Surface subgroups of arithmetic Kleinian groups

Marc Lackenby

University of Oxford

KLEINIAN GROUPS

A Kleinian group is a discrete subgroup of $PSL(2, \mathbb{C})$. $PSL(2, \mathbb{C}) \cong Isom^+(\mathbb{H}^3)$

 Γ is a lattice if \mathbb{H}^3/Γ has finite volume.

Given a Kleinian group Γ acting freely on \mathbb{H}^3 , the quotient space \mathbb{H}^3/Γ is hyperbolic 3-manifold.

EXAMPLE

Suppose that $\Gamma = \langle \gamma \rangle$, where γ is a loxodromic element, translating along a geodesic.

Then \mathbb{H}^3/Γ is an open solid torus ($\cong \mathbb{R}^2 \times S^1$).

ANOTHER EXAMPLE

Let $\Gamma = \text{PSL}(2, \mathbb{Z}[\omega])$, where $\omega = e^{2\pi i/3}$.

This is an example of an arithmetic Kleinian group.

In fact, Γ has an index 12 subgroup $\tilde{\Gamma}$ s.t. $\mathbb{H}^3/\tilde{\Gamma}$ is homeomorphic to the complement of the figure-eight knot.

A Bianchi group is PSL(2, R), where R is the ring of integers in $\mathbb{Q}(\sqrt{-d})$.

GEOMETRISATION

An orientable 3-manifold M has a hyperbolic structure if its interior is \mathbb{H}^3/Γ for some Kleinian group Γ acting freely on \mathbb{H}^3 .

<u>Theorem:</u> [Thurston, Perelman] A compact orientable 3-manifold M admits a hyperbolic structure iff

- it is irreducible ie any 2-sphere bounds a 3-ball;
- it is atoroidal is any embedded torus in M lies in a 3-ball, bounds a solid torus or is parallel to a component of ∂M ;
- it is not Seifert fibred ie it does not admit a foliation by circles.

So, 'almost every' 3-manifold is hyperbolic.

SURFACES IN 3-MANIFOLDS

Throughout: all surfaces are closed orientable and have positive genus.

Let S be a surface.

Let M be a closed orientable 3-manifold.

A map $i: S \to M$ is π_1 -injective if $i_*: \pi_1(S) \to \pi_1(M)$ is an injection.

M is Haken if it is irreducible and contains an embedded $\pi_1\text{-injective}$ surface.

<u>Theorem:</u> [Waldhausen] If two closed Haken 3-manifolds have isomorphic π_1 , they are homeomorphic.

Unfortunately, many 3-manifolds are non-Haken.

SURFACE SUBGROUPS

<u>Surface subgroup conjecture</u>: Every finitely generated Kleinian group is either finite, virtually free or contains the fundamental group of a surface.

Equivalently: Every closed hyperbolic 3-manifold contains an immersed π_1 -injective surface.

Stronger conjectures:

1. [Waldhausen, Thurston] Every closed hyperbolic 3-manifold is finitely covered by a Haken 3-manifold.

2. [Waldhausen, Thurston] Every closed hyperbolic 3-manifold is finitely covered by a 3-manifold with positive first Betti number.

3. [Gromov] Every infinite word-hyperbolic group is either virtually free or contains a surface subgroup.

PROGRESS ON THESE PROBLEMS

[Grunewald-Schwermer] The Bianchi groups have finite index subgroups with arbitrarily large cuspidal cohomology (and hence a closed embedded π_1 -injective surface).

[Labesse-Schwermer] Any arithmetic Kleinian group for which the trace field has a subfield of index 2 has finite index subgroups with arbitrarily large first Betti number.

There have been many other contributors, particularly Clozel and Lubotzky.

But we still don't know whether every arithmetic 3-manifold satisfies Waldhausen's and Thurston's conjectures!

<u>Theorem</u>: [L] Every arithmetic hyperbolic 3-manifold contains an immersed π_1 -injective surface.

Main theorem

<u>Theorem:</u> [L] Every arithmetic hyperbolic 3-manifold contains an immersed π_1 -injective surface.

