modulo n. Let Fn be the union

of the surfaces labelled 0 and ⌊n/2⌋. Then Fn divides Xn into two manifolds

A1
n and A2

n. Each contains at least ⌊n/2⌋ copies of ∂N (L1). For j = 1 and 2,

let P j
n be the copy of Fn in Aj

n, together with any adjacent annuli of ∂Aj
n − Fn.

Then b1(P
j
n) is independent of n. So, Proposition 2.2 implies that, when n is

sufficiently large, i∗:H1(Aj
n) → H1(P j

n) has non-trivial kernel, for j = 1 and

2. Let W j
n be a connected properly embedded oriented surface in Aj

n, disjoint

from P j
n, dual to a primitive class in this kernel. Then W 1

n and W 2
n are disjoint

oriented surfaces, the union of which is non-separating in Xn. Therefore, by

Lemma 2.3, there is a surjective homomorphism π1(Xn) → Z ∗ Z. Now, the

inclusion map Xn → On induces a surjective homomorphism π1(Xn) → π1(On).

There is an obvious surjective homomorphism Z ∗ Z → (Z/nZ) ∗ (Z/nZ) that

respects the free factors. We claim that π1(Xn) → Z ∗ Z descends to a surjective

homomorphism π1(On) → (Z/nZ) ∗ (Z/nZ). To prove this, we must show that

the kernel of π1(Xn) → π1(On) is sent to the identity in (Z/nZ) ∗ (Z/nZ). Now,

this kernel is normally generated by powers of the meridian curves that encircle

the singular locus of On, each power being the order of the relevant singular

component. The meridian of any singular component not adjacent to W 1
n or W 2

n

is sent to the identity under π1(Xn) → Z ∗ Z. Each component of the singular

locus adjacent to W 1
n or W 2

n has order n, and the nth power of its meridian is

sent to the nth power of one of the free generators of Z ∗ Z, which is in the kernel

of Z ∗ Z → (Z/nZ) ∗ (Z/nZ). Thus, the claim is verified: there is an induced

surjective homomorphism π1(On) → (Z/nZ) ∗ (Z/nZ). But (Z/nZ) ∗ (Z/nZ) has

a free non-abelian subgroup of finite index, provided n > 2. Therefore, π1(On) is

large, and so the same is true for π1(M(L, n)), and hence π1(O(L, n)).
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The following result allows us to consider some 3-orbifolds with just one dis-

tinguished component of their singular locus.

Theorem 3.2. Let O be a compact orientable 3-orbifold, and let K be a knot

in O disjoint from the singular set of O. Suppose that there is a surjective homo-

morphism φ from π1(O) onto some finite group H , so that φ(〈[K]〉) has index at

least 3 in H . Then, provided n is sufficiently large, π1(O(K, n)) is large.

Here, [K] is some element of π1(O) representing K, and 〈[K]〉 is the subgroup

generated by [K]. This is only defined up to conjugacy in π1(O), but the index of

φ(〈[K]〉) in H is nevertheless well-defined.

Proof of Theorem 3.2. The kernel of φ corresponds to a finite covering Õ → O.

Let L be the inverse image of K in Õ. We then have an induced finite covering

Õ(L, n) → O(K, n). The number of components of L is equal to the index of

φ(〈[K]〉) in H , which we are assuming is at least 3. Hence, by Theorem 3.1,

π1(Õ(L, n)) is large for all sufficiently large n, and the same is therefore true for

π1(O(K, n)).

Such a homomorphism φ as in Theorem 3.2 very often exists. For example,

we shall show in Proposition 3.4 that this is always the case if O is a finite volume

hyperbolic 3-orbifold. A variant of Theorem 3.2 is as follows.

Theorem 3.3. Let O be a compact orientable 3-orbifold, and letK be a knot in O

disjoint from its singular locus. Let m be a positive integer such that π1(O(K,m))

admits a surjective homomorphism φ onto a finite group H , with the property

that φ(〈[K]〉) has index at least 3m in H . Then, for all sufficiently large n,

π1(O(K,mn)) is large.

