Certifying the hyperbolicity of knots and links

Marc Lackenby

19 May 2025

Hyperbolic structures

The Geometrisation Conjecture was very difficult to prove.

But in practice, it is remarkably easy to find a hyperbolic structure on a 3-manifold.

Why?!

Finding hyperbolic structures

Question: What is the computational complexity of determining whether a compact 3-manifold is hyperbolic and, if it is hyperbolic, how hard is it to find the hyperbolic structure?

Previous work

[Manning, Casson] One can determine whether a closed 3-manifold M is hyperbolic and find its hyperbolic structure, as long as $\pi_1(M)$ has solvable word problem.

[Kuperberg] Gave an algorithm to determine whether M is hyperbolic and to find its hyperbolic structure that runs in time that is elementary recursive ie at most

where t is the number of tetrahedra in a given triangulation of M.

[Scull] The running time is at most

$$2^{2^{t^{O(t)}}}$$

Ruling out hyperbolic structures

If a closed orientable 3-manifold is not hyperbolic, then it is one of:

- Seifert fibred
- reducible
- toroidal.

Theorem: [Ivanov, Schleimer] S^3 recognition is in NP.

<u>Theorem</u>: [Lackenby-Schleimer] Recognition of elliptic 3-manifolds is in NP.

<u>Theorem</u>: [Jackson] Recognition of Seifert fibre spaces with non-empty boundary is in NP.

Closed Seifert fibre spaces remain a problem, particularly the small ones.

Hyperbolic structures on link complements

Problem: (LINK HYPERBOLICITY) Given a diagram of a link L with c crossings, is L hyperbolic?

<u>Theorem</u>: [Haraway-Hoffman, Badwin-Sivek] This problem is in co-NP.

Theorem: [Baroni, Lackenby] This problem is in NP.

Showing that a link is not hyperbolic

<u>Theorem</u>: [Thurston] Let L be a link in the 3-sphere. Then one of the following holds:

- L is the unknot:
- L is split;
- ▶ there is an essential torus in $S^3 L$;
- ▶ there is an essential annulus in $S^3 L$;
- L is hyperbolic.

Haraway-Hoffman used the following fact:

<u>Theorem</u>: [Lackenby] Deciding whether a compact orientable 3-manifold has incompressible boundary is in NP.

Dividing into two cases

From now onwards, we'll focus on:

Theorem: [Baroni, Lackenby] Link hyperbolicity is in NP.

Given a hyperbolic link L, the proof of its hyperbolicity divides into two cases:

- L is a fibred knot [Baroni]
- L is not fibred or has more than one component [Lackenby].

We will start by examining the fibred case.

The Nielsen-Thurston type of a surface automorphism

Let S be an orientable surface of finite type and $\chi(S) < 0$, and let $\phi \colon S \to S$ be a homeomorphism. Then exactly one of the following holds:

- 1. ϕ is periodic;
- 2. ϕ is reducible;
- 3. ϕ is pseudo-anosov (\Leftrightarrow ($S \times I$)/ ϕ is hyperbolic)

Suppose that we are given ϕ as a word w in 'standard generators' in the mapping class group of S.

<u>Theorem</u>: [Bell-Webb] For a fixed surface S (with at least one puncture), there is an algorithm to determine the Nielsen-Thurston type of ϕ that runs in polynomial time in the length of w.

Theorem: [Baroni] There is an algorithm to determine the Nielsen-Thurston type of ϕ that runs in polynomial time in the length of w and in $|\chi(S)|$.

Computing distance in the curve complex

This relies on:

Theorem: [Bell-Webb] For a fixed compact orientable triangulated surface S (with non-empty boundary), there is an algorithm to determine distance in the curve complex between two curves C_1 and C_2 . This runs in polynomial time as a function of the $\log(\text{weight}(C_1))$ and $\log(\text{weight}(C_2))$. Indeed, the algorithm provides a tight geodesic between C_1 and C_2 .

