§3. INCOMPRESSIBLE SURFACES

The majority of 3-manifold theory studies submanifolds of a 3-manifold M,
and uses them to gain information about M. This is particularly fruitful because
surfaces (i.e. 2-manifolds) are well understood. However, only certain surfaces
embedded within M have any relevance. The most important of these are ‘incom-

pressible’ and are defined as follows.

Definition. Let S be a properly embedded surface in a 3-manifold M. Then a
compression disc D for S is a disc D embedded in M such that D N.S = dD, but
with 0D not bounding a disc in S. If no such compression disc exists, then S is

incompressible.

Incompressible

Figure 7.

Of course, a 2-sphere or disc properly embedded in a 3-manifold is always

incompressible.

Remark. Suppose that D is a compression disc for S. We may assume that D
lies in int(M). There is then a way of ‘simplifying’ S as follows. Essentially using
Proposition 6.6 (see §2), we may find an embedding of D x [—1, 1] in int(M) with
(D x[-1,1])NnS =0D x [—1,1]. Then

SU(D x {~1,1}) — (D x (~1,1))

is a new surface properly embedded in M. It is obtained by compressing S along
D.

Denote the Euler characteristic of compact surface S by x(S5). Define the
complexity of S to be the sum of —x(.5), the number of components of S and the
number of 2-sphere components of S. Note that this number is non-negative. A

compression to S reduces —x/(S) by two. It either leaves the number of components
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unchanged or increases it by one. It does not create any 2-sphere components,
unless S is a torus or Klein bottle compressing to a 2-sphere. Hence, we have the

following.
Lemma 3.1. Compressing a surface decreases its complexity.

We will occasionally abuse notation by ‘compressing’ along a disc D with
DnNS = 0D, but with 0D bounding a disc in S. Note that in this case, the

complexity of the surface is left unchanged.

Definition. A compact orientable 3-manifold is Haken if it is prime and contains

a connected orientable incompressible properly embedded surface other than S2.

Note that every compact orientable prime 3-manifold M with non-empty
boundary is Haken. For we may pick a disc in OM and push its interior into
the interior of M so that the disc is properly embedded. This is a connected
orientable incompressible properly embedded surface, as required. Of course, it
is not a particularly interesting surface, but we will see later that, unless M is a

3-ball, other interesting surfaces also live in M.

Haken was a prominent 3-manifold topologist, and he was the first person to
realize the importance of incompressible surfaces. (He also has a number of other
mathematical accolades; for example, he proved the famous 4-colour theorem in
graph theory.) Haken 3-manifolds are extremely well understood. For example,

we will prove the following topological rigidity theorem.

Theorem 3.2. Let M and M’ be closed orientable 3-manifolds, with M Haken
and M’ prime. If M and M’ are homotopy equivalent, then they are homeomor-

phic.

Another major result which demonstrates the usefulness of incompressible

surfaces is the following.

Theorem 3.3. Let S be an orientable surface properly embedded in a compact
prime orientable 3-manifold M. Then S is incompressible if and only if the map

m1(S) — 71 (M) induced by inclusion is an injection.

In one direction (that j-injectivity implies incompressibility) this is quite

straightforward, but the converse is difficult and quite surprising. We will prove



this theorem later in the course.

We now demonstrate that Haken 3-manifolds are fairly common, by giving

plenty of examples of incompressible surfaces in various manifolds.

Definition. A connected surface S properly embedded in a connected 3-manifold

M is non-separating if M — S is connected.

Lemma 3.4. Let S be a surface properly embedded in a 3-manifold M. The

following are equivalent:
(i) S is non-separating;

(ii) there is a loop properly embedded in M which intersects S transversely in a

single point;

(iii) there is a loop properly embedded in M which intersects S transversely in an

odd number of points.

Proof. (i) = (ii). Suppose that S is non-separating. Pick a small embedded
arc intersecting S transversely. The endpoints of this arc lie in the same path-
component of M — S, and so may be joined by an arc in M — S. The two arcs
join to form a loop, which we may assume is properly embedded. This intersects

S transversely in a single point.
(ii) = (iii). Obvious.

