§4. Basic PL Topology

We have already had to state without proof of a number of results of the form 'a certain submanifold has a certain neighbourhood'. It is clear that if we are to argue rigourously, we need to develop a greater understanding of pl topology. The results that we state here without proof can be found in Rourke and Sanderson's book 'Introduction to piecewise-linear topology'.

REGULAR NEIGHBOURHOODS

Definition. The barycentric subdivision $K^{(1)}$ of the simplicial complex K is constructed as follows. It has precisely one vertex in the interior of each simplex of K (including having a vertex at each vertex of K). A collection of vertices of $K^{(1)}$, in the interior of simplices $\sigma_1, \ldots, \sigma_r$ of K, span a simplex of $K^{(1)}$ if and only if σ_1 is a face of σ_2 , which is a face of σ_3 , etc (possibly after re-ordering $\sigma_1, \ldots, \sigma_r$).

An example is given in Figure 14. It is also possible to define $K^{(1)}$ inductively on the dimensions of the simplices of K, as follows. Start with all the vertices of K. Then add a vertex in each 1-simplex of K. Join it to the relevant 0-simplices of K. Then add a vertex in each 2-simplex σ of K. Add 1-simplices and 2-simplices inside σ by 'coning' the subdivision of $\partial \sigma$. Continue analogously with the higher-dimensional simplices.

Definition. The r^{th} barycentric subdivision of a simplicial complex K for each $r \in \mathbb{N}$ is defined recursively to be $(K^{(r-1)})^{(1)}$, where $K^{(0)} = K$.

Definition. If L is a subcomplex of the simplicial complex K, then the regular neighbourhood $\mathcal{N}(L)$ of K is the closure of the set of simplices in $K^{(2)}$ that intersect L. It is a subcomplex of $K^{(2)}$.

The following result asserts that regular neighbourhoods are essentially independent of the choice of triangulation for K.

Theorem 4.1. (Regular neighbourhoods are ambient isotopic) Suppose that K' is a subdivision of a simplicial complex K. Let L be a subcomplex of K, and let L' be the subdivision $K' \cap L$. Then the regular neighbourhood of L in K is ambient isotopic to the regular neighbourhood of L' in K'.

Thus, we may speak of regular neighbourhoods without specifying an initial triangulation.

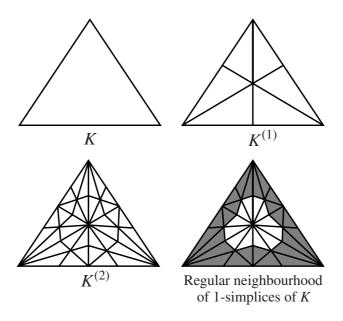


Figure 14.

HANDLE STRUCTURES

Definition. A handle structure of an n-manifold M is a decomposition of M into n+1 sets $\mathcal{H}_0, \ldots, \mathcal{H}_n$ having disjoint interiors, such that

- \mathcal{H}_i is a collection of disjoint *n*-balls, known as *i*-handles, each having a product structure $D^i \times D^{n-i}$,
- for each *i*-handle $(D^i \times D^{n-i}) \cap (\bigcup_{j=0}^{i-1} \mathcal{H}_j) = \partial D^i \times D^{n-i}$,
- if $H_i = D^i \times D^{n-i}$ (respectively, $H_j = D^j \times D^{n-j}$) is an *i*-handle (respectively, *j*-handle) with j < i, then $H_i \cap H_j = D^j \times E = F \times D^{n-i}$ for some (n j 1)-manifold E (respectively, (i 1)-manifold F) embedded in ∂D^{n-j} (respectively, ∂D^i).

Here we adopt the convention that D^0 is a single point and $\partial D^0 = \emptyset$.

In words, the third of the above conditions requires that the attaching map of each handle respects the product structures of the handles to which it is attached. For a 3-manifold, this is relevant only for j = 1 and i = 2.

One should view a handle decomposition as like a CW complex, but with each i-cell thickened to a n-ball.

Theorem 4.2. Every pl manifold has a handle structure.

Proof. Pick a triangulation K for the manifold. Let V^i be the vertices of $K^{(1)}$ in the interior of the i-simplices of K. Let \mathcal{H}^i be the closure of the union of the simplices in $K^{(2)}$ touching V^i . These form a handle structure. \square

GENERAL POSITION

In \mathbb{R}^n it is well-known that two subspaces, of dimensions p and q, intersect in a subspace of dimension at least p+q-n, and that if the dimension of their intersection is more than p+q-n, then only a small shift of one of them is required to achieve this minimum. Analogous results hold for subcomplexes of a pl manifold. The dimension $\dim(P)$ of a simplicial complex P is the maximal dimension of its simplices.

