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Abstract

We provide an algorithm to determine whether a link L admits a crossing change that turns

it into a split link, under some fairly mild hypotheses on L. The algorithm also provides

a complete list of all such crossing changes. It can therefore also determine whether the

unlinking number of L is 1.

1. Introduction

One of the knot invariants that is least well understood is unknotting number. This is defined

to be the minimal number of crossing changes that one can apply to some diagram of the knot

in order to unknot it. For any given diagram of a knot K, it is of course easy to determine the

minimal number of crossing changes that one can apply to it in order to unknot it, by using one

of the several known algorithms to detect the unknot. However, one has no guarantee in general

that there is not some more complicated diagram of K that can be unknotted using fewer crossing

changes. Many techniques have been developed to find lower bounds on the unknotting number of

a knot, for example, using the Alexander module [37], the Goeritz form [25, 47], gauge theory [48]

and Heegaard Floer homology [31, 38, 39]. However, no known technique is perfect, and in fact

there are many explicit knots for which the unknotting number is not known [26]. A satisfactory

resolution will only be found when an algorithm that determines the unknotting number of a knot

is discovered. But this appears to be a very long way off. In fact, it is conceivable that no such

algorithm exists. It is not even known whether one can decide algorithmically whether a knot has

unknotting number one.

In this paper, we explore some natural generalisations of unknotting number to links with more

than one component. One might consider the unlinking number u(L) of a link L, which is the

minimal number of crossing changes required to turn it into the unlink. But it turns out that it

is just as natural to consider the splitting number s(L), which is the minimal number of crossing

changes required to turn it into a split link. (A link is split if there is an embedded 2-sphere disjoint

from the link with link components on both sides.) Some authors [6] have also analysed a variant

of splitting number, where one only considers crossing changes between distinct components of the

link. The minimal number of such crossing changes required to create a split link we denote by sd(L)
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(where d stands for ‘distinct’). Other authors [27] have also required the resulting link to be totally

split, which means that there is a union of disjoint balls containing the link, such that each ball

contains a single component of the link in its interior. We say that the total splitting number ts(L)

is the minimal number of crossing changes required to make the link totally split. Again, one can

consider only crossing changes between distinct link components and we denote the resulting variant

of total splitting number by tsd(L). Our main result is that, under some fairly mild hypotheses,

there are algorithms to determine whether any of these quantities is 1 for a given link.

Theorem 1.1. There is an algorithm to solve the following problem. The input to the algorithm is a

link L in S3, given either by a diagram or by a triangulation of S3 with L as a specified subcomplex.

The link L must be hyperbolic and 2-string prime. It is required to have at least two components

and if it has exactly two components, these must have zero linking number. The output is an answer

to each of the following questions:

(i) Is u(L) = 1?

(ii) Is s(L) = 1?

(iii) Is sd(L) = 1?

(iv) Is ts(L) = 1?

(v) Is tsd(L) = 1?

Recall that a link L is 2-string prime if, for each 2-sphere S in S3 that intersects L transversely

in four points, S − L admits a compression disc in the complement of L. When L is hyperbolic,

then it is 2-string prime if and only if its branched double cover is hyperbolic or a small Seifert fibre

space. (This is explained in Section 4.) This condition can be readily verified both in theory [22,

46] and in practice [52].

The linking number hypothesis when L has two components is a slightly unfortunate one.

However, it is not as restrictive as it first may seem. When s(L) = 1, then the two components of

L must have linking number 0, 1 or −1, for the following reason. When both components of L are

involved in the crossing change, then the linking number is ±1, since the crossing change alters the

linking number by one. On the other hand, when the crossing change moves some component of L

through itself, then this does not change the linking number, and so this must be zero.

The most notable hypothesis in Theorem 1.1 is that the link L has more than one component.

As mentioned above, it remains the case that there is no known algorithm to decide whether a knot

has unknotting number one.

Whenever one has an algorithmic result such as the one presented above, a finiteness theorem

tends to come for free. In this case, the question that we can address is: are there only finitely

many ways to split a link by a crossing change? Of course, one needs a way to compare two crossing

changes, which may occur in different diagrams. There is a natural method of doing this using

surgery. Given any crossing in some diagram of L, we may encircle the two sub-arcs of L near the

crossing by a simple closed curve C, as shown in Figure 1. This bounds an embedded disc D such

that D ∩L is two points in the interior of D. Such a disc D is called a crossing disc. The boundary
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curve C of a crossing disc is called a crossing circle. In the interior of the crossing disc D, there is an

embedded arc joining the two points of D∩L. This is the crossing arc associated with D. Changing

the crossing is achieved by ±1 surgery along C. We say that two crossing changes are equivalent

if their associated crossing circles are ambient isotopic in the complement of L and the associated

surgery coefficients are equal.

Theorem 1.2. Let L be as in Theorem 1.1. If s(L) = 1, then, up to equivalence, there are only

finitely many ways to turn L into a split link by performing a crossing change. In fact, if t is the

number of tetrahedra in a triangulation of S3 with L as a subcomplex, then the number of distinct

ways of creating a split link from L by a crossing change is at most kt, for some universal computable

constant k. Hence, the number of ways is at most k24c(L) where c(L) is the crossing number of L.

Moreover, there is an algorithm to find all these crossing changes.

L Lcrossing

-1 surgery
along C

circle C

Figure 1

Note that a version of Theorem 1.2 also holds for the other variants of splitting number and

unlinking number discussed above. Indeed if any of u(L), sd(L), ts(L) or tsd(L) is equal to one, then

necessarily s(L) = 1, provided L is non-split. So, in any of these cases, Theorem 1.2 also provides a

finiteness result on the number of relevant crossing changes and an algorithm to find them all.

An algorithm to compute the constant k is given in Section 11, building on Section 11 of [24],

although it would be technically challenging to implement.

Note that the finiteness statement in Theorem 1.2 does not obviously imply Theorem 1.1.

Theorem 1.2 provides a bound on the number of ways of turning L into a split link by a crossing

change. But to find this list of crossing changes is a highly non-trivial task. The algorithm that we

give is not very efficient, and we do not attempt to provide an upper bound on its running time.

Nevertheless, one can often apply the techniques behind it quite practically. For example, we can

obtain the following result.

Theorem 1.3. Any crossing change that turns the Whitehead link into a split link is equivalent to

changing a crossing in some alternating diagram.

An outline of the paper is as follows. In Section 2, we recall the operation of trivial tangle

replacement. This is a generalisation of a crossing change, and is in fact the central object of study

within this paper. It is well known that trivial tangle replacement can be studied by analysing

the double cover of the 3-sphere branched over the link, via the Montesinos trick. We recall the

relevant theory in Section 2. In Section 3, we compare trivial tangle replacement with crossing
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changes, focusing in particular on the notions of equivalence in each case. In Section 4, we give a

characterisation of the hyperbolic links in the 3-sphere that are 2-string prime, in terms of their

branched double covers. We also consider double covers branched over sublinks of the link, which

are the 3-manifolds that play a central role in the proof of Theorem 1.1. In Section 5, we give an

overview of the general set-up of our algorithm. This involves constructing certain double branched

covers M and then searching for exceptional surgery curves in M . This second step uses earlier work

of the author [24]. The algorithm divides according to whether M is Seifert fibred or hyperbolic.

In Section 6, the Seifert fibred case is analysed. In Section 7, the hypotheses of the main theorem

in [24] are verified. In Section 8, we analyse the mapping class group of finite-volume hyperbolic

3-manifolds, mostly from an algorithmic perspective. In Section 9, we show that all the problems

in Theorem 1.1 are decidable. In Section 10, we give an overview of the work in [24]. This leads to

the finiteness result, Theorem 1.2, in Section 11. In Section 12, we analyse the Whitehead link and

we classify the crossing changes that can be applied to the link to turn it into a split link.

The author gratefully acknowledges the helpful suggestions of the referee, which have substan-

tially improved this paper.

2. Tangle replacement

In this section, we recall the operation of tangle replacement, and the well-known Montesinos

trick [35].

A tangle is a 1-manifold A properly embedded within a 3-ball B. When A has no closed

components, and so is a collection of k arcs for some positive integer k, it is termed a k-string

tangle. The tangle is trivial if there is homeomorphism between B and D2 × I taking A to P × I,

for some finite collection of points P in the interior of D2. In the case of a trivial 2-string tangle,

its core is an arc α × {∗}, where α is an embedded arc in the interior of D2 joining the two points

of P , and ∗ is a point in the interior of I. It is in fact the case that a trivial 2-string tangle has a

unique core up to isotopy of B that leaves A invariant.

Let M be a compact orientable 3-manifold with (possibly empty) boundary. Let L be a compact

1-manifold properly embedded in M . Let α be an arc embedded in the interior of M such that

L ∩ α = ∂α. Let B be a regular neighbourhood of α in M , which intersects L in a trivial 2-string

tangle in which α is a core arc. Suppose that we remove this tangle and insert into M another trivial

tangle with the same endpoints. The result is a new 1-manifold in M , which we say is obtained from

L by tangle replacement along α. The possible trivial tangles that we may insert are parametrised

as follows. On ∂B−L, there is a unique isotopy class σ of essential simple closed curves that bound

a disc in the complement of the new tangle. We term this the tangle slope. The link that results

from L by this tangle replacement is denoted Lσ.

We say that the distance ∆(σ, σ′) between two tangle slopes σ and σ′ on ∂B − L is equal to

half the minimal intersection number between two representative simple closed curves. Any simple

closed curve on ∂B − L is separating, and hence any two curves have even intersection number.
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Therefore, the distance between slopes is always an integer.

Let A be a trivial 2-string tangle in the 3-ball B. Then there is a unique double cover V of B

branched over A. It is well known that V is a solid torus. This is because V is of the form A2 × I,

where A2 is the annulus that is the double cover of the disc branched over two points.

Consider the link Lσ obtained from L by tangle replacement. Suppose that M admits a double

cover M̃ branched over L. Then there is a corresponding double cover M̃σ branched over Lσ which

is defined as follows. The inverse images of B and M − int(B) in M̃ give double covers branched

over L ∩B and L− int(B) respectively. Similarly, the inverse image of ∂B is a double cover of the

2-sphere branched over four points. Now there is a unique double cover of S2 branched over four

points. This is a torus T . Hence, any homeomorphism ∂B → ∂B that sends ∂B ∩L to ∂B ∩L lifts

uniquely to a homeomorphism T → T . One may view the tangle replacement as simply attaching B

to M − int(B) via some homeomorphism that leaves ∂B ∩L invariant. Lifting this homeomorphism

to the branched double covers gives a gluing map, via which we may construct the double cover M̃σ

branched over Lσ. Since the double cover of B branched over L ∩ B is a solid torus, M̃σ and M̃

are related by Dehn surgery. The surgery curve in M̃ is the inverse image of the arc α. It is easy

to check that the distance between between the two surgery slopes, one giving M̃σ and the other

giving M̃ , is equal to the distance ∆(σ, µ) between σ and the meridian slope µ of α.

