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Hyperbolic structures

The Geometrisation Conjecture was very difficult to prove.

But in practice, it is remarkably easy to find a hyperbolic structure
on a 3-manifold.

Why?!



Finding hyperbolic structures

Question: What is the computational complexity of determining
whether a compact 3-manifold is hyperbolic and, if it is hyperbolic,
how hard is it to find the hyperbolic structure?



Previous work

[Manning, Casson] One can determine whether a closed 3-manifold
M is hyperbolic and find its hyperbolic structure, as long as π1(M)
has solvable word problem.

[Kuperberg] Gave an algorithm to determine whether M is
hyperbolic and to find its hyperbolic structure that runs in time
that is elementary recursive ie at most

222···t︸︷︷︸
fixed height

where t is the number of tetrahedra in a given triangulation of M.

[Scull] The running time is at most

22t
O(t)



Ruling out hyperbolic structures

If a closed orientable 3-manifold is not hyperbolic, then it is one of:

I Seifert fibred

I reducible

I toroidal.

Theorem: [Ivanov, Schleimer] S3 recognition is in NP.

Theorem: [Lackenby-Schleimer] Recognition of elliptic 3-manifolds
is in NP.

Theorem: [Jackson] Recognition of Seifert fibre spaces with
non-empty boundary is in NP.

Closed Seifert fibre spaces remain a problem, particularly the small
ones.



Hyperbolic structures on link complements

Problem: (Link hyperbolicity) Given a diagram of a link L
with c crossings, is L hyperbolic?

Theorem: [Haraway-Hoffman, Badwin-Sivek] This problem is in
co-NP.

Theorem: [Baroni, Lackenby] This problem is in NP.



Showing that a link is not hyperbolic

Theorem: [Thurston] Let L be a link in the 3-sphere. Then one of
the following holds:

I L is the unknot;

I L is split;

I there is an essential torus in S3 − L;

I there is an essential annulus in S3 − L;

I L is hyperbolic.

Haraway-Hoffman used the following fact:

Theorem: [Lackenby] Deciding whether a compact orientable
3-manifold has incompressible boundary is in NP.



Dividing into two cases

From now onwards, we’ll focus on:

Theorem: [Baroni, Lackenby] Link hyperbolicity is in NP.

Given a hyperbolic link L, the proof of its hyperbolicity divides into
two cases:

I L is a fibred knot [Baroni]

I L is not fibred or has more than one component [Lackenby].

We will start by examining the fibred case.



The Nielsen-Thurston type of a surface automorphism

Let S be an orientable surface of finite type and χ(S) < 0, and let
φ : S → S be a homeomorphism. Then exactly one of the following
holds:

1. φ is periodic;

2. φ is reducible;

3. φ is pseudo-anosov (⇔ (S × I )/φ is hyperbolic)

Suppose that we are given φ as a word w in ‘standard generators’
in the mapping class group of S .

Theorem: [Bell-Webb] For a fixed surface S (with at least one
puncture), there is an algorithm to determine the Nielsen-Thurston
type of φ that runs in polynomial time in the length of w .

Theorem: [Baroni] There is an algorithm to determine the
Nielsen-Thurston type of φ that runs in polynomial time in the
length of w and in |χ(S)|.



Computing distance in the curve complex

This relies on:

Theorem: [Bell-Webb] For a fixed compact orientable triangulated
surface S (with non-empty boundary), there is an algorithm to
determine distance in the curve complex between two curves C1

and C2. This runs in polynomial time as a function of the
log(weight(C1)) and log(weight(C2)). Indeed, the algorithm
provides a tight geodesic between C1 and C2.

Theorem: [Baroni] There is an algorithm to determine the distance
in the curve complex between two curves C1 and C2 in a compact
orientable surface S with a triangulation T , up to a bounded
(poly(χ(S))) additive and multiplicative error. This runs in
polynomial time as a function of the number of triangles of T ,
log(weight(C1)) and log(weight(C2)). Indeed, the algorithm
provides a quasi-geodesic between C1 and C2.



Deciding whether a mapping class is pseudo-anosov

The stable translation length `(φ) of φ : S → S is
limN→∞ d(C , φN(C ))/N for any essential curve C . This is positive
iff φ is pseudo-anosov.

To decide whether φ is pseudo-anosov:

I Bell and Webb pick an essential curve C that is short with
respect to the given triangulation of S .

I They compute φN(C ) for some ‘large’ N.

I They find a geodesic in the curve complex of S joining C and
φN(C ). Let C ′ be its midpoint.

I Then the stable translation length of φ is d(C ′, φN(C ′))/N
rounded to a suitable fraction.

Baroni uses the same argument, but with coarse distances and a
quasi-geodesic.



Certifying fibred hyperbolic knot

We are given a diagram D of a knot L.

From this we build a triangulation for the exterior of L with
O(c(D)) tetrahedra.

The fibre surface S can be arranged to be a fundamental normal
surface, and hence have weight at most 2O(c(D)).

This is part of the certificate.

