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Introduction

These are the lecture notes for Topology & Groups, which is a course designed for

both third and fourth year undergraduates. It is the first half of a pair of courses, the

second being Algebraic Topology, which will take place in the Hilary Term.

Topology and group theory are strongly intertwined, in ways that are interesting

and unexpected when one first meets them. The main interface is the concept of the

‘fundamental group’, which is a recipe that assigns to each topological space a group.

This provides a lot of useful information about the space. For example, one can often

show that two spaces are not homeomorphic, by establishing that their fundamental

groups are not isomorphic. Chapters II and III are mainly devoted to defining the

fundamental group of a space and establishing some of its basic properties. A beautiful

application is a proof of the Fundamental Theorem of Algebra.

When computing the fundamental group of a space, the answer is typically given

in terms of a list of generators, together with the relations that they satisfy. This

is a method for defining groups that occurs in many first courses on group theory.

However, to make the notion precise requires some work, and in particular necessitates

the introduction of a particularly basic type of group, known as a ‘free group’. Chapters

IV and V deal with these aspects of group theory.

In Chapters V and VI, the two themes of the course, topology and groups, are

brought together. At the end of Chapter V, a central result, the Seifert - van Kampen

theorem, is proved. This theorem allows us to compute the fundamental group of almost

any topological space. In Chapter VI, covering spaces are introduced, which again form a

key interface between algebra and topology. One of the centrepieces of this chapter, and

indeed the course, is the Nielsen - Schreier theorem, which asserts that any subgroup

of a (finitely generated) free group is free. This purely algebraic result has a purely

topological proof.

The structure of the course owes a great deal to the book Classical Topology and

Combinatorial Group Theory by John Stillwell [7]. This is one of the few books on the

subject that gives almost equal weight to both the algebra and the topology, and comes

highly recommended. Other suggestions for further reading are included at the end of

these notes.

Marc Lackenby

October 2008
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Convention

When X and Y are topological spaces, we will only consider continuous functions

between X and Y , unless we explicitly state otherwise.

Notation

• The composition of two maps f :X → Y and g: Y → Z is denoted by gf or g ◦ f .

• When X and Y are spaces, X ∼= Y means that X and Y are homeomorphic.

• When G and H are groups, G ∼= H means that G and H are isomorphic.

• The identity element of a group is usually denoted e.

• The identity map on a space X is denoted idX .

• When f :X → Y is a function and A is a subset of X , then f |A denotes the

restriction of f to A.

• A based space (X, b) is a space X and a point b ∈ X . A map f : (X, b)→ (X ′, b′)

between based spaces is a map f :X → X ′ such that f(b) = b′.

• The interval [0, 1] is denoted by I , and ∂I is the set {0, 1}.

• Dn is the set {x ∈ R
n : |x| ≤ 1}, and Sn−1 is {x ∈ R

n : |x| = 1}.

• We also view S1 as {x ∈ C : |x| = 1}.

• A path in a space X is a map f : I → X .

• The space with one point is often denoted {∗}.

• For spaces X and Y , and a point y ∈ Y , we denote the map X → Y that sends

everything to y by cy.
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Chapter I: Constructing spaces

Many topological spaces are, on a local scale, quite simple. For example, a ‘surface’

is a topological space with the property that each point has a neighbourhood home-

omorphic to R2. However, although these spaces are locally very simple, their global

topology can quite complicated.

In this introductory section, we give three different ways of building spaces, using

only simple building blocks. One typically starts with a collection of standard pieces,

and one glues them together to create the desired space. More formally, one describes

an equivalence relation on the pieces, and the new space is the set of equivalence classes,

given the quotient topology.

In Section I.1, we will describe graphs, where the building blocks are vertices (which

are just points) and edges (which are intervals). We will also introduce a way of build-

ing graphs using groups. The resulting graphs are known as Cayley graphs, and they

describe many properties of the group in a topological way.

In Section I.2, we will define simplicial complexes, where the building blocks are

‘simplices’, which are generalisation of triangles. Simplicial complexes are technically

very useful, but are often slightly unwieldy. Therefore, in Section I.3, we will describe

a generalisation known as a ‘cell complex’ which is often a much more efficient way of

building a topological space.

I.1: Cayley graphs of groups

Groups are algebraic objects defined by a short list of axioms. They arise naturally

when studying the symmetries of objects. This gives the first hint of their strong links

with geometry. In this introductory section, we will show how any finitely generated

group can be visualised topologically. This is an initial indication of the fruitful link

between group theory, geometry and topology.

We start with the definition of a (countable) graph. Intuitively, this is a finite

or countable collection of points, known as ‘vertices’ or ‘nodes’ joined by a finite or

countable collection of arcs, known as ‘edges’. An example, which gives the general

idea, is shown in Figure I.2. Unlike some authors, we allow an edge to have both its

endpoints in the same vertex, and also allow multiple edges between a pair of vertices.

The formal definition is as follows.
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Definition I.1. A (countable) graph Γ is specified by the following data:

• a finite or countable set V , known as its vertices;

• a finite or countable set E, known as its edges;

• a function δ which sends each edge e to a subset of V with either 1 or 2 elements.

The set δ(e) is known as the endpoints of e.

From this, one constructs the associated topological space, also known as the graph Γ,

as follows. Start with a disjoint union of points, one for each vertex, and a disjoint union

of copies of the interval I , one for each edge. For each e ∈ E, identify 0 in the associated

copy of I with one vertex in δ(e), and identify 1 in the copy of I with the other vertex

in δ(e).

V = {v1, v2, v3}

E = {e1, e2, e3}

e1
δ
7→ {v1, v2}

e2 7→ {v2}

e3 7→ {v2, v3}

v2

v1

e1

e2

e3�

v3

Figure I.2.

Definition I.3. An orientation on the graph Γ is a choice of functions ι:E → V and

τ :E → V such that, for each e ∈ E, δ(e) = {ι(e), τ(e)}. We say that ι(e) and τ(e)

are, respectively, the initial and terminal vertices of the edge e, and we view the edge as

running from initial vertex to the terminal vertex.

v2

v1

e1

e2

e3�

v3

V = {v1, v2, v3}

E = {e1, e2, e3}

E
ι
→ V

e1 7→ v1

e2 7→ v2

e3 7→ v2

E
τ
→ V

e1 7→ v2

e2 7→ v2

e3 7→ v3

Figure I.4.
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Definition I.5. Let G be a group and let S be a set of generators for G. The associated

Cayley graph is an oriented graph with vertex set G and edge set G× S. That is, each

edge is associated with a pair (g, s), where g ∈ G and s ∈ S. The functions ι and τ are

specified by:

G× S
ι
→ G

(g, s) 7→ g

G× S
τ
→ G

(g, s) 7→ gs

Thus the edge associated with the pair (g, s) runs from g to gs. We say that this edge

is labelled by the generator s.

Example I.6. The Cayley graph of Z with respect to the generator 1 is shown in Figure

I.7. The Cayley graph of Z with respect to the generators {2, 3} is shown in Figure I.8.

-1 0 1 2

Figure I.7.

0-1 1 2 3

Figure I.8.

Example I.9. The Cayley graph of Z×Z with respect to the generators x = (1, 0) and

y = (0, 1) is given in Figure I.10.

x xx

x x x

x x x

xxx

y y y y

yyyy

y y y y
(0,0)

Figure I.10.
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Example I.11. The finite permutation group S3 is generated by x = (1 2 3) and

y = (1 2). Its Cayley graph with respect to {x, y} is given in Figure I.12.

x x

x

x
xx

e x

x

y

yx

yx

y y

y

yy

y

2

2

Figure I.12.

Note from Example I.6 that the Cayley graph of a group depends on the choice of

generators. However, the graphs in Figures I.7 and I.8 look ‘similar’. One can make this

precise, and examine geometric and topological properties of a Cayley graph that do

not depend on the choice of generators. This is known as geometric group theory, which

is an important area of modern mathematical research. Here, we will merely content

ourselves with an observation: that one can read off some algebraic properties of the

group from topological properties of the Cayley graph, and vice versa. For example,

suppose that a group element g can be written as a product sǫ1
1 s

ǫ2
2 . . . sǫn

n where each

si ∈ S and ǫi ∈ {−1, 1}. It is always possible to express g in this way because S is a

generating set. This specifies a path, starting at the identity vertex, and running along

the edge labelled s1 (in the forwards direction if ǫ1 = 1, backwards if ǫ1 = −1), then

along the edge labelled s2, and so on. Then we end at the vertex labelled g. Thus, we

have proved the following.

Proposition I.13. Any two points in a Cayley graph can be joined by a path.

Conversely, pick any path from the identity vertex to the g vertex. Then this

specifies a way of expressing g as a product of the generators and their inverses.

Thus, there is a correspondence between certain equations in the group and closed

loops in the Cayley graph that start and end at the identity vertex. More specifically, the

equality sǫ1
1 s

ǫ2
2 . . . sǫn

n = e holds, where each si ∈ S and ǫi ∈ {−1, 1} and e is the identity

element of the group, if and only if the corresponding path starting at the identity vertex

is in fact a closed loop. Conversely, any such loop gives an equality of the above form.

We will return to groups later in the course, but now we introduce some important

topological concepts.
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I.2: Simplicial complexes

It turns out that many spaces can be constructed using building blocks that are

generalisations of a triangle.

Definition I.14. The standard n-simplex is the set

∆n = {(x0, . . . , xn) ∈ R
n+1 : xi ≥ 0 ∀i and

∑

i

xi = 1}.

The non-negative integer n is the dimension of this simplex. Its vertices, denoted V (∆n),

are those points (x0, . . . , xn) in ∆n where xi = 1 for some i (and hence xj = 0 for all

j 6= i). For each non-empty subset A of {0, . . . , n} there is a corresponding face of ∆n,

which is

{(x0, . . . , xn) ∈ ∆n : xi = 0 ∀i 6∈ A}.

Note that ∆n is a face of itself (setting A = {0, . . . , n}). The interior of ∆n is

int(∆n) = {(x0, . . . , xn) ∈ ∆n : xi > 0 ∀i}.

Note that the interior of ∆0 is ∆0.

D D D1D0 2 3

Figure I.15.

Note that V (∆n) is a basis for R
n+1. Hence, any function f : V (∆n)→ R

m extends

to a unique linear map R
n+1 → R

m. The restriction of this to ∆n is known as the affine

extension of f , or is just called affine.

Definition I.16. A face inclusion of a standard m-simplex into a standard n-simplex

(where m < n) is the affine extension of an injection V (∆m)→ V (∆n).

For example, there are six face inclusions ∆1 → ∆2, corresponding to the six injec-

tions {1, 2} → {1, 2, 3}.

We start with the data used to build our spaces:
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Definition I.17. An abstract simplicial complex is a pair (V,Σ), where V is a set

(whose elements are called vertices) and Σ is a set of non-empty finite subsets of V

(called simplices) such that

(i) for each v ∈ V , the 1-element set {v} is in Σ;

(ii) if σ is an element of Σ, so is any non-empty subset of σ.

We say that (V,Σ) is finite if V is a finite set.

We now give a method of constructing topological spaces:

Definition I.18. The topological realisation |K| of an abstract simplicial complex

K = (V,Σ) is the space obtained by the following procedure:

(i) For each σ ∈ Σ, take a copy of the standard n-simplex, where n+ 1 is the number

of elements of σ. Denote this simplex by ∆σ . Label its vertices with the elements

of σ.

(ii) Whenever σ ⊂ τ ∈ Σ, identify ∆σ with a subset of ∆τ , via the face inclusion which

sends the elements of σ to the corresponding elements of τ .

Example I.19. Let V = {1, 2, 3} and let Σ be the following collection:

{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}.

Then, to build the topological realisation of (V,Σ), we start with three 0-simplices and

three 1-simplices. We identify the 0-simplex {1} with a vertex of each of the two 1-

simplices {1, 2} and {1, 3}. In this way, we glue the simplices {1, 2} and {1, 3} together.

We perform a similar operation for the other two 0-simplices. We end with the three

edges of a triangle (but not its interior, since {1, 2, 3} 6∈ Σ).

{1,2} {2}

{2,3}

{3}

{1,3}

{1}

Figure I.20.

Let K = (V,Σ) be an abstract simplicial complex. Note that, for each σ ∈ Σ, there

is a homeomorphic copy of ∆σ inside |K|. Note also that |K| is the union of the interiors

of the simplices, and that the interiors of any two simplices are disjoint.
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We introduce a quick method for referring to points in |K|. Any point x ∈ |K| lies

in the interior of a unique simplex σ = (v0, . . . , vn). It is therefore expressed as

x =
n
∑

i=0

λivi,

for unique positive numbers λ0, . . . , λn which sum to one. If V = {w0, . . . , wm}, we also

write x =
∑

µiwi, with the understanding that µi = 0 if wi 6∈ {v0, . . . , vn}.

If |K| is the topological realisation of an abstract simplicial complex K, we denote

the images of the vertices in |K| by V (|K|).

Whenever we refer to a simplicial complex, we will mean either an abstract simplicial

complex or its topological realisation.

Definition I.21. A triangulation of a space X is a simplicial complex K together with

a choice of homeomorphism |K| → X .

Example I.22. The torus S1 × S1 has a triangulation using nine vertices, as shown in

Figure I.23. For reasons of clarity, we have omitted from the middle diagram the edges

that are diagonal in the left diagram.

1 2 3 1

4 5 6 4

7 8 9 7

1 2 3 1

1

2

3

4
5

6
7

8

9

~ ~

Figure I.23.

Definition I.24. A subcomplex of a simplicial complex (V,Σ) is a simplicial complex

(V ′,Σ′) such that V ′ ⊆ V and Σ′ ⊆ Σ.

Definition I.25. A simplicial map between abstract simplicial complexes (V1,Σ1) and

(V2,Σ2) is a function f : V1 → V2, such that, for all σ1 ∈ Σ1, f(σ1) = σ2 for some

σ2 ∈ Σ2. It is a simplicial isomorphism if it has a simplicial inverse.

Note that a simplicial map need not be injective, and so may decrease the dimension

of a simplex.
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A simplicial map f between abstract simplicial complexes K1 and K2 induces a

continuous map |f |: |K1| → |K2| as follows. Define |f | on V (|K1|) according the recipe

given by f , and then extend over each simplex using the unique affine extension. Such

a map is also known as a simplicial map. Note that a simplicial map between finite

simplicial complexes is specified by a finite amount of data: one only needs to know the

images of the vertices, and then the map is uniquely determined.

Typically, we will not be concerned with an explicit triangulation of a space, and

will be quite willing to change the underlying simplicial complex. One way to do this is

by ‘subdividing’ the simplicial complex, which is defined as follows.

Definition I.26. A subdivision of a simplicial complex K is a simplicial complex K ′

together with a homeomorphism h: |K ′| → |K| such that, for any simplex σ′ of K ′, h(σ′)

lies entirely in a simplex of |K| and the restriction of h to σ′ is affine.

Example I.27. Let K be the triangulation of I × I shown on the left in Figure I.28.

For any positive integer r, let K ′ be the triangulation of I × I obtained by dividing

I × I into a lattice of r2 congruent squares, and then dividing each of these along the

diagonal that runs from bottom-right to top-left, as shown in Figure I.28. Then K ′ is a

subdivision of K. We denote it by (I × I)(r).

Figure I.28.

I.3: Cell complexes

Simplicial complexes are a very useful technical tool. However, they are somewhat

awkward, because even simple spaces such as the torus typically require many simplices

in any triangulation. In this section, we introduce a useful generalisation of simplicial

complexes, which are a more efficient ways of building topological spaces.
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Definition I.29. Let X be a space, and let f :Sn−1 → X be a map. Then the space

obtained by attaching an n-cell to X along f is defined to be the quotient of the disjoint

union X ⊔ Dn, such that, for each point x ∈ X , f−1(x) and x are all identified to a

point. It is denoted by X ∪f D
n.

D

X
f

nSn-1

f (S    )n-1

X     Df n

Figure I.30.

Remark I.31. There is a homeomorphic image of X and the interior of Dn in X∪f D
n.

There is also an induced map Dn → X∪fD
n, but this need not be injective, since points

in the boundary of Dn may be identified.

Definition I.32. A (finite) cell complex is a space X decomposed as

K0 ⊆ K1 ⊆ . . . ⊆ Kn = X

where

(i) K0 is a finite set of points, and

(ii) Ki is obtained from Ki−1 by attaching a finite collection of i-cells.

Example I.33. A finite graph is precisely a finite cell complex that consists only of

0-cells and 1-cells.

Remark I.34. Any finite simplicial complex is a finite cell complex, in a natural way,

by letting each n-simplex be an n-cell.
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Example I.35. The torus S1 × S1 has a cell structure, consisting of one 0-cell, two

1-cells, and a single 2-cell. Viewing K1 as a graph, give its two edges an orientation,

and label them a and b. The attaching map f :S1 → K1 of the 2-cell sends the circle

along the path aba−1b−1.

a

b

Figure I.36.

Chapter II: Homotopy

II.1: Definition and basic properties

In this section, we introduce a central concept in topology.

Let X and Y be topological spaces.

Definition II.1. A homotopy between two maps f :X → Y and g:X → Y is a map

H :X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X . We then say

that f and g are homotopic, and write f ≃ g or H : f ≃ g or f
H
≃ g.

One can view I as specifying a ‘time’ parameter t ∈ I . Thus, as t increases from

0 to 1, the functions x 7→ H(x, t) specify a 1-parameter family of maps X → Y which

‘interpolate’ between f and g. It can be helpful to consider the images of X in Y , as t

varies. This resembles a moving picture.