Ingredients of the proof:

- 3-orbifolds
- Golod-Shafarevich inequality
- Perelman's solution to the geometrisation conjecture
- Cheeger constants
- The first eigenvalue of the Laplacian
- The critical exponent of Kleinian groups
- Some classical 3-manifold theory
- A little arithmetic machinery

CONTRIBUTORS

- M. Lackenby, Heegaard splittings, the virtually Haken conjecture and Property (τ)
- M. Lackenby, Covering spaces of 3-orbifolds
- M. Lackenby, D. Long, A. Reid, Covering spaces of arithmetic 3-orbifolds
- L. Bowen, Free groups in lattices
- M. Lackenby, D. Long, A. Reid, *LERF and the Lubotzky-Sarnak conjecture*
- M. Lackenby, Surface subgroups of Kleinian groups with torsion

Hyperbolic 3-orbifolds

If Γ is a discrete subgroup of Isom⁺(\mathbb{H}^3), not necessarily acting freely, then \mathbb{H}^3/Γ is an orientable hyperbolic 3-orbifold O.

One keeps track not just of the underlying space $|{\cal O}|$ but also the isotropy data.

ie, for $x \in O$, consider $\tilde{x} \in$ inverse image of x, and define the local group of x to be $\operatorname{Stab}_{\Gamma}(\tilde{x})$.

The singular locus is the set of points in O with non-trivial local group.

The local group of any x is a finite subgroup of SO(3) ie:

- cyclic,
- dihedral (including $\mathbb{Z}_2 \times \mathbb{Z}_2$)
- $A_4, S_4, A_5.$

The singular locus

Cyclic local group:

Dihedral local group:

In fact, |O| is always a 3-manifold and sing(O) is always a collection of simple closed curves and trivalent graphs.

<u>Theorem</u>: [L] Any finitely generated Kleinian group Γ containing a finite non-cyclic subgroup is either finite, virtually free or contains a surface subgroup.

The main case is when Γ is co-compact.

Equivalently in this case: Any closed hyperbolic 3-orbifold that contains a singular vertex admits an immersed π_1 -injective surface.

Commensurable groups

Two groups Γ_1 and Γ_2 are commensurable if there are finite index subgroups $\Gamma'_1 \leq \Gamma_1$ and $\Gamma'_2 \leq \Gamma_2$ such that $\Gamma'_1 \cong \Gamma'_2$.

 Γ_1 contains a surface subgroup iff Γ_2 does.

<u>Theorem:</u> [L-Long-Reid] Any arithmetic Kleinian group is commensurable with one that contains $\mathbb{Z}_2 \times \mathbb{Z}_2$.

FUNDAMENTAL GROUP AND COVERING SPACES OF ORBIFOLDS

Let $O = \mathbb{H}^3 / \Gamma$.

Its fundamental group $\pi_1(O)$ is Γ .

This is not the same as $\pi_1(|O|)$.

If Γ' is a subgroup of Γ , then

$$\mathbb{H}^3/\Gamma' \to \mathbb{H}^3/\Gamma$$

is a covering space.

END OF THE PROOF

<u>Aim</u>: To find a manifold cover \tilde{M} of O with at least two ends.

Then apply:

<u>Lemma:</u> Let M be an orientable hyperbolic 3-manifold with at least 2 ends. Then $\pi_1(M)$ contains a surface subgroup.

Proof:

Let S be a closed orientable surface separating two ends of M. Compress S as much as possible to \overline{S} .

Some component of \overline{S} still separates two ends of M. So, it's not a sphere, because M is irreducible. By the loop theorem, it's π_1 -injective.

START OF THE PROOF

Let's suppose that Γ contains $\mathbb{Z}_2 \times \mathbb{Z}_2$. Let $O = \mathbb{H}^3 / \Gamma$.

<u>Theorem</u>: O has a finite cover \tilde{O} such that

- (i) every arc and simple closed curve of $\operatorname{sing}(\tilde{O})$ has order 2;
- (ii) \tilde{O} has at least one singular vertex;
- (iii) $\pi_1(|\tilde{O}|)$ is infinite.