Proposition 4.3. Suppose that P and Q are subcomplexes of a closed manifold M, with $\dim(P) = p$, $\dim(Q) = q$ and $\dim(M) = M$. Then there is a homeomorphism $h: M \to M$ isotopic to the identity such that h(P) and Q intersect in a simplicial complex of dimension of at most p + q - m.

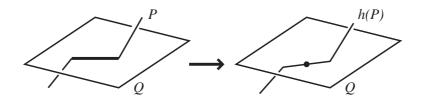


Figure 15.

Then, h(P) and Q are said to be in general position. This is one of a number of similar results. They are fairly straightforward, but rather than giving detailed definitions and theorems, we will simply appeal to 'general position' and leave it at that.

Lemma 4.4. Any pl homeomorphism $\partial D^n \to \partial D^n$ extends to a pl homeomorphism $D^n \to D^n$.

Proof. See the figure. \Box

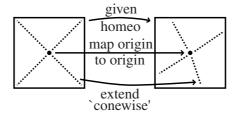


Figure 16.

Remark. The above proof does not extend to the smooth category, and indeed the smooth version is false.

A similar proof gives the following.

Lemma 4.5. Two homeomorphisms $D^n \to D^n$ which agree on ∂D^n are isotopic.

Let $r: D^n \to D^n$ be the map which changes the sign of the x_n co-ordinate.

Proposition 4.6. A homeomorphism $D^n \to D^n$ is isotopic either to the identity or to r.

Proof. By induction on n. First note that there are clearly only two homeomorphisms $\partial D^1 \to \partial D^1$. By Lemma 4.4, these extend to homeomorphisms $D^1 \to D^1$. Now apply Lemma 4.5 to show that any homeomorphism $D^1 \to D^1$ is isotopic to one of these. Now consider a homeomorphism $h: \partial D^2 \to \partial D^2$. It takes a 1-simplex σ in ∂D^2 to a 1-simplex in ∂D^2 . There are two possibilities up to isotopy for $h|_{\sigma}$, since σ is a copy of D^1 . Note that $\operatorname{cl}(\partial D^2 - \sigma)$ is clearly a copy of a 1-ball. (An explicit homeomorphism is obtained by retracting $\operatorname{cl}(\partial D^2 - \sigma)$ onto one hemisphere of ∂D^2). Hence, each homeomorphism of σ extends to $\partial D^2 - \sigma$, in a way that is unique up to isotopy by Lemmas 4.4 and 4.5. Hence, h is isotopic to $r|_{\partial D^2}$ or $\operatorname{id}|_{\partial D^2}$. Therefore, by Lemma 4.4, any homeomorphism $D^2 \to D^2$ is isotopic to r or id. The inductive step proceeds in all dimensions in this way. \square

We end with a couple of further results above spheres and discs that we will use (often implicitly) at a number of points. Their proofs are less trivial than the above results, and are omitted.

Proposition 4.7. Let $h_1: D^n \to M$ and $h_2: D^n \to M$ be embeddings of the *n*-ball into an *n*-manifold. Then there is a homeomorphism $h: M \to M$ isotopic to the identity such that $h \circ h_1$ is either h_2 or $h_2 \circ r$.

Proposition 4.8. The space obtained by gluing two n-balls along two closed (n-1)-balls in their boundaries is homeomorphic to an n-ball.

§5. Constructing 3-manifolds

The aim now is to give some concrete constructions of 3-manifolds. This will be a useful application of the pl theory outlined in the last section.

Construction 1. Heegaard splittings.

Definition. A handlebody of genus g is the 3-manifold with boundary obtained from a 3-ball B^3 by gluing 2g disjoint closed 2-discs in ∂B^3 in pairs via orientation-reversing homeomorphisms.

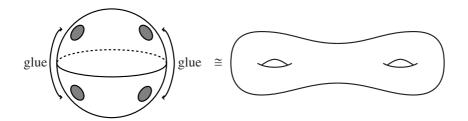


Figure 17.

Lemma 5.1. Let *H* be a connected orientable 3-manifold with a handle structure consisting of only 0-handles and 1-handles. Then *H* is a handlebody.