Example II.2. Suppose that Y is a subset of Rn that is convex; this means that for

any two points y1 and y2 in Y , the line between them, consisting of points (1− t)y1+ ty2

for t ∈ [0, 1], also lies in Y . Then any two maps f :X → Y and g:X → Y are homotopic,

via the homotopy

H :X × I → Y

(x, t) 7→ (1− t)f(x) + tg(x).

This is known as a straight-line homotopy.

13



X
Y

f

g

f(X)

g(X)

Figure II.3.

Lemma II.4. For any two spaces X and Y , homotopy is an equivalence relation on the

set of continuous maps X → Y .

Proof. We check the three parts of the definition of an equivalence relation.

Reflexive: For any map f :X → Y , H : f ≃ f , where H(x, t) = f(x) for all t.

Symmetric: If H : f ≃ g, then H: g ≃ f , where H(x, t) = H(x, 1− t).

Transitive: Suppose that H : f ≃ g and K: g ≃ h. Then L: f ≃ h, where

L(x, t) =

{

H(x, 2t) if 0 ≤ t ≤ 1
2
;

K(x, 2t− 1) if 1
2
≤ t ≤ 1.

To verify that L is continuous, we need the following lemma.

Lemma II.5. (Gluing lemma) If {C1, . . . , Cn} is a finite covering of a space X by closed

subsets and f :X → Y is a function, whose restriction to each Ci is continuous, then f

is continuous.

Proof. The map f is continuous if and only if f−1(C) is closed for each closed subset C

of Y . But f−1(C) =
⋃n

i=1 f
−1(C)∩Ci, which is a finite union of closed sets, and hence

closed.

A special case of II.4 is where X is a single point. Then continuous maps X → Y

‘are’ points of Y , and homotopies between them are paths. So, the relation of being

connected by a path is an equivalence relation on Y . Equivalence classes are known as

path-components of Y . If Y has a single path-component, it is known as path-connected.
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Lemma II.6. Consider the following continuous maps:

f g k
W → X ⇉ Y → Z

h

If g ≃ h, then gf ≃ hf and kg ≃ kh.

Proof. Let H be the homotopy between g and h. Then k ◦ H :X × I → Y → Z is

a homotopy between kg and kh. Similarly H ◦ (f × idI):W × I → X × I → Y is a

homotopy between gf and hf .

It is very natural to study homotopies between maps. However, rather less natural

is the following notion.

Definition II.7. Two spaces X and Y are homotopy equivalent, written X ≃ Y , if

there are maps
f

X ⇄ Y
g

such that gf ≃ idX and fg ≃ idY .

The point here is that we are currently studying maps ‘up to homotopy’. So, if gf

and fg are both homotopic to the identity, then for the present purposes we view them

as ‘almost’ being the identity. Hence, f and g behave as though they are ‘isomorphisms’.

So, we should view X and Y as somehow equivalent. All this is rather vague, and is

intended to motivate the definition. The fact is, though, it is not in general at all obvious

whether two spaces are homotopy equivalent.

Lemma II.8. Homotopy equivalence is an equivalence relation on spaces.

Proof. Reflexivity and symmetry are obvious. For transitivity, suppose that we have

the following maps
f h

X ⇄ Y ⇄ Z
g k

where fg, gf , hk and kh are all homotopic to the relevant identity map. Then gkhf ≃

g(idY )f , by Lemma II.6, which equals gf , which is homotopic to idX . So, (gk)(hf) ≃

idX . Similarly, (hf)(gk) ≃ idZ .

Definition II.9. A space X is contractible if it is homotopy equivalent to the space

with one point.

There is a unique map X → {∗}, and any map {∗} → X sends ∗ to some point

x ∈ X . Note that {∗} → X → {∗} is always the identity, and that X → {∗} → X is the

constant map cx. Hence, X is contractible if and only if idX ≃ cx, for some x ∈ X .
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Example II.10. If X is a convex subspace of R
n, then, for any x ∈ X , cx ≃ idX .

Hence, X is contractible. In particular, R
n is contractible, as is Dn.

Definition II.11. When A is a subspace of a space X and i:A → X is the inclusion

map, we say that a map r:X → A such that ri = idA and ir ≃ idX is a homotopy

retract. Under these circumstances, A and X are homotopy equivalent.

Example II.12. Let i:Sn−1→ R
n − {0} be the inclusion map, and define

r: R
n − {0} → Sn−1

x 7→ x/|x|.

(See Figure II.13.) Then ri = idSn−1 and H : ir ≃ idRn−{0} via

H : R
n − {0} × I → R

n − {0}

(x, t) 7→ tx + (1− t)x/|x|.

This is well-defined because the straight line between x and x/|x| does not go through

the origin. Hence r is a homotopy retract and Sn−1 ≃ R
n − {0}.

Sn-1

Figure II.13.

Example II.14. Let M denote the Möbius band. Recall that this is the space obtained

from I × I by identifying (0, y) with (1, 1− y) for each y ∈ I . (See Figure II.15.)
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Figure II.15

There is an inclusion map i:S1 →M , sending e2πix to (x, 1
2
). And there is a retraction

map r:M → i(S1), sending (x, y) 7→ (x, 1
2
). Then r is a homotopy retract, since the

composition of r and the inclusion of i(S1) into M is homotopic to idM via

H :M × I →M

(x, y, t) 7→ (x, (1− t)/2 + ty).

i(S  )1 

Figure II.16.

Similarly, S1 × {1
2
} is a homotopy retract of S1 × I . Hence, M ≃ S1 ≃ S1 × I .

~ ~

Figure II.17.

The following is an important variant of the notion of a homotopy.

Definition II.18. Let X and Y be spaces and let A be a subspace of X . Then two

maps f, g:X → Y are homotopic relative to A if f |A = g|A and there is a homotopy

H : f ≃ g such that H(x, t) = f(x) = g(x) for all x ∈ A and all t ∈ I .

Remark II.19. There are versions of Lemmas II.4 and II.6 for homotopies relative to

subspaces. We will feel free to use these as necessary.
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II.2. The Simplicial Approximation Theorem

Almost all of the spaces considered in this course will admit the structure of a

simplicial complex. If K and L are simplicial complexes, and f : |K| → |L| is some

continuous map, it will be very useful to be able to homotope f to a simplicial map. In

general, this is not always possible. But it is if we pass to a ‘sufficiently fine’ subdivision

of K.

Theorem II.20. (Simplicial Approximation Theorem) Let K and L be simplicial com-

plexes, where K is finite, and let f : |K| → |L| be a continuous map. Then there is some

subdivision K ′ of K and a simplicial map g:K ′→ L such that |g| is homotopic to f .

The remainder of this section will be devoted to proving this result. In fact, we

prove a slightly weaker version of the theorem, and will indicate how the proof may be

extended to give the above result.

We start by describing a canonical way of choosing neighbourhoods in a simplicial

complex.

Definition II.21. Let K be a simplicial complex, and let x be a point in |K|. The star

of x in |K| is the following subset of |K|:

stK(x) =
⋃

{int(σ) : σ is a simplex of |K| and x ∈ σ}.

st   (  )K st   (  )K st   (  )K

Figure II.22.

Lemma II.23. For any x ∈ |K|, stK(x) is open in |K|.

Proof. Consider

|K| − stK(x) =
⋃

{int(σ) : σ is a simplex of |K| and x 6∈ σ}

=
⋃

{σ : σ is a simplex of |K| and x 6∈ σ}.

The latter equality holds because any point in a simplex σ lies in the interior of some

face τ of σ, and x 6∈ σ ⇒ x 6∈ τ . Now,
⋃

{σ : σ is a simplex of |K| and x 6∈ σ} is clearly

a subcomplex of K. Hence, it is closed, and so stK(x) is open.

18



The following gives a method for constructing simplicial maps.

Proposition II.24. Let K and L be simplicial complexes, and let f : |K| → |L| be a

continuous map. Suppose that, for each vertex v of K, there is a vertex g(v) of L such

that f(stK(v)) ⊆ stL(g(v)). Then g is a simplicial map V (K)→ V (L), and |g| ≃ f .

Example II.25. Triangulate the interval I using a simplicial complex K with two

vertices v0 and v1 and a single 1-simplex between them. Consider the following map of

|K| into the topological realisation of a simplicial complex L:

f
K

L

v0 v1 w0

w2

w3

w1

f(v  )0

f(v  )1
w4

Figure II.26.

Then it is easy to check that f(stK(v0)) is not contained within the star of any vertex

of L, and so there is no choice of g(v0) for which the condition f(stK(v0)) ⊆ stL(g(v0))

holds. However, suppose that we subdivide K to the following simplicial complex K ′,

and (by slight abuse of terminology) consider f : |K ′| → |L|.

f
K'

L

v0 v'0 v'1 v1 w0

w2

w3

w1

f(v  )0

f(v  )1
w4

Figure II.27.

Then we have

f(stK′(v0)) ⊂ stL(w0) ∩ stL(w1)

f(stK′(v′0)) ⊂ stL(w1)

f(stK′(v′1)) ⊂ stL(w2)

f(stK′(v1)) ⊂ stL(w2) ∩ stL(w3).
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So, there are four possible choices for g:

v0 7→ w0

v′0 7→ w1

v′1 7→ w2

v1 7→ w3

v0 7→ w1

v′0 7→ w1

v′1 7→ w2

v1 7→ w3

v0 7→ w0

v′0 7→ w1

v′1 7→ w2

v1 7→ w2

v0 7→ w1

v′0 7→ w1

v′1 7→ w2

v1 7→ w2

Proof of II.24. Let σ = (v0, . . . , vn) be a simplex of K, and let x ∈ int(σ). Then

x ∈ stK(v0) ∩ stK(v1) ∩ . . . ∩ stK(vn). So, f(x) ∈ f(stK(v0)) ∩ . . . ∩ f(stK(vn)) ⊆

stL(g(v0)) ∩ . . . ∩ stL(g(vn)). So, if τ is the simplex of L such that f(x) lies in the

interior of τ , then all of g(v0), . . . , g(vn) must be vertices of τ . So, they span a simplex

which is a face of τ and hence a member of L. Thus, g is a simplicial map. Now,

x is
∑n

i=0 λivi, for some λi > 0 with
∑n

i=0 λi = 1. So, |g|(x) =
∑n

i=0 λig(vi). So,

the straight line segment joining f(x) to |g|(x) lies in τ . Thus, there is a well-defined

straight-line homotopy between f and |g|.

Thus, to prove the Simplicial Approximation Theorem, it suffices to show that,

given a map f : |K| → |L|, one may subdivide K to a simplicial complex K ′ such that,

for all vertices v of K ′, f(stK′(v)) ⊆ stL(g(v)), for some function g: V (K ′)→ V (L). We

shall see that if we take a ‘sufficiently fine’ subdivision K ′ of K, then such a function g

can always be found. To make this precise, we need to introduce a metric on K.

Definition II.28. The standard metric d on a simplicial complex |K| is defined to be

d

(

∑

i

λivi,
∑

i

λ′ivi

)

=
∑

i

|λi − λ
′
i|.

It is easy to check that this is a metric on |K|.

Definition II.29. Let K ′ be a subdivision of K, and let d be the standard metric on

|K|. The coarseness of the subdivision is

sup{d(x, y) : x and y belong to the star of the same vertex of K ′}.

Thus, when the coarseness of a subdivision is small, the subdivision is ‘fine’.

Example II.30. The subdivision (I × I)(r) given in Example I.27 has coarseness 4/r.
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We now state a new version of the Simplicial Approximation Theorem, which is in

some ways stronger and in some ways weaker than Theorem II.20.

Theorem II.31. (Simplicial Approximation Theorem) Let K and L be simplicial com-

plexes, where K is finite, and let f : |K| → |L| be a continuous map. Then there is a

constant δ > 0 with the following property. If K ′ is a subdivision of K with coarseness

less than δ, then there is a simplicial map g:K ′→ L such that |g| ≃ f .

We will now start the proof of this result. Recall that the diameter of a subset A

of a metric space is defined to be

diam(A) = sup{d(x, y) : x, y ∈ A}.

We will need the following elementary fact from basic topology.

Theorem II.32. (Lebesgue Covering Theorem) Let X be a compact metric space, and

let U be an open covering of X . Then there is a constant δ > 0 such that every subset

of X with diameter less than δ is entirely contained within some member of U .

A bit later, we will need the following slightly stronger version of this theorem.

Theorem II.33. Let X be a compact metric space, and let A be a closed subspace. Let

U be a collection of open sets in X that cover A. Then there is a constant δ > 0 such

that every subset of X with diameter less than δ and having non-empty intersection

with A is entirely contained within some member of U .

Proof. Suppose that there is no such δ. This means that, for each δ > 0, there is a

subset Y (δ) of X with diameter less than δ and having non-empty intersection with A,

but which is not contained within any U ∈ U . Let x(δ) be a point in A ∩ Y (δ). Then

Y (δ) ⊆ B(x(δ), δ), where B(x(δ), δ) denotes the ball in X of radius δ about x(δ). Then

B(x(δ), δ) 6⊆ U , for each U ∈ U . Let xn = x(1/n). This is a sequence of points in A.

Since A is a closed subset of X , it is compact, and so this sequence has a convergent

subsequence, converging to x∞ ∈ A. Since U covers A, x∞ ∈ U , for some U ∈ U .

Since U is open, B(x∞, δ) ⊆ U , for some δ > 0. But, for all sufficiently large n in the

subsequence, B(xn, 1/n) ⊆ B(x∞, δ) ⊆ U . This is a contradiction.

Proof of II.31. The sets {stL(w) : w a vertex of L} form an open covering of |L|, and so

the sets {f−1(stL(w))} form an open covering of |K|. Let δ > 0 be the constant from

the Lebesgue Covering Theorem for this covering, and let K ′ be a subdivision of K with

coarseness less than δ. Then, for any vertex v of K ′, diam(stK′(v)) ≤ δ. So, there is a

vertex w of L such that stK′(v) ⊆ f−1(stL(w)). Hence, f(stK′(v)) ⊆ stL(w). Thus, we

set g(v) = w and apply Proposition II.24.
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Later, we will need the following add-on to Theorem II.31.

Addendum II.34. Let A1, . . . , An be subcomplexes of K, and let B1, . . . , Bn be sub-

complexes of L, such that f(Ai) ⊆ Bi for each i. Then, provided the coarseness of K ′ is

sufficiently small, we can choose the simplicial map g: V (K ′) → V (L) so that, for each

i, |g| sends Ai to Bi, and the homotopy between f and |g| sends Ai to Bi throughout.

Proof. In the proof of II.31, we showed that provided K ′ is a subdivision with sufficiently

small coarseness, then a function g: V (K ′)→ V (L) can be found such that f(stK′(v)) ⊆

stL(g(v)) for all vertices v ∈ K ′. We also now need to ensure that, whenever v lies in

|Ai|, then g(v) is a vertex of Bi. As before, g is then a simplicial map and f ≃ |g| by

a straight-line homotopy. Since f and |g| both send Ai to Bi, so does the straight-line

homotopy between them.

Let J be any non-empty subset of {1, . . . , n}. The sets

{stL(w) : w a vertex of Bi for each i ∈ J}

form a collection of open sets which cover
⋂

i∈J Bi. Hence, their inverse images form a

collection of open sets that cover
⋂

i∈J Ai. Let δJ be the constant from Theorem II.33 for

this cover. Let δ be the constant from the proof of II.31, and let δ′ = min{δ,minJ δJ}.

Let K ′ be a subdivision of K with coarseness less than δ′. Consider any vertex v of K ′.

Let J be the set of elements i ∈ {1, . . . , n} such that v ∈ |Ai|. If J is empty, then we let

w be any vertex of L such that stK′(v) ⊆ f−1(stL(w)). Suppose that J is non-empty.

By the definition of δ′, there is a vertex w of
⋂

i∈J Bi such that stK′(v) ⊆ f−1(stL(w)).

Thus, we can define g(v) = w.

Our original version of the Simplicial Approximation Theorem (II.20) follows im-

mediately from Theorem II.31 and the following result.

Proposition II.35. A finite simplicial complex K has subdivisions K(r) such that the

coarseness of K(r) tends to 0 as r →∞.

The basic idea of the proof is simple, but the details are rather technical and not

particularly enlightening. Since we will not in fact have much need for Theorem II.20,

we only sketch its proof. We start with a recipe for subdividing a single n-simplex.

Let ∆n be the standard n-simplex. For each face F of ∆n with vertices v1, . . . , vr,

the barycentre of F is (v1 + . . . + vr)/r. Define a new simplicial complex K ′ with

vertices precisely the barycentres of each of the faces. A set of vertices w1, . . . , ws of

K ′, corresponding to faces F1, . . . , Fs of ∆n, span a simplex of K ′ if and only if (after

re-ordering F1, . . . , Fs) there are inclusions F1 ⊂ F2 ⊂ . . . ⊂ Fs. It is possible to show
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that this is indeed a subdivision of ∆n, known as the barycentric subdivision.

0 {0} {1}

{2}

{0,2} {1,2}

{0,1}1

2

{0,1,2}
subdivide

Figure II.36.

If one has a simplicial complex K, it is clear that one can perform this procedure on

all simplices of K simultaneously. The result is known as the ‘barycentric subdivision’

of K. At the level of abstract simplicial complexes, the result is as follows.

Definition II.37. Let K = (V,Σ) be an abstract simplicial complex. Then its barycen-

tric subdivision K(1) = (V ′,Σ′) is an abstract simplicial complex K(1) with vertex set

V ′ = Σ and with simplices Σ′, specified by the following rule: (σ0, . . . , σn) ∈ Σ′ if and

only if (after possibly re-ordering σ0, . . . , σn) there are inclusions σ0 ⊂ σ1 ⊂ . . .⊂ σn.

We define, for each integer r ≥ 2, the subdivisionK(r) by settingK(r) = (K(r−1))(1).

