86. REGULAR NEIGHBOURHOODS AND FIBRE BUNDLES

Theorem 6.1. (Regular neighbourhoods of submanifolds) Let L be a submanifold

of pl manifold M. Then N (L) is the total space of a fibre bundle over L, with
fibre a disc D™, and with the inclusion L — N(L) being a section.

In this course, we will only consider very simple bundles. We therefore only
give the briefest outline of their theory. Normally bundles are dealt with in the
smooth category, but there is of course a pl version. This is less satisfactory in

high dimensions, but in dimension three, it works well.

Definition. A map p: B — M is a fibre bundle over M with total space B and
fibre F' (or an F-bundle) if M has an open cover {U,} such that

e the closure U, of each U, is simplicial, and

e ecach p~1(U,) is (pl) homeomorphic to F' x U, so that the following diagram

commutes:

p YU, — FxU,
p
[0

|

If U, and Up intersect, then there are two maps

lprojection onto 2nd factor

pil(Ua QUIQ) — F x (Ua QUIQ),

one given via U,, one via Ug. Hence, we obtain a map gga: F x (Us NUg) —
F x (Usa NUpg), such gga|px s} is a homeomorphism onto F x {z} for each x €
U, NUg. These maps g, are known as the transition maps, and satisfy the

following conditions:
L. gaa =id,
—1
2' g,@a - galga
3. 945 © 4Ba = Gya-

Usually, one insists that, for each o and 3 and each = € U, HUB, 9aB|Fx {z} should
lie in some specified subgroup of Homeo(F, F'), known as the structure group of

the bundle. In this case, all we insist is that these homeomorphisms be pl.
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Note that a fibre bundle over M with fibre F' can be specified by an open cover
{U,} of M (with each U, simplicial), together with transition maps satisfying the

above three conditions.

ljBXF

B
\P / ~__>
project

Uy UB

Figure 21.

Definition. A section of a fibre bundle p: B — M is a map s: M — B such that

pos=idp.

Sketch proof of Theorem 6.1. Pick a triangulation of M in which L is simplicial.
This induces handle structures on L and M. Each i-handle of L is contained in
an i-handle of M. The union of these handles of M containing L forms N (L).
Careful choice of product structures on the handles (starting with the highest
index handles and working downwards) can be used to define the bundle map
p: N(L) — L. Each U, is (a small extension) of a handle of L. O

Definition. Two bundles pi: By — M and po: By — M are equivalent if there is

a homeomorphism h: By — By so that the following commutes:

h

B1 — BQ
lpl lm
M = M

Definition. If p: B — M is a fibre bundle and f: M’ — M is any map, then there
is a bundle over M’, known as the pull-back bundle. Tt is constructed by taking
the open cover {U,} via which M is defined, and letting {f~'(U,)} be the open
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cover for M'. If gog: F x (Us, NUpg) — F x (U, NUpg) is a transition map then
the transition map at a point  of f~1(Uy) N f~1(Up) is given by gag|rx ()}

—
p
D 2
X2
—
st S
Figure 22.

Examples. Let B be any bundle over M. If i: M’ — M is an inclusion map,
then the pull-back bundle is the restriction of the bundle to M’. The pull-back of
B with respect to idp; is the same bundle as B. The pull-back with respect to a

constant map M’ — M is a product bundle.

The following important result is not very difficult. Its proof can be found in

Husemoller’s book ‘Fibre Bundles’.

Theorem 6.2. Let M be compact, and let p: B — M x [0, 1] be a fibre-bundle.
Then the associated bundles over M x {0} and M x {1} are equivalent.

Corollary 6.3. A bundle over a contractible space M is a product bundle.

Proof. Since M is contractible, there is a homotopy M x [0,1] — M between id
and a constant map. Pull back the bundle over M to a bundle over M x [0, 1].
The bundle over M x {0} is the original bundle. The bundle over M x {1} is the
product bundle. They are equivalent by Theorem 6.2. 0.

Lemma 6.4. For each n € N, there are precisely two D"-bundles over S* up to

bundle equivalence.