Then we can also certify that the exterior of S is a copy of
S × [0, 1].

It seems hard to ‘write down’ the monodromy φ.

But one can find a ‘short’ curve C in S and then compute φN(C )
for N = poly(c(D)).

This is enough to determine whether `(φ) > 0.



The non-fibred case

This uses hierarchies.

A hierarchy is a sequence of compact orientable 3-manifolds
M = M1, . . . ,M`+1 and orientable surfaces S1, . . . ,S` such that:

I each Si is properly embedded in Mi ;

I each Mi+1 = Mi\\ Si ;
I M`+1 is a collection of 3-balls.



Boundary patterns

A boundary pattern for a 3-manifold M is subset P of ∂M that is a
disjoint union of simple closed curves and trivalent graphs.

The manifolds in a hierarchy naturally inherit a boundary pattern.

M3

P3



Essential boundary patterns

A boundary pattern P is
essential if, for any properly
embedded disc D that intersects
P at most three times, ∂D
bounds a disc D ′ in ∂M that
intersects P in one of the
following:

I the empty set,

I an arc,

I a tripod.

Forbidden



Essential hierarchies

A hierarchy M = M1, . . . ,M`+1 is essential if the final manifold
M`+1 inherits an essential boundary pattern.

Theorem: [Waldhausen, Johansson] Let M be a compact
orientable 3-manifold with non-empty boundary and empty
boundary pattern. Then the following are equivalent:

I ∂M is incompressible and M is irreducible;

I M has an essential hierarchy.



An example: the knot 52

(i) The knot 5 (ii) The first surface in the hierarchy

(iii) The exterior of this surface (iv) The second surface in the hierarchy

2

(v) The pattern of one of the balls (vi) A simplified copy of the pattern

So, 52 is non-trivial.



Low genus hierarchies

Theorem: Let M be a compact orientable irreducible 3-manifold
with an essential boundary pattern P, and let H be a handle
structure for (M,P). Then (M,P) admits a hierarchy

(M,P) = (M1,P1)
S1−→ (M2,P2)

S2−→ · · · Sn−→ (Mn+1,Pn+1)

and each (Mi ,Pi ) has a handle structure Hi such that the
following hold:

1. each Si is normal and fundamental in Hi ;

2. complexity(Hi+2) < complexity(Hi ).

Moreover: When M is the exterior of a link L and P = ∅, and H is
the handle structure arising from a diagram D, then |χ(Si )| and
|Si ∩ Pi | are both O(c(D)2), where c(D) is the crossing number of
D.



Determining the gluing maps

Let
(Mi ,Pi )

Si−→ (Mi+1,Pi+1)

be a decomposition in this hierarchy.

There are two copies of Si in ∂Mi , denoted S−i and S+
i .

Let φ : S−i → S+
i be the map that glues them up.

When Si is not a fibre, there is an algorithm to ‘write down’ φ.

This expresses φ as a composition of Pachner moves between
certain triangulations of S−i and S+

i .



The JSJ surfaces for a manifold with pattern

There is an analogue of the JSJ decomposition for a manifold M
with essential pattern P.

The decomposing surfaces are tori, annuli (disjoint from P) and
squares (ie discs intersecting P four times).

Theorem: The JSJ surfaces decompose (M,P) into the following
pieces:

I ‘simple’ manifolds (ie they contain no essential tori, annuli
disjoint from P, or squares);

I Seifert fibre manifolds,

I patterned I -bundles.

The I -bundles B determine a transfer map τ : ∂hB → ∂hB.



Determining the JSJ by induction

Let (M,P)
S−→ (M ′,P ′) be a decomposition with gluing map φ.

Any essential torus/annulus/square in (M,P) is cut up by S into a
torus/annuli/squares in (M ′,P ′).

So, the I -bundle pieces of the JSJ for (M,P) are obtained by
patching together the I -bundle pieces B′ of the JSJ for (M ′,P ′).

But ∂hB′ might not patch together precisely under φ.

So one shrinks B′, forming a smaller I -bundle B′2.

Again, this might not patch together correctly under φ.

So one shrinks B′2, forming a smaller I -bundle B′3, etc.

This process stabilises after O(|χ(S)|) steps.

So in this way we end with the JSJ for (M,P).

(In fact, one keeps track of just its transfer map τ .)

Note that this does not work when S is a fibre.



Completing the proof

We are given a diagram D for the non-fibred hyperbolic link L.

The hierarchy for the exterior of L is given to us as part of the
certificate.

This shows that L is not the unknot and not split.

We compute the JSJ of the manifolds, working backwards along
the hierarchy.

So if L is hyperbolic and non-fibred, we may certify that S3 − L
has no JSJ tori and is not Seifert fibred.

In other words, we have a polynomial time certificate that L is
hyperbolic.



Further questions

I What about general Haken 3-manifolds?

I What about general 3-manifolds?

I Finding the hyperbolic structure: is this in FNP?

I Do hyperbolic quantities (eg volume) relate to the
combinatorics of an essential hierarchy?


