§4. BASIC PL TOPOLOGY

We have already had to state without proof of a number of results of the form
‘a certain submanifold has a certain neighbourhood’. It is clear that if we are to
argue rigourously, we need to develop a greater understanding of pl topology. The
results that we state here without proof can be found in Rourke and Sanderson’s

book ‘Introduction to piecewise-linear topology’.
REGULAR NEIGHBOURHOODS

Definition. The barycentric subdivision K M of the simplicial complex K is
constructed as follows. It has precisely one vertex in the interior of each simplex
of K (including having a vertex at each vertex of K). A collection of vertices of
K@ in the interior of simplices o1, ..., o, of K, span a simplex of KV if and
only if o7 is a face of o9, which is a face of o3, etc (possibly after re-ordering

01,...,0'7«).

An example is given in Figure 14. It is also possible to define K (") inductively
on the dimensions of the simplices of K, as follows. Start with all the vertices of
K. Then add a vertex in each 1-simplex of K. Join it to the relevant 0-simplices
of K. Then add a vertex in each 2-simplex o of K. Add 1-simplices and 2-
simplices inside o by ‘coning’ the subdivision of do. Continue analogously with

the higher-dimensional simplices.

Definition. The ' barycentric subdivision of a simplicial complex K for each
r € N is defined recursively to be (K ~)1) where K(©) = K.

Definition. If L is a subcomplex of the simplicial complex K, then the regular
neighbourhood N'(L) of K is the closure of the set of simplices in K2 that

intersect L. It is a subcomplex of K3,

The following result asserts that regular neighbourhoods are essentially inde-

pendent of the choice of triangulation for K.

Theorem 4.1. (Regular neighbourhoods are ambient isotopic) Suppose that K’
is a subdivision of a simplicial complex K. Let L be a subcomplex of K, and let L’
be the subdivision K' N L. Then the regular neighbourhood of L in K is ambient
isotopic to the regular neighbourhood of L' in K'.



Thus, we may speak of regular neighbourhoods without specifying an initial

triangulation.

K® Regular neighbourhood
of 1-simplices of K

Figure 14.
HANDLE STRUCTURES
Definition. A handle structure of an n-manifold M is a decomposition of M into

n + 1 sets Hy, ..., H, having disjoint interiors, such that

e H; is a collection of disjoint n-balls, known as i-handles, each having a product

structure D* x D"~
e for each i-handle (D? x D"~%) N (U;;B H;) = 0D x D"~¢,

e if H; = D'x D"~ (respectively, H; = D’ x D"~9) is an i-handle (respectively,
j-handle) with j < i, then H; N H; = D/ x E = F x D" for some (n —
j — 1)-manifold E (respectively, (i — 1)-manifold F) embedded in dD"~7
(respectively, dD?).

Here we adopt the convention that D is a single point and 0D° = ().

In words, the third of the above conditions requires that the attaching map of
each handle respects the product structures of the handles to which it is attached.

For a 3-manifold, this is relevant only for j = 1 and ¢ = 2.



One should view a handle decomposition as like a CW complex, but with each

i-cell thickened to a n-ball.
Theorem 4.2. Every pl manifold has a handle structure.

Proof. Pick a triangulation K for the manifold. Let V? be the vertices of K1)
in the interior of the i-simplices of K. Let H* be the closure of the union of the

simplices in K touching V*. These form a handle structure. O
GENERAL POSITION

In R™ it is well-known that two subspaces, of dimensions p and ¢, intersect
in a subspace of dimension at least p + ¢ — n, and that if the dimension of their
intersection is more than p + ¢ — n, then only a small shift of one of them is
required to achieve this minimum. Analogous results hold for subcomplexes of
a pl manifold. The dimension dim(P) of a simplicial complex P is the maximal

dimension of its simplices.

Proposition 4.3. Suppose that P and () are subcomplexes of a closed manifold
M, with dim(P) = p, dim(Q) = ¢ and dim(M) = M. Then there is a homeo-
morphism h: M — M isotopic to the identity such that h(P) and @ intersect in a

simplicial complex of dimension of at most p + q¢ — m.

P h(P)

Figure 15.

Then, h(P) and @ are said to be in general position. This is one of a number
of similar results. They are fairly straightforward, but rather than giving detailed
definitions and theorems, we will simply appeal to ‘general position’ and leave it

at that.