The proof of II.35 proceeds by showing that the coarseness of K(r) tends to 0 as r→∞.

This is intuitively fairly obvious but the details are slightly messy, and are omitted.

Theorem II.20 follows immediately.

Chapter III: The fundamental group

III.1: The definition

We now introduce one of the central concepts of the course. It intertwines topology

and algebra, by assigning a group to each topological space, known as its fundamental

group.

Definition III.1. LetX be a space, and let u and v be paths inX such that u(1) = v(0).

Then the composite path u.v is given by

u.v(t) =

{

u(2t) if 0 ≤ t ≤ 1
2
;

v(2t− 1) if 1
2
≤ t ≤ 1.

Thus, u.v runs along u, then along v.
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Definition III.2. A loop based at a point b ∈ X is a path ℓ: I → X such that

ℓ(0) = ℓ(1) = b.

For the rest of this section, we will fix a particular point b in X , known as its

basepoint. We will consider loops based at b, and homotopies relative to ∂I between

them. In other words, we may vary loops via a homotopy, but only if we keep the

endpoints of the loops fixed at b throughout the homotopy.

Definition / Theorem III.3. The homotopy classes relative to ∂I of loops based at

b form a group, called the fundamental group of (X, b), denoted π1(X, b). If ℓ and ℓ′

are loops based at b, and [ℓ] and [ℓ′] are their homotopy classes relative to ∂I , their

composition [ℓ].[ℓ′] in the group is defined to be [ℓ.ℓ′].

To prove this, we need to check that composition in π1(X, b) is well-defined and

associative, and has an identity and inverses.

Remark III.4. A basepoint is needed to ensure that two loops can be composed.

Remark III.5. If we do not demand that homotopies are relative to ∂I , then it is

possible to show that any two paths in the same path-component of X are homotopic,

using the fact that I is contractible. Hence, without the restriction that homotopies are

relative to ∂I , the fundamental group would be uninteresting.

Well-defined

That composition is well-defined is a consequence of the following lemma. For later

applications, we state this lemma not just for loops but also for paths.

Lemma III.6. Suppose that u and v are paths in X such that u(1) = v(0). Suppose

also that u′ (respectively, v′) is a path with the same endpoints as u (respectively, v).

If u ≃ u′ relative to ∂I and v ≃ v′ relative to ∂I , then u.v ≃ u′.v′ relative to ∂I .

Proof. Let H : u ≃ u′ and K: v ≃ v′ be the given homotopies. Define L: I × I → X by

L(t, s) =

{

H(2t, s) if 0 ≤ t ≤ 1
2
;

K(2t− 1, s) if 1
2
≤ t ≤ 1.

This is continuous by the Gluing Lemma (II.5). So, L: u.v ≃ u′.v′ relative to ∂I .

The following diagram explains how L is defined. It is a picture of I × I , and the

labelling specifies where each point of I × I is sent under L.
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t

s
cu(0) cu(1) cv(1)

u v

u' v'

H K

Figure III.7.

Associative

Note that . is not associative. This is because for paths u, v and w such that

u(1) = v(0) and v(1) = w(0), (u.v).w and u.(v.w) have the same image but traverse it

at different speeds.

Lemma III.8. Let u, v and w be paths in X such that u(1) = v(0) and v(1) = w(0).

Then u.(v.w) ≃ (u.v).w relative to ∂I .

Proof. An explicit homotopy H : I × I → X is given by

H(t, s) =















u
(

4t
2−s

)

if 0 ≤ t ≤ 1
2
− 1

4
s

v (4t− 2 + s) if 1
2
− 1

4
s ≤ t ≤ 3

4
− 1

4
s

w
(

4t−3+s
1+s

)

if 3
4
− 1

4
s ≤ t ≤ 1.

This is continuous by the Gluing Lemma (II.5). However, a clearer description of H is

as follows. Divide I × I into the regions shown in Figure III.9. In each region, define H

so that each horizontal line traverses u, then v, then w, each at a constant speed. This

speed is chosen so that, when one moves from one region of the diagram to another, the

path changes from u to v, or from v to w, as appropriate.
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t

s
cu(0) cu(1) cv(1) cw(1)

u v w

u v w

Figure III.9.

Identity

Lemma III.10. Let u be a path in X with u(0) = x and u(1) = y. Then cx.u ≃ u

relative to ∂I , and u.cy ≃ u relative to ∂I .

Proof. The required homotopies are given in Figure III.11.

t

s
cx

cx

cx

cy

u

u

t

s
cx

cy

cy

cy

u

u

Figure III.11.

Recall that we denote the loop I → X that sends all of I to b by cb. Then, by the

above lemma, [cb] is the identity element in π1(X, b).

Inverses

Lemma III.12. Let u be a path in X with u(0) = x and u(1) = y, and let u−1 be the

path where u−1(t) = u(1− t). Then u.u−1 ≃ cx relative to ∂I , and u−1.u ≃ cy relative

to ∂I .
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Proof. The required homotopy between u.u−1 and cx is given by

H(t, s) =

{

u(2t(1− s)) if 0 ≤ t ≤ 1
2

u((2− 2t)(1− s)) if 1
2
≤ t ≤ 1.

The homotopy between u−1.u and cy is defined similarly.

This completes the proof of Theorem III.3.

The terminology u−1 in the statement of Lemma III.12 could possibly lead to some

confusion, since u−1 is not an inverse under composition of maps. Indeed, it is not an

inverse for composition of paths, but it does become one when we are are allowed to

homotope relative to ∂I .

Examples III.13. Let b be the origin in R
2. Then π1(R

2, b) is the trivial group. This

is because every loop based at b is homotopic relative to ∂I to the constant loop cb, via

the straight-line homotopy.

An example of a space with non-trivial fundamental group is S1. We let 1 ∈ S1

be the basepoint. (Here, we are viewing S1 as the unit circle in C, for notational

convenience.) In fact, π1(S
1, 1) ∼= Z, with a generator represented by the loop ℓ which

goes once around the circle:

ℓ: I → S1

t 7→ e2πit.

However, the proof of this fact is distinctly non-trivial. One must show that any loop

based at 1 is homotopic relative to ∂I to ℓn, for some n ∈ Z. And one must show that

ℓn and ℓm are homotopic relative to ∂I only if n = m. It will not be until Section III.3

that we have the tools to prove these facts.

We now investigate the dependence of π1(X, b) on the choice of basepoint b. Note

that if X0 is the path-component of X containing the basepoint b, then π1(X, b) =

π1(X0, b), since any loop in X based at b must lie in X0, and any homotopy between

two such loops must also lie in X0.

Thus, moving the basepoint to another path-component of X may have a signifi-

cant effect on the fundamental group. But the following proposition implies that mov-

ing it within the same path-component has no major effect. In particular, if X is

path-connected, then π1(X, b) does not depend (up to isomorphism) on the choice of

basepoint, and so we sometimes denote it by π1(X).

Proposition III.14. If b and b′ lie in the same path-component of X , then π1(X, b)∼=

π1(X, b
′).
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Proof. Let w be a path from b to b′ in X . If ℓ is a loop based at b, then w−1.ℓ.w is a

loop based at b′, and the function

w♯: π1(X, b)→ π1(X, b
′)

[ℓ] 7→ [w−1.ℓ.w]

is well-defined by Lemma III.6. (See Figure III.15.) We have

w♯([ℓ])w♯([ℓ
′]) = [w−1.ℓ.w][w−1.ℓ′.w]

= [w−1.ℓ.(w.w−1).ℓ′.w]

= [w−1.ℓ.cb.ℓ
′.w]

= [w−1.(ℓ.ℓ′).w]

= w♯([ℓ][ℓ
′])

and so w♯ is a homomorphism. Also, w♯ has an inverse (w−1)♯, since

(w−1)♯(w♯([ℓ])) = (w−1)♯([w
−1.ℓ.w]) = [w.w−1.ℓ.w.w−1] = [ℓ].

l
w  .l.w

w

b

b'

-1

Figure III.15.

Remark III.16. The isomorphism w♯ does depend on the choice of w. If u is another

path from b to b′, then u−1
♯ w♯ is the mapping [ℓ] 7→ [u.w−1.ℓ.w.u−1], which is the

operation of conjugation by the element [w.u−1] of π1(X, b). Since π1(X, b) need not be

abelian, this need not be the identity.
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Remark III.17. The fundamental group deals with based loops, but it does yield

information about unbased loops ℓ:S1 → X . This is because ℓ lies inside a well-defined

conjugacy class in π1(X, b), as follows. We may pick an arbitrary path w from b to ℓ(1).

Then the loop that traverses w, then runs around ℓ and then returns to b along w−1

is a loop in X based at b. Applying a homotopy to ℓ does not change the homotopy

class relative to ∂I of this loop. Changing the choice to path w would alter this element

of π1(X, b) by a conjugacy. Hence, we obtain a well-defined conjugacy class in π1(X, b)

from any homotopy class of loop in X .

Proposition III.18. Let (X, x) and (Y, y) be spaces with basepoints. Then any continu-

ous map f : (X, x)→ (Y, y) induces a homomorphism f∗: π1(X, x)→ π1(Y, y). Moreover,

(i) (idX)∗ = idπ1(X,x)

(ii) if g: (Y, y)→ (Z, z) is some map, then (gf)∗ = g∗f∗,

(iii) if f ≃ f ′ relative to {x}, then f∗ = f ′∗.

Proof. Define f∗([ℓ]) = [f ◦ ℓ]. This is well-defined, by the version of Lemma II.6 for

homotopies relative to ∂I . Also, f ◦(ℓ.ℓ′) = (f ◦ℓ).(f ◦ℓ′), and so f∗ is a homomorphism.

Claims (i) and (ii) are obvious, and claim (iii) follows from the version of Lemma II.6

for homotopies relative to a subspace.

Proposition III.19. Let X and Y be path-connected spaces such that X ≃ Y . Then

π1(X) ∼= π1(Y ).

Proof. Let f :X → Y and g: Y → X be homotopy equivalences. If we knew that f and

g respected some choice of basepoints and that the homotopies gf ≃ idX and fg ≃ idY

fixed these basepoints throughout, then it would follow from Proposition III.18 that f∗

is an isomorphism with inverse g∗. However, we do not have this information about

basepoints, and so another argument is required.

Choose x0 ∈ X , and let y0 = f(x0) and x1 = g(y0), so that we have homomorphisms

π1(X, x0)
f∗−→ π1(Y, y0)

g∗−→ π1(X, x1).

Let H be the homotopy between gf and idX . Then w(t) = H(x0, t) is a path from x1

to x0. Let ℓ be a loop in X based at x0, and consider K = H ◦ (ℓ × idI): I × I → X .

Then K is a homotopy fitting into the left-hand square of Figure III.20. Rescale K to

fit into the middle trapezium of the right-hand square. Fill in the triangles with maps

that are constant on the first variable. This yields a homotopy relative to ∂I between

w−1.(g ◦ f ◦ ℓ).w and ℓ. In other words, w♯g∗f∗[ℓ] = [ℓ]. So, w♯g∗f∗ = idπ1(X,x0). In
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particular, f∗ is injective, and, since w♯ is an isomorphism, g∗ is surjective. By composing

f and g the other way round, we deduce that g∗ is injective and f∗ is surjective. So, f∗

is an isomorphism.

w w

gf gf

cx cx

w w

ww

l

ll

l

-1

-1

Figure III.20.

Note that, as a consequence, if X is a contractible space, then π1(X) is the trivial

group. We give this property a name.

Definition III.21. A space is simply-connected if it is path-connected and has trivial

fundamental group.

However, it is not the case that simply-connected spaces are necessarily contractible.

A counter-example is the 2-sphere, although the proof of this fact is beyond this course.

III.2: A simplicial version

Definition III.22. Let K be a simplicial complex. An edge path is a finite sequence

(a0, . . . , an) of vertices ofK, such that for each i, {ai−1, ai} spans a simplex of K. (Note:

we allow ai−1 = ai.) Its length is n. An edge loop is an edge path with an = a0. If

α = (a0, . . . , an) and β = (b0, . . . , bm) are edge paths such that an = b0, we define α.β

to be (a0, . . . , an, b1, . . . , bm).

Definition III.23. Let α be an edge path. An elementary contraction of α is an edge

path obtained from α by performing one of the following moves:

(0) replacing . . . , ai−1, ai, . . . by . . . , ai−1, . . . provided ai−1 = ai;

(1) replacing . . . , ai−1, ai, ai+1, . . . by . . . , ai−1, . . . , provided ai−1 = ai+1;

(2) replacing . . . , ai−1, ai, ai+1, . . . by . . . , ai−1, ai+1, . . ., provided {ai−1, ai, ai+1} span

a 2-simplex of K.
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(See Figure III.24.) We say that α is an elementary expansion of β if β is an elementary

contraction of α. We say that α and β are equivalent, written α ∼ β, if we can pass from

α to β by a finite sequence of elementary contractions and expansions. This is clearly

an equivalence relation on edge paths.

Move (1) Move (2)

Figure III.24.

Remark III.25. Note that if two edge paths are equivalent, then they have the same

initial vertices and the same terminal vertices.

Definition / Theorem III.26. Let K be a simplicial complex, and let b be a vertex of

K. The equivalence classes of edge loops in K based at b form a group denoted E(K, b),

called the edge loop group.

Proof. The product is induced by the product of edge loops. It is easy to check that this

respects the equivalence relation ∼. It is associative because the product of edge loops is

associative. The identity is the equivalence class of (b). The inverse of (b, b1, . . . , bn−1, b)

is (b, bn−1, . . . , b1, b).

Theorem III.27. For a simplicial complex K and vertex b, E(K, b) is isomorphic to

π1(|K|, b).

Proof. Let I(n) be the triangulation of I = [0, 1] with n 1-simplices, each of length 1
n
.

Then we can regard an edge path of length n as a simplicial map I(n) → K. This defines

a mapping

{edge loops in K based at b}
θ
−→ {loops in |K| based at b}.

If α is obtained from β by an elementary contraction, it is clear that θ(α) and θ(β) are

homotopic relative to ∂I . So θ gives a well-defined mapping E(K, b)→ π1(|K|, b). We

must show that it is an isomorphism.

Homomorphism. For edge loops α and β, θ(α.β) ≃ θ(α).θ(β) relative to ∂I , and so θ is

a homomorphism.
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Surjective. Let ℓ: I → |K| be any loop in |K| based at b. Give I the triangulation I(1)

and view I(n) as a subdivision. Then the coarseness of I(n) is 4/n, which tends to 0 as

n→∞. So, by the Simplicial Approximation Theorem (II.31) and II.34, we can find a

simplicial map α: I(n) → K for some n, such that ℓ ≃ θ(α) relative to ∂I . So θ([α]) = [ℓ].

Injective. Let α = (b0, b1, . . . , bn−1, bn) be an edge loop based at b. Suppose that

θ([α]) is the identity in π1(|K|, b). Then θ(α) ≃ cb relative to ∂I , via a homotopy

H : I × I → |K|. Triangulate I × I using the triangulation (I × I)(r) of Example I.27.

The Simplicial Approximation Theorem gives, for sufficiently large r, a simplicial map

G: (I×I)(r) → K with G ≃ H . Moreover, we can ensure that G sends ∂I×I and I×{1}

to b, by II.34. Also using II.34, we can ensure that G(i/n, 0) = bi, and thatG sends the 1-

simplices between (i/n, 0) and ((i+1)/n, 0) to the 1-simplex (bi, bi+1). So, the restriction

of G to I × {0} is an edge path which contracts to α. And, by applying the sequence

of moves shown in Figure III.28, we obtain a sequence of elementary contractions and

expansions taking this edge path to an edge path, every vertex of which is b. This is

equivalent to (b). Hence, [α] is the identity element of E(K, b).

Theorem III.27 is significant for two reasons. Firstly, E(K, b) is a concrete object

that is often computable, and so this gives a method for computing π1(|K|, b). Secondly,

it shows that E(K, b) does not depend (up to isomorphism) on the choice of triangulation

for |K|.

Figure III.28.
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Definition III.29. For a simplicial complex K and any non-negative integer n, the

n-skeleton of K, denoted skeln(K), is the subcomplex consisting of the simplices with

dimension at most n.

Corollary III.30. For any simplicial complex K and vertex b, π1(|K|, b) is isomorphic

to π1(|skel2(K)|, b).

Proof. The definition of E(K, b) involves only the simplices of dimension at most two.

Corollary III.31. For n ≥ 2, π1(S
n) is trivial.

Proof. Impose a triangulation on Sn, coming from the n-skeleton of ∆n+1. Then,

Sn and ∆n+1 have the same 2-skeleton. But ∆n+1 is contractible, and so has trivial

fundamental group. Hence, so does Sn.

However, S1 does not have trivial fundamental group, as we shall prove in the next

section.

III.3. The fundamental group of the circle

Theorem III.32. The fundamental group of the circle is isomorphic to the additive

group of integers: π1(S
1) ∼= Z.

As in Examples III.13, we set 1 ∈ S1 to be the basepoint, and let ℓ be the loop which

goes once around the circle: ℓ(t) = e2πit. We will show that a generator for π1(S
1, 1) is

represented by ℓ.

Proof of Theorem III.32. Impose a triangulation K on S1 using three vertices and three

1-simplices. We will show that E(K, 1) is isomorphic to Z. Define an orientation on

each 1-simplex, as shown in Figure III.33.

1

2

3

Figure III.33.
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Consider a simplicial loop α = (b0, b1, . . . , bn−1, bn) based at 1. If bi = bi+1 for

some i, then we may perform an elementary contraction. Similarly, if the loop traverses

some 1-simplex, and then the same 1-simplex in reverse, we may perform an elementary

contraction. Hence, a shortest loop equivalent to α traverses all the simplices with same

orientation. It is therefore ℓn for some n ∈ Z.

