THREE-DIMENSIONAL MANIFOLDS

MicHAELMAS TERM 1999

PREREQUISITES

Basic general topology (eg. compactness, quotient topology)

Basic algebraic topology (homotopy, fundamental group, homology)

RELEVANT BOOKS

Armstrong, Basic Topology (background material on algebraic topology)
Hempel, Three-manifolds (main book on the course)
Stillwell, Classical topology and combinatorial group theory (background

material, and some 3-manifold theory)

§1. INTRODUCTION

Definition. A (topological) n-manifold M is a Hausdorff topological space with
a countable basis of open sets, such that each point of M lies in an open set
homeomorphic to R™ or R} = {(z1,...,2,) € R" : 2,, > 0}. The boundary 0M
of M is the set of points not having neighbourhoods homeomorphic to R™. The
set M — OM is the interior of M, denoted int(M). If M is compact and M = 0,
then M is closed.

In this course, we will be focusing on 3-manifolds. Why this dimension?
Because 1-manifolds and 2-manifolds are largely understood, and a full ‘classifica-
tion’ of n-manifolds is generally believed to be impossible for n > 4. The theory
of 3-manifolds is heavily dependent on understanding 2-manifolds (surfaces). We

first give an infinite list of closed surfaces.

Construction. Start with a 2-sphere S2. Remove the interiors of g disjoint closed
discs. The result is a compact 2-manifold with non-empty boundary. Attach to
each boundary component a ‘handle’ (which is defined to be a copy of the 2-torus
T? with the interior of a closed disc removed) via a homeomorphism between the
boundary circles. The result is a closed 2-manifold F, of genus g. The surface Fj

is defined to be the 2-sphere S2.



Figure 1.

Construction. Start with a 2-sphere S?. Remove the interiors of h disjoint
closed discs (h > 1). Attach to each boundary component a Mé&bius band via

homeomorphisms of the boundary circles. The result is a closed 2-manifold Ny,.
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Figure 2.
Exercise. N; is homeomorphic to the real projective plane P2.

Theorem 1.1. (Classification of closed 2-manifolds) Each closed 2-manifold is

homeomorphic to precisely one F, for some g > 0, or one N}, for some h > 1.

This is an impressive result. There is a similar result for compact 2-manifolds

with boundary.

Theorem 1.2. (Classification of compact 2-manifolds) Fach compact 2-manifold
is homeomorphic to precisely one of F,; or Ny, where g > 0, b >0 and h > 1,
and Fgyp (resp. Npyp) is homeomorphic to Fy (resp. Np) with the interiors of b

disjoint closed discs removed.
The surface Fpq is a disc D?, Fy o is an annulus and Fp 3 is a pair of pants;
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the surfaces Fy; (i > 1) are the compact planar surfaces.

There is in fact a classification of non-compact 2-manifolds, but the situation
is significantly more complicated than in the compact case. In dimensions more
than two, it is usual to concentrate on compact manifolds (which are usually
hard enough). Below are some examples of non-compact 2-manifolds (without

boundary) that exhibit a wide range of behaviour.

Examples. (i) R%.

(ii) The complement of a finite set of points in a closed 2-manifold.
(iii) R? — (Z x {0}).

(iv) Glue a countable collection of copies of F} 5 ‘end-to-end’.

(v) Start with an annulus. Glue to each boundary component a pair of pants.
The resulting 2-manifold has four boundary components. Glue to each of

these another pair of pants. Repeat indefinitely.
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Figure 3.

It is quite possible that there is some sort of classification of compact 3-
manifolds similar to the 2-dimensional case, but inevitably much more compli-
cated. The simplest closed 3-manifold is the 3-sphere, which is most easily visu-

alised as R3 ‘with a point at infinity’.
Exercise. Prove that, for any point z € S, 3 — {x} is homeomorphic to R3.

Construction. Let X be a subset of 52 homeomorphic to the solid torus S* x D2.

Then S3 —int(X) is a compact 3-manifold, with boundary a torus. Note that there



are many possible such X in S (one is given in Figure 4), and hence there are

many such 3-manifolds.

Figure 4.

Despite the large number of different 3-manifolds, they have a well-developed

theory.

Definition. Let M; and M, be two oriented 3-manifolds. (The definition of
an oriented manifold will be given in the next section.) Pick subsets By and Bs
homeomorphic to closed 3-balls in the interiors of M7 and Ms. Let Mi#Ms be
the manifold obtained from M; — int(B;) and My — int(Bs3) by gluing 0B, and
0Bs via an orientation-reversing homeomorphism. Then M;# M, is the connected
sum of M; and M.