Theorem: [Baroni] There is an algorithm to determine the distance in the curve complex between two curves C_1 and C_2 in a compact orientable surface S with a triangulation \mathcal{T} , up to a bounded $(\text{poly}(\chi(S)))$ additive and multiplicative error. This runs in polynomial time as a function of the number of triangles of \mathcal{T} , $\log(\text{weight}(C_1))$ and $\log(\text{weight}(C_2))$. Indeed, the algorithm provides a quasi-geodesic between C_1 and C_2 .

Deciding whether a mapping class is pseudo-anosov

The stable translation length $\ell(\phi)$ of $\phi \colon S \to S$ is $\lim_{N \to \infty} d(C, \phi^N(C))/N$ for any essential curve C. This is positive iff ϕ is pseudo-anosov.

To decide whether ϕ is pseudo-anosov:

- ▶ Bell and Webb pick an essential curve *C* that is short with respect to the given triangulation of *S*.
- ▶ They compute $\phi^N(C)$ for some 'large' N.
- They find a geodesic in the curve complex of S joining C and $\phi^N(C)$. Let C' be its midpoint.
- ▶ Then the stable translation length of ϕ is $d(C', \phi^N(C'))/N$ rounded to a suitable fraction.

Baroni uses the same argument, but with coarse distances and a quasi-geodesic.

Certifying fibred hyperbolic knot

We are given a diagram D of a knot L.

From this we build a triangulation for the exterior of L with O(c(D)) tetrahedra.

The fibre surface S can be arranged to be a fundamental normal surface, and hence have weight at most $2^{O(c(D))}$.

This is part of the certificate.

Then we can also certify that the exterior of S is a copy of $S \times [0,1]$.

It seems hard to 'write down' the monodromy ϕ .

But one can find a 'short' curve C in S and then compute $\phi^N(C)$ for N = poly(c(D)).

This is enough to determine whether $\ell(\phi) > 0$.

The non-fibred case

This uses hierarchies.

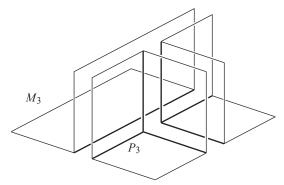
A hierarchy is a sequence of compact orientable 3-manifolds $M = M_1, \dots, M_{\ell+1}$ and orientable surfaces S_1, \dots, S_ℓ such that:

- ▶ each S_i is properly embedded in M_i ;
- ightharpoonup each $M_{i+1}=M_i\setminus\setminus S_i$;
- $ightharpoonup M_{\ell+1}$ is a collection of 3-balls.

Boundary patterns

A boundary pattern for a 3-manifold M is subset P of ∂M that is a disjoint union of simple closed curves and trivalent graphs.

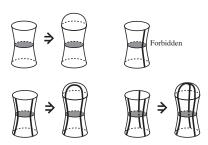
The manifolds in a hierarchy naturally inherit a boundary pattern.



Essential boundary patterns

A boundary pattern P is essential if, for any properly embedded disc D that intersects P at most three times, ∂D bounds a disc D' in ∂M that intersects P in one of the following:

- the empty set,
- an arc,
- a tripod.



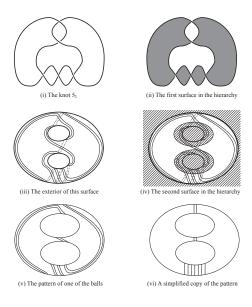
Essential hierarchies

A hierarchy $M=M_1,\ldots,M_{\ell+1}$ is essential if the final manifold $M_{\ell+1}$ inherits an essential boundary pattern.

<u>Theorem</u>: [Waldhausen, Johansson] Let M be a compact orientable 3-manifold with non-empty boundary and empty boundary pattern. Then the following are equivalent:

- ▶ ∂M is incompressible and M is irreducible;
- M has an essential hierarchy.

An example: the knot 52



So, 5_2 is non-trivial.