We must show that if ℓn and ℓm are equivalent, then n = m. Define the winding

number of a simplicial path α to be the number of times it traverses (1, 2) in the forwards

direction minus the number of times it traverses it in the backwards direction. Then

the winding number of ℓn is n. It is clear that an elementary contraction or expansion

leaves the winding number unchanged.

Hence, any edge loop is equivalent to ℓn, for a unique integer n. This sets up a

bijection E(K, 1)→ Z. This is an isomorphism, since ℓn.ℓm = ℓn+m.

III.4. The Fundamental Theorem of Algebra

A beautiful application of the above result is the following key theorem.

Theorem III.34. (Fundamental Theorem of Algebra). Any non-constant polynomial

with complex coefficients has at least one root in C.

Proof. Let p(x) = anx
n + . . . + a0 be the polynomial, where an 6= 0 and n > 0. Let

Cr = {x ∈ C : |x| = r}, where r will be a large real number, yet to be chosen. Let

k = p(r)/rn and let q(x) = kxn. Then p(r) = q(r).

Claim. If r is sufficiently large, then p|Cr and q|Cr and the straight line homotopy

between them all miss 0.

If not, then for some x ∈ Cr and some t ∈ [0, 1],

(1− t)p(x) + tq(x) = 0.

This is equivalent to

(1− t)(anx
n + . . .+ a0) + t

(

an|x|n + . . .+ a0

|x|n

)

xn = 0

which is equivalent to

anx
n + . . .+ a0 = t

(

an−1x
n−1 + . . .+ a0 − an−1

xn

|x|
− . . .− a0

xn

|x|n

)

.
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The left-hand side has order xn, whereas the right-hand side has order at most xn−1.

Hence, |t| → ∞ as |x| → ∞. In particular, there is no solution in the range t ∈ [0, 1]

when r is sufficiently large. This proves the claim.

So, p|Cr:Cr → C − {0} and q|Cr:Cr → C − {0} are homotopic relative to {r}.

Suppose that p(x) has no root in C. Then p is a function C → C − {0}. Hence, the

following diagram commutes:
C

p
−→ C− {0}

↑ i ր p|Cr

Cr

where i is the inclusion map. So, at the level of fundamental groups, the following

commutes:
0 = π1(C, r)

p∗−→ π1(C− {0}, r) ∼= Z

↑ i∗ ր (p|Cr)∗

π1(Cr, r) ∼= Z

So, (p|Cr)∗ is the zero homomorphism. But (p|Cr)∗ = (q|Cr)∗ which sends a generator

of π1(Cr) to n times a generator of π1(C− {0}), which is a contradiction.

Chapter IV: Free Groups

IV.1: Definitions

In this chapter, we will embark on the part of the course that deals with groups.

Our focus will initially be a special type of group, known as a free group.

For any set S, we will define a group F (S), known as the free group on S. Informally,

one should view S as an ‘alphabet’, and elements of F (S) as ‘words’ in this alphabet.

So, for example, if S = {a, b}, then ab and ba are elements of F (S). The group operation

is ‘concatenation’; in other words, to compose two words in F (S), we simply write one

down and then follow it by the other. For example, the product of ab and ba is abba.

The above discussion is slightly oversimplified, because it does not take account of

the fact that groups have inverses. So, whenever a is an element of S, we must allow

not only a but a−1 to appear in the words. But then, aa−1b and b should represent the

same element of the group. So, in fact, elements of F (S) are not words in the alphabet

S, but are equivalence classes of words.

We are now ready to give the formal definitions. Throughout, S is some set, known

as the alphabet. From this set, create a new set S−1. This is a copy of the set S, but

35



for each element x of S, we denote the corresponding element of S−1 by x−1. We insist

that S ∩ S−1 = ∅. When x−1 ∈ S−1, we say that (x−1)−1 = x.

Definition IV.1. A word w is a finite sequence x1, . . . , xm, where m ∈ Z≥0 and each

xi ∈ S ∪ S
−1. We write w as x1x2 . . .xm. Note that the empty sequence, where m = 0,

is allowed as a word. We denote it by ∅.

Definition IV.2. The concatenation of two words x1x2 . . . xm and y1y2 . . . yn is the

word x1x2 . . . xmy1y2 . . . yn.

Definition IV.3. A word w′ is an elementary contraction of a word w, written wց w′,

if w = y1xx
−1y2 and w′ = y1y2, for words y1 and y2, and some x ∈ S ∪ S−1. We also

write w′ ր w, and say that w is an elementary expansion of w′.

Definition IV.4. Two words w′ and w are equivalent, written w ∼ w′, if there are

words w1, . . . , wn, where w = w1 and w′ = wn, and for each i, wi ր wi+1 or wi ց wi+1.

The equivalence class of a word w is denoted [w].

Definition IV.5. The free group on the set S, denoted F (S), consists of equivalence

classes of words in the alphabet S. The composition of two elements [w] and [w′] is the

class [ww′]. The identity element is [∅], and is denoted e. The inverse of an element

[x1x2 . . . xn] is [x−1
n . . .x−1

2 x−1
1 ].

One should check that composition is well-defined: if w1 ∼ w′
1 and w2 ∼ w′

2, then

w1w2 ∼ w
′
1w

′
2. But this is obvious from the definitions.

Definition IV.6. If a group G is isomorphic to F (S), for some set S, then the copy of

S in G is known as a free generating set.

IV.2. Reduced representatives

Definition IV.7. A word is reduced if it does not admit an elementary contraction.

Proposition IV.8. Any element of the free group F (S) is represented by a unique

reduced word.

Lemma IV.9. Let w1, w2 and w3 be words, such that w1 ր w2 ց w3. Then either

there is a word w′
2 such that w1 ց w′

2 ր w3 or w1 = w3.

Proof. Since w1 ր w2, we can write w1 = ab, and w2 = axx−1b, for some x ∈ S ∪ S−1

and some words a and b. As w2 ց w3, w3 is obtained from w2 by removing yy−1,

for some y ∈ S ∪ S−1. The letters xx−1 and yy−1 intersect in either zero, one or two
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letters. We will consider these three possibilities in turn. If they do not intersect, then

it is possible to remove yy−1 from w1 before inserting xx−1. Hence, if we denote by

w′
2 the word obtained by removing yy−1 from w1, then w1 ց w′

2 ր w3, as required.

Suppose now that xx−1 and yy−1 intersect in a single letter. Then x = y−1, and so in

w2, there is chain of letters xx−1x or x−1xx−1, and w1 and w3 are obtained from w2 by

the two possible ways of performing an elementary contraction on these three letters. In

particular, w1 = w3, as required. Finally, if xx−1 and yy−1 intersect in two letters, then

clearly, all we have done in the sequence w1 ր w2 ց w3 is to insert a pair of letters and

then remove it again, and so w1 = w3.

Proof of Proposition IV.8. An elementary contraction to a word reduces its length by

two. Hence, a shortest representative for an element of F (S) must be reduced. We

must show that there is a unique such representative. Suppose that, on the contrary,

there are distinct reduced words w and w′ that are equivalent. Then, by definition,

there is a sequence of words w1, w2, . . . , wn such that w = w1 and w′ = wn and, for

each i, wi ր wi+1 or wi ց wi+1. Consider a shortest such sequence. This implies

that wi 6= wj for any i 6= j. This is because if wi did equal wj , then we could miss

out all the words in the sequence between them, creating a shorter sequence of words

joining w to w′. Suppose that, at some point, wi ր wi+1 ց wi+2. Then, by Lemma

IV.9, there is another word w′
i+1, such that wi ց w′

i+1 ր wi+2. In this way, we may

perform all ց moves before all ր ones. Hence, the sequence starts with w1 ց w2 or

ends with wn−1 ր wn. But, this implies that either w or w′ was not reduced, which is

a contradiction.

IV.3. The universal property

Given a set S, there is a function i:S → F (S), known as the canonical inclusion,

sending each element of S to the corresponding generator of F (S). The following is

known as the ‘universal property’ of free groups.

Theorem IV.10. Given any set S, any group G and any function f :S → G, there is a

unique homomorphism φ:F (S)→ G such that the following diagram commutes:

S
f
−→ G

↓ i ր φ

F (S)

where i:S → F (S) is the canonical inclusion.
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Proof. We first show the existence of φ. Consider any word w = xǫ1
1 . . . xǫn

n , where

each xi ∈ S and each ǫi ∈ {−1, 1}. Define φ(w) to be f(x1)
ǫ1 . . . f(xn)ǫn . We need

to show that this descends to a well-defined function φ:F (S) → G; in other words,

that if two words w and w′ are equivalent, then they have the same image under φ. It

suffices to show this when w′ is an elementary contraction of w, where w = w1xx
−1w2

or w = w1x
−1xw2, and w′ = w1w2. Then, in the case where w = w1xx

−1w2

φ(w) = φ(w1)f(x)f(x)−1φ(w2) = φ(w1)φ(w2) = φ(w′).

Similarly, when w = w1x
−1xw2, φ(w) = φ(w′). It is clear that φ is a homomorphism.

Finally, φ is the unique such homomorphism for which the diagram commutes. This is

because for each x ∈ S, φ(x) = f(x), and a homomorphism between groups is determined

by what it does to a set of generators.

We say that f :S → G induces the homomorphism φ:F (S)→ G.

IV.4: The fundamental group of a graph

Recall the following definition from Section I.1:

Definition I.1. A graph Γ is specified by the following data:

• a finite or countable set V , known as its vertices;

• a finite or countable set E, known as its edges;

• a function δ which sends an edge e to a subset of V with either 1 or 2 elements.

The set δ(e) is known as the endpoints of e.

From this, one constructs the associated topological space, also known as the graph Γ,

as follows. Start with a disjoint union of points, one for each vertex, and a disjoint union

of copies of I , one for each edge. For each e ∈ E, identify 0 in the associated copy of I

with one vertex in δ(e), and identify 1 in the copy of I with the other vertex in δ(e).

Our goal in this section is to prove the following key result.

Theorem IV.11. The fundamental group of a connected graph is a free group.

We need some terminology and basic results from graph theory.

Definition IV.12. Let Γ be a graph with vertex set V , edge set E, and endpoint

function δ. A subgraph of Γ is a graph with vertex set V ′ ⊆ V and edge set E ′ ⊆ E and

with endpoint function being the restriction of δ. For this to be defined, it is necessary
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that, for each e ∈ E ′, δ(e) ⊆ V ′. Clearly, if Γ is oriented, the subgraph inherits an

orientation.

Definition IV.13. An edge path in a graph Γ is a concatenation u1 . . . un, where each

ui is either a path running along a single edge at unit speed or a constant path based

at a vertex. An edge loop is an edge path u: I → Γ, where u(0) = u(1). An edge path

(respectively, edge loop) u: I → Γ is embedded if u is injective (respectively, the only

two points in I with the same image under u are 0 and 1).

Definition IV.14. A tree is a connected graph that contains no embedded edge loops.

Lemma IV.15. In a tree, there is a unique embedded edge path between distinct

vertices.

Proof. Any two distinct vertices are certainly connected by an edge path, since a tree

is assumed to be connected. A shortest such edge path is embedded. We need to show

that that it is unique. Suppose that, on the contrary, there are two distinct embedded

edge paths p = u1 . . .un and p′ = u′1 . . . u
′
n′ between a distinct pair of vertices. Let ui(0)

be the point on p where the paths first diverge. Let uj(1) be the next point on p which

lies in the image of p′. Then the concatenation of ui . . . uj with the sub-arc of p′ between

uj(1) and ui(0) is an embedded edge loop. This contradicts the hypothesis that this is

a tree.

Definition IV.16. A maximal tree in a connected graph Γ is a subgraph T that is a

tree, but where the addition of any edge of E(Γ)−E(T ) to T gives a graph that is not

a tree.

Lemma IV.17. Let Γ be a connected graph and let T be a subgraph that is a tree.

Then the following are equivalent:

(i) V (T ) = V (Γ);

(ii) T is maximal.

Proof. (i) ⇒ (ii): Let e be an edge of E(Γ)− E(T ). If the endpoints of e are the same

vertex, then adding e to T certainly results in a subgraph that is not a tree, since it

contains an embedded edge loop. So, we may assume that the endpoints of e are distinct.

They lie in T , since V (T ) = V (Γ). They are connected by an embedded edge path p in

T , by Lemma IV.15. Then p∪ e is an embedded loop in T ∪ e, and so this is not a tree.

(ii)⇒ (i): Suppose that T is a maximal tree. Suppose that there is a vertex v of Γ

that is not in V (T ). Pick a shortest edge path from T to v, which exists because Γ is
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connected. The first edge of this path starts in V (T ) but cannot end in V (T ). We may

therefore add it to T and create a larger tree, which contradicts maximality.

Lemma IV.18. Any connected graph Γ contains a maximal tree.

Proof. Recall from the definition of a graph that we are assuming that V (Γ) is finite

or countable. We may therefore pick a total ordering on V (Γ). We may assume that,

for each integer i ≥ 2, the ith vertex shares an edge with one of the earlier vertices. We

will construct a nested sequence of subgraphs T1 ⊂ T2 ⊂ . . ., each of which is a tree,

and where V (Ti) is the first i vertices of the ordering. Set T1 to be the first vertex.

By assumption, there is an edge e joining the ith vertex to one of the previous vertices.

Then set Ti to be Ti−1 ∪ e. We have not created any embedded edge loops, and so,

inductively, each Ti is a tree. We claim that T =
⋃

i Ti is a tree. Suppose that it

contained an embedded edge loop ℓ. Then, since ℓ consists of only finitely many edges,

these edges must all appear in some Ti. But Ti would then not be a tree, which is a

contradiction. Since T contains all the vertices of Γ, it is maximal, by Lemma IV.17.

Proof of Theorem IV.11. Let T be a maximal tree in Γ. Let b be a vertex of Γ, which

we take as the basepoint. For any vertex v of Γ, let θ(v) be the unique embedded edge

path from b to v in T . This exists because V (T ) = V (Γ), by Lemma IV.17. Set E(Γ)

and E(T ) to be the edges of Γ and T respectively. Assign an orientation to each edge

e of E(Γ)− E(T ), and let ι(e) and τ(e) be its initial and terminal vertices. We claim

that the elements {θ(ι(e)).e.θ(τ(e))−1 : e ∈ E(Γ)−E(T )} form a free generating set for

π1(Γ, b).

We will use the edge loop group, defined in III.26. However, Γ need not be a

simplicial complex, since graphs are allowed to have edges with both endpoints at the

same vertex and to have multiple edges running between two vertices. But there is an

easy way to rectify this problem. Simply subdivide each edge of Γ into three edges. The

resulting graph Γ′ is clearly homeomorphic to Γ and it is a simplicial complex. For each

edge e of Γ, we assign the label e to the middle of the three corresponding edges of Γ′.

We will set up an isomorphism φ:F (E(Γ) − E(T )) → E(Γ′, b). This is induced,

using Theorem IV.10, by the function E(Γ)− E(T ) → E(Γ′, b) that sends each edge e

of E(Γ)−E(T ) to θ(ι(e)).e.θ(τ(e))−1.

To show that this is an isomorphism, we set up an inverse ψ. Any edge loop ℓ in

Γ′ defines a word in the alphabet E(Γ′): whenever the path traverses an edge e in the

forwards direction (respectively, the backwards direction), write down e (respectively,

e−1). Remove all letters in the word that correspond to edges lying in T . Also, for
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each edge of Γ, remove the letters corresponding to the outer two of the three edges of

Γ′. Define ψ(ℓ) to be the resulting word in the alphabet E(Γ)− E(T ). We must show

that ψ is well-defined, by establishing that the resulting element of F (E(Γ)− E(T )) is

unchanged if the loop is modified by an elementary expansion or contraction. Crucially,

Γ′ has no 2-simplices, and so we need only worry about moves (0) and (1) in Definition

III.23.

If move (0) is applied to a loop ℓ = (b, b1, . . . , bn−1, b), removing a repeated vertex

bi, then the corresponding word in the alphabet E(Γ′) is unchanged, and hence so is

ψ(ℓ).

If move (1) is applied to ℓ, removing an edge e followed by its reverse, this has the

effect of an elementary contraction on the word ψ(ℓ) (if e is in the middle of an edge in

E(Γ)−E(T )) or no effect at all (otherwise).

Hence, ψ is a well-defined function E(Γ′, b) → F (E(Γ) − E(T )). It is clearly a

homomorphism since concatenation of edge loops results in concatenation of words in

F (E(Γ)− E(T )). It is trivial to check that ψ and φ are mutual inverses.

Remark IV.19. The above proof not only establishes that π1(Γ, b) is free but also

gives an explicit free generating set, as the following examples demonstrate.

Example IV.20. Let Γ be the graph with a single vertex b and four edges e1, e2, e3

and e4. Then a maximal tree T in Γ consists of just the vertex b. Thus, the four edges

do not lie in T , and so π1(Γ, b) is a free group on four generators, where the ith generator

is a loop going once around the edge ei.

Figure IV.21.

Example IV.22. Consider the graph Γ in the plane with a vertex at each lattice point

(x, y), where x, y ∈ Z, and where (x, y) is joined to (x − 1, y), (x + 1, y), (x, y − 1) and

(x, y+ 1). For ease of reference, label the horizontal edges with a and orient them from

left to right, and label the vertical edges b and orient them upwards. The union of all
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the vertical edges and the x-axis forms a maximal tree T in Γ. Place the basepoint b at

the origin. Then, there is a free generator of π1(Γ, b) for each edge running from (x, y)

to (x + 1, y), for each x, y ∈ Z where y 6= 0. The corresponding loop in Γ is the path

axbyab−ya−x−1.