Proof. The two D"-bundles over S! are constructed as follows. Start with the
product bundle D™ x [0, 1] over [0, 1], and glue D™ x {0} to D™ x {1} via some

homeomorphism. The result is a D™-bundle over S*. It is easy to see that isotopic



gluing homeomorphisms give equivalent bundles. By Proposition 4.6, there are two
isotopy classes of such homeomorphisms. To see that the bundles are inequivalent,
note that their underlying spaces are not homeomorphic: one is orientable and

one is not.

Now we must show that every D"-bundle over S! is equivalent to one of
these. Pick a point x € S. Then, restricting to the bundle over S! —int(A(x)) is
a bundle over the interval, which by Corollary 6.3 is a product. Hence, our bundle

is constructed as above. O
We now give a characterisation of whether a manifold is orientable.

Proposition 6.5. An n-manifold M is orientable if and only if it contains no

embedded copy of the total space of the non-orientable D"~ 1-bundle over S!.

Proof. If such a bundle embeds in M, then some triangulation of M is non-

orientable, and hence M is non-orientable.

Conversely, suppose that M contains no such bundle. Pick an orientation
on some n-simplex of M. This specifies unique compatible orientations on its
neighbouring n-simplices. Repeat with these simplices. In this way, we orient M,
unless at some stage we return to an n-simplex and assign it an orientation the
opposite from its original orientation. This specifies a loop, running between the
n-simplices through the (n — 1)-dimensional faces. We may take this loop ¢ to be

embedded. Then N(£) is the required non-orientable D"~ !-bundle over S!. O

The total space of the non-orientable D"~ !-bundle over S! is the Mobius

band for n = 2 and the solid Klein bottle for n = 3.

Proposition 6.6. Let S be a surface properly embedded in a compact orientable

3-manifold M. Then S is orientable if and only if N'(S) is homeomorphic to S x I.

Proof. Tt suffices to consider the case where S is connected. Let p: N(S) — S
be the I-bundle over S from Theorem 6.1. Suppose first that S has non-empty
boundary. Then there is a collection A of disjoint properly embedded arcs in .S,
such that cutting S along A gives a disc D. Then, by Corollary 6.3, the restriction
of p to p~1(D) is a product I-bundle. Now identify arcs in D in pairs to give S.

These arcs inherit an orientation from some orientation on dD.



If two arcs a; and ap are glued so that their orientations agree, then S
contains an embedded Mobius band and so is non-orientable. When a7 x I is
glued to ag x I, the orientations of the I factors must be reversed (otherwise
M would contain a solid Klein bottle and hence be non-orientable). Hence, the

dI-bundle over S is connected, and therefore A/(.S) is not homeomorphic to S x I.

Suppose therefore that each pair of arcs a; and as in dD are identified in a
way that reverses orientation. Then S is orientable. Also, the gluing map between
a1 X I and as x I preserves the orientation of the I-factor, otherwise M would
contain a solid Klein bottle. Hence, after an isotopy of the gluing maps, we may

assume that it is the identity in the I-factors. Hence, N'(S) is a product I-bundle.

Now consider the case where S is closed. Remove the interior of a small disc
D to give a surface S’. Then S is orientable if and only if S’ is. If N(S) is
product I-bundle, then its restriction to S’ is. Conversely, if its restriction to S’
is a product I-bundle, then we may extend the product structure over p~1(D) to

give a product structure on N(S). O

A codimension one submanifold X of a manifold is known as two-sided if
N(X) is a product I-bundle. The existence of a product neighbourhood for a
properly embedded orientable surface S in an orientable 3-manifold M is very
important. For example, it is vital in the proof of Theorem 3.3, which asserts
that S is incompressible if and only if it is m-injective. This can in fact fail
for non-orientable surfaces. For example, there is a non-orientable incompressible

embedded surface in some lens space which is not m;-injective.

§7. HOMOLOGY OF 3-MANIFOLDS
Definition. For i € Zsq, the it Betti number (;(M) of a space M is the
dimension of H;(M;Q) viewed as a vector space over Q.

Definition. The Euler characteristic x(M) of a compact triangulable space M is

> (=1)iB,(M).