The above use of branched double covers leads to a very useful method of parametrising slopes

of trivial tangles. We will consider trivial tangles A within the 3-ball B, where ∂B ∩A is a given set

of four points. The tangle is determined by the unique isotopy class of essential curves in ∂B − A
that bound a disc in the complement of A. The 2-sphere ∂B admits a unique double cover branched

over ∂B ∩ A, which is a torus T . The elevation of the simple closed curve in ∂B − A that bounds

a disc in B −A is an essential simple closed curve in T . One may parametrise the tangle B ∩A by

means of this slope. It is possible to show (for example [5]) that this slope determines the trivial

tangle up to an isotopy of B fixed on ∂B. Moreover, each slope is realised by some tangle. Thus,

trivial tangles are in one-one correspondence with slopes on T . One can pick a basis {λ, µ} for the

homology of H1(T ), and in the usual way, the slope with class ±(pλ+ qµ) in H1(T ) is represented

by p/q ∈ Q ∪ {∞}. Given p/q ∈ Q ∪ {∞}, one may explicitly construct the associated tangle, as

follows. Let [c1, . . . , cn] denote a continued fraction expansion for p/q, where each ci ∈ Z. Then the

associated tangle is shown in Figure 2, with the two possibilities shown depending on whether n is

even or odd.

c  crossings1

-c  crossings2

c  crossings3

-c  crossings4

B
c  crossings1

-c  crossings2

c  crossings3

B

Figure 2
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In the above figure, each box contains a line of crossings in a row, called a twist region.

Conventionally, in a twist region with a ‘positive’ number of crossings, they are twisted in a clockwise-

fashion. However a box with a ‘negative’ number c of crossings is in fact a string of |c| crossings

twisted in an anti-clockwise fashion.

We will be considering the operation of tangle replacement throughout this paper. At various

points, it will be important for us to consider when tangle replacement can change a trivial tangle

to another trivial tangle. More specifically, suppose that A is a trivial 2-string tangle in the 3-ball

B, and suppose that α is an embedded arc in the interior of B such that α ∩ A = ∂α. Suppose

that tangle replacement along α changes A into another trivial 2-string tangle A′. Then what are

the possible locations for α, what are the possible tangle replacements, and what is the relationship

between the slopes of A and A′? Fortunately, all of these questions have been given a precise answer

by Baker and Buck [1], by use of branched double covers and surgical methods of Gabai [10]. The

situation is simplest to state when the distance of the tangle replacement is at least two, as follows

(see Theorems 1.1 and 3.1 in [1]).

Theorem 2.1. Let A be a trivial 2-string tangle with slope ∞ in the 3-ball B. Suppose that α is

an embedded arc in the interior of B such that α ∩ A = ∂α. Suppose that distance d ≥ 2 tangle

replacement along α changes A into another trivial 2-string tangle A′ with slope p/q. Then one of

the following holds:

(i) α is the core arc of the tangle A;

(ii) p/q = (1 ± dab)/ ± da2, for coprime integers a and b. Moreover, if a/b has continued fraction

expansion [c1, . . . , cn], then there is an isotopy of B, fixed on ∂B, taking B ∩ A to the trivial

tangle with continued fraction expansion [0, c1, . . . , cn, 0,−cn, . . . ,−c1], and taking α to the

crossing arc of the central twist region labelled 0. The tangle replacement simply replaces the

0 crossings with ±d. (See Figure 3.)

0 crossings

-c  crossings1

0 crossings

 c  crossings1

B

α

c  crossings2 -c  crossings2

Figure 3

Using methods similar to those of Baker and Buck, we can obtain the following result.

Theorem 2.2. Let A be a 2-string tangle in the 3-ball B such that ∂B− ∂A is compressible in the

complement of A. Let α be an embedded arc in the interior of B such that α ∩ A = ∂α. Suppose

that ∂B − ∂A is incompressible in the complement of A ∪ α. Let A′ be obtained from A by trivial
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tangle replacement along α with distance at least two. Then the following hold.

(i) There is no 3-ball in B with boundary disjoint from A′ and that encloses a closed component

of A′.

(ii) If ∂B − ∂A′ is compressible in the complement of A′, then A and A′ are trivial tangles, and

hence (i) or (ii) of Theorem 2.1 holds.

Proof. Let M and M ′ be the double covers of B, branched over A and A′ respectively. These differ

by surgery along a curve K in M that is the inverse image of α. The distance between the surgery

slope and the meridian slope is equal to the distance of the tangle replacement, which is at least two

by assumption. Note that M has compressible boundary, since the inverse image of a compression

disc for ∂B− ∂A contains a compression disc for ∂M . Hence, M is either a solid torus or reducible.

In fact, A is obtained from a trivial tangle by possibly tying a little knot in one or both of its strings.

Hence, M is the connected sum of a solid torus with two rational homology 3-spheres, one or both

of which may be 3-spheres. In particular, M contains no non-separating 2-sphere, and so the same

is true of M − int(N(K)).

On the other hand, ∂M is incompressible in the complement of K, for the following reason.

If there were a compression disc for ∂M in the complement of K, the equivariant disc theorem

[33] would provide one or two disjoint compression discs for ∂M in the complement of K that are

invariant under the involution of M . These descend to a compression disc D for ∂B − ∂A in the

complement of α and that intersects A in at most one point. This disc D cannot be disjoint from

A by hypothesis. Hence, it intersects A in a single point. Its boundary lies in the 2-sphere ∂B

and so bounds discs in ∂B. The union of either of these discs with D forms a 2-sphere which, for

parity reasons, must intersect A an even number of times. Therefore, ∂D bounds a disc in ∂B

that intersects ∂A once. The inverse image of ∂D in ∂M therefore bounds a disc in ∂M , which

contradicts the fact that it is the boundary of a compression disc.

To prove (i), suppose that B contains a ball with boundary disjoint from A′ that encloses a

closed component of A′. The inverse image of this ball in M ′ is a connected 3-manifold with two

spherical boundary components. The complement of this manifold in M ′ is connected, and so we

deduce that M ′ contains a non-separating 2-sphere. We now apply Scharlemann’s theorem [45]. This

implies that a compact orientable irreducible 3-manifold with toroidal boundary cannot be Dehn

filled along slopes with distance at least two, and where one filling gives a manifold with compressible

boundary and the other filling gives a reducible 3-manifold. In our situation, M − int(N(K)) need

not be irreducible, but it is a connected sum of irreducible 3-manifolds, one of which contains ∂N(K).

Let X be this summand. This summand must contain ∂M , as otherwise the meridional Dehn filling

of M − int(N(K)) could not produce a 3-manifold with compressible boundary. So, M − int(N(K))

is the connected sum of X with a rational homology 3-sphere (which may be a 3-sphere). When X is

filled to give a summand of M ′, this summand must contain a non-separating sphere in M ′. Hence,

when X is Dehn filled in two different ways with distance at least two, one filling gives a 3-manifold

with compressible boundary, and the other filling gives a reducible 3-manifold. This contradicts

Scharlemann’s theorem.
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We now prove (ii). We observed above that M has compressible boundary. Suppose that

∂B − ∂A′ is compressible in the complement of A′. Then M ′ also has compressible boundary.

Theorem 2.4.4 of [8] therefore applies. With the assumption that the distance of the surgery is

at least two, it implies that M − int(N(K)) is either a copy of T 2 × I or a ‘cable space’. In the

former situation, every Dehn filling of K gives a solid torus. So, suppose that M − int(N(K)) is a

cable space. This is a Seifert fibred space with annular base space and with one singular fibre. If

one were to fill ∂N(K) along a slope that has distance one from the regular fibre, the result is a

solid torus. In all fillings with distance at least two from the regular fibre, the resulting manifold

has incompressible boundary, because it is a Seifert fibre space with two singular fibres. Since

we are filling ∂N(K) along slopes with distance at least two and we obtain manifolds M and M ′

with compressible boundary, we deduce that the slopes giving M and M ′ have distance 1 from the

regular fibre. Thus, M and M ′ are both solid tori. Since M is the branched double cover over A,

it admits a (piecewise-linear) involution. Piecewise-linear involutions of the solid torus have been

classified (see Theorem 4.3 in [15]). Up to conjugacy by a piecewise-linear homeomorphism, there

is just one orientation-preserving piecewise-linear involution with fixed-point set homeomorphic to

two intervals. Therefore, A is a trivial tangle. Similarly, A′ is a trivial tangle. We are therefore in

the setting of Theorem 2.1, and hence (i) or (ii) of Theorem 2.1 holds.

3. Crossing arcs versus crossing circles

A crossing change to a link L can be viewed in two ways: as a special type of tangle replacement

and as a special type of Dehn surgery. In this section, we will explore how these two alternative

viewpoints are related.

Tangle replacement was discussed in Section 2. One starts with an embedded arc α such that

α∩L = ∂α. A regular neighbourhood of α in S3 intersects L in a trivial tangle. The crossing change

is implemented by removing this tangle and inserting another trivial tangle, with the property that

the new and the old tangle slopes have distance exactly 2. There are infinitely many possible tangle

replacements of this form, as shown in Figure 4. Each corresponds to changing a crossing in some

diagram of L.

n crossings
α

Figure 4
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This ambiguity is a slightly unfortunate one. It could, of course, be rectified by requiring α to

be framed in some way. More precisely, one could specify not just the arc α but also an explicit

identification between its regular neighbourhood B and D2 × I, so that B ∩ L is sent to vertical

arcs in the product structure. One would then be able to specify the precise tangle replacement by

giving the slope of the new tangle as an explicit fraction.

This is somewhat cumbersome and so it is more usual to specify crossing changes via surgery

along crossing circles, as described in Section 1. In this section, we investigate the following questions.

If a crossing change is specified by tangle replacement along an arc, then how many crossing circles

does this give rise to? If a crossing change is specified by surgery along a crossing circle, how many

associated crossing arcs are there?

The second of the above questions has a possibly surprising answer. A crossing circle can give

rise to an arbitrarily large number of distinct crossing arcs. The point is that, to obtain a crossing

arc from a crossing circle, one must choose a crossing disc D. The associated crossing arc is then the

embedded arc in D joining the two points of D ∩ L. But a crossing circle may bound many, quite

different crossing discs. An example is given in Figure 5, where a single crossing circle gives rise to

4 different crossing arcs. This example generalises in an obvious way to arbitrarily many different

crossing arcs.

associated
crossing arcs

crossing
circle

Figure 5

Let us now pass to the first of the above questions. When a crossing change is specified by

a tangle replacement along α, then there are actually two associated crossing circles, as shown in

Figure 6.

α

Figure 6

Implicit in the above statement is that no other crossing circles arise from this tangle replace-

ment. We now make this more precise.
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Lemma 3.1. When a crossing change to a link L is achieved by tangle replacement along an arc α,

this gives rise to precisely two crossing circles, so that surgery along either of these crossing circles

implements this crossing change.

Proof. Note first that the two crossing circles shown in Figure 6 are not equivalent. In other words,

they are not related by an ambient isotopy that preserves the link L. This is because one can pick

any orientation on L and then one of these crossing circles has zero linking number with L and other

has linking number ±2.

We now need to show that we do not obtain any further crossing circles. To create a crossing

circle from the crossing arc α, we must thicken α to a disc. There are infinitely many ways of doing

this, that are parametrised by an integer n ∈ Z. We denote the boundary of this disc by Cn, as

shown in Figure 7.

=
α

Cn

n crossings

Figure 7

When ±1 surgery is performed along Cn, we obtain the tangle with slope n± 1
2 , according to

Figure 2. Thus, we see that, to obtain a specific slope, in other words to obtain a specific tangle

replacement, there are exactly two choices of n. Specifically, we could perform −1 surgery along

Cn+1 or +1 surgery along Cn.

4. Simplicity of the branched double covers

Theorem 1.1 only applies to links that are hyperbolic and 2-string prime. It is reasonable to

ask whether it is possible to easily determine whether this condition holds. In the following result,

we give an alternative characterisation in terms of the geometry of the branched double cover. This

is easily checked in practice (using Snappea for example [52]) and can be determined algorithmically

[19, 22, 28, 46]. We also examine branched double covers over sublinks of the link L, and derive a

result that will be useful in the proof of Theorem 1.1.