Figure IV.22.

Chapter V: Group presentations

V.1: Generators and relations

Most undergraduates have come across groups defined using ‘generators and rela-

tions’. A common example is the dihedral group D2n, which is ‘defined’ as

〈σ, τ | σn = e, τ2 = e, τστ = σ−1〉.

The idea is that σ and τ generate the group, and the ‘relations’ of the group are given

by the equalities on the right-hand side. These relations should be, in some sense, the

‘only’ ones that hold. However, very rarely is it explained precisely what this means! Of

course, one is allowed to ‘deduce’ relations from the given ones. For example, if σn = e

and τ2 = e, then σnτ2 = e. However, there are slightly more subtle relations that also

follow. For example, τσnτ is also the identity, since τσnτ = τeτ = e. So, it is clear

that some more work must be done before one can specify a group using generations

and relation, with complete rigour. It turns out that free groups play a central rôle in

this process.

Definition V.1. Let B be a subset of a group G. The normal subgroup generated by

B is the intersection of all normal subgroups of G that contain B. It is denoted 〈〈B〉〉.
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Remark V.2. The intersection of a collection of normal subgroups is again a normal

subgroup. Hence, 〈〈B〉〉 is normal in G. It is therefore the smallest normal subgroup of

G that contains B, in the sense that any other normal subgroup that contains B also

contains 〈〈B〉〉.

It can be specified quite precisely, as follows.

Proposition V.3. The subgroup 〈〈B〉〉 consists of all expressions of the form

n
∏

i=1

gib
ǫi

i g
−1
i ,

where n ∈ Z≥0, gi ∈ G, bi ∈ B and ǫi = ±1, for all i.

Proof. Any normal subgroup containing B must contain all elements of the form gbg−1

and gb−1g−1 (b ∈ B, g ∈ G). Hence, it must contain all finite products of these:

n
∏

i=1

gib
ǫi

i g
−1
i .

Let N be the set of all these finite products. We have therefore shown that N ⊆ 〈〈B〉〉.

We will show that N is in fact a normal subgroup. It clearly contains B, and so, by

Remark V.2, we must have 〈〈B〉〉 ⊆ N . This will prove the proposition. To show that N

is a normal subgroup, we check the various conditions:

Identity: N clearly contains e.

Inverses: The inverse of
∏n

i=1 gib
ǫi

i g
−1
i is

∏1
i=n gib

−ǫi

i g−1
i , which also lies in N .

Closure: The product of two elements in N clearly lies in N .

Normality: For
∏n

i=1 gib
ǫi

i g
−1
i in N and g ∈ G,

g

(

n
∏

i=1

gib
ǫi

i g
−1
i

)

g−1 =

n
∏

i=1

(ggi)b
ǫi

i (g−1
i g−1) =

n
∏

i=1

(ggi)b
ǫi

i (ggi)
−1,

which lies in N .

We can now specify what it means to define a group via generators and relations.

The generators will come from a set X . The relations will be words in X , which we can

view as instructions that force these words to be the identity in the group. The precise

definition is as follows.

Definition V.4. Let X be a set, and let R be a collection of elements of F (X). The

group with presentation 〈X |R〉 is defined to be F (X)/〈〈R〉〉.
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We sometimes slightly abuse notation by allowing relations of the form ‘w1 = w2’,

where this is shorthand for the relation w1w
−1
2 .

Example V.5. We can now genuinely define the dihedral group D2n to be

〈σ, τ | σn, τ2, τστσ〉.

Note that τσnτ does indeed represent the identity element of D2n because it lies in the

subgroup of F ({σ, τ}) normally generated by {σn, τ2, τστσ}. To see this, note that in

F ({σ, τ}),

τσnτ = (τσnτ−1)τ2,

which is in the form specified by Proposition V.3.

One can now answer the question: which relations hold inG = 〈X |R〉? Equivalently,

when do two words w and w′ in the alphabet X represent the same element of G? The

answer is: precisely when there is an element y of 〈〈R〉〉 such that w′ = wy, where

equality holds in the free group F (X). However, the following gives an alternative way

of deciding whether w and w′ represent the same element of G.

Proposition V.6. Let G = 〈X |R〉. Then two words w and w′ in the alphabet X

represent the same element of G if and only if they differ by a finite sequence of the

following moves:

(1) perform an elementary contraction or expansion;

(2) insert somewhere into the word one of the relations in R or its inverse.

Proof. Certainly, applying moves (1) and (2) to a word does not change the element

of G that it represents. We must show that if two words w and w′ represent the same

element of G, then they differ by a sequence of moves (1) and (2). We know, that as

elements of F (X), we have the equality w′ = wy, where y ∈ 〈〈R〉〉. So, by Proposition

V.3, there is an integer n ∈ Z≥0, and elements gi ∈ F (X), and elements ri ∈ R, and

ǫi = ±1, such that

w′ = w
n
∏

i=1

gir
ǫi

i g
−1
i .

We can obtain wg1g
−1
1 from w by a sequence of (1) moves, and then obtain wg1r

ǫ1
1 g

−1
1

from this by move (2). Continuing in this way, we obtain w′ from w by a sequence of

moves (1) and (2).

Example V.7. We have already seen that in the dihedral group D2n, τσnτ represents

the identity element. Hence, it can be turned into e by moves (1) and (2), as follows:

τσnτ
(2)
−→ τσnσ−nτ

n×(1)
−→ ττ

(2)
−→ τ2τ−2 2×(1)

−→ e.
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We now show that any group G has a presentation. Let F (G) be the free group

on the generating set G. Thus, F (G) consists of all (equivalence classes of) words in

the alphabet G. Hence, if x1 and x2 are non-trivial elements of G and x3 = x1x2 in G,

then x3 and x1x2 represent distinct elements of F (G), because they are non-equivalent

words in the alphabet G. There is a canonical homomorphism F (G)→ G sending each

generator of F (G) to the corresponding element of G, which is clearly surjective. Let

R(G) be the kernel of this homomorphism. Thus, for example, x3x
−1
2 x−1

1 lies in R(G).

Then, by the first isomorphism theorem for groups, G is isomorphic to F (G)/R(G).

Hence, G has presentation 〈G|R(G)〉.

Definition V.8. The canonical presentation for G is 〈G|R(G)〉.

The canonical presentation of a group is extremely inefficient. As soon as G is

infinite, the canonical presentation has infinitely many generators. Its main rôle comes

from the fact that it depends only on the group G and involves no arbitrary choices.

But we shall mostly be interested in more efficient presentations of a group, given by

the following definition.

Definition V.9. A presentation of 〈X |R〉 is finite if X and R are both finite sets. A

group is finitely presented if it has a finite presentation.

Remark V.10. We will establish in Chapter V the following nice characterisation of

finitely presented groups: a group is finitely presented if and only if it is isomorphic to

the fundamental group of a finite simplicial complex.

The following result allows us to check whether a function from a group 〈X |R〉 to

another group is a homomorphism.

Lemma V.11. Let 〈X |R〉 and H be groups. Let a function f :X → H induce a

homomorphism φ:F (X) → H . This descends to a homomorphism 〈X |R〉 → H if and

only if φ(r) = e for all r ∈ R.

Proof. Clearly, the condition that φ(r) = e is necessary for φ to give a homomorphism,

since any r ∈ R represents the identity element of 〈X |R〉. Conversely, suppose that

φ(r) = e for all r ∈ R. By Proposition V.3, any element w of 〈〈R〉〉 can be written as

n
∏

i=1

wir
ǫi

i w
−1
i ,

where n ∈ Z≥0, wi ∈ F (X), ri ∈ R and ǫi = ±1, for all i. Since φ(r) = e for all r ∈ R,

φ(w) is also e. Hence, φ descends to a homomorphism F (X)/〈〈R〉〉 → H , as required.
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V.2: Tietze transformations

One can ask: when do two finite presentations represent the same group? The

answer is: if and only if they differ by a sequence of so-called Tietze transformations.

Definition V.12. A Tietze transformation is one of the following moves applied to a

finite presentation 〈x1, . . . , xm | r1, . . . , rn〉:

(T1) Re-order the generators or relations.

(T2) Add or remove the relation e.

(T3) Perform an elementary contraction or expansion to a relation ri.

(T4) Insert a relation ri or its inverse into one of the other rj , or remove it.

(T5) Add a generator xm+1 together with a relation w(x1, . . . , xm)x−1
m+1, which defines

it as a word in the old generators, or perform the reverse of this operation.

It is clear that none of the above transformations alters the group.

Example V.13. We claim that 〈a, b|abab−1〉 and 〈b, c|cbbc〉 are presentations of the

same group. We establish this via Tietze transformations:

〈a, b|abab−1〉
(T5)
−→ 〈a, b, c|abab−1, ab−1c−1〉

(T4)
−→ 〈a, b, c|(ab−1c−1)−1abab−1, ab−1c−1〉

(T4)
−→ 〈a, b, c|(ab−1c−1)−1ab(ab−1c−1)−1ab−1, ab−1c−1〉

(T3)
−→ 〈a, b, c|cbbc, ab−1c−1〉

(T2)
−→ 〈a, b, c|cbbc, ab−1c−1, e〉

(T4)
−→ 〈a, b, c|cbbc, ab−1c−1, (ab−1c−1)−1〉

(T4)
−→ 〈a, b, c|cbbc, ab−1c−1(ab−1c−1)−1, (ab−1c−1)−1〉

(T3)
−→ 〈a, b, c|cbbc, e, (ab−1c−1)−1〉

(T2)
−→ 〈a, b, c|cbbc, cba−1〉

(T5)
−→ 〈b, c|cbbc〉
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Theorem V.14. (Tietze) Any two finite presentations of a group G are convertible

into each other by a finite sequence of Tietze transformations.

Lemma V.15. Let 〈x1, . . . , xm|r1, . . . , rn〉 be a presentation for a group G. Suppose

that a word w in the generators x1, . . . , xm is trivial in G. Then, there is a sequence of

(T2), (T3) and (T4) moves taking the presentation to 〈x1, . . . , xm|r1, . . . , rn, w〉.

Proof. We first apply move (T2), adding the relation e. Since w is trivial in G, it can

be obtained from e by a sequence of moves (1) and (2) in Proposition V.6. So, there is a

sequence of (T3) and (T4) moves taking the presentation to 〈x1, . . . , xm|r1, . . . , rn, w〉,

as required.

Proof of Theorem V.14. Let 〈x1, . . . , xm|r1, . . . , rn〉 and 〈x′1, . . . , x
′
m′ |r′1, . . . , r

′
n′〉 be two

presentations of G. Since each x′i is an element of 〈x1, . . . , xm|r1, . . . , rn〉, it can be

written as a word χ′
i in the generators x1, . . . , xm. Similarly, each xi can be written as

a word χi in the generators x′1, . . . , x
′
m′ .

We start by applying the move (T5) m′ times to the first presentation to obtain

〈x1, . . . , xm, x
′
1, . . . , x

′
m′ |r1, . . . , rn, χ

′
1(x

′
1)

−1, . . . , χ′
m′(x′m′)−1〉.

The relation xi = χi holds in the group. Hence, by Lemma V.15, there is a sequence

of (T2), (T3) and (T4) moves taking the presentation to
〈

x1, . . . , xm, x
′
1, . . . , x

′
m′

∣

∣

∣

∣

∣

r1, . . . , rn,
χ′

1(x
′
1)

−1, . . . , χ′
m′(x′m′)−1,

χ1x
−1
1 , . . . , χmx

−1
m

〉

.

The relations r′1, . . . , r
′
n′ represent trivial words in the group. Hence, by Lemma V.15,

there is a sequence of (T2), (T3) and (T4) moves taking the presentation to
〈

x1, . . . , xm, x
′
1, . . . , x

′
m′

∣

∣

∣

∣

∣

r1, . . . , rn, r
′
1, . . . , r

′
n′,

χ′
1(x

′
1)

−1, . . . , χ′
m′(x′m′)−1,

χ1x
−1
1 , . . . , χmx

−1
m

〉

.

This presentation is symmetric with respect to primed and unprimed symbols, except

they occur in a different order. Hence, we can first apply (T1) moves, and then re-

versing the above derivation, we can obtain the presentation 〈x′1, . . . , x
′
m′ |r′1, . . . , r

′
n′〉, as

required.

V.3: Push-outs

In this section, we use presentations to define the following construction which is

important in group theory.
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Definition V.16. Let G0, G1 and G2 be groups, and let φ1:G0 → G1 and φ2:G0 → G2

be homomorphisms. Let 〈X1|R1〉 and 〈X2|R2〉 be the canonical presentations of G1 and

G2, where X1 ∩X2 = ∅. Then the push-out G1 ∗G0
G2 of

G1
φ1←− G0

φ2−→ G2

is the group

〈X1 ∪X2 | R1 ∪ R2 ∪ {φ1(g) = φ2(g) : g ∈ G0}〉.

Remark V.17. The notationG1∗G0
G2 is ambiguous, since the resulting group depends

not just on G0, G1 and G2, but on the homomorphisms φ1 and φ2. However, this

terminology has become standard, at least when φ1 and φ2 are injective.

The canonical presentations of G1 and G2 were used to ensure that the resulting

answer was clearly independent of the choice of presentation. However, we will see later

(in Lemma V.20) that one may substitute other presentations for G1 and G2 in the

definition and obtain the same group.

Remark V.18. By Lemma V.11, the inclusions X1 → X1 ∪ X2 and X2 → X1 ∪ X2

induce canonical homomorphisms α1:G1 → G1 ∗G0
G2 and α2:G2 → G1 ∗G0

G2. The

following diagram commutes:

G0
φ1−→ G1



yφ2



yα1

G2
α2−→ G1 ∗G0

G2

This is because the relation φ1(g) = φ2(g), for each g ∈ G0, holds in G1 ∗G0
G2.

Proposition V.19. (Universal property of push-outs) Let G1 ∗G0
G2 be the push-out

of

G1
φ1←− G0

φ2−→ G2.

Let H be a group and let β1:G1 → H and β2:G2 → H be homomorphisms such that

the following diagram commutes:

G0
φ1

−→ G1



yφ2



yβ1

G2
β2−→ H

Then there is a unique homomorphism β:G1∗G0
G2 → H such that the following diagram
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commutes:
G1

ւ α1



yβ1

G1 ∗G0
G2

β
−→ H

տ α2

x

β2

G2

Proof. The push-out G1 ∗G0
G2 has generators G1 ∪G2. Define β on these generators

by β(gi) = βi(gi), for gi ∈ Gi. This is forced upon us by the commutativity of the final

diagram in V.19. Thus, if the homomorphism β exists, then it is unique. But we must

check that it is well-defined, by verifying that β(r) = e for any relation r of G1 ∗G0
G2.

This is certainly true for the relations in G1 and G2, since β1 and β2 are well-defined.

The other type of relation is φ1(g)(φ2(g))
−1 for g ∈ G0. But (βφ1(g))(βφ2(g))

−1 = e

by the commutativity of the square in V.19.

Lemma V.20. Let G0, G1, G2, φ1 and φ2 be as in Definition V.16. Let 〈X ′
1|R

′
1〉 and

〈X ′
2|R

′
2〉 be any presentations for G1 and G2, where X ′

1 ∩X
′
2 = ∅. Then the push-out is

isomorphic to

〈X ′
1 ∪X

′
2 | R

′
1 ∪ R

′
2 ∪ {φ1(g) = φ2(g) : g ∈ G0}〉.

Proof. Let G be the push-out, and let H be the group with presentation as in V.20.

Let G1 → 〈X
′
1|R

′
1〉 and G2 → 〈X

′
2|R

′
2〉 be the ‘identity’ maps. By Lemma V.11, these

induce homomorphisms β1:G1 → H and β2:G2 → H . The square of V.19 commutes

because the relations φ1(g) = φ2(g) hold for each g ∈ G0. Thus, by VI.19, there is

a homomorphism β:G → H such that the final diagram in V.19 commutes. We will

define an inverse φ:H → G. There is a function X ′
i → Gi sending each generator to the

corresponding element of Gi. Compose this with αi to give a function f :X ′
1 ∪X

′
2 → G.

This induces a homomorphism φ:F (X ′
1 ∪X

′
2) → G. By Lemma V.11, this descends to

a homomorphism φ:H → G because φ(r) = e for each relation r in the presentation of

H . It is clear that this is an inverse for β. Hence, G is isomorphic to H .

Definition V.21. When G0 is the trivial group, then the push-out G1 ∗G0
G2 depends

only on G1 and G2. It is known as the free product G1 ∗G2.

Example V.22. The free product Z∗Z is isomorphic to the free group on two generators.

This is because we may take presentations 〈x| 〉 and 〈y| 〉 for the first and second copies

of Z. Lemma V.20 gives that Z ∗ Z has presentation 〈x, y| 〉.
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Definition V.23. When φ1:G0 → G1 and φ2:G0 → G2 are injective, the push-out

G1 ∗G0
G2 is known as the amalgamated free product of G1 and G2 along G0.

V.4: The Seifert - Van Kampen Theorem

In this section, the two main themes of this course – topology and group theory –

are woven together. We will prove a result, the Seifert - van Kampen theorem, which

will allow us to compute the fundamental group of any finite simplicial complex. The

answer will be given as a group presentation.

Theorem V.24. (Seifert - van Kampen) Let K be a space, which is a union of two

path-connected open sets K1 and K2, where K1 ∩K2 is also path-connected. Let b be

a point in K1 ∩K2, and let i1:K1 ∩K2 → K1 and i2:K1 ∩K2 → K2 be the inclusion

maps. Then π1(K, b) is isomorphic to the push-out of

π1(K1, b)
i1∗←− π1(K1 ∩K2, b)

i2∗−→ π1(K2, b).