SPHERES AND DISCS

Lemma 4.4. Any pl homeomorphism 0D" — D" extends to a pl homeomor-

phism D" — D".

Proof. See the figure. O
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Figure 16.

Remark. The above proof does not extend to the smooth category, and indeed

the smooth version is false.
A similar proof gives the following.

Lemma 4.5. Two homeomorphisms D™ — D™ which agree on 0D™ are isotopic.
Let r: D™ — D™ be the map which changes the sign of the x,, co-ordinate.

Proposition 4.6. A homeomorphism D™ — D™ is isotopic either to the identity

or tor.

Proof. By induction on n. First note that there are clearly only two homeomor-
phisms D! — 0D'. By Lemma 4.4, these extend to homeomorphisms D' — D!,
Now apply Lemma 4.5 to show that any homeomorphism D! — D! is isotopic
to one of these. Now consider a homeomorphism h: 9D? — 0D?. It takes a 1-
simplex o in D? to a 1-simplex in dD?. There are two possibilities up to isotopy
for h|,, since o is a copy of D'. Note that cl(0D? — o) is clearly a copy of a
1-ball. (An explicit homeomorphism is obtained by retracting cl(0D? — o) onto
one hemisphere of 9D?). Hence, each homeomorphism of o extends to dD? — o,
in a way that is unique up to isotopy by Lemmas 4.4 and 4.5. Hence, h is isotopic
to r|pp2 or id|gpz. Therefore, by Lemma 4.4, any homeomorphism D? — D? is

isotopic to r or id. The inductive step proceeds in all dimensions in this way. O



We end with a couple of further results above spheres and discs that we will
use (often implicitly) at a number of points. Their proofs are less trivial than the

above results, and are omitted.

Proposition 4.7. Let hy: D™ — M and hy: D™ — M be embeddings of the n-ball
into an n-manifold. Then there is a homeomorphism h: M — M isotopic to the

identity such that h o hy is either ho or hg or.

Proposition 4.8. The space obtained by gluing two n-balls along two closed

(n — 1)-balls in their boundaries is homeomorphic to an n-ball.

§5. CONSTRUCTING 3-MANIFOLDS

The aim now is to give some concrete constructions of 3-manifolds. This will

be a useful application of the pl theory outlined in the last section.
CONSTRUCTION 1. Heegaard splittings.

Definition. A handlebody of genus g is the 3-manifold with boundary obtained
from a 3-ball B3 by gluing 2g disjoint closed 2-discs in dB? in pairs via orientation-

reversing homeomorphisms.

glue glue =

Figure 17.

Lemma 5.1. Let H be a connected orientable 3-manifold with a handle structure

consisting of only 0-handles and 1-handles. Then H is a handlebody.

Proof. Pick an ordering on the handles of H, and reconstruct H by regluing these
balls, one at a time, as specified by this ordering. At each stage, we identify discs,
either in distinct components of the 3-manifold, or in the same component of the
3-manifold. Perform all of the former identifications first. The result is a 3-ball.

Then perform all of the latter identifications. Each must be orientation-reversing,



since H is orientable. Hence, H is a handlebody. O

Let H; and H; be two genus g handlebodies. Then we can construct a 3-
manifold M by gluing H; and Hs via a homeomorphism h: 0H; — 0H,. This is
known as a Heegaard splitting of M.

(homeomorphism h

Figure 18.

Exercise. Take two copies of the same genus g handlebody and glue their bound-
aries via the identity homeomorphism. Show that the resulting space is homeo-

morphic to the connected sum of g copies of S! x S2.

Exercise. Show that, if H is the genus g handlebody embedded in S® in the
standard way, then S3 — int(H) is also a handlebody. Hence, show that S has
Heegaard splittings of all possible genera.

Example. A common example is the case where two solid tori are glued along
their boundaries. By the above two exercises, S® and S? x S! have such Heegaard
splittings. However, other manifolds can be constructed in this way. A lens space is
a 3-manifold with a genus 1 Heegaard splitting which is not homeomorphic to S® or
52 x S1. Note that there are many ways to glue the two solid tori together, because
there are many possible homeomorphisms from a torus to itself, constructed as
follows. View T? as R?/ ~, where (z,y) ~ (z+1,y) and (z,y) ~ (z,y+1). Then
any linear map R? — R? with integer matrix entries and determinant 41 descends

to a homeomorphism 7% — T2.
Theorem 5.2. Any closed orientable 3-manifold M has a Heegaard splitting.