7

Theorem 7.1. Pick any triangulation of a compact space M, and let o; be the

number of i-simplices in this triangulation. Then x(M) =3",(—1)%o;.
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Remark. If H;(M) = Z* & T, where each element of T' has finite order, then

The following result, which we quote without proof, is one of the cornerstones

of manifold theory.

Theorem 7.2. (Poincaré duality) Let M be a compact connected orientable
n-manifold. Then for each i, H;(M,0M;Q) = H,,_;(M; Q).

Remark. The corresponding statements for coefficients in Z is not true.

Corollary 7.3. Let M be a closed orientable m-manifold, with m odd. Then
X(M) = 0.

Corollary 7.4. For a compact orientable m-manifold M, with m odd, x(M) =
(1/2)x(0M).

Proof. Let DM be two copies of M glued along OM, via the ‘identity’ map.
Then a triangulation of M induces one for DM. Counting i-simplices gives 0 =
X(DM) = 2x(M) — x(9M). o

Theorem 7.5. Let M be a compact orientable 3-manifold, with at least one
component of OM not a 2-sphere. Then there is an element of Hy(OM ) which has
infinite order in Hq(M).

Proof. Let M be the 3-manifold obtained by attaching a 3-ball to each 2-sphere
component of M. Then H; (M) =2 Hy(M). Since M is not closed, Hs(M) = 0
and so B3(M) = 0. Since M is orientable, so is M and M. Since M contains
no 2-spheres, y(dM) < 0. Corollary 7.4 implies that x(M) < 0. But x(M) =
Bo(M) = By (M) + Bo(M) — B3(M) = 1— By (M) + B2(M) < 0. So, 81 (M) > ().
Therefore, in the long exact sequence of the pair (M LOM ), the map H 1(M ;Q) —
Hl(M, OM: Q) has non-trivial kernel. Hence, there is an element of H; (M, Q) in
the image of H 1(8M ;Q). Clearing denominators from the coefficients gives an
infinite order element of H; (M ) in the image of H; (BM ). The following diagram

commutes, where each map is induced by inclusion.



This proves the theorem. O
We introduce some standard terminology.

Definition. A 3-manifold M is irreducible if any embedded 2-sphere bounds a
3-ball in M.

By Proposition 3.5, a 3-manifold is irreducible if and only if it is prime and
not S% x S1.

Theorem 7.6. Let M be a compact irreducible 3-manifold with Hy (M) infinite.
Then M contains a connected 2-sided non-separating properly embedded incom-
pressible surface S, which is not a 2-sphere. Furthermore, if there is an infinite
order element of Hy(M) in the image of H,(OM), then we may guarantee that 0S5

has non-zero signed intersection number with some loop in OM.

Lemma 7.7. Let M be a compact connected 3-manifold and let X be a space
with mo(X') = 0. Then, for any basepoints m € M and x € X, any homomorphism
w1 (M, m) — 71 (X, z) is induced by a map M — X.

Proof. Pick a triangulation of M with m a O-simplex. The O-simplices and 1-
simplices form a graph in M. Pick a maximal tree T in this graph and map
it to x. For each remaining 1-simplex oy of M, there is a unique path in T
joining the endpoints of ;. The union of this path with ¢ forms a loop which
(when oriented) represents an element of 71 (M, m). The given homomorphism
m1 (M, m) — 71 (X, z) determines a loop in X (up to homotopy). Send o7 to this
loop.

Let o9 be any 2-simplex of M. Its three boundary 1-simplices dos have been
mapped into X. Since doy is homotopically trivial in M and group homomor-
phisms send the identity element to the identity element, the image of Jos is
homotopically trivial in X. Using this homotopy, we may extend our map over

g9.
Now, let o3 be any 3-simplex of M. We have mapped doz to a 2-sphere in
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X. Since mo(X) = 0, this extends to a map of the 3-ball into X. Hence, we may

extend over each 3-simplex. O

Lemma 7.8. Let M be a compact irreducible 3-manifold, and let X be a pl k-
manifold containing a properly embedded 2-sided (k —1)-submanifold Y. Suppose
that ker(m (Y) — m (X)) = 1 and ma(Y) = ma(X —Y) = m3(X) = 0. Then any
map f: M — X is homotopic to a map g such that

(i) each component of g~'(Y) is a properly embedded 2-sided incompressible

surface in M,
(ii) no component of g~1(Y)) is a 2-sphere, and

(iii) for properly chosen product neighbourhoods N'(Y) and N'(g~1(Y)), the map

gln(g-1(v)) sends fibres homeomorphically onto fibres.