Proposition 4.1. Let L be a hyperbolic link in the 3-sphere.

(i) Then L is 2-string prime if and only if its branched double cover is hyperbolic or a small Seifert

fibre space.

(ii) Suppose that L is 2-string prime, and let L′ be a sublink of L. Then the double cover of

S3 − int(N(L− L′)) branched over L′ is hyperbolic or a small Seifert fibre space.

Recall that a Seifert fibre space is small if it contains no essential embedded torus. In particular,

the 3-sphere is a small Seifert fibre space, as is any lens space.

10



Proof. Note that the forwards implication in (i) is a special case of (ii) with L′ = L. So, we initially

focus on (ii). Let M be the double cover of S3 − int(N(L − L′)) branched over L′. To verify that

M is hyperbolic or a small Seifert fibre space, we appeal to the solution to the Geometrisation

Conjecture [40, 41, 42]. So, if M is not hyperbolic or a small Seifert fibre space, then it is toroidal

or reducible. Suppose first that M is reducible. Then the equivariant sphere theorem (see Theorem

3 in [32] and its proof) implies that there are one or two embedded disjoint essential spheres that

are invariant under the covering involution. Their union descends to a 2-sphere in S3 either that

is disjoint from L or that intersects L in two points. If the sphere is disjoint from L, then it has

components of L on both sides, since its inverse image in M is essential. If the sphere intersects L

in two points, then this forms an essential annulus properly embedded in the exterior of L. In both

cases, L fails to be hyperbolic. Suppose now that M is toroidal. Then the equivariant torus theorem

(Corollary 4.6 in [15]) gives one or two embedded disjoint essential tori that are invariant under

the covering involution. These descend to an essential torus in the exterior of L or to an essential

4-times punctured sphere with meridional boundary. In the former case, this implies that L is not

hyperbolic. In the latter case, L is not 2-string prime.

We now prove the backwards implication in (i). Let M be the double cover of S3 branched

over L. Suppose that M is hyperbolic or a small Seifert fibre space. Let S be a 2-sphere in S3 that

intersects L in four points, such that S − L has no compression disc in the complement of L. The

inverse image of this 2-sphere in M is a torus T , which must be compressible by our hypothesis about

M . By the equivariant disc theorem (Theorem 7 in [33]), there are one or two disjoint compression

discs for T that are invariant under the involution of M . These descend to a compression disc D for

S that intersects L in at most one point. This cannot be disjoint from L by our assumption about

S. On the other hand, if D intersects L in a single point, then ∂D separates S into two discs, one

of which contains a single point of L ∩ S. We deduce in that case that the inverse image of D was

not a compression disc for T , which is a contradiction.

5. The general set-up

Let L be our given link in S3. Suppose that a crossing change to L transforms it into a split

link L◦. Associated with this crossing change is a crossing circle C in the complement of L that

bounds a crossing disc D. Running between the two points of L ∩D is the crossing arc α.

Let L′ be the union of the components of L containing L ∩ D. Thus, L′ has one or two

components. We let M be the manifold obtained from S3 − int(N(L − L′)) by taking the double

cover branched over L′. More precisely, we consider the double cover of S3 − int(N(L)) determined

by the homomorphism π1(S3− int(N(L))→ Z/2 that measures the mod 2 linking number of a loop

with L′. Then M is obtained from this cover by Dehn filling each component of the inverse image

of ∂N(L′) using slopes that are elevations of meridians.

Suppose that L◦ is obtained from L by performing surgery along C via the slope ±1. Let

L′◦ ⊂ L◦ be the image of L′ after this surgery. Let M◦ be the double cover of S3 − int(N(L◦ −L′◦))
branched over L′◦. Then M◦ is obtained from M by Dehn surgery along a curve K. Moreover, if µ
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is the meridional slope on ∂N(K) and σ is the surgery slope, then ∆(σ, µ) = 2.

There are two main reasons why we use this set-up involving branched double covers, rather than

simply considering surgery along the crossing circle. Firstly, the distance between the surgery slope

σ and the meridian slope µ is more than 1. Secondly, we will see that H2(M − int(N(K)), ∂M) 6=
0. These two seemingly technical points are important because Dehn surgery theory works most

smoothly when they hold. In particular, they are hypotheses in the following theorem of the author

[24].

Let M be a compact orientable 3-manifold with ∂M a (possibly empty) union of tori. Let K

be a knot in M , and let σ be a slope on ∂N(K) other than the meridional slope µ. Let MK(σ) be

the manifold that is obtained by Dehn surgery along K via the slope σ. Then σ is an exceptional

slope and K is an exceptional surgery curve if any of the following holds:

(i) MK(σ) is reducible,

(ii) MK(σ) is a solid torus, or

(iii) the core of the surgery solid torus has finite order in π1(MK(σ)).

Also, σ and K are norm-exceptional if there is some z ∈ H2(M − int(N(K)), ∂M) that maps to an

element zσ ∈ H2(MK(σ), ∂MK(σ)), such that the Thurston norm of zσ is less than the Thurston

norm of z.

Theorem 5.1. There is an algorithm that takes, as its input, a triangulation of a compact connected

orientable 3-manifold M , with ∂M a (possibly empty) union of tori. The output to the algorithm

is a list of all knots K within M and all slopes σ on ∂N(K) with all the following properties:

(i) M − int(N(K)) is irreducible and atoroidal, and H2(M − int(N(K)), ∂M) 6= 0;

(ii) σ is an exceptional or norm-exceptional slope on ∂N(K), such that ∆(σ, µ) > 1, where µ is the

meridian slope on ∂N(K).

In particular, there are only finitely many such knots K and slopes σ.

The way that the algorithm lists the possibilities for K is described in Section 10. It is straight-

forward to then realise each possibility for K as a subcomplex of a suitable iterated barycentric

subdivision of the given triangulation of M . (See Theorem 10.2 and the discussion after it.)

Note that in our setting, σ is an exceptional surgery slope on ∂N(K). This is because Dehn

filling M − int(N(K)) along σ gives the manifold M◦. This is the branched double cover of S3 −
int(N(L◦ − L′◦)) branched over L′◦. The splitting sphere in the complement of L◦ lifts to reducing

spheres in M◦.

Thus, roughly speaking, the algorithm required by Theorem 1.1 proceeds by constructing the

finitely many possibilities for M , then using Theorem 5.1 to find all the exceptional surgery curves

K in M satisfying the hypotheses of Theorem 5.1, and then determining whether any of these

descend to a crossing arc α for L. It thereby builds a finite list of possibilities for α and for each
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such possibility, it provides the associated tangle replacement slope. In each case, we perform this

tangle replacement and determine whether the resulting link is split, totally split or the unlink, as

appropriate.

6. The Seifert fibred case

As in the previous section, M is the double cover of S3 − int(N(L − L′)) branched over L′.

We saw in Proposition 4.1 that the manifold M is hyperbolic or a small Seifert fibre space. In

this section, we deal with the case where M is Seifert fibred. In this setting, the list of potential

exceptional surgery curves is very simple, as given by the following result.

Theorem 6.1. Let M be a Seifert fibred 3-manifold with non-empty boundary and let K be a

knot in M such that M − int(N(K)) is irreducible and atoroidal and H2(M − int(N(K)), ∂M) 6= 0.

Suppose that σ is an exceptional slope on ∂N(K) such that ∆(σ, µ) > 1, where µ is the meridional

slope. Then K is isotopic to a singular fibre of M and σ is the slope of the regular fibres, when

N(K) is a fibred regular neighbourhood of K. In particular, M − int(N(K)) is Seifert fibred.

We will defer the proof of this until Section 10.

The above result says that the exceptional surgery curve K is isotopic to a singular fibre of M .

However, the manifold M that we are considering comes with an involution that preserves K, and

there is no a priori reason why this isotopy should be equivariant with respect to the involution. We

deal with this as follows.

Addendum 6.2. Let M , K, σ and µ be as in Theorem 6.1. Let τ be a piecewise-linear involution

of M that leaves K invariant. Then there is a Seifert fibration of M that is invariant under τ and

that has K as a singular fibre. Again, σ is the slope of the regular fibres when N(K) is a fibred

regular neighbourhood of K.

One might wonder why we require that τ is piecewise-linear. Indeed, Theorem 6.1 does not

refer to any triangulation of M . But by [34], M has a unique piecewise-linear structure, and so

the requirement that τ is piecewise-linear is a well-defined condition. The reason we make this

assumption is that an involution τ of a 3-manifold M need not be conjugate to a piecewise-linear

involution and hence M/τ need not even be triangulable [2]. We impose the hypothesis that τ is

piecewise-linear to avoid this situation.

Before we prove Addendum 6.2, we quote the following theorem.

Theorem 6.3. Let M be a Seifert fibre space that admits a piecewise-linear involution τ . Then it

admits a Seifert fibration that is invariant under τ .

This was proved by Tollefson [51], but under the assumption that if the base space of M is a 2-

sphere, then it has at least four singular fibres. The case excluded by Tollefson requires the Orbifold

Theorem [3, 7]. The quotient M/τ is an orbifold. Since M is Seifert fibred, and its base space is

a 2-sphere with at most 3 singular points, then M/τ is orbifold-irreducible and orbifold-atoroidal.
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Hence by the Orbifold Theorem, it is either hyperbolic or Seifert fibred. But if M/τ were hyperbolic,

then so would M be, which is impossible. Thus, M/τ is Seifert fibred. Its Seifert fibration lifts to a

Seifert fibration of M that is invariant under τ .

Proof of Addendum 6.2. We assume Theorem 6.1, which will be proved in Section 10. By Theorem

6.1, M − int(N(K)) is Seifert fibred. It admits an involution, which is the restriction of τ . Hence,

by Theorem 6.3, it admits a Seifert fibration that is invariant under the involution. The slope of

the regular fibres must be the exceptional slope σ, because filling along any other slope gives a

Seifert fibre space. Moreover, this Seifert fibre space cannot be a solid torus, by our hypothesis that

H2(M − int(N(K)), ∂M) 6= 0. Thus, the Seifert fibration on M − int(N(K)) extends to a Seifert

fibration on M that is invariant under the involution τ . Since the meridional slope µ is assumed to

have distance at least two from the slope of the regular fibre σ, we deduce that the surgery curve K

is a singular fibre.

Remark 6.4. Note that Addendum 6.2 and Theorem 6.3 assert the existence of some Seifert

fibration that is invariant under τ . However, most Seifert fibre spaces have a unique Seifert fibration

up to isotopy. Indeed, this is true of any Seifert fibre space with non-empty boundary other than

T 2× I, the twisted I-bundle over the Klein bottle and the solid torus (see Theorem VI.18 of [16] for

example). This is important, because once one has identified a Seifert fibration on the manifold M

in Theorem 6.1, then we know that K is isotopic to a singular fibre in this Seifert fibration. In the

setting of Addendum 6.2, K is also assumed to be invariant under the piecewise-linear involution

τ , and hence it descends to a 1-manifold in the orbifold M/τ . We would like to know that K is

similarly well-defined up to isotopy in M/τ . Fortunately, this is provided to us by the following

result of Bonahon and Siebenmann (see Theorem 2 in [4]) which establishes the uniqueness up to

isotopy of Seifert fibrations on many orbifolds.

Theorem 6.5. Let M/τ be a Seifert fibred orbifold with non-empty boundary. Suppose that the

base orbifold of the Seifert fibration is not finitely covered by a disc or an annulus. Then the Seifert

fibration on M/τ is unique up to isotopy that preserves the singular locus of the orbifold throughout.

We will need the following constructive version of Theorem 6.3.

