§8. HIERARCHIES

In this section, we consider not just a single incompressible surface, but a

whole sequence of them.

Terminology. Let M be a 3-manifold, containing an incompressible surface S.

Then Mg = M — int(N(S)) is the result of cutting M along S.

Definition. A partial hierarchy for a Haken 3-manifold M; is a sequence of 3-
manifolds My, ..., M,, where M;,, is obtained from M; by cutting along an ori-
entable incompressible properly embedded surface in M;, no component of which
is a 2-sphere. This is a hierarchy if, in addition, M, is a collection of 3-balls. We

denote (partial) hierarchies as follows:
Sn—l
M1 M2 e T Mn

Example. The following is a hierarchy for S! x S x S':
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Example. An example of hierarchy for a knot exterior is given below.
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Figure 25.

Non-example. Let M be any 3-manifold with non-empty boundary. Let D be a
disc in OM. Let D’ be D with its interior pushed a little into the interior of M.
Then decomposing M along D’ gives a copy of M and a 3-ball. Hence, we may

repeat this process indefinitely.



Non-example. Let S be the genus one orientable surface with one boundary
component. Then S x I is homeomorphic to a genus two handlebody. Pick a
simple closed non-separating curve C' in the interior of S. Then C x [ is a properly
embedded annulus that is mi-injective and hence incompressible. Cutting S along
C gives a pair of pants Fj 3, and Fp 3 x I is again a genus two handlebody. Hence,

we may cut along a similar surface again, and repeat indefinitely.

Lemma 8.1. Let M be a compact orientable irreducible 3-manifold. Let S be a
properly embedded incompressible surface, no component of which is a 2-sphere.
Then Mgy is irreducible, and hence Haken since OMg # ().

Proof. Let S? be a 2-sphere in Mg. As M is irreducible, it bounds a 3-ball in M.
If this 3-ball contained any component of S, then S would be compressible, by
Theorem 3.8. Hence, S is disjoint from the 3-ball, and so the 3-ball lies in Mg. O

Despite the ‘non-examples’ above, the following theorem is in fact true.
Theorem 8.2. Every Haken 3-manifold has a hierarchy.

Theorem 8.2 will be proved in §11, but first, we show why hierarchies are

useful.

9. BOUNDARY PATTERNS AND THE LOOP THEOREM

Definition. A boundary pattern P in a 3-manifold M is a (possibly empty)
collection of disjoint simple closed curves and trivalent graphs in OM, such that

no simple closed curve in M intersects P transversely in a single point.

If S is a 2-sided surface properly embedded in a compact 3-manifold M, with
0S intersecting P transversely (and missing the vertices of P), then the manifold
Mg obtained by cutting along S inherits a boundary pattern, as follows. Note
that 0Mg is the union of subsurfaces, one of which is OM N 0Mg, the other of
which is ON(S) N OMg, which is two copies S; and Sy of S. Then, Mg inherits a
boundary pattern (P N9Mg) U dS; UDS,.



Figure 26.

The motivation for defining boundary patterns is as follows. If

S S Sp—

is a partial hierarchy for a 3-manifold M7, then 0M,, is a union of subsurfaces,
which come from bits of OM; and Si,...,S5,_1. The union of the boundaries of

these bits of surface forms a boundary pattern for M,,.

Definition. A boundary pattern P for M is essential if, for each disc D properly
embedded in M with 9D N P at most three points, there is a disc D’ C M with
0D’ = 0D, and D’ containing at most one vertex of P and no simple closed curves
of P.

Essential boundary pattern

& Eppes

Figure 27.

Definition. A boundary pattern P is homotopically essential if, for each map of

a disc (D,0D) — (M, 0M) with 0D N P at most three points (which are disjoint),
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there is a homotopy (keeping 9D N P fixed, introducing no new points of 9D N P,
and keeping 0D in dM) to an embedding of D into M so that the image of D

contains at most one vertex of P and no simple closed curves of P.

Clearly, if a boundary pattern is homotopically essential, then it is essential.
(A proof of this requires the fact from surface topology that if two properly em-
bedded arcs in a surface are homotopic keeping their endpoints fixed, then they
are ambient isotopic keeping their endpoints fixed.) The main technical result

that we will prove is that the converse holds.

Theorem 9.1. An essential boundary pattern for a compact orientable irreducible

3-manifold is homotopically essential.

The Loop Theorem is a corollary of this result. This remarkable result is one
of the most important theorems in 3-manifold theory. In this course, we will give

a new proof of it, using hierarchies.

Theorem 9.2. (The Loop Theorem) Let M be a compact orientable irreducible
3-manifold. Then OM is incompressible if and only if w1 (F) — m (M) is injective
for each component F of OM.