Moreover, the homomorphisms π1(K1, b) → π1(K, b) and π1(K2, b) → π1(K, b), which

are the composition of the canonical homomorphisms to the push-out and the isomor-

phism to π1(K, b), are the maps induced by inclusion.

An alternative formulation is the following.

Theorem V.25. Let K, K1, K2, b, i1 and i2 be as in V.24. Let 〈X1|R1〉 and 〈X2|R2〉

be presentations for π1(K1, b) and π1(K2, b), with X1 ∩X2 = ∅. Then a presentation of

π1(K, b) is given by

〈X1 ∪X2 | R1 ∪ R2 ∪ {i1∗(g) = i2∗(g) : for each g ∈ π1(X1 ∩X2, b)}〉.

Moreover, the homomorphism 〈Xi|Ri〉 → π1(K, b) (where i = 1 or 2) arising from the

inclusion of generators Xi → X1 ∪X2 is the map induced by the inclusion Ki → K.

Proof. Let G be the push-out of V.24. Then G has a presentation as in V.25. Now, the

following diagram commutes:

π1(K1 ∩K2, b)
i1∗−→ π1(K1, b)



yi2∗



y

π1(K2, b) −→ π1(K, b)

where the unlabelled maps are the homomorphisms induced by inclusion. Hence, the

universal property of push-outs (V.19) gives a homomorphism β:G→ π1(K, b). We will

show that this is an isomorphism, by showing that it is surjective and injective.
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Surjective. Suppose we are given a loop ℓ in K based at b. We need to show that ℓ

is homotopic, relative to ∂I , to a composition of loops based at b, each of which lies

entirely in K1 or entirely in K2. The inverse images {ℓ−1K1, ℓ
−1K2} form an open

covering of I . By the Lebesgue Covering Theorem (II.32) applied to I , there is some

subdivision I(n) of I such that each simplex of I(n) maps entirely into K1 or K2. This

then expresses ℓ as a composition of paths u1 . . . un, each of which lies entirely in K1

or K2. Pick a path θ(x) for each point x in K from b to x. We may insist that if

x ∈ Ki, then θ(x) lies in Ki, since K1, K2 and K1 ∩ K2 are path-connected. We

also let θ(b) be the constant path cb. Then u1 . . .un is homotopic relative to ∂I to
(

θ(u1(0)).u1.θ(u1(1))−1
)

.
(

θ(u2(0)).u2.θ(u2(1))−1
)

. . .
(

θ(un(0)).un.θ(un(1))−1
)

. This is

a composition of loops based at b, each of which lies entirely in K1 or entirely in K2, as

required.

Injective. Suppose that g is an element of G such that β(g) is the identity. Then g is

a composition of generators, each of which lies in π1(K1, b) or π1(K2, b), and so β(g)

is represented by a corresponding composition of loops ℓ1 . . . ℓn. Suppose that ℓ1 . . . ℓn

is homotopic in K to the constant loop relative to ∂I . We need to show that g is the

identity element of G. We will do this establishing that there is a sequence of moves (1)

and (2) of V.6 taking g to the trivial word in G.

Let H : I × I → K be the homotopy relative to ∂I between ℓ1 . . . ℓn and cb. Then

{H−1K1, H
−1K2} is an open covering of I × I . Hence, by the Lebesgue Covering

Theorem (II.32), there is some subdivision (I × I)(r) (as in I.27) such that each simplex

of (I × I)(r) maps entirely into K1 or entirely into K2. We may realise the homotopy

between ℓ1 . . . ℓn and cb using the moves in Figure III.28. Each of these has the effect

of homotoping a sub-path, relative to its endpoints, in such a way that during the

homotopy, this sub-path remains entirely in K1 or K2. Let λ1, . . . , λN be this sequence

of based loops, where λ1 = ℓ1 . . . ℓn, and λN = cb. Each λi is naturally a composition of

paths, each path arising from an edge of (I × I)(r). Assign each of these paths a label

in the set {1, 2}, with the restriction that if the path has label j, then it lies entirely

in Kj . We now modify each λi to give a new loop λ′i. We have expressed λi as a

composition of paths. Replace each of these paths u with the path θ(u(0)).u.(θ(u(1))−1.

The composition of these new paths is λ′i. It is expressed as a composition of loops, each

based at b, and each inheriting a label in {1, 2}. Clearly, λ′i is homotopic, relative to ∂I ,

to λi. Now, the homotopy from λi to λi+1 induces a homotopy between λ′i and λ′i+1.

This is relative to ∂I and is supported entirely in K1 or in K2. Now, the expression of

λ′i as a composition of labelled loops determines a word wi in the generators X1 ∪X2.

When we pass from λ′i to λ′i+1, we claim that wi+1 is obtained from wi by a sequence
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of moves (1) and (2) of V.6. Suppose that the homotopy is supported in Ki. Now, the

sub-loops may or not have the label i. But if one of the loops does not have the label i,

then it lies in K1∩K2 and so represents an element g ∈ π1(K1∩K2, b). So, we may first

apply a relation i1∗(g) = i2∗(g), which has the effect of making a label change. Since

the homotopy is supported in Ki, the start and end loops represent the same element of

π1(Ki, b), and so we can get from one to the other by applying moves (1) and (2), using

the relations Ri. Thus, the element of G is unchanged in the sequence of moves taking

w1 to wN . Since w1 = g and wN clearly represents the identity in G, g must also have

been the identity. Hence, β is injective.

The fact that the homomorphisms π1(Ki, b) → π1(K, b) arising from the push-out

construction are the maps induced by inclusion, is clear.

One might wonder whether, in the Seifert - van Kampen theorem, it is necessary

to require that K1 and K2 are open and path-connected.

Certainly, the hypothesis that K1, K2 and K1∩K2 be path-connected is necessary.

For example, the circle can be decomposed into two open sets K1 = S1 − {1} and

K2 = S1 − {−1}. So, K1, K2 and both components of K1 ∩K2 are open intervals and

hence have trivial fundamental group. However, π1(S
1) is non-trivial.

The assumption that K1 and K2 are are open also cannot be simply dropped: there

are examples of spaces K decomposed into path-connected closed subsets K1 and K2,

and where K1∩K2 is path-connected, but where the conclusion of the theorem does not

hold. However, there is a version of the theorem where K is a path-connected simplicial

complex, and K1, K2 and K1 ∩K2 are path-connected subcomplexes (and hence closed

subsets of K).

V.5: Topological applications

Definition V.26. The wedge (X, x)∨(Y, y) of two spaces with basepoints is the quotient

of the disjoint union X ⊔ Y , under the identification x ∼ y. Its basepoint is the image

of x and y in this quotient.

By picking an arbitrary basepoint b in S1, and wedging n copies of (S1, b) together,

we obtain the space
∨n

S1, which is known as a bouquet of circles, which is shown below.

An application of the Seifert - van Kampen theorem immediately gives its fundamental

group.
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Figure V.27.

Corollary V.28. The fundamental group of
∨n

S1 is isomorphic to the free group on

n generators.

Proof. We apply induction on n. The induction starts with n = 1, where π1(S
1) ∼= Z,

by Theorem III.32. For the inductive step, suppose that π1(
∨n−1

S1) is the free group

on n−1 generators. Let b be the vertex of the wedge, which we take to be the basepoint.

Let N be a small open neighbourhood of b. Decompose
∨n

S1 as K1 = N ∪
∨n−1

S1

and K2 = N ∪ S1. Then
∨n−1

S1 is a homotopy retract of K1, and S1 is a homotopy

retract of K2. The intersection K1 ∩K2 is N , which is clearly contractible. So, V.25

implies that π1(
∨n

S1) has a presentation with n generators and no relations.

Note that
∨n

S1 is a graph, and so Corollary V.28 can also be proved using Theorem

IV.11.

Another important application of the Seifert - van Kampen theorem is that it allows

us to compute the fundamental group of any cell complex. Recall the following definitions

from Chapter I.

Definition I.29. Let X be a space, and let f :Sn−1 → X be a map. Then the space

obtained by attaching an n-cell to X along f is defined to be the quotient of the disjoint

union X ⊔ Dn, such that, for each point x ∈ X , f−1(x) and x are all identified to a

point. It is denoted by X ∪f D
n.

Definition I.32. A (finite) cell complex is a space X decomposed as

K0 ⊆ K1 ⊆ . . . ⊆ Kn = X

where

(i) K0 is a finite set of points, and

(ii) Ki is obtained from Ki−1 by attaching a finite collection of i-cells.
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Theorem V.29. Let K be a connected cell complex, and let ℓi:S
1 → K1 be the

attaching maps of its 2-cells, where 1 ≤ i ≤ n. Let b be a basepoint in K0. Let

[ℓi] be the conjugacy class of the loop ℓi in π1(K
1, b). Then π1(K, b) is isomorphic to

π1(K
1, b)/〈〈[ℓ1], . . . , [ℓn]〉〉.

Remark V.30. The loops ℓi are not necessarily based at the basepoint b, and hence do

not give well-defined elements of π1(K
1, b). However, they do give well-defined conjugacy

classes, by Remark III.17. Let wi be a path from b to ℓi(1), and let ℓ′i be wi.ℓi.w
−1
i .

Then ℓ′i is a loop based at b, and 〈〈ℓ′1, . . . , ℓ
′
n〉〉 = 〈〈[ℓ1], . . . , [ℓn]〉〉. Since π1(K

1, b) is free,

by Theorem IV.11, this therefore gives a presentation for π1(K, b).

Example V.31. The cell decomposition for the torus given in Example I.35 gives the

presentation 〈a, b | aba−1b−1〉 for its fundamental group. This is clearly isomorphic to

Z×Z. An alternative method for constructing this cell structure of the torus arises from

its description as a square with side identifications. Its four corners are all identified to

a single point, giving a 0-cell. The four edges are identified to two 1-cells. The square

itself is a 2-cell. One can also see easily why the loops ab and ba are homotopic relative

to ∂I .

a

b

a

b

ba

ab

Figure V.32.

Proof of Theorem V.29. We will show how the fundamental group behaves when an

n-cell is attached to a space, when n ≥ 2. Therefore, let X be a path-connected space,

and let f :Sn−1 → X be the attaching map of an n-cell. Let Y = X ∪f D
n. Decompose

Y into the open sets

K1 = {z ∈ Dn : |z| < 2
3
}

K2 = {z ∈ Dn : |z| > 1
3} ⊔X/ ∼ .
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Figure V.33.

Then K1 is homeomorphic to an open n-ball, and K1 ∩K2 is homeomorphic to Sn−1×

(1
3
, 2

3
), which is homotopy equivalent to Sn−1. Finally, K2 is also path-connected, and

it is homotopy equivalent to X . This is realised by the inclusion map i:X → K2 and

a retraction map r:K2 → X . This is defined to be the identity map on X , and on

{z ∈ Dn : |z| > 1
3
}, it is the map

{z ∈ Dn : |z| > 1
3
} → Sn−1 f

−→ X,

where the first map is radial projection from the origin. It is clear that ri is the identity

onX and that ir is homotopic to the identity onK2. Now apply the Seifert - van Kampen

theorem (V.25). When n > 2, π1(K1∩K2) and π1(K1) are both trivial, and so attaching

an n-cell has no effect on the fundamental group. When n = 2, π1(K1 ∩K2) ∼= Z, and

π1(K1) is trivial, and so attaching a 2-cell has the effect of adding a relation to π1(X)

that represents the (conjugacy class of) the loop [f ].

Corollary V.34. Any finitely presented group can be realised as the fundamental group

of a finite connected cell complex. Moreover, this may be given a triangulation.

Proof. Let 〈x1, . . . , xm | r1, . . . , rn〉 be a finite presentation of a group. Let K0 be a

single vertex. Let K1 be a bouquet of m circles. This may be given a triangulation

in which each circle consists of three 1-simplices. Then π1(K
1) is a free group on m

generators, where each generator consists of a loop that goes round one of the circles.

Now attach 2-cells along the words rj . The resulting space has the required fundamental

group, by Theorem V.29. Giving the 2-cells a simplicial structure as shown in Figure

V.35 (in the case where the attaching word has length 2 in the generators), we give the

whole space a triangulation.
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Figure V.35.

Corollary V.36. The following are equivalent for a group G:

(i) G is finitely presented;

(ii) G is isomorphic to the fundamental group of a finite connected simplicial complex;

(iii) G is isomorphic to the fundamental group of a finite connected cell complex.

Proof. (i) ⇒ (ii): This is V.34.

(ii) ⇒ (iii): This is because any finite simplicial complex is a finite cell complex (I.34).

(iii) ⇒ (i): This follows from Remark V.30.

Chapter VI: Covering spaces

VI.1: Definitions and basic properties

In this chapter, we will introduce an important topological construction: a covering

space of a given space X . Covering spaces relate to the subgroups of the fundamental

group of X . They also give an alternative method for computing fundamental groups.

In addition, they relate to Cayley graphs, which were introduced in Section I.1 as a way

to visualise abstract finitely generated groups.

Definition VI.1. A (continuous) map p: X̃ → X is a covering map if X and X̃ are

non-empty path-connected spaces and, given any x ∈ X , there exists some open set Ux

containing x, such that p−1Ux is a disjoint union of open sets Vj (where j lies in some

indexing set J) and p|Vj: Vj → Ux is a homeomorphism for all j ∈ J. The open sets Ux

are known as elementary open sets. We say that X̃ is a covering space of X . Sometimes

X̃ and X are given basepoints b̃ and b such that p(b̃) = b. Then p: (X̃, b̃) → (X, b) is a

based covering map.
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V

V

V1

2

3
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Figure VI.2.

Remark VI.3. The indexing set J a priori depends on x. However, we will see below

that the cardinality of J is independent of x.

Example VI.4. The following is a covering map

R
p
−→ S1

t 7−→ e2πit.

Given x in S1, take Ux to be the open semi-circle with x as its midpoint. For example,

p−1U1 =
⋃

n∈Z
(n− 1

4
, n+ 1

4
).

R

S1

Figure VI.5.

Example VI.6. For any non-zero integer n, the map

S1 −→ S1

z 7−→ zn.

is a covering.
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Example VI.7. Let RPn be the set of 1-dimensional subspaces of R
n+1. Define

p:Sn → RPn to be the map that sends a point y ∈ Sn ⊂ R
n+1 to the 1-dimensional

subspace through y. For each point x in RPn, p−1(x) is two points. We give RPn the

quotient topology from the map p. Then, provided Ux is a sufficiently small open set

around x ∈ RPn, p−1(Ux) is two copies of Ux, and the restriction of p to each of these

copies is a homeomorphism onto Ux. Hence, p is a covering map.

xp   ( )-1

U

S

0

p   ( )-1

n

x

Figure VI.8.

Proposition VI.9. Let p: X̃ → X be a covering map. Then

1. p sends open sets to open sets;

2. for x1 and x2 in X , p−1(x1) and p−1(x2) have the same cardinality;

3. p is surjective;

4. p is a quotient map.

Proof. (1) Let U be an open set in X̃. For each y ∈ U , we will find an open set

containing p(y) contained in p(U). This will show that p(U) is open, as required. Let

Vj be the copy of Up(y) in p−1Up(y) that contains y. Since the restriction of p to Vj is a

homeomorphism, p(Vj ∩ U) is open in X . This is an open set containing p(y) lying in

p(U).

(2) The cardinality of p−1(x) is clearly locally constant on X . Since X is connected,

it is therefore globally constant.

(3) Since X̃ is non-empty, p−1(x) is non-empty for some x ∈ X . By (2), p−1(x) is

therefore non-empty for each x ∈ X , and so p is surjective.

(4) A surjective open mapping is a quotient map.
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Definition VI.10. The degree of a covering map p: X̃ → X is the cardinality of p−1(x),

for any x ∈ X .

Definition VI.11. If p: X̃ → X is a covering map and f : Y → X is a map, then a lift

of f is a map f̃ : Y → X̃ such that pf̃ = f :

X̃

f̃ր ↓ p

Y
f
→ X

Example VI.12. Given the covering map p: R → S1 of VI.4, the map f : I → S1

sending t 7→ e2πit lifts to f̃ : I → R, where f̃(t) = t. However, the identity map S1 → S1

does not lift. One way to see this is to suppose that a lift f̃ :S1 → R does exist. Then

f̃(1) = n, for some n ∈ Z. From the commutative diagram in VI.11, we obtain the

following:
π1(R, n)

ր f̃∗ ↓ p∗

π1(S
1, 1)

id
→ π1(S

1, 1)

However, this is clearly impossible, since π1(R) is trivial, whereas π1(S
1) is non-trivial.

Theorem VI.13. (Uniqueness of lifts) Let p: X̃ → X be a covering map, and let

f : Y → X be a map, where Y is connected. Suppose that g and h are lifts of f and that

g(y0) = h(y0) for some y0 ∈ Y . Then g = h.

Proof. Let C = {y ∈ Y : g(y) = h(y)}. By hypothesis, y0 ∈ C, and so C is non-empty.

We will show that C is closed, open and hence all of Y , since Y is connected.

Since p is a covering map, there is an elementary open set Uf(y) containing f(y), for

any y ∈ Y , and open sets V1 and V2 in X̃ such that p|V1 and p|V2 are homeomorphisms

from V1 and V2 to Uf(y), with g(y) ∈ V1 and h(y) ∈ V2.

We now show that C is both closed and open.

Closed. Let y be a point in Y − C. Then V1 ∩ V2 = ∅. Therefore, g−1(V1) ∩ h
−1(V2) is

contained in Y −C. This is an open set containing y. Hence Y − C is open.

Open. Suppose that y is in C. Then V1 = V2. Consider g−1(V1)∩ h
−1(V2). On this set,

p ◦ g = p ◦ h. Since p|V1 is an injection, g = h on this set. This is therefore in C. It is

an open set containing y, lying in C. So, C is open.