Theorem 6.6. There is an algorithm that takes, as its input, a triangulation T of a Seifert fibre

space M with non-empty boundary and an involution τ of M that preserves T . The output of the

algorithm is a union of disjoint simple closed curves that are the singular fibres in a Seifert fibration

of M that is invariant under τ . The algorithm also produces a regular neighbourhood of these

singular fibres, together with a slope on each of these solid tori that represents a regular fibre.

Proof. In Algorithm 8.1 of [19], Jaco and Tollefson provided an algorithm to determine whether a

Haken manifold with incompressible boundary is Seifert fibred. It also produced the information

required by the theorem: the singular fibres, together with the slopes of regular fibres on the bound-

ary of their solid toral neighbourhoods. However, we need to perform a version of this procedure

equivariantly.

If necessary, we first subdivide the triangulation T to a triangulation T ′ so that the fixed-point
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set of τ is simplicial in T ′.

If M is a solid torus, then this may be algorithmically determined, for example using Theorem

6.2 in [19]. In this case, M admits a Seifert fibration that is invariant under τ . It has at most one

singular fibre, that is a core of M . Hence, our algorithm must simply find the slope of the regular

fibres on ∂M . But this slope may be taken to be any non-meridional slope that is invariant under

the involution, and this may easily be determined algorithmically.

If M is homeomorphic to T 2× I, this may also be algorithmically determined, using Algorithm

8.1 in [19]. In this case, our algorithm ends by declaring that M has no singular fibres.

So, we may assume that M is neither a solid torus nor T 2×I. It therefore contains an essential

properly embedded annulus. According a theorem of Kobayashi (Theorem 1 in [21]), it contains

such an annulus that is either invariant under τ or disjoint from its image under τ . We need to show

that in addition, this annulus A can be realised as a normal surface, with control over its number of

intersections with the 1-skeleton of T ′.

By the PL-minimal surface theory of Jaco and Rubinstein, there is a PL-least area surface in

the isotopy class of A, which we will also call A. By definition, this is normal in T ′. By Theorem 7

of [18], A is either disjoint from its image under τ or it equals its image. Let Ã be A∪ τA, which is

equal either to A or to the disjoint union of A and τA.

Normal surface theory [14, 17, 30] gives that there is a finite constructible collection of normal

surfaces F1, . . . , Fn in T ′ that are fundamental. The normal surface Ã is a normal sum k1F1 + . . .+

knFn. We will show that Ã can be chosen so that each ki is at most 8. By Theorem 4.1.36 of [30]

(see also Theorem 2.2 of [17]), any normal summand of Ã must be incompressible and boundary-

incompressible, and no summand can be a sphere or disc. Since Euler characteristic is additive

under normal summation, any fundamental surface Fi that is a summand of Ã must be an annulus

or Möbius band. If Fi is a Möbius band, then 2Fi is an annulus. Hence if some ki > 1, then

Ã has an annulus A′ as a summand which is either fundamental or twice a fundamental surface.

The surface τA′ is also a normal surface. It is also a summand for Ã. Hence, A′ and τA′ have

compatible normal co-ordinates in the sense that no tetrahedron of T ′ contains a quadrilateral of A′

and a quadrilateral of τA′ that are not normally isotopic. One may therefore form the normal sum

A′ + τA′ and obtain an embedded normal surface. Now A′ + τA′ is a summand of Ã + τÃ = 2Ã.

Therefore by Theorem 4.1.36 in [30], no component of the surface A′+τA′ is a sphere or disc. Hence,

it is a union of annuli and Möbius bands. By Theorem 4.1.36 in [30], these are incompressible and

boundary-incompressible. Note that A′ + τA′ is invariant under τ up to normal isotopy. In fact,

A′ + τA′ has a normal representative that is actually invariant under τ by Theorem 2 in [18]. Pick

a component of A′ + τA′. It is either invariant under τ or disjoint from its image. If this is an

annulus, then it is the required surface, because it is a sum of at most 4 fundamental surfaces. On

the other hand, if this component of A′ + τA′ is a Möbius band, then its normal sum with itself is

the required annulus.

Thus, by searching through normal surfaces of the form k1F1 + . . .+ knFn, where each ki ≤ 8,
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we eventually find a normal essential annulus A that is either invariant under τ or disjoint from its

image under τ . We now subdivide the triangulation T ′ equivariantly so that A∪τA is a subcomplex

of it. We can cut along A ∪ τA, to form a triangulation of a new Seifert fibred manifold with toral

boundary components. Repeating in this way, we eventually decompose our Seifert space into a

union of fibred solid tori. In their boundary are a collection of annuli, which are copies of the last

annulus or annuli that we decomposed along to form the relevant solid torus. The slopes of these

annuli are the slopes of the regular fibres. We can thereby determine, for each of these solid tori,

whether they have a singular fibre as a core curve. Our algorithm ends by outputting these solid

tori, their core curves and the slopes of the regular fibres on their boundary.

7. Verifying the hypotheses of Theorem 5.1.

We now spend some time verifying that the hypotheses of Theorem 5.1 do hold in our setting.

We need to verify that H2(M − int(N(K)), ∂M) 6= 0. Now it is not hard to check that

H2(M − int(N(K)), ∂M) is a subgroup of H2(M,∂M), and its rank is either equal to that of

H2(M,∂M) or one less. By Poincaré duality, the rank of H2(M,∂M) is equal to the first Betti

number of M , and this is at least the number of toral boundary components. Each component of

L − L′ gives rise to one or two components of ∂M . So, when |L| ≥ 4, then |∂M | ≥ 2 and so we

deduce that H2(M − int(N(K)), ∂M) 6= 0.

When |L| = 2, we are assuming that the two components of L have zero linking number. So,

the crossing disc D that C bounds must intersect a single component of L. For otherwise, the

crossing change would modify the linking number by ±1, and the result could not be a split link.

So, |L′| = 1. Moreover, the linking number between L′ and L − L′ is zero, and so M has two

boundary components. Once again we deduce that H2(M − int(N(K)), ∂M) 6= 0.

The final case is where |L| = 3. This is a little more delicate. The disc D can intersect at

most two components of L, and so there is a component L1 that is disjoint from D. Let α be the

crossing arc in D running between the two points of D ∩L. Let S be a Seifert surface for L1. Since

α is an arc, we may slide any points of α ∩ S along α and off it. This may introduce new points of

intersection between S and L − L1 but S remains a Seifert surface for L1, and so we may assume

that S is disjoint from α. The inverse image of α in M is the surgery curve K. The inverse image

of S in M is a properly embedded orientable non-separating surface. This represents a non-trivial

element of H2(M − int(N(K)), ∂M), which verifies that this group is non-zero.

There are two remaining hypotheses in Theorem 5.1: that M − int(N(K)) is irreducible and

atoroidal. If M − int(N(K)) is reducible, then the equivariant sphere theorem states that there are

one or two disjoint reducing 2-spheres in M − int(N(K)) that are invariant under the involution.

They descend to a 2-sphere in S3 − int(N(L − L′)) that intersects L′ in either two or zero points.

Hence, by the hypothesis that L is hyperbolic, this sphere S bounds a ball B so that B ∩L is either

empty or a trivial 1-string tangle. The sphere or spheres lie in M − int(N(K)), and so their image S

is disjoint from N(α). Therefore, α must lie in B, because otherwise each component of the inverse

16



image of B is a ball in M − int(N(K)). The tangle replacement occurs within B, and so B ∩ L
is replaced by a possibly non-trivial 1-string tangle. However, this cannot make the link L◦ split,

which is a contradiction.

Note that here, we used the fact that we are performing a crossing change to L. Thus, this

argument does not immediately extend to other tangle replacements. However, there is another

argument that works in this more general setting. Suppose that tangle replacement is performed

along α and that this turns the trivial 1-string tangle B∩L into a tangle that is split. Then on passing

to the branched double cover, we deduce that surgery along on a knot in the 3-ball creates a manifold

containing a non-separating sphere. Hence, the distance between the surgery slope and the meridian

slope is 1. So, if we assume that the distance is more than 1, then we reach a contradiction. In fact,

by using Gabai’s proof of the Property R conjecture [9] and the solution to the Smith conjecture

[36], we would be able to classify the possible tangle replacements even in the distance 1 case.

Suppose now that M − int(N(K)) is toroidal. The equivariant torus theorem gives that there

are one or two disjoint essential embedded tori in M − int(N(K)) that are invariant under the

involution. They descend either to a sphere in S3− int(N(L−L′)) that intersects L′ in four points,

or to a torus disjoint from L. We consider these two cases separately.

Suppose that the torus or tori in M − int(N(K)) project to an embedded torus T in S3 −
int(N(L)). We are assuming that L is a hyperbolic link, and so T must bound a solid torus in

the complement of L, or must lie within a 3-ball in the complement of L, or must be parallel to a

component of ∂N(L).

Suppose that T bounds a solid torus in the complement of L. Since its inverse image in M is

disjoint from K, T is disjoint from α. As α starts and ends on L, it is therefore disjoint from the

solid torus. Hence, the torus was not essential in M − int(N(K)), which is a contradiction.

Suppose that T lies within a 3-ball in the complement of L but does not bound a solid torus

in the complement of L. Then T separates S3 into two components, one of which is disjoint from

L and is homeomorphic to the exterior of a non-trivial knot. The other component must be a solid

torus containing L. As α has its endpoints on L and is disjoint from T , we deduce that α lies in

this solid torus. A meridian disc for this solid torus is disjoint from L, because the torus lies in a

3-ball disjoint from L. Hence, every curve on T has zero linking number with every component of L.

Therefore, the inverse image of T in the branched double cover M is two tori. Together these bound

the inverse image V of the solid torus. The surgery curve K lies in V , since K is the inverse image

of α. Note that V − int(N(K)) is irreducible as otherwise the equivariant sphere theorem implies

that there is an essential sphere in S3− int(N(L∪α)), which would imply that L is split, contrary to

assumption. Since T is compressible in S3 − int(N(L)), ∂V is compressible in V . Since V has more

than one toral boundary component, it is therefore reducible. When surgery on M is performed

along K, a reducible manifold M◦ is created. Let V◦ be the submanifold of M◦ that comes from V ;

so V◦ is obtained from V by surgery along K. Since M◦ is reducible, we deduce that V◦ is reducible

or has compressible boundary. Again because V◦ has more than one toral boundary component,

it must be reducible. A theorem of Gordon and Luecke [12] then states that when an irreducible
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3-manifold (in this case, V − int(N(K))) with a toral boundary component is Dehn filled in two

different ways to obtain reducible 3-manifolds (in this case, V and V◦), the distance between the

surgery slopes is one. This contradicts our assumption that the distance of the tangle replacement

is at least two.

Finally consider the case where T is parallel to a component of ∂N(L). Then T bounds a solid

torus W in S3, that intersects L in a single core curve. Since T is the image of a torus disjoint from

K, T is disjoint from α. If α is disjoint from the solid torus bounded by T , then the inverse image

of T in M − int(N(K)) is boundary parallel, which is contrary to hypothesis. So, α lies in the solid

torus bounded by T . Now, T does not admit a compression disc in S3− int(W ) that is disjoint from

L. This is because T would then be compressible in the complement of L∪α, and hence the inverse

image of T in M − int(N(K)) would be compressible. After the tangle replacement, T continues to

bound a solid torus in S3, but its intersection with the new link need not be a core curve. However,

it still has winding number one, and so T remains incompressible in the complement of the new link

L◦. Now this link complement contains an essential sphere, because L◦ is split. After modifying this

2-sphere appropriately, we can make it disjoint from the incompressible torus. It then is disjoint from

the solid torus, and hence is disjoint from the inserted tangle. It therefore corresponds to a 2-sphere

in the complement of L that separates components of L. Hence, L is split, which contradicts the

hypothesis that it is hyperbolic.