Proof. Pick an ordering on the handles of H, and reconstruct H by regluing these balls, one at a time, as specified by this ordering. At each stage, we identify discs, either in distinct components of the 3-manifold, or in the same component of the 3-manifold. Perform all of the former identifications first. The result is a 3-ball. Then perform all of the latter identifications. Each must be orientation-reversing,

since H is orientable. Hence, H is a handlebody. \square

Let H_1 and H_2 be two genus g handlebodies. Then we can construct a 3-manifold M by gluing H_1 and H_2 via a homeomorphism $h: \partial H_1 \to \partial H_2$. This is known as a Heegaard splitting of M.

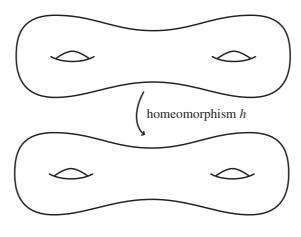


Figure 18.

Exercise. Take two copies of the same genus g handlebody and glue their boundaries via the identity homeomorphism. Show that the resulting space is homeomorphic to the connected sum of g copies of $S^1 \times S^2$.

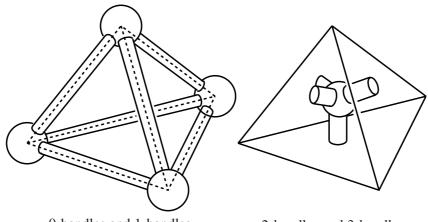
Exercise. Show that, if H is the genus g handlebody embedded in S^3 in the standard way, then $S^3 - \text{int}(H)$ is also a handlebody. Hence, show that S^3 has Heegaard splittings of all possible genera.

Example. A common example is the case where two solid tori are glued along their boundaries. By the above two exercises, S^3 and $S^2 \times S^1$ have such Heegaard splittings. However, other manifolds can be constructed in this way. A lens space is a 3-manifold with a genus 1 Heegaard splitting which is not homeomorphic to S^3 or $S^2 \times S^1$. Note that there are many ways to glue the two solid tori together, because there are many possible homeomorphisms from a torus to itself, constructed as follows. View T^2 as \mathbb{R}^2/\sim , where $(x,y)\sim (x+1,y)$ and $(x,y)\sim (x,y+1)$. Then any linear map $\mathbb{R}^2\to\mathbb{R}^2$ with integer matrix entries and determinant ± 1 descends to a homeomorphism $T^2\to T^2$.

Theorem 5.2. Any closed orientable 3-manifold M has a Heegaard splitting.

Proof. Pick a handle structure for M. The 0-handle and 1-handles form a han-

dlebody. Similarly, the 2-handles and 3-handles form a handlebody. (If one views each *i*-handle in a handle structure for a closed *n*-manifold as an (n-i)-handle, the result is again a handle structure.) \Box



0-handles and 1-handles

2-handles and 3-handles

Figure 19.

Construction 2. The mapping cylinder.

Start with a compact orientable surface F. Now glue the two boundary components of $F \times [0,1]$ via an orientation-reversing homeomorphism $h: F \times \{0\} \to F \times \{1\}$. The result is a compact orientable 3-manifold $(F \times [0,1])/h$ known as the mapping cylinder for h.

Exercise. If two homeomorphisms h_0 and h_1 are isotopic then $(F \times [0, 1])/h_0$ and $(F \times [0, 1])/h_1$ are homeomorphic.

However, there are many homeomorphisms $F \to F$ not isotopic to the identity.

Definition. Let C be a simple closed curve in the interior of the surface F. Let $\mathcal{N}(C) \cong S^1 \times [-1,1]$ be a regular neighbourhood of C. Then a *Dehn twist* about C is the map $h: F \to F$ which is the identity outside $\mathcal{N}(C)$, and inside $\mathcal{N}(C)$ sends (θ,t) to $(\theta+\pi(t+1),t)$.

Note. The choice of identification $\mathcal{N}(C) \cong S^1 \times [-1,1]$ affects the resulting homeomorphism, since it is possible to twist in 'both directions'.

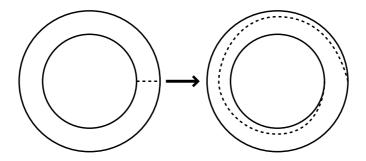


Figure 20.