Theorem VI.14. (Path lifting) Let p: X̃ → X be a covering map. Let α: I → X be a

path with α(0) = x. Given x̃ ∈ p−1(x), α has a lift α̃: I → X̃ such that α̃(0) = x̃.
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Remark VI.15. By Theorem VI.13, α̃ is the unique lift of α such that α̃(0) = x̃.

Proof of Theorem VI.14. Let A be the set

A = {t ∈ I : there exists a lift of α|[0, t] starting at x̃}.

Then A is non-empty, since it contains 0. Let T be the supremum of A. Pick an

elementary open set Uα(T ) around α(T ). Pick an ǫ > 0 such that (T − ǫ, T + ǫ) ∩ [0, 1]

is mapped into Uα(T ) by α. Let t = max{0, T − ǫ
2
}. Let α̃: [0, t]→ X̃ be a lift of α|[0, t]

starting at x̃. Let Vj be the copy of Uα(T ) in p−1Uα(T ) that contains α̃(t). Then the

homeomorphism Uα(T )
∼= Vj specifies a way of extending α̃ to a lift of α|([0, T+ǫ)∩[0, 1]).

This contradicts the definition of T unless T = 1. Moreover it implies that A is all of I .

But α̃ has then been defined on all of [0, 1] as required.

Theorem VI.16. (Homotopy lifting) Let p: X̃ → X be a covering map. Let Y be a

space, and let H : Y × I → X be a map. If h is a lift of H |Y ×{0}, then H has a unique

lift H̃ : Y × I → X̃ such that H̃ |Y × {0} = h.

Remark VI.17. When Y = I , such a map h always exists, by Theorem VI.14.

Proof. Fix y ∈ Y . Then t 7→ H(y, t) is path in X starting at H(y, 0). So, by Theorems

VI.14 and VI.13, there is a unique lift to X̃, starting at h(y). Define this to be H̃(y, t).

We must show that H̃ is continuous. We will show this to be the case at (y, t) ∈ Y ×I for

every t ∈ I . Since H is continuous, (y, t) has a product neighbourhood Nt× (at, bt) such

that H(Nt × (at, bt)) ⊆ UH(y,t). The intervals (at, bt) cover I , and so by the Lebesgue

Covering Theorem (II.32), there is some positive integer n such that [i/n, (i+ 1)/n] lies

in one of these intervals (ati
, bti

), for each integer i between 0 and n− 1. Set N to be
⋂n−1

i=0 Nti
. We will show, by induction on i, that H̃ is continuous on N × [i/n, (i+1)/n],

although we will feel free to shrink N to a smaller neighbourhood of y, if necessary. Now,

for each i, H(N× [i/n, (i+1)/n]) lies inside an elementary open neighbourhood UH(y,ti).

Hence, there is an open set Vj (depending on i) in X̃ that projects homeomorphically

onto UH(y,ti) and that contains H̃(y, i/n). Now, by induction, H̃ |N×{i/n} is continuous.

Hence, by replacing N by a smaller neighbourhood of y if necessary, we may assume

that H̃ |N ×{i/n} lies in Vj. Hence, H̃ |N × [i/n, (i+ 1)/n] is the composition of H and

the homeomorphism UH(y,ti)
∼= Vj . In particular, it is continuous on N× [i/n, (i+1)/n].

So, H̃ is continuous on N × I , and is, in particular, continuous at (y, t) as required.

Corollary VI.18. If p: (X̃, b̃) → (X, b) is a based covering map, then p∗: π1(X̃, b̃) →

π1(X, b) is an injection.

Proof. If ℓ is a loop in X̃ based at b̃, then p ◦ ℓ is a loop in X based at b. Suppose that

p∗[ℓ] = [p ◦ ℓ] is trivial in π1(X, b), and let H : I × I → X be the homotopy relative to
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∂I between p ◦ ℓ and cb. Now, ℓ is a lift of H |I ×{0}. So, by Theorem VI.16, there is a

lift H̃ : I × I → X̃ of H such that H̃ |I ×{0} = ℓ. Note that H̃ |∂I × I and H̃ |I ×{1} are

both constant maps, since the lift of a constant map is constant. They must both map

to b̃, since this is where ℓ sends ∂I . Hence, H̃ is a homotopy relative to ∂I between ℓ

and cb̃. Thus, [ℓ] is trivial in π1(X̃, b̃) and so p∗ is an injection.

VI.2: The inverse image of the basepoint

Fix a based covering map p: (X̃, b̃)→ (X, b).

If two loops ℓ and ℓ′ based at b are homotopic relative to ∂I , they can be lifted to

paths ℓ̃ and ℓ̃′ starting at b̃. By Theorem VI.16, ℓ̃ and ℓ̃′ are homotopic relative to ∂I .

In particular, ℓ̃(1) = ℓ̃′(1). So, we can define a function

π1(X, b)
λ
−→ p−1(b)

[ℓ] 7→ ℓ̃(1).

Proposition VI.19. For elements g1 and g2 of π1(X, b), λ(g1) = λ(g2) if and only if g1

and g2 belong to the same right coset of p∗π1(X̃, b̃). This induces a bijection between

right cosets of p∗π1(X̃, b̃) and points of p−1(b).

Proof. Let ℓ1 and ℓ2 be loops based at b such that [ℓi] = gi. Suppose that ℓ̃1(1) =

ℓ̃2(1). Then ℓ̃1.ℓ̃
−1
2 is a loop based at b̃. The map p sends this to ℓ1.ℓ

−1
2 , and so

[ℓ1][ℓ2]
−1 = p∗[ℓ̃1.ℓ̃

−1
2 ] ∈ p∗π1(X̃, b̃). Therefore, g1 and g2 belong to the same right coset

of p∗π1(X̃, b̃).

Conversely, suppose that [ℓ1] and [ℓ2] belong to the same right coset of p∗π1(X̃, b̃)

and so [ℓ1][ℓ2]
−1 ∈ p∗π1(X̃, b̃). Then ℓ1.ℓ

−1
2 is homotopic relative to ∂I to p ◦ ℓ, for some

loop ℓ in X̃ based at b̃. This homotopy lifts to a homotopy relative to ∂I between ℓ and

a lift of ℓ1.ℓ
−1
2 . In particular, ℓ1.ℓ

−1
2 lifts to a loop based at b̃. Now, the first half of this

loop is clearly ℓ̃1. The second half is ℓ̃−1
2 because its reverse is the lift of ℓ̃2 starting at

b̃. Hence, ℓ̃1(1) = ℓ̃2(1).

So, λ induces an injection from right cosets of p∗π1(X̃, b̃) to p−1(b). We only need

to show that λ is surjective. Since X̃ is path-connected, there is a path u from b̃ to any

other point x of p−1(b). Then p ◦ u is a loop in X that lifts to u. So, λ([p ◦ u]) = x.

Corollary VI.20. A loop ℓ in X based at b lifts to a loop based at b̃ if and only if

[ℓ] ∈ p∗π1(X̃, b̃).
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Proof. By definition, ℓ lifts to a loop based at b̃ if and only if λ[ℓ] = b̃. But b̃ corresponds

to the identity coset of p∗π1(X̃, b̃). So, this is equivalent to [ℓ] ∈ p∗π1(X̃, b̃).

When p∗π1(X̃, b̃) is a normal subgroup of π1(X, b), the right cosets of p∗π1(X̃, b̃)

form a group, namely the quotient group π1(X, b)/p∗π1(X̃, b̃). By Proposition VI.19,

p−1(b) is in one-one correspondence with this group. Thus, one can ‘see’ the group

π1(X, b)/p∗π1(X̃, b̃) in the points p−1(b). The following procedure allows us to read off

the group structure from these points.

Procedure VI.21. Suppose that p∗π1(X̃, b̃) is a normal subgroup of π1(X, b). Let b1

and b2 be points in p−1(b). These correspond to elements of π1(X, b)/p∗π1(X̃, b̃). We

wish to find the point p−1(b) (called b1.b2) corresponding to the product of these two

elements. Let ℓ̃1 and ℓ̃2 be paths from b̃ to b1 and b2 respectively. Then ℓ1 = p ◦ ℓ̃1 and

ℓ2 = p ◦ ℓ̃2 are loops in X based at b such that λ([ℓi]) = bi. To compute λ([ℓ1].[ℓ2]), we

lift ℓ1.ℓ2 to a path based at b, and then b1.b2 is its endpoint. Alternatively, we can note

that the second half of this path is the lift to ℓ2 that starts at b1.

Definition VI.22. When X̃ is simply-connected, a based covering map p: (X̃, b̃) →

(X, b) is known as the universal cover of X .

In this case, p−1(b) is in one-one correspondence with π1(X, b). This is a useful

method for computing the fundamental group of spaces. For example, we can compute

the fundamental group of the circle, without using the method of Chapter III, which

relied on the Simplicial Approximation Theorem.

Theorem VI.23. The fundamental group of the circle is isomorphic to Z.

Proof. We know that
R

p
−→ S1

t 7→ e2πit

is a covering map, and that R is simply-connected. So, π1(S
1, 1) is in one-one correspon-

dence with p−1(1) = Z. We must verify that the group structure on π1(S
1, 1) coincides

with the additive group structure on Z. Let n1 and n2 be points in Z. We wish to

compute the composition n1.n2, using Procedure VI.21. Let ℓ̃2 be a path from 0 to n2,

and let ℓ2 = p◦ ℓ̃2. Then the lift of ℓ2 that starts at n1 ends at n1 +n2. Hence, λ induces

an isomorphism π1(S
1, 1)→ Z.

Example VI.24. The torus S1 × S1 has universal cover

R× R
p
−→ S1 × S1

(x, y) 7→ (e2πix, e2πiy).
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Set (1, 1) to be the basepoint b in S1 × S1, and let (0, 0) be the basepoint in R × R.

Note that p−1(b) is Z × Z ⊆ R × R. Hence, π1(S
1 × S1) is in one-one correspondence

with Z×Z. It is trivial to check, as in VI.23, that the additive group structure on Z×Z

is the same as that on π1(S
1 × S1). This computation of the fundamental group of the

torus is an alternative to the method of V.31.

x xx

x x x

x x x

xxx

y y y y

x

x

y
p

yyyyy

y y y y

Figure VI.25.

Theorem VI.26. The fundamental group of RPn is Z/2Z if n > 1, and is Z if n = 1.

Proof. It is clear that RP 1 is homeomorphic to S1, since it is obtained by identifying

the two endpoints of the upper hemisphere of S1. Hence, π1(RP
1) ∼= Z. So, suppose

that n > 1. By Example VI.7, there is a covering map p:Sn → RPn, which has

degree 2. Since Sn is simply-connected, the inverse image of the basepoint is in one-one

correspondence with π1(RP
n). Hence, π1(RP

n) is the unique group of order 2, namely

Z/2Z.

VI.3: Uniqueness of coverings

Definition VI.27. A space Y is locally path-connected if, for each point y of Y and

each neighbourhood V of y, there is an open neighbourhood of y contained in V that is

path-connected.

Remark VI.28. Any simplicial complex is locally path-connected.

Theorem VI.29. (Existence of lifts) Let p: (X̃, b̃) → (X, b) be a based covering map.

Let Y be a path-connected, locally path-connected space and let f : (Y, y0)→ (X, b) be

some map. Then f has a lift f̃ : (Y, y0)→ (X̃, b̃) if and only if f∗π1(Y, y0) ⊆ p∗π1(X̃, b̃).
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Proof. The necessity of the condition f∗π1(Y, y0) ⊆ p∗π1(X̃, b̃) follows immediately from

the commutativity of the diagram in VI.11.

Suppose now that this condition holds. We shall construct the required lift f̃ . Given

a point y ∈ Y , let α be a path from y0 to y. Then β = f ◦ α is a path in X . Lift this

to a path β̃ in X̃ starting at b̃. Define f̃(y) to be β̃(1). Then, pf̃ (y) = pβ̃(1) = β(1) =

fα(1) = f(y), and so the commutativity of VI.11 is established.

However, we must show that f̃ is independent of the choice of path α, and hence

well-defined. Let α′ be another path from y0 to y, and let β′ and β̃′ be the corresponding

paths in X and X̃. Then α′.α−1 is a loop based at y0. So, (f ◦ α′).(f ◦ α−1) is a loop

based at b. Since [(f ◦ α′).(f ◦ α−1)] = f∗[α
′.α−1] ∈ Im(f∗) ⊆ Im(p∗), (f ◦ α′).(f ◦ α−1)

lifts to a loop in X̃ based at b̃, by Corollary VI.20. This is therefore β̃′.β̃−1. In particular,

β̃(1) = β̃′(1), and so f̃(y) is well-defined.

We now show that f̃ is continuous. Let y be a point of Y , and let α be a path

from y0 to y. Let Uf(y) be an elementary open neighbourhood of f(y), and let Vj be the

homeomorphic copy of Uf(y) in X̃ containing f̃(y). Since Y is locally path-connected,

there is a path-connected open neighbourhood W of y that lies in f−1Uf(y). Hence, for

any point y′ in W , there is a path α′ from y to y′ that lies in W . We may use α.α′ to

define f̃(y′). Since f(W ) is contained in an elementary open set, the lift of fα′ is simply

fα′ composed with the homeomorphism Uf(y)
∼= Vj . Thus, f̃ |W is f |W composed with

the homeomorphism Uf(y)
∼= Vj . It follows that f̃ is continuous at y.

Definition VI.30. Two based covering spaces p: (X̃, b̃) → (X, b) and p′: (X̃ ′, b̃′) →

(X, b) are equivalent if there is a homeomorphism f : (X̃, b̃)→ (X̃ ′, b̃′) such that p = p′f :

(X̃, b̃)
f
−→ (X̃ ′, b̃′)

ց p ւ p′

(X, b)

Theorem VI.31. (Uniqueness of covering spaces) Let X be a path-connected, locally

path-connected space, and let b be a basepoint in X . Then, for any subgroup H of

π1(X, b), there is at most one based covering space p: (X̃, b̃)→ (X, b), up to equivalence,

such that p∗π1(X̃, b̃) = H .

Proof. Let p′: (X̃ ′, b̃′) → (X, b) be another covering such that p′∗π1(X̃
′, b̃′) = H . Then,

by Theorem VI.29, p′ admits a lift p̃′: (X̃ ′, b̃′) → (X̃, b̃). Similarly, p admits a lift
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p̃: (X̃, b̃)→ (X̃ ′, b̃′). The following diagram therefore commutes:

(X̃ ′, b̃′)
p̃′

−→ (X̃, b̃)
p̃
−→ (X̃ ′, b̃′)

ց p′ ↓ p ւ p′

(X, b)

Now, the composition of the mappings on the top line is a lift of p′. But idX̃′ is also.

Hence, p̃p̃′ = idX̃′ , by VI.13. Similarly, p̃′p̃ = idX̃ . Therefore, p̃′ is a homeomorphism,

and so the coverings are equivalent.

VI.4: Construction of covering spaces

Theorem VI.32. Let K be a path-connected simplicial complex, and let b be a vertex

of K. Then, for any subgroup H of π1(K, b), there is a based covering p: (K̃, b̃)→ (K, b)

such that p∗π1(K̃, b̃) = H . Moreover, K̃ is a simplicial complex and p is a simplicial

map.

The idea behind this construction has its roots in Section VI.2. There, we showed

that p−1(b) is in one-one correspondence with the right cosets of p∗π1(K̃, b̃). Thus,

a point of p−1(b) corresponds to an equivalence class of loops based at b, where two

loops ℓ and ℓ′ are ‘equivalent’ if [ℓ][ℓ′]−1 ∈ p∗π1(K̃, b̃). So, if we only know the subgroup

p∗π1(K̃, b̃), but have no further information about p or K̃, we can still reconstruct p−1(b).

How do we reconstruct the whole of K̃? The answer is that, instead of considering loops

based at b, we use paths that start at b but do not necessarily end at b. The precise

construction is as follows.

Proof of VI.32. We first define the vertices V (K̃) of K̃. Each such vertex will be an

equivalence class of edge paths. We will consider only edge paths that start at b, but

not necessarily ending at b. We call a path with these properties based at b. Two such

paths α and β are H-equivalent if there is some loop ℓ based at b with [ℓ] ∈ H such that

α ∼ ℓ.β, where ∼ is as defined in III.23 using elementary contractions and expansions.

It is straightforward to check that this is an equivalence relation. Then V (K̃) is defined

to be the set of H-equivalence classes.

We now define the simplices of K̃. We declare that vertices in V (K̃) span a simplex

if and only if they have representative edge paths α.(v0, v0), α.(v0, v1), . . . , α.(v0, vn),

where α is some edge path based at b and (v0, . . . , vn) are the vertices of a simplex of

K.

Define b̃ to be the equivalence class of the path (b) of length zero.
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Claim. K̃ is an abstract simplicial complex.

We must check the two conditions in the definition (I.17). Firstly, if v ∈ V (K̃), then

v is represented by an edge path α, ending at v0, say. This is equivalent to α.(v0, v0),

and so (v) is a simplex of K̃.

Suppose that [α.(v0, v0)], [α.(v0, v1)], . . . , [α.(v0, vn)] span a simplex of K̃, and let

[α.(v0, vi0)], . . . , [α.(v0, vim
)] be a non-empty subset of these vertices. Then, changing the

representative paths of these vertices, we may write them as [α.(v0, vi0).(vi0, vi0)], . . . ,

[α.(v0, vi0).(vi0, vim
)], which clearly span a simplex of K̃, as required. This proves the

claim.

Claim. K̃ is path-connected.