Thus, we have shown that if M−int(N(K)) contains an essential torus, then there is one that is

invariant under the involution and this descends to a 2-sphere that intersects L in four points. Since

this 2-sphere is separating in S3, we deduce that the essential invariant torus in M − int(N(K))

is necessarily separating. We pick an essential invariant torus T that is furthest from K, in the

following sense. If T ′ is another essential invariant torus in M − int(N(K)) that is disjoint from

T but not parallel to T , then T ′ lies in the component of M − int(N(K ∪ T )) containing ∂N(K).

Let S be the image of T in S3. Since L is 2-string prime, this bounds a 3-ball B that contains a

compression disc for S − L disjoint from L. Since T was disjoint from K, its image S is disjoint

from α. Therefore, α must lie in B, because otherwise the inverse image T of S is compressible in

M − int(N(K)). Thus, the tangle A = B ∩ L becomes a new 1-manifold A◦ = B ∩ L◦.

We claim that ∂B − ∂A◦ is compressible in the complement of A◦. For if it is incompressible,

then one may find a splitting sphere for L◦ that is disjoint from it. This splitting sphere cannot lie

in B, by Theorem 2.2 (i). Hence, the splitting sphere lies in the complement of B, and therefore

forms a splitting 2-sphere for L, contrary to assumption.

Hence, by Theorem 2.2 (ii), A◦ is a trivial 2-string tangle. So conclusion (i) or (ii) of Theorem

2.1 holds. We can view the removal of A and the insertion of A◦ as tangle replacement along the

core arc β of A. In conclusion (i) of Theorem 2.1, β equals α. But in conclusion (ii), β is different

from α. Let K ′ be the inverse image of β in M . Then M◦ is obtained from M by Dehn surgery

along K ′. The distance between the surgery slope and the meridian slope is equal to the distance

between the slopes of A and A◦, and by Theorem 2.1, this is at least d ≥ 2. Note that by our choice

of T , M − int(N(K ′)) is atoroidal. Hence, we may apply Theorem 5.1 to K ′ instead of K.
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Thus, we have verified the hypotheses from Theorem 5.1.

8. The mapping class group of a hyperbolic 3-manifold

Any branched double cover comes equipped with an involution. Therefore, in this section, we

analyse the mapping class group of a compact orientable 3-manifold X, by which we mean the group

of homeomorphisms of X, up to isotopy. As we have dealt with the Seifert fibred case in Section 6,

the manifolds X that we will consider will be hyperbolic. It is well known that the mapping class

group of such a manifold is finite and computable. Indeed, we have the following result.

Theorem 8.1. Let X be an orientable finite-volume hyperbolic 3-manifold. Then the mapping

class group of X is finite. Moreover, there is an algorithm that takes, as its input, a triangulation T

for X and returns the following:

(i) a finite sequence of Pachner moves taking T to a triangulation T ′;

(ii) a finite group of symmetries of T ′, which forms a realisation of the mapping class group of X.

This result is well known, and this is not the place to explain it in detail. It uses essentially the

same methods as the solution to the homeomorphism problem for compact orientable 3-manifolds.

See for example [22] or [46]. A statement of the computability of the mapping class group of X is

given in Theorem 8.3 of [22] for example, and the proof there gives (i) and (ii) of Theorem 8.1.

It is also worth pointing out that, in the situations where we want to apply Theorem 8.1, ∂X

is non-empty, and in this case, there is a nice algorithm to solve the problems in Theorem 8.1, as

follows.

It was shown by Petronio and Weeks [43] that when ∂X is a non-empty collection of tori, X

admits a hyperbolic structure if and only if it has an ideal triangulation that admits a ‘partially

flat’ solution to the hyperbolic gluing equations. Thus, one first transforms the given triangulation

into an ideal one. Then one applies all possible 2-3 and 3-2 Pachner moves to this, to create a list

of ideal triangulations for X. Then, for each triangulation in this list, one applies all possible 2-3

and 3-2 Pachner moves, and so on. In this way, an ever-increasing list of ideal triangulations for X

is created. It is a theorem of Matveev [29] that any ideal triangulation for X will eventually appear

in this list. As this is being produced, the algorithm checks whether each ideal triangulation admits

a partially flat solution to the gluing equations. Note that one can decide whether a given system

of algebraic equations and inequalities with integer coefficients admits a real solution and, if it does,

it is possible to find one. This is due to Tarski [49], although there are now more efficient solutions

[13]. If the ideal triangulation does admit a partially flat solution to the gluing equations, such a

solution can therefore be found and this is the required hyperbolic structure. From this, one can

compute the Epstein-Penner decomposition, using the algorithm of Weeks [53]. The Epstein-Penner

decomposition is a way of building X out of hyperbolic ideal polyhedra via isometries between

their faces. It has the key property that the mapping class group of X is precisely the group of

combinatorial automorphisms of these polyhedra that respect the face identifications. One can then
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easily decompose the ideal polyhedra into a triangulation T ′ satisfying the requirements of Theorem

8.1.

The computation of the mapping class group given in Theorem 8.1 can be made effective in

the following sense.

Theorem 8.2. Let X be an orientable finite-volume hyperbolic 3-manifold. Let h1 and h2 be finite

order piecewise-linear homeomorphisms of X, given as combinatorial automorphisms of triangula-

tions T1 and T2 of X, together with a finite sequence of Pachner moves relating T1 and T2. Then

there is an algorithm to determine whether h1 and h2 are equal in the mapping class group of X.

Proof. By a theorem of Gabai (Theorem 1.2 in [11]), two homeomorphisms of a finite-volume

hyperbolic 3-manifoldX are homotopic if and only if they are isotopic. Thus, determining whether h1

and h2 are equal in the mapping class group is equivalent to determining whether h2h
−1
1 is homotopic

to the identity. This is equivalent to the induced map on π1(X) being an inner automorphism. This

can be determined as follows. Pick a generating set γ1, . . . , γn for π1(X). The hyperbolic structure

on X, which has been determined using [22] or [46], realises γ1, . . . , γn as elements A1, . . . , An of

PSL(2,C). The homomorphism induced by h2h
−1
1 sends A1, . . . , An to A′1, . . . , A

′
n in PSL(2,C). If

some A′i is conjugate to Ai, the conjugating element would have to send the fixed-point set for A′i in

the sphere at infinity to the fixed-point set of Ai. Hence, once we consider a couple of loxodromic Ai

with disjoint fixed-point sets (which can readily be arranged by a minor adjustment to the generating

set), then there are only finitely many possible elements of PSL(2,C) that can conjugate the ordered

set A′1, . . . , A
′
n to A1, . . . , An. If none of these lies in π1(X), then this can be determined and hence,

it can be deduced that the homomorphism induced by h2h
−1
1 is not an inner automorphism. On

the other hand, if it is an inner automorphism, then an exhaustive search through the possible

conjugating elements of π1(X) will eventually establish that it is indeed an inner automorphism.

We also note that equality in the mapping class group for such homeomorphisms is equivalent

to something rather stronger.

Theorem 8.3. Let X be an orientable finite-volume hyperbolic 3-manifold. Then two finite order

piecewise-linear homeomorphisms h1 and h2 of X are isotopic if and only if there is a piecewise-linear

homeomorphism φ of X that is isotopic to the identity and that satisfies h2 = φ−1h1φ. Moreover,

there is an algorithm to find such a homeomorphism φ when one is given h1 and h2 as combinatorial

automorphisms of triangulations T1 and T2 of X, together with a finite sequence of Pachner moves

relating T1 and T2.

Proof. Let O1 and O2 be the orbifolds X/〈h1〉 and X/〈h2〉. These are orbifold-irreducible and

orbifold-atoroidal since X is irreducible and atoroidal. Hence, they admit hyperbolic structures by

the Orbifold Theorem [3, 7]. These lift to hyperbolic metrics g1 and g2 on X. By Gabai’s theorem

(which is the analogue of the Smale Conjecture for hyperbolic 3-manifolds, Theorem 7.3 [11]), there

is an isotopy between g1 and g2. In other words, there is a 1-parameter family of diffeomorphisms

φt (t ∈ [0, 1]) such that φ0 is the identity and φ∗1g1 = g2. Let φ = φ1. Now, h1 and h2 are isometries

with respect to g1 and g2 respectively. Hence, φ−1h1φ is an isometry with respect to φ∗g1 = g2. It
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is homotopic to the isometry h2 of g2. By Mostow rigidity, two homotopic isometries are equal, and

hence φ−1h1φ = h2, as required.

Suppose now that we are given isotopic, finite order, piecewise-linear homeomorphisms h1 and

h2 of X, given as combinatorial automorphisms of triangulations T1 and T2 of X, together with a

finite sequence of Pachner moves relating T1 and T2. We then know that φ, satisfying the above

conditions, exists. We must give an algorithm to find it. Note that φ descends to a homeomorphism

φ:O2 → O1 that respects the singular locus. This satisfies (φ)∗(p2)∗π1(X) = (p1)∗π1(X) where

p1:X → O1 and p2:X → O2 are the quotient maps and (pi)∗:π1(X) → π1(Oi) are the induced

homomorphisms at the level of orbifold fundamental groups. Conversely, given a homeomorphism φ

between O2 and O1 respecting the singular locus and satisfying (φ)∗(p2)∗π1(X) = (p1)∗π1(X), we

may lift it to a homeomorphism φ:X → X such that φ−1h1φ = hk2 for some k ∈ Z. Moreover, when

φ is isotopic to the identity, then we may take k = 1. When h1 and h2 are given as combinatorial

automorphisms of triangulations T1 and T2 of X, we may subdivide these to triangulations T ′1

(respectively, T ′2) with the property that a simplex is invariant under h1 (respectively h2) if and

only if it is in the fixed-point set of h1 (respectively h2). These descend to triangulations of O1

and O2, and we may then start to search for homeomorphisms φ between them, by exhaustively

trying sequences of Pachner moves. We will eventually find such a homeomorphism that lifts to a

homeomorphism φ:X → X that is isotopic to the identity and that satisfies φ−1h1φ = h2.

9. The algorithm to detect links with splitting number one

In this section, we provide the algorithm required by Theorems 1.1 and 1.2.

We have already seen that when L admits a tangle replacement along an arc α that creates

a split link, then there is an associated exceptional surgery curve K in the manifold M . When

the distance of the tangle replacement is at least 2, this satisfies the hypotheses of Theorem 5.1,

and so this theorem provides a list of all possibilities for K up to isotopy of M . But it may not

be clear whether a knot K ′ provided by Theorem 5.1 is isotopic to a curve that is invariant under

the involution on M . Even if it is, it is not clear whether it has several different representatives

in its isotopy class in M , each of which is invariant under the involution, but which descend to

non-isotopic arcs in the exterior of L. Thus, it is not immediately clear how to create a finite list of

all possibilities for the arc α. To circumvent this problem, we argue as follows.

The construction of M as a branched double cover provides a piecewise-linear involution τ of

M that restricts to a piecewise-linear involution of M − int(N(K)). Hence, if K ′ is isotopic to K,

then M− int(N(K ′)) also admits a piecewise-linear involution. So, for each of the knots K ′ provided

by Theorem 5.1, we check whether M − int(N(K ′)) admits a piecewise-linear involution. The main

case that we will consider is where M and M − int(N(K)) are hyperbolic. In this situation, their

mapping class groups are finite and computable using Theorem 8.1. So, we can decide whether

M − int(N(K ′)) admits a piecewise-linear involution, and we can find an explicit representative for

each such involution. We are only interested in involutions that extend to an involution of M that

is isotopic to τ . The following lemma asserts that, if we know the involution of M − int(N(K ′)) and
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if we know that it extends to the involution τ on M (up to isotopy), then this is enough to be able

to recreate the image of K in the orbifold M/τ . Recall that M/τ is the orbifold with underlying

manifold S3 − int(N(L − L′)) and with singular set equal to L′. The image of K in M/τ is the

required arc α.