Proof. This is very similar to the proof of Theorem 3.2. The kernel of φ corre-

sponds to a finite regular covering map Õ → O(K,m). The inverse image of K

is a link L in Õ, with at least 3 components, by our hypothesis on the index of

φ(〈[K]〉). Let q be the order of any singularity along L, which we set to 1 if L

is disjoint from the singular locus of Õ. Let Õn be the orbifold with the same

underlying manifold as Õ, with singular locus consisting of that of Õ, but with

a singularity of order qn along L (rather than q). We then have an induced cov-

ering map Õn → O(K,mn). Since π1(Õn) is large for all sufficiently large n, by
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Theorem 3.1, the same is true of π1(O(K,mn)) for all sufficiently large n.

The next result allows us to find homomorphisms φ as in Theorems 3.2 and

3.3 in most cases of interest.

Proposition 3.4. Let G be a finitely generated, residually finite group that is

not virtually cyclic. Then, for all g ∈ G and any integer N , there is a surjective

homomorphism φ from G onto a finite group H such that [H : φ(〈g〉)] is at least

N .

We will need the following elementary lemma.

Lemma 3.5. Let G be a finitely generated, residually finite group that is not

cyclic. Then, G has a finite index characteristic subgroup K such that G/K is

not cyclic.

Proof. Suppose, on the contrary, that, for every finite index characteristic sub-

group K of G, G/K is cyclic. Then G must be abelian. For otherwise, there

are elements g1 and g2 of G such that [g1, g2] 6= e. By the assumption that G is

residually finite, there is a finite index normal subgroup of K1 of G not containing

[g1, g2]. Let K be the intersection of the images of K1 under all automorphisms of

G. Then, K is a finite index characteristic subgroup of G not containing [g1, g2].

But, we are assuming that G/K must be cyclic, which implies that g1K and g2K

commute. Hence, [g1, g2]K = K, and so [g1, g2] ∈ K, a contradiction. Therefore,

G is a finitely generated abelian group. We will suppose that it is not cyclic and

reach a contradiction. If it finite, then {e} is a finite index characteristic subgroup

such that G/{e} is not cyclic, which is a contradiction. If G is infinite, then it is

either of the form Z
n, for some n ≥ 2, or Z × Z/mZ ×H , for some integer m ≥ 2

and some abelian group H . In both cases, set K to be the subgroup generated

by the mth powers of G (where m = 2, say, in the former case) to achieve a

contradiction.

Proof of Proposition 3.4. We prove this by induction on N . It is trivially true for

N = 1. Suppose therefore, that N is at least 2, and that the inductive hypothesis

holds true for N−1. This implies that there is a surjective homomorphism φ from

G onto a finite group H such that [H : φ(〈g〉)] is at least N − 1. Then, K1, the

kernel of φ, is finitely generated, residually finite, and not cyclic. Therefore, by
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Lemma 3.5, there is a finite index characteristic subgroup K ofK1 such thatK1/K

is not cyclic. Now, K is a finite index normal subgroup of G. Let ψ:G → G/K

be the quotient homomorphism. We claim that the index of ψ(〈g〉) in G/K is at

least N . This index is [G : 〈g〉K], which equals [G : 〈g〉K1][〈g〉K1 : 〈g〉K]. The

first of these terms is, by assumption, at least N − 1. It therefore suffices to show

that [〈g〉K1 : 〈g〉K] is at least two. If this is not the case, then 〈g〉K1 = 〈g〉K.

Taking intersections with K1, we then deduce that K1 = 〈g〉K ∩K1. This implies

that K1/K is cyclic, generated by gnK, where gn is a generator for 〈g〉∩K1. This

is a contradiction.

Note that when G is the fundamental group of a finite volume hyperbolic 3-

orbifold, then it satisfies the hypotheses of Proposition 3.4: it is finitely generated,

residually finite and not virtually cyclic. Hence, Theorem 3.3 and Proposition 3.4

have the following corollary.

Theorem 3.6. Let O be a compact orientable 3-orbifold (with possibly empty

singular locus), and let K be a knot in O, disjoint from its singular locus, such

that O −K has a finite volume hyperbolic structure. Then, for infinitely many

values of n, π1(O(K, n)) is large.