Proof of 9.2 from 9.1. A standard fact from surface topology gives that a simple
closed curve in M is homotopically trivial in M if and only if it bounds a disc
in OM. Hence, if a component F' of M is compressible, then w1 (F) — w1 (M) is

not injective.

To prove the converse, suppose that 0M is incompressible. Let P be the
empty boundary pattern in dM. This is then essential. By Theorem 9.1, P is
homotopically essential. Hence, if £ is any loop in 0M that is homotopically trivial

in M, then ¢ is homotopically trivial in OM. O

We can in fact prove the following slightly stronger version of the Loop The-

orem.

Theorem 9.3. Let M be a compact orientable irreducible 3-manifold, and let
F be a connected surface in OM. If m(F) — m (M) is not injective, then F' is

compressible.

Proof of 9.3 from 9.1. Suppose that F' is incompressible. Let OF be the boundary



pattern of M. If this is not essential, then there is a compressing disc for M
that intersects OF at most twice. Decompose M along this disc to give a new
3-manifold M’. Let F be M' N F. Then 7 (F) — m (M) is injective if and
only if each component of F’ is mi-injective in M’. Also, F’ is incompressible in
M’. Repeat this process if necessary. At each stage, we reduce the complexity
of OM. Hence, we may assume that the boundary pattern OF is essential in M.
By Theorem 9.1, it is homotopically essential, and therefore 71 (F) — 71 (M) is

injective. O
This stronger version of Theorem 9.3 allows us to prove Theorem 3.3.

Theorem 3.3. Let S be a connected compact orientable surface properly embed-
ded in a compact orientable irreducible 3-manifold M. Then S is incompressible

if and only if the map m(S) — m (M) induced by inclusion is an injection.

Proof. Suppose that m1(S) — w1 (M) is not injective. There is then a map
h: (D,0D) — (M, S) of a disc D such that h(0D) is homotopically non-trivial in
S. Using an argument similar to that in Lemma 7.8, we may perform a homotopy
of D (keeping dD fixed) so that h=1(.9) is a collection of simple closed curves in
D. Pick one innermost in D. If this is sent to a curve that is homotopically trivial
in S, we may modify h and remove this curve. Hence, we may assume that there
is a map h: D — M so that h=1(S) = 9D and so that h(9D) is homotopically
non-trivial in S. We may also assume that h|xrgp) respects the product structure
on N(S). Hence, h restricts to a trivialising homotopy for some loop in one of
the two copies of S in Mg. Applying Theorem 9.3 to this copy F of S gives that
F' is compressible. Extending the compression disc using the product structure

N(S) = S x I gives a compression disc for S. O

Remark. This argument fails (and the result need not be true) when S is non-
orientable: since N (9) is not a product, a compression disc for the dI-bundle of

N (S) does not necessarily extend to a compression for S.

Theorem 9.3, together with the existence of hierarchies, also allows us to prove

the following.

Theorem 9.4. Let M be a compact orientable Haken 3-manifold. Then 7, (M) =
0 for all k > 2.



Proof. Pick a hierarchy

S S. Sn_1
M= M, 2% My 22 2 M.

Consider a map h: S? — M, and let S; be the first surface to intersect h(S?). We
may homotope h so that h=1(S;) is a collection of simple closed curves. Let C
be one innermost in S$2 bounding a disc D. Then h(C) is homotopically trivial
in M;y;. Hence, by the argument of Theorem 9.3, we may homotope D into
S;. There is then a a further homotopy removing C from h=1(S;). We may
therefore assume that h(S2) C M;,;. Repeating this as far as M, gives that
h(S?) C M,. Since m3(M,) is trivial, h represents a trivial element of o (M).
Therefore o (M) = 0.

If M is closed, then (M) contains the fundamental group of a closed ori-
entable surface other than a 2-sphere, and hence 71 (M) is infinite. If M has
non-empty boundary, then (providing it is not a 3-ball), H; (M) is infinite, by The-
orem 7.5, and so 71 (M) is infinite. Therefore the universal cover M of M is non-
compact. Hence, Hy(M) = 0 for all k > 3. Now, mx(M) = 7, (M) for all k > 2.

Therefore, mo(M) = 0. Hence, by the Hurewicz theorem, (M) = Hy(M) = 0
for all k£ > 3. This proves the theorem. O

Remark. It is possible to show (using rather different methods) that mo(M) = 0
for all irreducible orientable 3-manifolds M. Hence, if in addition 71 (M) is infinite,

(M) =0 for all k> 3.