The proof uses the Golod-Shafarevich inequality: If G is a group with finite presentation $\langle X|R \rangle$ and

$$\frac{d_p(G)^2}{4} > d_p(G) - |X| + |R|,$$

where p is a prime and $d_p(G) = \dim H_1(G; \mathbb{F}_p)$, then G is infinite.

HYPERBOLIC UNDERLYING SPACE

Let $M = |\tilde{O}|$.

<u>Well known theorem</u>: If M is a closed orientable 3-manifold with infinite π_1 , then either

- (i) M has a finite cover with $b_1 > 0$, or
- (ii) M is hyperbolic.

The proof uses Perelman's solution to the geometrisation conjecture. So, wlog $|\tilde{O}|$ is hyperbolic.

CHEEGER CONSTANTS

Let M be a complete Riemannian manifold.

If M has finite volume, then its Cheeger constant h(M) is

$$\inf_{S} \left\{ \frac{\operatorname{Area}(S)}{\min\{\operatorname{Vol}(M_1), \operatorname{Vol}(M_2)\}} \right\},\,$$

as S ranges over all embedded codimension 1 submanifolds that separate M into M_1 and M_2 .

If M has infinite volume, then its Cheeger constant h(M) is

$$\inf_{S} \left\{ \frac{\operatorname{Area}(S)}{\operatorname{Vol}(M_1)} \right\},\,$$

as S ranges over all embedded codimension 1 submanifolds that bound a compact submanifold M_1 .

<u>Theorem</u>: [L-Long-Reid] Let M be a closed hyperbolic 3-manifold. Then M has infinite-sheeted covers M_i such that $h(M_i) \to 0$.

CHEEGER CONSTANTS

<u>Theorem</u>: [L-Long-Reid] Let M be a closed hyperbolic 3-manifold. Then M has infinite-sheeted covers M_i such that $h(M_i) \to 0$.

This is a consequence of:

<u>Theorem</u>: [Bowen] $\Gamma = \pi_1(M)$ has a sequence of finitely generated free subgroups Γ_i such that $\delta(\Gamma_i) \to 2$.

Here $\delta(\Gamma_i)$ = the 'critical exponent' of Γ_i

Theorem: [Sullivan]

$$\lambda_1(\Gamma_i \setminus \mathbb{H}^3) = \begin{cases} \delta(\Gamma_i)(2 - \delta(\Gamma_i)) & \text{if } \delta(\Gamma_i) \ge 1\\ 1 & \text{otherwise.} \end{cases}$$

Here $\lambda(\Gamma_i \setminus \mathbb{H}^3)$ = the first eigenvalue of the Laplacian of $\Gamma_i \setminus \mathbb{H}^3$.

<u>Theorem</u>: [Cheeger] For any complete Riemannian manifold M_i , $\lambda_1(M_i) \ge h(M_i)^2/4$. Apply this theorem to $M = |\tilde{O}|$. We get a sequence of covering spaces M_i . There are induced covers $O_i \to \tilde{O}$, where $|O_i| = M_i$.

Let $|N_i|$ be a compact submanifold of $|O_i|$ such that $\frac{\operatorname{Area}(|\partial N_i|)}{\operatorname{Vol}(|N_i|)} \to 0$.

The homology of orbifolds

Given any orbifold O and prime p, one can define its first homology $H_1(O; \mathbb{F}_p) = H_1(\pi_1(O); \mathbb{F}_p).$

<u>Lemma:</u> If N is a compact orientable 3-orbifold, and each arc and circle of sing(N) has order 2, then

dim $H_1(N; \mathbb{F}_2) \ge b_1(\operatorname{sing}(N)).$

So, for i >> 0,

dim $H_1(N_i; \mathbb{F}_2) > \dim H_1(\partial N_i; \mathbb{F}_2).$

So, ker $H^1(N_i; \mathbb{F}_2) \to H^1(\partial N_i; \mathbb{F}_2)$ is non-trivial.

Let S_i be a surface properly embedded in $N_i - \operatorname{sing}(N_i)$ dual to a nontrivial element of this kernel, and that is disjoint from ∂N_i .

Let \tilde{O}_i be the 2-fold cover of O dual to S_i .

This has at least two ends.