Proof. It is a well known consequence of the proof of Thurston’s hyperbolic Dehn

surgery theorem [15] that for all sufficiently largem, O(K,m) is hyperbolic. Hence,

by Proposition 3.4, π1(O(K,m)) admits a surjective homomorphism φ onto a finite

group H , such that φ(〈[K]〉) has index at least 3m in H . Now apply Theorem 3.3

to deduce that π1(O(K,mn)) is large for all sufficiently large n.

From the proof of the theorem, we obtain information about the set (L, say)

of values of n for which π1(O(K, n)) is large. Specifically, there is an integer A

and, for each integer m ≥ A, an integer B(m), such that L contains

{mn : m ≥ A, n ≥ B(m)}.

We now focus on a classical case: cyclic branched covers over a knot in the

3-sphere.

Theorem 3.7. Let K be a non-trivial knot in the 3-sphere, and let m be any

integer more than two. Then, for all sufficiently large n, the mn-fold cyclic cover

of S3 branched over K has large fundamental group.
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Proof. For any positive integer n, let S3(K, n) denote the orbifold with underlying

manifold S3 and with a singularity of order n along K. Then the n-fold cyclic

cover of S3 branched over K is a finite-sheeted covering space of S3(K, n). Our

aim is therefore to show that π1(S
3(K, n)) is large for suitable values of n.

Suppose first that K is a connected sum of two non-trivial knots K1 and K2.

Then S3(K, n) is an orbifold connected sum of S3(K1, n) and S3(K2, n). Now,

π1(S
3(K1, n)) and π1(S

3(K2, n)) are quotients of π1(S
3(K, n)). Hence if one of

these has large fundamental group, then so does π1(S
3(K, n)). So, it suffices to

consider the case where K is prime. This implies that S3(K, n) is (orbifold)-

irreducible.

If K is a satellite knot, then there is an essential torus in its complement.

Since K is prime, this remains (orbifold)-incompressible in S3(K, n), provided

n > 1. So, its inverse image T in M , the n-fold cyclic branched cover of S3

over K, is incompressible, provided n > 1. Now, it is a theorem of Kojima [8]

and Luecke [12] that if a compact orientable irreducible 3-manifold M contains

essential embedded tori T , then either π1(M) is large or M is finitely covered by

a torus bundle over the circle, with T lifting to fibres. We claim that the latter

possibility cannot arise. This is because one component of the complement of

T covers a non-trivial knot exterior, and this component would be covered by

T 2 × I . However, Theorem 10.5 of [6] implies that the only orientable irreducible

3-manifolds that are finitely covered by T 2 × I are T 2 × I itself and the orientable

twisted I-bundle over a Klein bottle. Therefore, π1(S
3(K, n)) is large when n > 1.

If K is a (p, q)-torus knot, then S3(K, n) is an orbifold Seifert fibre space with

base orbifold that is topologically a sphere and has three singularities, with orders

p, q and n. When n is more than 6, (1/p) + (1/q) + (1/n) < 1, and therefore

this base orbifold is hyperbolic. Its fundamental group is therefore large. But

the Seifert fibration induces a surjective homomorphism from π1(S
3(K, n)) onto

the fundamental group of this orbifold, and therefore π1(S
3(K, n)) is large, when

n > 6.

Thus, we may assume that K is hyperbolic. Now, when K is not the figure-

eight knot, it is a consequence of the Orbifold Theorem ([2], Corollary 1.26 of [4])

that S3(K,m) is hyperbolic, when m ≥ 3. So, by Proposition 3.4 and Theorem
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3.3, π1(S
3(K,mn)) is large, when n is sufficiently large. When K is the figure-

eight knot, S3(K,m) is hyperbolic whenever m ≥ 4, and so the theorem also

holds in this case. However, S3(K, 3) is Euclidean. Its fundamental group is

therefore residually finite and not virtually cyclic, and therefore Proposition 3.4

and Theorem 3.3 combine to prove the theorem here also.

It is natural to speculate whether Theorems 3.6 and 3.7 can be strengthened.

Is it the case that when K is a non-trivial knot in the 3-sphere, π1(S
3(K, n)) is

large for all but finitely many values of n? This remains an interesting unsolved

problem. It suffices to consider the case where n is prime, but this is the main

situation where the arguments in this paper do not apply.
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