Lemma 9.1. Let τ be a piecewise-linear involution of a hyperbolic 3-manifold M that leaves a

knot K invariant, where M − int(N(K)) is hyperbolic. Let ρ be a piecewise-linear homeomorphism

of M that is isotopic to the identity, taking K to a knot K ′. Let η be another piecewise-linear

involution of M that leaves K ′ invariant. Suppose that the restrictions of ρτρ−1 and η are isotopic

homeomorphisms of M − int(N(K ′)). Suppose also that there is a piecewise-linear homeomorphism

φ of M that is isotopic to the identity and that satisfies η = φ−1τφ. Then there is a piecewise-

linear homeomorphism M/τ → M/τ respecting the singular locus of this orbifold and taking K/τ

to φ(K ′)/τ . Moreover, this homeomorphism is isotopic to the identity on the components of ∂M/τ

that are disjoint from the singular set.

Proof. Since ρτρ−1 and η are isotopic piecewise-linear homeomorphisms of M − int(N(K ′)), then

by Theorem 8.3, there is a piecewise-linear homeomorphism ψ of M − int(N(K ′)), isotopic to the

identity, such that ρτρ−1 = ψ−1ηψ. This extends to a piecewise-linear homeomorphism ψ of M

such that ψ(K ′) = K ′. Thus, we have the following commutative diagram:

(M,K)
ρ−→ (M,K ′)

ψ−→ (M,K ′)
φ−→ (M,φ(K ′))yτ yρτρ−1

yη yτ
(M,K)

ρ−→ (M,K ′)
ψ−→ (M,K ′)

φ−→ (M,φ(K ′))

Hence, the composition φψρ descends to a homeomorphism M/τ → M/τ taking singular locus to

singular locus and taking K/τ to φ(K ′)/τ . Since φψρ is isotopic to the identity, its action on each

component of ∂M/τ that is disjoint from the singular set is isotopic to the identity.

Thus, the algorithm required by Theorems 1.1 and 1.2 is as follows:

1. If L is provided by a diagram, then we use this to build a triangulation of S3 in which L is

simplicial.

2. Pick all sublinks L′ of L consisting of one or two components. If |L| = 2, then we require that

|L′| = 1. There are only finitely many choices for L′ and so let us focus on just one such choice.

3. Construct a triangulation T of the double cover of S3−int(N(L−L′)) branched over L′. Denote

this manifold by M . Note that M has non-empty boundary.

4. By Proposition 4.1, M is either hyperbolic or a small Seifert fibre space. Using Algorithm 8.1

in [19], determine which of these cases holds. The algorithm divides into these two cases.

The hyperbolic case

1. Use Theorem 5.1 to produce a finite list of knots K in M , with slopes σ on ∂N(K) that satisfy

the hypotheses of Theorem 5.1. Each knot K can be given as a subcomplex of some iterated
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barycentric subdivision of T . Let us now focus on just one choice of K and σ.

2. From the way that K is given, it is easy to build a triangulation T ′ for M − int(N(K)). For

example, one can take two further barycentric subdivisions of the triangulation of M , and then

remove the simplices that are incident to K.

3. Use Theorem 4.1.12 in [30] or Theorem 5.2 in [19] to determine whether M − int(N(K)) is

irreducible and use Theorem 6.4.10 in [30] or Algorithms 8.1 and 8.2 in [19] to determine

whether it is atoroidal. If it is reducible or toroidal, then discard it and move on to the next

choice of K and σ. So let us assume that M − int(N(K)) is irreducible and atoroidal. It is

therefore hyperbolic or Seifert fibred, by the solution to the Geometrisation Conjecture. In

fact, it cannot be Seifert fibred, because it can be Dehn filled to form the hyperbolic manifold

M .

4. Compute the mapping class group of M − int(N(K)) using Theorem 8.1. This gives a triangu-

lation T ′′ of M − int(N(K)) and a group of symmetries of T ′′ that realises the mapping class

group. It also provides a sequence of Pachner moves from T ′ to T ′′.

5. For each order 2 symmetry η of M − int(N(K)), determine whether it preserves ∂N(K) and

determine whether it acts by −id on it. If this is not the case, ignore it and move on.

6. If η does act in this way on ∂N(K), then it extends to an order two symmetry of M , which we

will also call η. Extend T ′′ to a triangulation T ′′′ of M that is invariant under η and build a

sequence of Pachner moves from T to T ′′′.

7. Using Theorem 8.2, determine whether η is isotopic to the involution τ of M that is given by

the construction of M as a branched double cover. If it is not, then discard it.

8. Assuming that η is isotopic to τ , Theorem 8.3 provides a piecewise-linear homeomorphism φ

of M isotopic to the identity such that η = φ−1τφ. The arc φ(K) is invariant under τ and its

image in S3 − int(N(L− L′)) is an arc β with endpoints on L′.

9. Lemma 9.1 only provides the arc β up to homeomorphism of S3− int(N(L)), whereas we want

all possibilities for β up to isotopy. So, for each arc β constructed as above, consider all its

images under the mapping class group of S3 − int(N(L)), which is determined using Theorem

8.1.

10. Feed all these arcs β into the subroutine below that constructs arcs α from them.

The Seifert fibred case

1. Use Theorem 6.6 to produce a Seifert fibration of M that is invariant under the involution.

More specifically, this produces a union of disjoint simple closed curves K in M that are the

singular fibres. Also, for each such simple closed curve, it produces the slope σ on ∂N(K) that

is slope of the regular fibres.

2. For each possibility for K, observe whether it is invariant under the involution. If it is not,

discard it. If it is, its image in S3 − int(N(L − L′)) is an arc β. Feed β into the subroutine
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below that constructs arcs α from it.

Constructing the arcs α

1. Using β, we determine one or two possibilities for α, corresponding to conclusions (i) and (ii)

of Theorem 2.1. In case (i), we set α to be equal to β. We check that the distance of the tangle

replacement is two. If it is not, we discard this possibility. In case (ii), we parametrise the

slopes on ∂N(K) by Q ∪ {∞} where ∞ is the meridional slope giving M . We let the slope of

σ be p/q. If q is of the form 2a2, then we write p/q as (1 ± 2ab)/ ± 2a2, and then set α as in

(ii) of Theorem 2.1.

2. If we are determining whether sd(L) = 1 or tsd(L) = 1, then we only consider arcs α that have

endpoints on distinct components of L. So under these circumstances, if the endpoints of α lie

on the same component of L, then we discard it.

3. For each of these possibilities for α, we perform this tangle replacement. The image of L is a

link L◦. Determine whether L◦ is the unlink, a split link or totally split, as appropriate. For

example, one can use Theorem 5.2 in [19] to determine whether S3 − int(N(L◦)) is reducible

and if it is, to find a reducing sphere. Then one can decompose along it, fill in with 3-balls and

repeat. In this way, we can determine whether L◦ is split and whether it is totally split. In the

latter case, we can also determine whether the components are unknots, and so whether L◦ is

the unlink.

4. For any relevant crossing arc α, we can then construct the associated crossing circles and ±1

surgery coefficients, as in Section 3.

One may wonder why we could not simply set α to be β in Step 1 of the final subroutine.

Note that α is the image of K under the quotient map M → M/τ . At the end of Section 7, it was

necessary to permit K to be replaced by another knot K ′. In this case, β is the image of K ′, and α

is obtained from it by the procedure described in Theorem 2.1.

Note that using a minor variation of Step 1 in the final subroutine, we can generalise from

crossing changes to tangle replacements with distance at least two. The modified version of Step 1 is

as follows. In case (i) of Theorem 2.1, we set α equal to β, but we do not check that the distance of the

tangle replacement is two. This was done solely to ensure that the tangle replacement corresponded

to a crossing change. In case (ii) of Theorem 2.1, we consider all possible ways of writing p/q as

(1±dab)/±da2, where a and b are integers and d is an integer at least two. For each such possibility,

we get an arc α as in (ii) of Theorem 2.1. Thus, checking each of these tangle replacements in turn,

we obtain the following result.

Theorem 9.2. Let L be a link in S3 with at least two components. If L has exactly two components,

suppose that these have zero linking number. Suppose that L is hyperbolic and 2-string prime. Then

there is an algorithm to find all possible trivial tangle replacements that can be made to L with

distance at least two that turn it into a split link.

Remark 9.3. The algorithm given above required us to consider all sublinks L′ of L with one or two
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components. However, in the case where |L| ≥ 3, we can focus just on the case where |L′| = 2. The

reason for this is as follows. The manifold M is the double cover of S3 − int(N(L − L′)) branched

over L′. It was important for the endpoints of α to lie in L′, so that the inverse image of α in M

is a knot K. But if α has endpoints in the same component of L, then we can choose L′ to be the

union of this component plus one other chosen arbitrarily. The conditions on M − int(N(K)) are

all easily verified, as in Section 7. In particular, the condition H2(M − int(N(K)), ∂M) 6= 0 holds.

10. The algorithm to enumerate knots with exceptional surgeries

In the previous section, an algorithm that solves the decision problems in Theorem 1.1 was given.

The crucial ingredient was Theorem 5.1, which provided an algorithm to enumerate the exceptional

surgery curves within a 3-manifold satisfying certain conditions. This algorithm is difficult to work

with in practice, and so in many concrete examples, it is better to use the techniques behind Theorem

5.1. Therefore in this section, we give an overview of the proof of Theorem 5.1.

The proof relied heavily on sutured manifold theory. An excellent reference for this is [44]. The

first part of the argument closely follows Section 5 of [44].

Suppose that M is a compact orientable 3-manifold with ∂M a (possibly empty) union of tori.

Let K be a knot in M and let σ be a slope on ∂N(K) satisfying (i) and (ii) of Theorem 5.1. Give

M − int(N(K)) the structure of a sutured manifold with R− = ∅ and R+ = ∂M ∪ ∂N(K) and

therefore with sutures γ1 = ∅. We may find a taut sutured manifold hierarchy

(M − int(N(K)), γ1)
S1−→ (M2 − int(N(K)), γ2)

S2−→ . . .
Sn−1−→ (Mn − int(N(K)), γn)

such that the following hold:

(i) Each surface Si is disjoint from ∂N(K).

(ii) Each surface Si contains no closed separating components.

(iii) No surface Si has a boundary component that bounds a disc in ∂Mi disjoint from γi.

(iv) H2(Mn − int(N(K)), ∂Mn) = 0.

(v) In the case where σ is norm-exceptional there is some z ∈ H2(M − int(N(K)), ∂M) that maps

to an element zσ ∈ H2(MK(σ), ∂MK(σ)), such that the Thurston norm of zσ is less than the

Thurston norm of z. We require that [S1] = z.

Condition (iv) implies that ∂Mn consists of a collection of spheres and at most one torus. By

the tautness of (Mn − int(N(K)), γn), each sphere bounds a ball in Mn. Hence, there is exactly

one component Y of Mn − int(N(K)) that is not a ball. This forms a rational homology cobordism

between a toral component T of ∂Mn and ∂N(K). This torus T is incompressible in M− int(N(K)).