Proof. Pick a handle structure for M. The 0-handle and 1-handles form a han-



dlebody. Similarly, the 2-handles and 3-handles form a handlebody. (If one views
each i-handle in a handle structure for a closed n-manifold as an (n — ¢)-handle,

the result is again a handle structure.) O

0-handles and 1-handles 2-handles and 3-handles

Figure 19.
CONSTRUCTION 2. The mapping cylinder.

Start with a compact orientable surface F. Now glue the two boundary
components of F' x [0, 1] via an orientation-reversing homeomorphism h: F' x {0} —
F x {1}. The result is a compact orientable 3-manifold (F' x [0,1])/h known as
the mapping cylinder for h.

Exercise. If two homeomorphisms hy and h; are isotopic then (F x [0, 1])/ho and

(F % [0,1])/hy are homeomorphic.
However, there are many homeomorphisms F' — F' not isotopic to the identity.

Definition. Let C' be a simple closed curve in the interior of the surface F. Let
N(C) = S! x [-1,1] be a regular neighbourhood of C. Then a Dehn twist about
C'is the map h: F — F which is the identity outside N'(C), and inside N'(C) sends
(0,t) to (0 +m(t+1),t).

Note. The choice of identification N(C) = S' x [—1,1] affects the resulting

homeomorphism, since it is possible to twist in ‘both directions’.



Figure 20.

Exercise. If C' bounds a disc in F' or is parallel to a boundary component, then
a Dehn twist about C is isotopic to the identity. But it is in fact possible to
show that if neither of these conditions holds, then a Dehn twist about C is never

isotopic to the identity.

Theorem 5.3. [Dehn, Lickorish| Any orientation preserving homeomorphism of
a compact orientable surface to itself is isotopic to the composition of a finite

number of Dehn twists.
CONSTRUCTION 3. Surgery

Let L be a link in S® with n components. Then A(L) is a collection of
solid tori. Let M be the 3-manifold obtained from S3 — int(N(L)) by gluing in n
solid tori |J;—; S* x D?, via a homeomorphism 9(J;_,; S* x D?) — ON(L). The

resulting 3-manifold is obtained by surgery along L.

There are many possible ways of gluing in the solid tori, since there are many

homeomorphisms from a torus to itself.

Theorem 5.4. [Lickorish, Wallace] Every closed orientable 3-manifold M is ob-

tained by surgery along some link in S3.

Proof. Let Hy U Hy be a Heegaard splitting for M, with gluing homeomorphism
f:0Hy — 0H5. Let g:0H, — OHs be a gluing homeomorphism for a Heegaard
splitting of S3 of the same genus. Note that H; and H, inherit orientations
from M and S2, and, with respect to these orientations, f and g are orientation

Lo f is isotopic to a composition of Dehn

reversing. Then, by Theorem 5.3, g~
twists, 71, ..., 7, along curves Cy,...,C,, say. Let k:0H; X [n,n+ 1] — 9H; x

[n,n+ 1] be the isotopy between 7,,0...07 and g~ 1o f. A regular neighbourhood



N(0H,) of OH; in H; is homeomorphic to a product 0H; x [0,n + 1], say, with
0Hy x {n+ 1} = 0H;. (See Theorem 6.1 in the next section.) For i = 1,...,n,
let Ly =7, '...7.C; x {i — 3/4} € Hy C M. Define a homeomorphism

M — U int(N(L;)) — S° — int(N(L))

Hy — (0H, x [0,n+ 1)) -5 Hy — (9H; x [0,n+ 1])
(0H, — N'(C1)) x [0,1/2] % (9H, — N'(C1)) x [0,1/2]
OH, x [1/2,1] = 0Hy x [1/2,1]
(OH, — N(171Cy)) x [1,3/2] = (0H, — N'(Cy)) x [1,3/2]
OH, x [3/2,2] 25 0H, x [3/2,2]

OHy x [n—1/2,n] ™2 0H, x [n —1/2,n]
0Hy X [n,n + 1] £, 0H, x [n,n + 1]
o, % m,
Here, L is a collection of simple closed curves in H; C S2. These homeomor-
phisms all agree, since 7;...7 and 7;_;...7; agree on OH; — 7, ' ... 7 Y N(C;).

Therefore, M is obtained from S2 by first removing a regular neighbourhood of

the link L, and then gluing in n solid tori. O