The resulting 3-manifold M;#Ms is in fact independent of the choice of By,
B> and orientation-reversing homeomorphism 0B; — dBs. The 3-sphere is the
union of two 3-balls glued along their boundaries. When one is forming M#53
for any 3-manifold M, we may assume that one of these 3-balls is used in the
definition of connected sum. Hence, M#S? is obtained from M by removing a
3-ball and then gluing another back in. Hence, M#52 is homeomorphic to M. A
3-manifold M is composite if it is homeomorphic to M;# Ms, for neither M; nor

M, homeomorphic to S3; otherwise it is prime.
Here is an example of a theorem in this course.

Theorem 1.3. (Topological rigidity) Let M; and My be closed orientable prime
3-manifolds which are homotopy equivalent. Suppose that Hy(My) and Hq(M>)

are infinite. Then M; and Ms are homeomorphic.

The theorem can be false:



e if My and M, are not prime,

e if Hi(M;) and H;(M,) are finite,

e if M7 and My have non-empty boundary, or
e if My and M, are non-compact.

Example. The following is a construction of two compact orientable prime 3-
manifolds M; and M,y, with non-empty boundary, that are homotopy equivalent
but not homeomorphic. Pick two disjoint simple closed curves in a torus 772,
bounding disjoint discs in T2. Attach to each curve a copy of Fy; along the
boundary curve of F} ;. The resulting space X will be homotopy equivalent to
both M; and Ms.

Figure 5.

We construct My and My by ‘thickening’ 7% and the two copies of Fy 1 to T2 x [0, 1]
and two copies of Fy 1 x [0, 1]. We build M; by gluing the two copies of 0F} ; x [0, 1]
to disjoint annuli in 72 x {0} (the annuli separating off disjoint discs in 72 x {0}).
Note that M; is a 3-manifold with dM; being three tori and a copy of F3. We
construct M similarly, except we attach one of the two copies of OF; 1 x [0, 1] to
T? x {0} and one to T? x {1}. The resulting manifold My has M, being two
tori and two copies of Fy. Hence, M; and M, are not homeomorphic, but they
are both homotopy equivalent to X. (We cannot at this stage prove that they are

prime, but this is in fact true.)

However, it is widely believed that (in a sense that can be made precise)
‘almost all” homotopy equivalent closed 3-manifolds are in fact homeomorphic. A
special case of this is the following, which is one of the most famous unsolved

conjectures in topology.

Poincaré Conjecture. A 3-manifold homotopy equivalent to S® is homeomor-

phic to S3.



§2. WHICH CATEGORY"?

In manifold theory, it is very important to specify precisely which ‘category’
one is working in. For example, one can deal not only with topological manifolds,
but also smooth manifolds (which we will not define) and piecewise-linear (pl)
manifolds, which are defined below. It turns out that 3-manifold theory often

takes place in the pl setting.

Definition. The n-simplex is the set
A" ={(z1,...,Tn+1) € R™™ 21 4+... 4+ 2,11 =1 and z; > 0 for all i}.

The dimension of A™ is n. A face of an n-simplex A" is a subset of A™ in which

some co-ordinates are set to zero. A face of dimension zero is a vertex.

Definition. A simplicial complex is the space K obtained from a collection of
simplices by gluing their faces together via linear homeomorphisms, such that any

point of K has a neighbourhood intersecting only finitely many simplices.

Remark. This definition is more general than the usual definition of a simplicial
complex, where one insists that each collection of points forms the vertices of at

most one simplex.

Note. The underlying space of a simplicial complex is compact if and only if it

has finitely many simplices.

Definition. A triangulation of a space M is a homeomorphism from M to some

simplicial complex.

Example. The space obtained from two copies of A™ by identifying their bound-
aries using the identity map is a simplicial complex. It forms a triangulation of

the n-sphere.

Definition. A subdivision of a simplicial complex K is another simplicial complex
L with the same (i.e. homeomorphic) underlying space as K, where each simplex

of L lies in some simplex of K in such a way that the inclusion map is affine.

Definition. A map f: K — L between simplicial complexes is pl if there exists
subdivisions K’ and L’ of K and L so that f sends vertices of K’ to vertices of
L', and sends each simplex of K’ linearly (but not necessarily homeomorphically)

onto a simplex of L.



Thus, by definition, there exists a pl homeomorphism between two simplicial

complexes if and only if they have a common subdivision.