It suffices to show that any vertex of K̃ is connected to b̃ by an edge path in K̃. Let

[α] be a vertex of K̃, where α = (b, b1, . . . , bn) is an edge path. Then [(b)], [(b, b1)], . . . ,

[(b, b1, . . . , bn)] is an edge path in K̃ joining b̃ to [α]. This proves the claim.

Define p: V (K̃) → V (K) by sending an H-equivalence class of edge paths to their

terminal point. This is well-defined, since H-equivalent edge paths have the same ter-

minal points.

Claim. p is a simplicial map, and the restriction of p to any simplex of K̃ is injective.

If (w0, . . .wn) span a simplex of K̃, then, by definition, they have representa-

tives α.(v0, v0), α.(v0, v1), . . . , α.(v0, vn), where (v0, . . . , vn) span a simplex of K. Then

p(wi) = vi, for each i, and so (p(w0), . . . , p(wn)) span a simplex of K. Note that this

has not decreased the dimension of the simplex, as required.

We need to show that p is a covering map, and to do this, we must specify, for each

x ∈ K, an elementary open set Ux. We set this to be stK(x). Let cl(stK(x)) denote the

closure of the star of x. Note that this is a subcomplex of K.

Claim. For each vertex w ∈ K̃, the restriction of p to cl(stK̃(w)) is a simplicial isomor-

phism onto cl(stK(p(w))). Hence, the restriction of p to stK̃(w) is a homeomorphism

onto stK(p(w)).

Let v = p(w). We first check that the restriction of p to the vertices of cl(stK̃(w))

is a bijection onto the vertices of cl(stK(v)).

Injection. Let w1 and w2 be distinct vertices of cl(stK̃(w)). Then w and wi span

a simplex, and so they have representative edge paths αi.(v, v) and αi.(v, vi), where

p(wi) = vi and (v, vi) span a simplex of K. Since α1.(v, v) and α2.(v, v) both represent

66



the same vertex w, they must be H-equivalent, and hence so are α1 and α2. Therefore,

w2 is represented by α1.(v, v2). Since we are assuming that w1 and w2 are distinct,

we must have v1 6= v2. In other words, p(w1) 6= p(w2), which proves that this is an

injection.

Surjection. Let v1 be a vertex in cl(stK(v)). Then, v and v1 span a simplex in K. Let

α be an edge path that represents w. Then α.(v, v) and α.(v, v1) span a simplex of K̃.

Hence, α.(v, v1) is a vertex in cl(stK̃(w)) that maps to v1.

Suppose now that (v0, . . . , vn) span a simplex in cl(stK(v)). Let wi = cl(stK̃(w)))∩

p−1(vi). We must show that (w0, . . . , wn) span a simplex of K̃. Suppose first that v ∈

{v0, . . . , vn}. Then we may set v0 = v, by relabelling the vertices. Now, w = [α] for some

edge path α based at b. Then [α.(v0, v0)], . . . , [α.(v0, vn)], which equals (w0, . . . , wn),

spans the required simplex of K̃. When v 6∈ {v0, . . . , vn}, then (v, v0, . . . , vn) span a sim-

plex of K, and so (w, w0, . . . , wn) span a simplex of K̃, and therefore so do (w0, . . . , wn).

This proves the claim.

Claim. For each point y ∈ K̃, p|stK̃(y) is a homeomorphism onto stK(p(y)).

The previous claim established this when y is a vertex. The point y lies in the

interior of a simplex σ. Let w be a vertex of σ. Then stK̃(w) contains stK̃(y). Since

the restriction of p to cl(stK̃(w)) is a simplicial isomorphism onto its image, it preserves

stars. Therefore, the p|stK̃(y) is a homeomorphism onto stK̃(p(y)), as required.

We define, for a point x ∈ X , the indexing set J in the definition of a covering

map to be p−1(x). For y ∈ J = p−1(x), we set Vy to be stK̃(y). We have shown that

the restriction of p to any Vy is a homeomorphism onto Ux. Thus, to verify that p is a

covering map, all we now need to do is prove the following claim.

Claim. Let y and y′ be distinct points of p−1(x). Then Vy ∩ Vy′ = ∅.

Suppose that Vy and Vy′ intersect in a point z. Now, by the definition of stK̃(y),

there is a simplex σ that contains y, which also contains z in its interior. Hence, y lies

in cl(Vz). The same holds for y′. But the restriction of p to cl(Vz) is a homeomorphism

onto its image. In particular, it is injective. It is therefore impossible for the distinct

points y and y′ in cl(Vz) to have the same image x under p.

Our final claim, to complete the proof of the theorem, is the following.

Claim. p∗π1(K̃, b̃) = H .
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By Corollary VI.20, we must show that a loop ℓ based at b lifts to a loop if and only

if [ℓ] ∈ H . It suffices to consider the case where ℓ is an edge loop (b, b1, . . . , bn−1, b). The

lift of this is an edge path [(b)], [(b, b1)], . . . , [(b, b1, . . . , bn−1, b)]. This is a loop if and

only if the final vertex [ℓ] is equal to [(b)]. This occurs if and only if ℓ is H-equivalent

to (b), which means that [ℓ] is in H .

Theorems VI.31 and VI.32 and Remark VI.28 give the following classification of

covering spaces.

Theorem VI.33. Let K be a path-connected simplicial complex, and let b be a vertex

of K. Then, there is precisely one based covering space, up to equivalence, for each

subgroup of π1(K, b).

The following theorem is a very striking and beautiful consequence. But more

striking still is the fact that, although its statement is purely algebraic, its proof is

topological. There do exist algebraic proofs, but none are as elegant as this.

Theorem VI.34. (Nielsen-Schreier) Any subgroup of a finitely generated free group is

free.

Proof. Let F be the free group on n generators. Let X be the wedge of n circles, and

let b be the central vertex. Give X some triangulation using only 0- and 1-dimensional

simplices. Then π1(X, b) ∼= F , by Corollary V.28. Let H be any subgroup of F . Then,

by Theorem VI.32, there is a based covering p: (X̃, b̃)→ (X, b) such that p∗π1(X̃, b̃) = H .

By Corollary VI.18, p∗ is injective and so π1(X̃, b̃) ∼= H . Theorem VI.32 states that X̃

is a simplicial complex, and that p is a simplicial map. Since p is locally a simplicial

isomorphism, X̃ can contain only 0- and 1-dimensional simplices. Therefore, X̃ is a

graph, and so by Theorem IV.11, its fundamental group is free.

By examining the above proof and using Remark IV.19, we can obtain an explicit

free generating set for the subgroup, as the following example demonstrates.

Example VI.35. Let F be the free group on two generators x and y. Let H be the

kernel of the homomorphism F → (Z/2Z) × (Z/2Z) sending x to (1, 0) and y to (0, 1).

Let X be the wedge of two circles with central vertex b. Then π1(X, b) is a free group on

two generators x and y, represented by loops going round one of the circles once. The

based covering space p: (X̃, b̃) → (X, b) such that p∗π1(X̃, b̃) = H is shown in Figure

VI.36. Note that, in the figure, the dotted edges join up with each other.
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Figure VI.36.

To see that the equality p∗π1(X̃, b̃) = H does indeed hold, note that a loop [ℓ] based

at b lifts to a loop in X̃ if and only if it runs over edges labelled x an even number of

times and edges labelled y an even number of times, if and only if [ℓ] ∈ H . A maximal

tree T in X̃ is shown in bold. The proof of Theorem IV.11 gives that there is a free

generator of π1(X̃, b̃) for each (oriented) edge e of E(X̃) − E(T ). It is represented by

the loop that starts at b̃, runs along T as far as ι(e), then runs over e, and then returns

to b by a path in T . For example, corresponding to oriented edge e shown in the figure,

there is the loop xyx−1y−1. Thus, a free generating set for H is as follows:

xyx−1y−1, x2, y2, yxyx−1, yx2y−1.

Another interesting application of the covering space theory we have developed is

the following algebraic result. Again, its proof is purely topological.

Theorem VI.37. Let G be a finitely presented group, and let H be a finite index

subgroup. Then, H is finitely presented.

Proof. Let K be a finite simplicial complex, with basepoint b, such that π1(K, b) ∼= G,

which exists by Corollary V.34. Let p: (K̃, b̃) → (K, b) be the based covering such that

p∗π1(K̃, b̃) = H . Then p−1(b) is in one-one correspondence with the right cosets of H

in G. Since we are assuming H has finite index, p−1(b) is finite, and hence the degree

of p is finite. Therefore, K̃ is also a finite simplicial complex. By Corollary V.36, its

fundamental group is finitely presented.

Example VI.38. Let G be the group (Z/2Z) ∗Z, which has presentation 〈x, y|x2〉. Let

φ:G→ Z/2Z be the homomorphism that sends x to 0 and y to 1, and letH be its kernel.

We realize G as π1(K, b) for the 2-complex K as in V.34, and we let p: (K̃, b̃)→ (K, b)

be the based covering space corresponding to H . The 0-cells and 1-cells of K̃ are shown

in Figure VI.39. A maximal tree is the single edge shown in bold, and there is one free

generator of the fundamental group of this graph for each of the edges c, d and e. The
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space K̃ has two 2-cells, one running over c twice, and one running over d twice. So, a

presentation for H is 〈c, d, e|c2, d2〉. Thus, H is isomorphic to (Z/2Z) ∗ (Z/2Z) ∗Z. Note

that the generators c, d and e are respectively x, yxy−1 and y2 in G.

x

y

x

y
b

c d
e

~

Figure VI.39.

VI.5: The universal cover and Cayley graphs

A corollary of Theorem VI.32 is that a connected simplicial complex K always has

a universal cover p: (K̃, b̃) → (K, b). By VI.19, the points in p−1(b) are in one-one

correspondence with the elements of π1(K, b). Thus, it is possible to ‘see’ this group

in K̃. This is particularly useful when G is a finitely presented group, and K is the

2-complex constructed in V.34 with π1(K, b)∼= G. In this section, we will investigate K̃

in this case.

Recall that G is given as a finite presentation 〈x1, . . . , xm | r1, . . . , rn〉, and thatK is

a 2-complex with a single 0-cell b, a 1-cell for each generator and a 2-cell for each relation.

Assign each 1-cell of K an orientation, so that a loop running forwards along this edge

represents one of the generators x1, . . . , xm. This cell complex has a triangulation and so

has a universal cover p: (K̃, b̃)→ (K, b). The cell structure on K induces a cell structure

on K̃, as follows. The inverse image of b is a discrete collection of points, which we take

to be 0-cells of K̃. Each 1-cell of K has an induced map D1 → K. One may lift this

to D1 → K̃, starting at any point in p−1(b). The union of these lifts we take to be

the 1-cells of K̃. Each 1-cell of K̃ is labelled by one of the generators x1, . . . , xm and

inherits an orientation from the corresponding 1-cell of K. Let Γ be the 1-skeleton of

K̃. We will show in Proposition VI.40 that this is, in fact, the Cayley graph of G with

respect to the generators x1, . . . , xm. Each 2-cell of K has interior homeomorphic to an

open disc. The inverse image of this in K̃ is a union of open discs. These therefore yield

2-cells attached to Γ. Hence, K̃ inherits the structure of a cell complex. This is known

as the Cayley 2-complex associated with the presentation 〈x1, . . . , xm | r1, . . . , rn〉 of G.

Proposition VI.40. The 1-skeleton of K̃ is the Cayley graph of G with respect to the

generators {x1, . . . , xm}.
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Proof. Recall from I.5 that this is defined as follows. It has a vertex for each element

of G. For each element g ∈ G and each generator xi, there is an edge running from

the vertex labelled g to the vertex labelled gxi. We need to check that Γ does indeed

have this form. Let b be the 0-cell of K. By VI.19, the vertices p−1(b) are in one-one

correspondence with the group G. Now, there are edges pointing of out b with labels

x1, . . . , xm, and there are also edges pointing into b with these labels. Since p is a local

homeomorphism, we have the same picture near each point v of p−1(b). Let v correspond

to the group element g. We need to verify that the edge labelled xi starting at v ends

at the edge labelled gxi. Procedure VI.21 states that, if one lifts the loop xi in K to a

path, starting at v, the endpoint of this path is the vertex labelled gxi. Thus, the edge

labelled xi starting at g ends at gxi, as required.

Example VI.41. Let 〈x, y|xyx−1y−1〉 be a presentation of Z × Z. The resulting 2-

complex K with fundamental group Z × Z is the torus. The Cayley 2-complex has

1-skeleton shown in Figure VI.42. The 2-cells of this complex fill in each of the squares,

and so the Cayley 2-complex is a copy of the plane R× R.

x xx

x x x

x x x

xxx

y y y y

yyyy

y y y y

Figure VI.42.

Example VI.43. Start with the standard presentation of the free group F on two

generators, with generating set {x, y} and no relations. The associated 2-complex K is

S1 ∨ S1. Its universal cover K̃ is shown in Figure VI.44. The labelling on the edges

specifies the map K̃ → K, which is indeed a covering map. Since K̃ is a tree, its

fundamental group is trivial, by Theorem IV.11 and Remark IV.19, and so it is the

universal cover of K. It is therefore the Cayley graph of F with respect to {x, y}.
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Figure VI.44.

VI.6: Normal subgroups and regular covering spaces

One can see that from Figures VI.42 and VI.44 that where one places the basepoint

in a Cayley graph seems to be somewhat arbitrary. In other words, all points in the

inverse image of the basepoint seem to look ‘the same’. We can make this precise by

the following definition.

Definition VI.45. Let p: X̃ → X be a covering map. Then a covering transformation

is a homeomorphism t: X̃ → X̃ such that the following diagram commutes:

X̃
t
−→ X̃

ց p ւ p

X

Definition VI.46. A covering map p: (X̃, b̃) → (X, b) is regular if any two points of

p−1(b) differ by a covering transformation.

It is clear that the covering maps in Examples VI.41 and VI.43 are regular. However,

this need not always be the case, as the following example shows.

Example VI.47. Let X̃ be the space shown in Figure VI.48. There is a covering map

p: X̃ → S1 ∨ S1, sending the vertices of X̃ to the basepoint of S1 ∨ S1, and mapping in

the edges of X̃ using the recipe given by the edge labels. That this is a cover follows

from the fact that each vertex of X̃ has four edges emanating from it, two labelled x
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and y pointing in, and two labelled x and y pointing out. However, it is clear that there

is no covering transformation taking the left-hand vertex of X̃ to the central one. This

is because there is a loop labelled x emanating from the former, but there is no such

loop based at the latter.

x

x

y x

y

y

xy

p

X~

Figure VI.48.

It turns out that the distinction between this example and the earlier ones is due

to whether p∗π1(X̃, b̃) is a normal subgroup of π1(X, b).

Theorem VI.49. Let p: (X̃, b̃) → (X, b) be a regular covering map. Then p∗π1(X̃, b̃)

is a normal subgroup of π1(X, b).

Proof. Let h be an element of p∗π1(X̃, b̃), and let g be some element of π1(X, b). We

must show that ghg−1 ∈ p∗π1(X̃, b̃). There is a loop ℓ in X̃ based at b̃ such that

[p ◦ ℓ] = h. Also, there is a loop α in X based at b such that [α] = g. Then α lifts to

a path α̃ based at b̃. By assumption, there is a covering transformation t taking b̃ to

α̃(1). This takes ℓ to the loop tℓ. Hence, α.(pℓ).α−1 lifts to α̃.(tℓ).α̃−1, which is a loop.

Therefore, ghg−1 = [α.(pℓ).α−1] is in p∗π1(X̃, b̃).

Theorem VI.50. Let p: (X̃, b̃) → (X, b) be a covering map, where X is locally path-

connected. Suppose that p∗π1(X̃, b̃) is a normal subgroup of π1(X, b). Then p is regular.

Proof. Let b̃′ be a point in p−1(b). It suffices to give a covering transformation taking b̃

to b̃′. Consider the following diagram

(X̃, b̃)

↓ p

(X̃, b̃′)
p
→ (X, b)

We claim that there is a lift t: (X̃, b̃′) → (X, b). To prove this, we will use Theorem

VI.29. We need to know that p∗π1(X̃, b̃
′) ⊆ p∗π1(X̃, b̃). Let α be a loop in X that

lifts to a path α̃ from b̃ to b̃′. Given any loop ℓ based at b̃′, α̃.ℓ.α̃−1 is a loop based
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at b̃. So, [α].[(pℓ)].[α−1] lies in p∗π1(X̃, b̃), by Corollary VI.20. Since p∗π1(X̃, b̃) is a

normal subgroup, [α]−1.[α].[pℓ].[α−1].[α] also lies in p∗π1(X̃, b̃). So, [pℓ] ∈ p∗π1(X̃, b̃),

as required. So, the lift t exists. Repeat the argument, with the roles of (X̃, b̃) and

(X̃, b̃′) reversed to obtain a lift t′: (X̃, b̃) → (X̃, b̃′) of p: (X̃, b̃) → (X, b). We then have

a commutative diagram

(X̃ ′, b̃′)
t
−→ (X̃, b̃)

t′

−→ (X̃ ′, b̃′)

ց p ↓ p ւ p

(X, b)

By uniqueness of lifts, the top line t′t equals the identity. Similarly, tt′ is the identity.

So, t is a homeomorphism, and therefore a covering transformation.

This is most significant when X̃ is the universal cover of X . We saw in Section VI.5

that in this case, the group π1(X, b) can be ‘seen’ in the inverse image of b. But also, as

a consequence of Theorem VI.50, π1(X, b) is realised as a group of homeomorphisms of

X .

Theorems VI.49 and VI.50 are just some initial steps in a large theory which re-

lates the algebraic properties of a group with topological properties of covering spaces,

especially the universal cover. This theory, known as geometric group theory, is a very

active and exciting field of mathematical research. See [2] for more information about

this subject.
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