This is because a compressible torus in an irreducible 3-manifold bounds a solid torus or lies within

a 3-ball. If T bounds a solid torus in M − int(N(K)), then some surface Si must intersect this solid

torus, and this gives rise to a closed separating component of Si, contradicting (ii). If T lies within

a 3-ball in M − int(N(K)), then again some Si must intersect this 3-ball and again this gives a
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closed separating component. Now we are assuming that M − int(N(K)) is atoroidal, and so the

incompressible torus T is boundary parallel in M − int(N(K)). It cannot be parallel to component

of ∂M , because Y would then be the region between T and ∂N(K) and hence would be a copy

of M − int(N(K)). However, M − int(N(K)) is not a rational homology cobordism between ∂M

and ∂N(K), since H2(M − int(N(K)), ∂M) is non-trivial. We therefore deduce that T is parallel to

∂N(K), and hence Y is a copy of T × [0, 1] with T × {1} = T and T × {0} = ∂N(K).

Consider any slope ρ on ∂N(K) other than the one that is parallel to the sutures γn ∩ Y . If

we Dehn fill each of the manifolds Mi − int(N(K)) along this slope, we obtain a sutured manifold

hierarchy

(M(ρ), γ1)
S1−→ (M2(ρ), γ2)

S2−→ . . .
Sn−1−→ (Mn(ρ), γn).

Here, Mi(ρ) denotes the result of performing Dehn surgery along K in Mi with slope ρ. Since we

assumed that ρ is not parallel to the sutures γn∩Y , the sutured solid torus (Mn(ρ), γn) is taut. Using

the theorem that tautness pulls back (Theorem 3.6 of [44]), we deduce that each of the manifolds

in the hierarchy is taut and each of the decomposing surfaces is taut. Because σ is exceptional or

norm-exceptional, (M(σ), γ1) is not taut or S1 is not taut in M(σ). Hence, σ must be the slope on

∂N(K) parallel to the sutures Y ∩γn. So, if we re-attach the solid torus N(K) using the meridional

slope, we deduce that

(M,γ1)
S1−→ (M2, γ2)

S2−→ . . .
Sn−1−→ (Mn, γn)

is taut.

The key part of the proof of Theorem 5.1 is to place this hierarchy into some sort of ‘normal

form’ with respect to a given triangulation T of M . In fact, we first dualise T to form a handle

structure H for M , and we make the hierarchy ‘normal’ with respect to H. We will shortly make this

statement a little more precise, but the idea is roughly that there should be only finitely possibilities

for Mi ∩ H and γi ∩ H, for each handle H of H. In fact, this statement is not quite correct, but

we will make it accurate shortly. But if there were only finitely many possibilities for Mn ∩H and

γn ∩H, and we could enumerate them, then we could reconstruct the way that (Mn, γn) lies within

M . Since Mn is a regular neighbourhood of N(K), this would imply that there are only finitely

many possibilities for K and σ, and we could enumerate them all.

To make the above discussion more precise, it is helpful to consider just the first decomposition

along S1. Since S1 is taut in M , it is incompressible. Suppose also that S1 is also boundary-

incompressible. Therefore, we may place S1 into normal form with respect to the handle structure

H. (A notion of normal surfaces in a handle structure was first defined by Haken [14]; see also [17]

and [30]. A variant of this notion was in fact used in [24], partly to take account of the possibility

that S1 may be boundary-compressible.) Then when we cut along S1, we obtain a handle structure

H2 for M2. It would be convenient if, within each handle H of H, there are only finitely many

possibilities for M2 ∩ H. However, this need not be the case. The surface S1 may have many

components of intersection with H, and thereby give rise to many handles of H2 within H. To get

around this problem, we use the notion of the parallelity bundle of H2. By definition, a handle of

H2 is a parallelity handle if it lies between two normally parallel discs of S1. This is an I-bundle,

26



with ∂I-bundle lying in the copies of S1 in ∂M2. The union of the parallelity handles is an I-bundle

B over a surface F called the parallelity bundle for H2. It is clear that, within each handle H of H,

there are only finitely many possibilities for H∩(M2−B) and these are algorithmically constructible.

This list is universal, in the sense that it does not depend on M or any other data. It only depends

on the way that H intersects the neighbouring handles of higher index, and there are only finitely

many possibilities for this because H is dual to a triangulation.

One of the key parts of the proof of Theorem 5.1 is therefore to remove the parallelity bundle

B. The procedure is given in detail in Section 8 of [24]. It involves making changes to the handle

structure H2. We now explain the most important of these changes now. The horizontal boundary

∂hB is the (∂I)-bundle and lies in the copies of S1. The vertical boundary ∂vB is the I-bundle over

∂F . The surface P = cl(∂vB − ∂M) is also an I-bundle, and hence it is a collection of discs and

annuli. It is a properly embedded surface in M2. A key modification that is made is to decompose

M2 along some of the components of P . Each such component is either an annulus disjoint from the

sutures γ2 or a product disc, which is a disc intersecting γ2 twice. This surface is properly embedded

in M2, but there is no a priori reason why it should be disjoint from K. This is a consequence of

the following result, which was the central result of [23]. It was here that the hypothesis that the

distance ∆(µ, σ) > 1 is used.

Theorem 10.1. Let (M,γ) be a taut sutured manifold. Let K be a knot in M such that M −
int(N(K)) is irreducible and atoroidal. Let σ be a slope on ∂N(K) such that ∆(σ, µ) > 1, where µ

is the meridional slope. Let MK(σ) be the result of performing Dehn surgery along K with slope σ.

Suppose that (MK(σ), γ) is not taut. Let G be a surface properly embedded in M with components

G1, . . . , G|G|, none of which is a sphere or disc disjoint from γ. Then there is an ambient isotopy of

K in M after which, for each integer i between 1 and |G|, we have

|K ∩Gi| ≤
−2χ(Gi) + |Gi ∩ γ|

2(∆(µ, σ)− 1)
.

Note that when G is a union of annuli disjoint from γ and product discs, then Theorem 10.1

implies that the knot K may be ambient isotoped off F . The condition that M − int(N(K)) is

atoroidal in fact can be weakened somewhat (see Theorem 1.4 in [23]).

Thus, the proof of Theorem 5.1 proceeds as follows. We start with a taut decomposition

(M − int(N(K)), γ1)
S1−→ (M2 − int(N(K)), γ2)

satisfying (i)-(v) above. As argued above, when we attach the solid torus using the meridional Dehn

filling, we get a taut decomposition

(M,γ1)
S1−→ (M2, γ2).

Because it is taut, S1 can be placed in a position rather similar to normal form with respect to H
(specifically, it satisfies Conditions 1-5 of Section 9 in [24]). In fact, one may need to modify S1 to
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place it in this form; we will discuss this below. Let B be the parallelity bundle in M2 associated

with S1. As discussed above, the surgery curve K can be isotoped off its vertical boundary, and

hence off B altogether. We can then apply the procedure given in Section 8 of [24] to modify B, to

give a new 3-manifold (M ′2, γ
′
2). This modification has the effect of removing all components of B

that are not I-bundles over discs and all components for which the interior of the vertical boundary

intersects ∂M2. The remaining components of B, which are therefore I-bundles over discs, become

2-handles of (M ′2, γ
′
2). We have little control over the location of these 2-handles, but we do have

control over their attaching locus onto the 0-handles and 1-handles. This manifold (M ′2, γ
′
2) contains

K, and it has the property that when surgery along K is performed, the resulting sutured manifold

is not taut. The advantage of working with this new manifold M ′2 is that, for each handle H of

H, there are only finitely many possibilities for the intersection between H and the 0-handles and

1-handles of M ′2, the attaching locus of the 2-handles and the sutures γ′2.

As mentioned above, before S1 satisfies Conditions 1-5 of Section 9 in [24], it may be necessary

to make some modifications to it. These are given in Section 9 of [24]. At each stage, it is ensured

that K remains disjoint from S1. For example, S1 may be boundary-compressed along a product

disc. Using Theorem 10.1, we can ensure that K avoids this product disc and so remains disjoint

from the new surface.

One can then repeat this procedure. We find a taut decomposition

(M ′2 − int(N(K)), γ′2)
S2−→ (M3 − int(N(K)), γ3)

satisying (i)-(iv) above. Since surgery along K with slope σ gives a sutured manifold that is not

taut, when we Dehn fill along the meridional slope, we get a taut decomposition

(M ′2, γ
′
2)

S2−→ (M3, γ3).

Now isotope K off the parallelity bundle in (M3, γ3), and then remove this bundle to get a new

sutured manifold (M ′3, γ
′
3) containing K.

We end with a manifold (M ′n, γ
′
n) containing K such that H2(M ′n− int(N(K)), ∂M ′n) is trivial.

Hence, as argued above, M ′n is some 3-balls plus a solid torus with K as its core curve, and the

exceptional slope σ on ∂N(K) is parallel to the sutures on ∂M ′n. For each handle H of H, its

intersection with the 0-handles of M ′n, the 1-handles of M ′n, the attaching locus of the 2-handles and

the sutures γ′n takes one of only finitely many possibilities. The algorithm proceeds by inserting all

such possibilities into each handle of H so that they patch together correctly along adjacent handles.

In this way, we can build all possibilities for the sutured manifold (M ′n, γ
′
n). The algorithm checks,

for each possible (M ′n, γ
′
n) whether it is a taut solid torus plus possibly some taut 3-balls. If it is,

the core curve of the solid torus is a possibility for K and the slope of the sutures on the solid toral

component of (M ′n, γ
′
n) is a possibility for the slope σ. Once one has this list, one can determine

easily whether M and K really do satisfy (i) and (ii) of Theorem 5.1.

We summarise the above discussion in the following theorem.
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Theorem 10.2. There is a finite computable list of 4-tuples (Hi,F0
i ,F1

i , γi) where

(i) each Hi is a collection of balls embedded within a tetrahedron ∆;

(ii) each F0
i is the intersection between Hi and ∂∆; it is a collection of discs lying in the interior

of the faces of ∆;

(iii) each F1
i is a collection of disjoint rectangles lying in ∂Hi; two opposite sides of each rectangle

lie in ∂F0 and the remainder of the rectangle is disjoint from F0;

(iv) each γi is a collection of disjoint arcs properly embedded in cl(∂Hi − (F0
i ∪ F1

i )).

These have the following property. Suppose that M is a compact orientable 3-manifold with bound-

ary a (possibly empty) union of tori, and thatK is knot inM with an exceptional or norm-exceptional

slope σ on ∂N(K), satisfying the hypotheses of Theorem 5.1. Then for any triangulation of M , one

may form a handle structure on N(K) as follows. Its 0-handles are obtained by inserting some Hi

into each tetrahedron of the triangulation. The 1-handles are dual to the discs F0
i . The rectangles

F1
i patch up to form annuli, which are the attaching locus of the 2-handles. The arcs γi patch

together to form curves with slope σ on ∂N(K).

The finite list of 4-tuples in the above theorem is universal, in the sense that it does not depend

on M or K. An algorithm to construct this list is given in Section 11 of [24].

Thus, these 4-tuples patch together to form a handle structure on N(K). If one wanted to, one

could then realise K in M by picking a curve on ∂N(K) with winding number 1 in N(K). This could

then be realised as a simplicial curve in some iterated barycentric subdivision of the triangulation

of M .

The above techniques also provide a proof of Theorem 6.1, which gives that certain exceptional

surgery curves in a Seifert fibred space must be isotopic to an exceptional fibre.

Proof of Theorem 6.1. Let M be a Seifert fibre space with non-empty boundary. Let K be a knot in

M and let σ be a slope on ∂N(K) satisfying the hypotheses Theorem 6.1. Give M − int(N(K)) the

structure of a sutured manifold with R− = ∅ and R+ = ∂M ∪ ∂N(K) and therefore with sutures

γ1 = ∅.