(iii) = (i). If S separates M into two components, any loop in M intersecting
S transversely alternates between these components. Hence, it intersects S an

even number of times. O
Example. The 3-torus S' x S x S! contains a non-separating torus.

Proposition 3.5. Let M be a prime orientable 3-manifold containing a non-

separating 2-sphere S%. Then M is homeomorphic to S? x S!.

Proof. By Proposition 6.6, S? has a neighbourhood homeomorphic to $% x [—1, 1].
Since S? is non-separating, there is a loop ¢ properly embedded in M intersecting
S? transversely in a single point. For small enough ¢ > 0, £ N (S? x [—¢,€])
is a single arc. Using technology that we will develop in §6, £ — (S? x [—¢, €])
has a neighbourhood in M — (S? x (—¢, €)) homeomorphic to a ball B such that



BN (S? x {—¢}) and BN (S? x {€}) are two discs. Then, using an obvious product
structure on B, X = B U (S? x [—¢,€]) is homeomorphic to S$? x S! with the
interior of a closed 3-ball removed. Note that 0.X is a separating 2-sphere in M.
Hence, since M is prime, this bounds a 3-ball B’ in M. Then M = X U B’ is

homeomorphic to S? x S'. 0O

A 3-manifold M is known as irreducible if any embedded 2-sphere in M
bounds a 3-ball. Otherwise, it is reducible. By Proposition 3.5, an orientable

reducible 3-manifold is either composite or homeomorphic to S? x S!.

Proposition 3.6. Let M be an orientable prime 3-manifold containing a properly
embedded orientable non-separating surface S. Then M is either Haken or a copy
of §? x St

Proof. If M contains a non-separating 2-sphere, we are done. If S is incompress-
ible, we are done. Hence, suppose that S compresses to a surface S’. Then S’
is orientable. By Lemma 3.3, there is a loop £ intersecting S transversely in a
single point. By shrinking the product structure on D x [—1,1] as in the proof of
Proposition 3.5, we may assume that ¢ intersects D x [—1,1] in arcs of the form
{*} x [-1,1]. Hence, it intersects S’ transversely in an odd number of points. So,
at least one component of S’ is non-separating. By Lemma 3.1, the complexity
of this component is less than that of S. Hence, we eventually terminate with an

incompressible orientable non-separating surface. O

Example. The above argument gives that any non-separating torus in S'x S* x S*

is incompressible. (We need to know, in addition, that S* x S x S is prime.)

We will prove the following result in §7. In combination with Proposition 3.6,

this provides examples of many Haken 3-manifolds.

Theorem 3.7. Let M be a compact orientable 3-manifold. If Hy(M) is infinite,

then M contains an orientable non-separating properly embedded surface.

The converse of Theorem 3.7 is also true. So this does not in fact create any
more examples of Haken manifolds than Proposition 3.6. However, it is often more
convenient to calculate the homology of a 3-manifold than to construct an explicit

non-separating surface in it.

There is one notable 3-manifold that is not Haken.



Theorem 3.8. The only connected incompressible surface properly embedded in

53 is a 2-sphere. Hence, S® is not Haken.
At the same time, we will prove.

Theorem 3.9. (Alexander’s theorem) Any pl properly embedded 2-sphere in S*
is ambient isotopic to the standard 2-sphere in S3. In particular, it separates S°
into two components, the closure of each component being a pl 3-ball. Hence, S3

is prime.

Remark. The theorem is not true for topological embeddings of S? in S3. Also,
it is remarkable that the corresponding statement for pl or smooth 3-spheres in

5% remains unproven.

Proof of Theorems 3.8 and 3.9. Let S be a connected incompressible properly
embedded surface in S3. We will show that S is ambient isotopic to the standard
2-sphere in S2. Let p be some point in S® — S. Then S — p is pl homeomorphic
to R3. Hence, S is simplicial in some subdivision of a standard triangulation of
R3.

Claim. There is a product structure R? x R on R3, and an ambient isotopy of S,
so that after this isotopy, the following is true: for all but finitely many =z € R,
(R% x {x}) N S is a collection of simple closed curves, and at each of the remaining

x € R, we have one ‘singularity’ of of one of the following forms:

Figure 8.