Exercise. The composition of two pl maps is again pl. Hence, simplicial com-

plexes and pl maps form a category.

Definition. A pl n-manifold is a simplicial complex in which each point has a

neighbourhood pl homeomorphic to the n-ball
D" ={(z1,...,z,) € R": |z;] <1 for each i}
(with a standard triangulation).

An important fact that simplifies much of 3-manifold theory is the following

theorem, due to Moise.

Theorem 2.1. A topological 3-manifold possesses precisely one smooth structure

(up to diffeomorphism) and precisely one pl structure (up to pl homeomorphism).

This theorem is false in dimensions greater than three. When studying 3-
manifold theory, however, it does not matter which category one pursues it from.
For simplicity, we will now work entirely in the pl category without explicitly

stating this. Thus, all manifolds will be pl, and all maps will be pl.
We now introduce a couple of concepts that are probably familiar, in a pl
setting.

ORIENTABILITY

Definition. An orientation on an n-simplex is an equivalence class of orderings on
its vertices, where we treat distinct orderings as specifying the same orientation

if and only if the orderings differ by an even permutation. If the vertices are

ordered as vy, ...,v, (say), then we write [vp,...,v,] for this orientation. We
write —[vp, ..., v,] for the other orientation. The orientation [vy,...,v,] induces
the orientation (—1)%[vg, v1, ..., Vi1, Vit1, - -, Vy] on the face opposite v;.

Definition. An orientation on an n-manifold M is a choice of orientation on each
n-simplex of M, such that, if o is any (n— 1)-simplex adjacent to two n-simplices,
then the orientations that ¢ inherits from these simplices disagree. The manifold

is then oriented. If a triangulation of a manifold does not admit an orientation,
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then the manifold is non-orientable.

Note. A compact n-manifold M is orientable if and only if H,(M,0M) = Z.
In this case, an orientation is a choice of generator for H,(M,0M). Hence, ori-
entability is independent of the choice of triangulation for compact manifolds (and

in fact for all manifolds).

Figure 6.

Examples. The Mobius band M is non-orientable, whereas the annulus A is
orientable. See Figure 6, where the arrows on each 2-simplex specify an orientation

on that 2-simplex in the obvious way. Note that M and A are homotopy equivalent.
SUBMANIFOLDS

Note that D sits inside D™ for k < n, by setting the co-ordinates z,1, ..., Zy

to zero.

Definition. A submanifold X of a pl manifold M is a subset which is simplicial
in some subdivision of M, such that each point of X has a neighbourhood N
and a pl homeomorphism (N, N N X) — (D", D¥). Note that this implies that
0X =XNoM.

Definition. A map X — M between simplicial complexes is an embedding if it is
a pl homeomorphism onto its image. It is a proper embedding if M is a manifold

and the image of X is a submanifold of M.

Example. A 1-dimensional submanifold of S is a link. If it is connected, it is

a knot. If K is a knot in S® that does not bound a disc and we ‘cone’ the pair



(S3, K), the result is a 2-disc embedded in the 4-ball, but not properly embedded.

Exercise. Show that if S is a surface embedded in a 3-manifold M such that
SNIM = 95, then S is properly embedded. (You will need to know that any

circle embedded in S? is ‘standard’.)

We will see that studying submanifolds of M will shed considerable light on
the properties of M.

We will prove the following result in §6.

Proposition 2.2. Let X be an orientable codimension one submanifold of an
orientable manifold. Then X has a neighbourhood homeomorphic to X x [—1,1],
where X x {0} is identified with X, and where (X x [—1,1])NOM) = 0X x [—1,1].

ISOTOPIES

Let M be a simplicial complex.

Definition. Two homeomorphisms hg: M — M and hy: M — M are isotopic if
there is a homeomorphism H: M x [0, 1] — M x [0, 1] such that, for all 4, H |y i3

is a homeomorphism onto M x {i}, and so that H s 10y = ho and H | (1} = h1.

Remark. It is possible to impose a topology on the set Homeo(M, M) of all (pl)
homeomorphisms M — M, such that the path-components of Homeo(M, M) are

precisely the isotopy classes.

Definition. Let Ky and K7 be subsets of M. They are ambient isotopic if there
is a homeomorphism h: M — M that is isotopic to the identity and that takes K
to Kl.

Subsets of M that are ambient isotopic are, for almost all topological purposes,

‘the same’ and we will feel free to perform ambient isotopies as necessary.