We are assuming that M has non-empty boundary. Therefore, there is a (possibly empty)

union of disjoint properly embedded arcs in its base space that avoid the exceptional points and

that decompose the base space either into a collection of regular neighbourhoods of the exceptional

points or, in the case where there are no singular points, into a single disc. The inverse image of

these arcs is a union of disjoint properly embedded annuli A in M , such that M − int(N(A)) is

either a regular neighbourhood of the singular fibres or, in the case where M has no singular fibres,

a fibred solid torus. By Theorem 10.1, there is an ambient isotopy taking K off A. Hence, K lies in

M − int(N(A)). By the irreducibility and atoroidality of M − int(N(K)), K must be a core curve

of one of the components of M − int(N(A)). Hence, K is isotopic to a fibre of M and therefore

M − int(N(K)) is Seifert fibred. The exceptional slope σ on ∂N(K) must be the slope of the regular

fibres. Since we are assuming that the distance between K and the meridian is more than 1, we
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deduce that K must be an exceptional fibre of M .

11. Finiteness of the number of splitting crossing changes

In this section, we prove Theorem 1.2.

Proof. The algorithmic part of Theorem 1.2 was dealt with in Section 9. So we need only establish

the required upper bound on the number of splitting crossing changes that can be applied to the

given link L.

We are given a triangulation T of S3 with t tetrahedra in which L is simplicial. Note that if

we are given, alternatively, a diagram of L with c crossings, then we can easily construct such a

triangulation where t ≤ 24c. One way of doing this is as follows.

First apply type 1 Reidemeister moves to remove any edges in the diagram that start and end

at the same crossing. Then place an octahedron at each crossing of the diagram. The over-arc and

the under-arc at the crossing will be subcomplexes of these octahedra. Lying above the plane of the

diagram and all these octahedra is a 3-ball. Its boundary has a cell structure. Any 2-cell of this

cell structure that is not already a triangle may be subdivided into triangles. We then triangulate

the ball by placing a vertex in its interior and coning off. We triangulate each octahedron using 4

tetrahedra. The 3-ball lying below the plane of the diagram and the octahedra is triangulated also

by coning off its boundary. The result is a triangulation of the 3-sphere with L has a subcomplex.

It is easy to check that at most 24c tetrahedra have been used.

We apply the algorithm given in Section 9 to this triangulation, but skipping some steps that

are not relevant to the counting argument. Step 1 has already been completed.

In Step 2, one considers all sublinks L′ of L consisting of one or two components. If |L| = 2,

then we require that |L′| = 1. The number of such sublinks is at most |L|(|L|+ 1)/2. The number

of components of L is at most the number of 1-simplices of T , which is at most 6t. So, the number

of relevant sublinks is at most a quadratic function of t.

In Step 3, the double cover M of S3 − int(N(L − L′)) branched over L′ is constructed. It is

straightforward to build a triangulation of M , starting from the triangulation of S3 with L as a

subcomplex. The number t′ of tetrahedra in this triangulation can easily be arranged to be at most

a linear function of t.

The algorithm now divides into the cases where M is hyperbolic or Seifert fibred. We consider

the hyperbolic case first.

The construction of the knots K in M provided by Theorem 5.1 produces at most (k1)t
′

possibilities for K and σ, where k1 is a universal computable constant. Specifically, suppose that

Theorem 10.2 provides a list of k1 4-tuples. Then each possibility for N(K) is obtained by inserting

the 0-handles in one of the 4-tuples into each tetrahedron of the triangulation, in such a way they

patch together correctly along the faces. Moreover, the arcs in the 4-tuples patch together to form
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a representative for σ. Thus, there are at most (k1)t
′

possibilities for N(K) and σ.

For each possible K, one can build a triangulation T ′ for M − int(N(K)). This is Step 2 of

the hyperbolic case. Rather than using iterated barycentric subdivisions, we do this as follows. We

subdivide the 0-handles from Theorem 10.2 into tetrahedra and then extend this triangulation over

the 1-handles and 2-handles of N(K). Thus, the number of tetrahedra is at most k2t for a universal

computable k2.

In Step 3 of the hyperbolic case, M− int(N(K) is discarded if it is not irreducible and atoroidal.

In Step 4 of the hyperbolic case, the symmetry group of M − int(N(K)) is computed. The size

of the symmetry group for a hyperbolic 3-manifold X is at most a linear function k3vol(X) for the

following reason. The quotient of X by its symmetry group is a finite-volume hyperbolic orbifold

and there is a universal lower bound v on the volume of such an orbifold [20]. Thus, the order of

the symmetry group of X is at most vol(X)/v. Setting k3 = 1/v establishes the claim.

Note that k3vol(M−int(N(K))) ≤ k3v3k2t, where v3 is the volume of a regular ideal hyperbolic

3-simplex. This follows from the general result [50] that the volume of hyperbolic 3-manifold with

(possibly empty) toroidal boundary is at most v3 times the number of tetrahedra in any triangulation

of the manifold. Thus, the symmetry group of M − int(N(K)) has order at most k3v3k2t. Each

order two symmetry produces at most one possibility for the arc β.

In Step 9 of the hyperbolic case, we consider all the images of these arcs β under the mapping

class group of S3− int(N(L)). This mapping class group has order at most k3vol(S3− int(N(L))) ≤
k3v3t.

We now consider the case where M is Seifert fibred. By Theorem 6.1, there is a Seifert fibration

of M in which K is a singular fibre and by Addendum 6.2, this Seifert fibration can be chosen to be

invariant under τ . Since M is atoroidal and has non-empty boundary, it has at most two singular

fibres. Thus, in the Seifert fibred case, there are at most two possibilities for the image β of K.

Thus, in both the case where M is hyperbolic and where it is Seifert fibred, we have a bound

on the number of possibilities for the arc β and the associated tangle replacement slope. For each

β and associated slope, there are at most two possible arcs α. For each tangle replacement along α,

there are two associated crossing circles, by Lemma 3.1. The number of possible crossing circles is

therefore at most

12t(6t+ 1)kt
′

1 k
2
3v

2
3k2t

2

which is at most kt for some universal computable constant k.

12. The Whitehead link

In this section, we examine an example, the Whitehead link. We determine the complete set

of crossing changes that turn the link into a split link.
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Theorem 12.1. Any crossing change that turns the Whitehead link into a split link is equivalent

to changing one of the specified crossings in Figure 8. In particular, there are 3 crossing circles up

to equivalence, and 2 crossing arcs up to equivalence, that yield splitting crossing changes.

Figure 8

The diagram shown in Figure 8 is rather undistinguished. The Whitehead link has an alter-

nating diagram, with fewer crossings, shown in Figure 9. The crossing arcs associated with the

two crossing changes are shown in Figure 9. One of these is isotopic to a vertical arc at one of

the crossings in Figure 9. The other one can be made vertical, if one first performs a flype on the

diagram, taking it to another alternating diagram. Thus, we obtain the following corollary.

Theorem 1.3. Any crossing change that turns the Whitehead link into a split link is equivalent to

changing some crossing in some alternating diagram.

Figure 9

Associated to each of the two crossing changes in Figure 8, there are two crossing circles. Two

of these are isotopic to each other. Thus, we get at most three inequivalent crossing circles in total.

In fact, these are readily seen to be inequivalent, for example, by examining their linking number

with the components of the Whitehead link.

Proof of Theorem 12.1. We follow the procedure given in Section 10. Note first that the Whitehead

link is hyperbolic and 2-string prime. The latter fact can be proved by observing that it is a 2-bridge

link and hence its double branched cover is a lens space, and then using Theorem 4.1.

We consider all sublinks L′ consisting of just one component. Since there is an ambient isotopy

that swaps the two components of the Whitehead link L, we may fix L′ to be one specific component.

The double cover of S3 − int(N(L− L′)) branched over L′ is shown in Figure 10. It is the exterior

M of the (4, 2) torus link.
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L´

DBC over L´

Figure 10

We wish to produce a finite list of knots K in M with slopes σ that satisfy the hypotheses of

Theorem 5.1. Note that the arguments in Section 7 apply and so we may assume that M−int(N(K))

is irreducible and atoroidal.

Since M is Seifert fibred, we could use Theorem 6.1. Instead, we consider the method discussed

in Section 10. The relevant knots K and slopes σ arise via taut sutured manifold decompositions

(M, ∅) S1−→ . . .
Sn−1−→ (Mn, γn),

where (Mn, γn) is a solid torus regular neighbourhood of K with sutures of slope σ, plus possibly

some taut 3-balls. We may take the homology class of the surface S1 to be any non-trivial class in

H2(M,∂M) that has zero intersection number with K. This is because such classes in H2(M,∂M)

are precisely those in the image of the non-trivial classes in H2(M − int(N(K)), ∂M). We will show

that we can in fact take S1 to be the annulus A shown in Figure 11.

A

Figure 11

Note first that, by the Theorem 10.1, there is an isotopy of K taking it off the annulus A. Hence,

K does have zero algebraic intersection number with A. So we may take S1 to be homologous to A.

Furthermore, S1 is incompressible, since it is the first surface in a taut sutured manifold hierarchy.

We will in fact show that any connected orientable incompressible surface properly embedded in M

that is homologous to A is isotopic to A.

The manifold M is Seifert fibred with base space an annulus and with a single exceptional fibre
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of order 2. Any essential properly embedded surface in M is isotopic to one that is horizontal (that

is, it is transverse to the fibres) or vertical (that is, it is a union of fibres). The annulus A is vertical.

Horizontal and vertical surfaces are not homologous, as can be seen for example by considering their

algebraic intersection number with a regular fibre. Thus, any incompressible surface homologous to

A is also vertical. But, because the base space of M is an annulus with a single exceptional fibre,

the unique connected orientable vertical surface that is homologically non-trivial is isotopic to A.

Thus, we may assume that S1 is A. The second manifold (M2, γ2) is therefore a solid torus. Its

boundary T lies in M− int(N(K)). Since M− int(N(K)) is irreducible and atoroidal, T is boundary

parallel in M − int(N(K)). It is not parallel to ∂M , and hence it is parallel to ∂N(K). Hence,

M2 − int(N(K)) is a copy of T 2 × I. Therefore, H2(M2 − int(N(K)), ∂M2) is trivial, and therefore

M2 is the final manifold in the hierarchy. Hence, the only possibility, up to ambient isotopy, for K

is as shown in Figure 12.

K

Figure 12

Note that K, as shown in Figure 12 is invariant under the involution of M . The quotient arc

β is shown in Figure 13.

β

Figure 13

The final subroutine of the algorithm in Section 9 now produces two possibilities for the arc α.

One of these is β. To produce the other one, we note that the slope of γn is 1/2. Applying Theorem
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2.1, we see that conclusion (ii) there again gives α = β.

Finally observe that tangle replacement along β does change L into a split link. Thus, we

deduce that this is the only possibility for the arc α with endpoints in L′. An isotopy takes L ∪ β
to the link and one of the crossing arcs shown in Figure 9.

Theorem 1.3 provides some evidence for the following conjecture.

Conjecture 12.2. Any crossing change that turns an alternating link into a split link is equivalent

to changing some crossing in some alternating diagram.

It is a theorem of McCoy [31] that an alternating knot has unknotting number one if and only if

one can change a crossing in some alternating diagram of the knot and obtain the unknot. However,

this does not imply, of course, that every crossing change that turns an alternating knot into the

unknot is equivalent to changing some crossing in some alternating diagram. Indeed it seems unlikely

that the methods developed by McCoy, which use Heegaard Floer homology, would lead to a proof

of Conjecture 12.2. But McCoy’s theorem does lend weight to the conjecture.
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