Proof of claim. Each simplex in the triangulation of R? is convex in R®. The set
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of unit vectors parallel to 1-simplices of S is finite. We take a product structure
R? x R, so that neither R? x {0} nor {0} x R contains any of these vectors. We
may also assume that, for each z, R? x {x} contains at most one vertex of S.
When R? x {z} does not contain a vertex of S, (R? x {x}) NS is a collection of
simple closed curves. Near the vertices of S, the singularities are a little more
complicated than required, and hence we perform an ambient isotopy of S to
improve the situation. Let € be the length of the shortest 1-simplex in R3 that
intersects S. Focus on a single vertex v of S. Let B be the polyhedron in R3
with vertices at precisely the points on the 1-simplices of R? at distance €/2 from
v. Then we may subdivide R? further so that B is simplicial. Then S N 0B is a
simple closed curve separating 0B into two discs. Replace SN B with one of these
discs, which can be achieved by an ambient isotopy. Performing this operation at
each vertex of S results in singularities only of the required form. This proves the

claim.

Suppose that the singularities of S occur at the heights 27 < ... < z,,. Note
that the singularity at x; is a birth, and at x,, is a death. We prove the theorem
by induction on the number of singularities n. The smallest possible n is two, in

which case S is a 2-sphere embedded in the standard way.

Let xi be the smallest non-birth singularity. If it is a death, then, since S is
connected, S is a 2-sphere embedded in the standard way. Hence, we may assume

that x; is a saddle. As z increases to xy, either
(i) two curves C; and Cs approach to become a single curve Cs, or
(ii) one curve Cy pinches together form two curves C5 and Cg.

In (i), we may ambient isotope S, to replace this saddle singularity and the
singularities below C'; and Cy with a single birth singularity. The theorem then

follows by induction.

In (ii), if C5 and Cg both lie below death singularities, then S is a 2-sphere

ambient isotopic to the standard 2-sphere in S3.



Figure 10.

Suppose therefore that one of these curves (Cj, say) does not lie below a death
singularity. The curve Cs bounds a horizontal disc D. There may be some simple
closed curves of S Nint(D). But each of these lies above birth singularities. So,
we may ambient isotope 5, increasing the height of these singularities to above
x. Hence we may assume that D NS = 0D = C5. By the incompressibility of .S,
Cs bounds a disc D’ in S. Hence, if we ‘compress’ S along D, we obtain a surface
S’ with same genus as S, together with a 2-sphere S2. Both S? and S’ have fewer
singularities than S. Hence, inductively, S? bounds a 3-ball on both sides. One of
these 3-balls is disjoint from S’. We may ambient isotope S across this 3-ball onto
S’. Thus, S and S’ are ambient isotopic. The inductive hypothesis gives that S’

(and hence S) is a 2-sphere ambient isotopic to the standard 2-sphere in S®. O

Using this result, we can prove that any compact 3-manifold M with a single
boundary component that is embedded in S? is Haken. If S? is properly embedded
in M, then this 2-sphere separates S® into two 3-balls. One of these 3-balls is
disjoint from OM, and hence lies in M. Therefore M is prime, orientable and

compact, and has non-empty boundary. Hence, it is Haken.

Example. Let K be a knot in $3. We will show in §6 that K has a neighbourhood
N (K) homeomorphic to a solid torus. The 3-manifold M = S3 —int(N(K)) is the
exterior of K. Thus, M is Haken. In fact, it contains an orientable non-separating

properly embedded surface, which we now construct.



Pick a planar diagram for the knot K. We view this diagram as lying in
R? C R3 C S83. The knot lies in this plane, except near crossings where one arc
skirts above the plane, and one below. Pick an orientation of the knot. Remove

each crossing of the diagram in the following way:

X_,

Figure 11.

The result is a collection of simple closed curves in R%. Attach disjoint discs
to these curves, lying above R?. (Note that the curves may be nested.) Then
attach a twisted band at each crossing of K, as in Figure 12. The result is a
compact orientable surface S embedded in S3 with boundary K. Such a surface

is known as a Seifert surface for K.

Figure 12.

We may take N (K) small enough so that SNN(K) is a single annulus. Then
SN M is an orientable properly embedded surface in M. It is non-separating, since

a small loop encircling K intersects the surface transversely in a single point.
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Figure 13.