Low genus hierarchies

<u>Theorem</u>: Let M be a compact orientable irreducible 3-manifold with an essential boundary pattern P, and let \mathcal{H} be a handle structure for (M, P). Then (M, P) admits a hierarchy

$$(M,P)=(M_1,P_1)\stackrel{S_1}{\longrightarrow} (M_2,P_2)\stackrel{S_2}{\longrightarrow}\cdots\stackrel{S_n}{\longrightarrow} (M_{n+1},P_{n+1})$$

and each (M_i, P_i) has a handle structure \mathcal{H}_i such that the following hold:

- 1. each S_i is normal and fundamental in \mathcal{H}_i ;
- 2. complexity(\mathcal{H}_{i+2}) < complexity(\mathcal{H}_i).

Moreover: When M is the exterior of a link L and $P = \emptyset$, and \mathcal{H} is the handle structure arising from a diagram D, then $|\chi(S_i)|$ and $|S_i \cap P_i|$ are both $O(c(D)^2)$, where c(D) is the crossing number of D.

Determining the gluing maps

Let

$$(M_i, P_i) \xrightarrow{S_i} (M_{i+1}, P_{i+1})$$

be a decomposition in this hierarchy.

There are two copies of S_i in ∂M_i , denoted S_i^- and S_i^+ .

Let $\phi: S_i^- \to S_i^+$ be the map that glues them up.

When S_i is not a fibre, there is an algorithm to 'write down' ϕ .

This expresses ϕ as a composition of Pachner moves between certain triangulations of S_i^- and S_i^+ .

The JSJ surfaces for a manifold with pattern

There is an analogue of the JSJ decomposition for a manifold M with essential pattern P.

The decomposing surfaces are tori, annuli (disjoint from P) and squares (ie discs intersecting P four times).

<u>Theorem</u>: The JSJ surfaces decompose (M, P) into the following pieces:

- 'simple' manifolds (ie they contain no essential tori, annuli disjoint from P, or squares);
- Seifert fibre manifolds,
- patterned I-bundles.

The *I*-bundles \mathcal{B} determine a transfer map $\tau \colon \partial_h \mathcal{B} \to \partial_h \mathcal{B}$.

Determining the JSJ by induction

Let $(M, P) \xrightarrow{S} (M', P')$ be a decomposition with gluing map ϕ .

Any essential torus/annulus/square in (M, P) is cut up by S into a torus/annuli/squares in (M', P').

So, the *I*-bundle pieces of the JSJ for (M, P) are obtained by patching together the *I*-bundle pieces \mathcal{B}' of the JSJ for (M', P').

But $\partial_h \mathcal{B}'$ might not patch together precisely under ϕ .

So one shrinks \mathcal{B}' , forming a smaller *I*-bundle \mathcal{B}'_2 .

Again, this might not patch together correctly under ϕ .

So one shrinks \mathcal{B}'_2 , forming a smaller *I*-bundle \mathcal{B}'_3 , etc.

This process stabilises after $O(|\chi(S)|)$ steps.

So in this way we end with the JSJ for (M, P).

(In fact, one keeps track of just its transfer map τ .)

Note that this does not work when S is a fibre.

Completing the proof

We are given a diagram D for the non-fibred hyperbolic link L.

The hierarchy for the exterior of L is given to us as part of the certificate.

This shows that L is not the unknot and not split.

We compute the JSJ of the manifolds, working backwards along the hierarchy.

So if L is hyperbolic and non-fibred, we may certify that $S^3 - L$ has no JSJ tori and is not Seifert fibred.

In other words, we have a polynomial time certificate that \boldsymbol{L} is hyperbolic.

Further questions

- What about general Haken 3-manifolds?
- ► What about general 3-manifolds?
- Finding the hyperbolic structure: is this in FNP?
- ▶ Do hyperbolic quantities (eg volume) relate to the combinatorics of an essential hierarchy?