Exercise. If C bounds a disc in F or is parallel to a boundary component, then a Dehn twist about C is isotopic to the identity. But it is in fact possible to show that if neither of these conditions holds, then a Dehn twist about C is never isotopic to the identity.

Theorem 5.3. [Dehn, Lickorish] Any orientation preserving homeomorphism of a compact orientable surface to itself is isotopic to the composition of a finite number of Dehn twists.

Construction 3. Surgery

Let L be a link in S^3 with n components. Then $\mathcal{N}(L)$ is a collection of solid tori. Let M be the 3-manifold obtained from $S^3 - \operatorname{int}(\mathcal{N}(L))$ by gluing in n solid tori $\bigcup_{i=1}^n S^1 \times D^2$, via a homeomorphism $\partial(\bigcup_{i=1}^n S^1 \times D^2) \to \partial \mathcal{N}(L)$. The resulting 3-manifold is obtained by surgery along L.

There are many possible ways of gluing in the solid tori, since there are many homeomorphisms from a torus to itself.

Theorem 5.4. [Lickorish, Wallace] Every closed orientable 3-manifold M is obtained by surgery along some link in S^3 .

Proof. Let $H_1 \cup H_2$ be a Heegaard splitting for M, with gluing homeomorphism $f \colon \partial H_1 \to \partial H_2$. Let $g \colon \partial H_1 \to \partial H_2$ be a gluing homeomorphism for a Heegaard splitting of S^3 of the same genus. Note that H_1 and H_2 inherit orientations from M and S^3 , and, with respect to these orientations, f and g are orientation reversing. Then, by Theorem 5.3, $g^{-1} \circ f$ is isotopic to a composition of Dehn twists, τ_1, \ldots, τ_n along curves C_1, \ldots, C_n , say. Let $k \colon \partial H_1 \times [n, n+1] \to \partial H_1 \times [n, n+1]$ be the isotopy between $\tau_n \circ \ldots \circ \tau_1$ and $g^{-1} \circ f$. A regular neighbourhood

 $\mathcal{N}(\partial H_1)$ of ∂H_1 in H_1 is homeomorphic to a product $\partial H_1 \times [0, n+1]$, say, with $\partial H_1 \times \{n+1\} = \partial H_1$. (See Theorem 6.1 in the next section.) For $i=1,\ldots,n$, let $L_i = \tau_1^{-1} \ldots \tau_{i-1}^{-1} C_i \times \{i-3/4\} \subset H_1 \subset M$. Define a homeomorphism

$$M - \bigcup_{i=1}^{n} \operatorname{int}(\mathcal{N}(L_{i})) \to S^{3} - \operatorname{int}(\mathcal{N}(L))$$

$$H_{1} - (\partial H_{1} \times [0, n+1]) \xrightarrow{\operatorname{id}} H_{1} - (\partial H_{1} \times [0, n+1])$$

$$(\partial H_{1} - \mathcal{N}(C_{1})) \times [0, 1/2] \xrightarrow{\operatorname{id}} (\partial H_{1} - \mathcal{N}(C_{1})) \times [0, 1/2]$$

$$\partial H_{1} \times [1/2, 1] \xrightarrow{\tau_{1}} \partial H_{1} \times [1/2, 1]$$

$$(\partial H_{1} - \mathcal{N}(\tau_{1}^{-1}C_{2})) \times [1, 3/2] \xrightarrow{\tau_{1}} (\partial H_{1} - \mathcal{N}(C_{2})) \times [1, 3/2]$$

$$\partial H_{1} \times [3/2, 2] \xrightarrow{\tau_{2}\tau_{1}} \partial H_{1} \times [3/2, 2]$$

$$\cdots$$

$$\partial H_{1} \times [n - 1/2, n] \xrightarrow{\tau_{n} \dots \tau_{1}} \partial H_{1} \times [n - 1/2, n]$$

$$\partial H_{1} \times [n, n+1] \xrightarrow{k} \partial H_{1} \times [n, n+1]$$

$$H_{2} \xrightarrow{\operatorname{id}} H_{2}$$

Here, L is a collection of simple closed curves in $H_1 \subset S^3$. These homeomorphisms all agree, since $\tau_i \dots \tau_1$ and $\tau_{i-1} \dots \tau_1$ agree on $\partial H_1 - \tau_1^{-1} \dots \tau_{i-1}^{-1} \mathcal{N}(C_i)$. Therefore, M is obtained from S^3 by first removing a regular neighbourhood of the link L, and then gluing in n solid tori. \square