Proof. Since Y is a pl submanifold of X, there is a triangulation of X in which
Y is a union of simplices. By assumption, AV (Y) is a product I-bundle. Hence,
we may alter the triangulation of X, by replacing each simplex ¢ of Y with the
standard triangulation of the product o x [—1,1]. Then Y =Y x {0} embeds in X
transversely to the triangulation. Using the Simplicial Approximation Theorem,
we may subdivide a given triangulation of M and perform a homotopy to f so

that afterwards it is simplicial.

Yx [-1,1]

'

T
Y x {0}

Figure 23.

Then each component of f~1(Y) is a properly embedded 2-sided surface,



satisfying condition (iii) relative to Y x [~1/2,1/2] and f~1(Y x [-1/2,1/2]). If

f71(Y) is incompressible, and no component is a 2-sphere, we are done.

Suppose now that D is a compressing disc for f~(Y). Choose a regular
neighbourhood N (D) in M such that A = N (D)N f~*(Y) is an annulus properly
embedded in N (D). Let D; and D5 be disjoint discs properly embedded in N'(D)
such that 0D, U 0D, = OA. Define fi: M — X as follows. Put fi|a—intv(D)) =
Jlm—int(v(D))- The map f|p, is a trivialising homotopy for the curve f|sp,. Since
ker(m (Y) — m (X)) = 1, we may extend fi|sp, to a map fi|p, into Y. Extend
f1 over a small neighbourhood N (D;) of D; using the product structure of N'(Y).
Then NV (D) — (int (N (D1 UDy)) is three 3-balls. On their boundaries, f; is already
defined, mapping into Y — X. Since m3(Y — X) = 0, we may extend f; over all of
N(D), avoiding Y. Then f; (Y) = f~Y(Y)U Dy U Dy — int(A). Thus, f; *(Y)
is obtained from f~!(Y) via a compression. It therefore reduces the complexity
of the surface, defined in §3. Note that f and f; differ only within a 3-ball, and

therefore they are homotopic, since m3(X) = 0.

D,

Figure 24.

If some component of f~1(Y) is a 2-sphere, then it bounds a 3-ball B in
M. We define a map fi: M — X as follows. Let f|y—int(B) = fi|mM—int(B)-
Using that m2(Y) = 0, we may extend f|p to a map fi|p: B — Y. Then use the
product structure on N (Y) to define a small homotopy so that fi(B)NY = 0,
removing the 2-sphere component of f~1(Y’). This leaves the complexity of the
surface unchanged, but it reduces the number of components. Hence, we eventually

obtained the map g as required. O



Proof of Theorem 7.6. Since H; (M) is infinite but finitely generated, it has Z as
a summand. Hence, there is a surjective homomorphism H; (M) — Z. If there is
an infinite order element of Hq(M) in the image of H,(OM ), we may assume that

the composition Hy(OM) — Hi(M) — 7Z is surjective.

Now, there is a surjective homomorphism (M) — H;(M) which sends a
based oriented loop in M to a sum of oriented 1-simplices representing that loop.
Hence, there is a surjection 71 (M) — Z. In the case where there is an infinite order
element of Hy(M) in the image of Hy(OM), we may take m (OM) — m (M) — Z
to be surjective. The map (M) — Z is induced by a map M — S!, by Lemma
7.7. Apply Lemma 7.8 to a point Y in S'. Then some component of g=1(Y) is
a 2-sided non-separating incompressible surface S in M that is not a 2-sphere. If
m(OM) — 7 (M) — Z is surjective, a loop in M mapping to 1 € Z must have

odd signed intersection number with 0.S. O
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