10. SPECIAL HIERARCHIES

Definition. Let S be a surface properly embedded in a 3-manifold M with
boundary pattern P. Then a pattern-compression disc for S is a disc D embedded

in M such that
e DN S isanarc ain 0D,
e 0D — int(a) = D N OM intersects P at most once, and
e « does not separate off a disc from S intersecting P at most once.
If no such pattern-compression disc exists, then S is pattern-incompressible.
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Boundary of M Pattern-incompressible

Figure 28.

Definition. Two surfaces Sy and 57 embedded in a 3-manifold M are parallel if
there is an embedding of S x [0, 1] in M such that Sp = S x {0} and S; = S x {1}.
If 0(S x [0,1]) = Sy C OM, we say that Sy is boundary-parallel.

Definition. A special hierarchy for a compact orientable irreducible 3-manifold
M with boundary pattern P is a hierarchy for M of properly embedded con-
nected pattern-incompressible incompressible surfaces, none of which is a 2-sphere
or boundary-parallel disc. (At each stage, the cut-open 3-manifold inherits its
boundary pattern from the previous one.) We write the manifolds and boundary

patterns as:
S1 S2 Sn—l
(M, P) = (Ml,Pl) e (MQ,PQ) —_— ... — (Mn,Pn)
We now give an overview of the proof of Theorem 9.1. It proceeds in four
main steps:

1. Show that any compact connected orientable irreducible 3-manifold M with
essential boundary pattern P and non-empty boundary has a special hierarchy

(M, P) = (M, P1) 25 (M, ) 22 ... 22 (M, P).

2. Show that (M;, P;) is essential if and only if (M;41, Piy1) is.

3. Show, using simple properties of the 3-ball, that (M, P,) being essential

implies that it is homotopically essential.
4. Show that if (M1, P;41) is homotopically essential, then so is (M;, P;).
We will save step 1 until §11. We now embark on steps 2, 3 and 4.

Lemma 10.1. Let M be a compact orientable irreducible 3-manifold with es-

sential boundary pattern P. Let S be a connected pattern-incompressible incom-
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pressible surface in M, which is not a boundary-parallel disc. Then the 3-manifold

Mg obtained by cutting along S inherits an essential boundary pattern P’.

Proof. Let D be a disc properly embedded in Mg with D N P’ at most three
points. The curve 9D may run through parts of Mg coming from M and parts
coming from S. Note however the points where it swaps must be points of 9DNP’,

and that at most one side of any point of 9D N P’ lies in S. Hence, at most one
arc of 0D — P’ liesin S.

Case 1. 0D is disjoint from S.

Then 9D C OM. Since P is essential, 9D bounds a disc D’ in M containing
at most one vertex of P and no simple closed curves. If S intersects D', then pick
a simple closed curve of S N D’ innermost in D’. The disc this bounds cannot be
a compression disc for S. Hence, S must be a disc. Since M is irreducible, it is
parallel to a disc in OM, contrary to assumption. Hence, D’ is disjoint from S,
and therefore lies in OMg. This verifies that D does not violate the essentiality of
P

Case 2. 0D intersects S.

Then 0D — S intersects P at most once. Since D is not a pattern-compressing
disc for S, DN S separates off a disc D7 of S intersecting P in at most one point.
Then, D U D is a disc properly embedded in M, intersecting P in at most two
points. There is therefore a disc Dy in M with 0Dy = (D U Dy), containing
at most one vertex of P and no simple closed curves, since P is essential. Since
DU Dy intersects P in at most two points, Dy cannot therefore contain any vertex
of P. Therefore, D1 U D5 is a disc in Mg containing at most one vertex of P’

and no simple closed curves. This gives that P’ is essential. O

Lemma 10.2. Suppose that M is a 3-ball with essential boundary pattern P.

Then P is homotopically essential.

Proof. Consider a map (D,0D) — (M,0M) with 0D N P at most three points.
Since P is essential, each component of OM — P is a disc. We may therefore
homotope each arc of 0D — P so that it is embedded. The arcs 9D — P lie in
different components of M — P, since P is a boundary pattern. Hence, we have

homotoped 9D so that it is embedded. It therefore bounds an embedded disc D’



in M. Since P is essential, D’ contains at most one vertex of P and no simple
closed curves. As the 3-ball has trivial 7o, there is a homotopy taking D to D’
keeping 0D fixed. O

Lemma 10.3. Let M be a compact orientable 3-manifold with boundary pattern
P. Let S be an orientable incompressible pattern-incompressible surface properly
embedded in M. Let P’ be the boundary pattern inherited by Mg. If P’ is

homotopically essential, then so is P.

Proof. Consider a map h: (D,0D) — (M,0M) such that dD intersects P in
at most three points. We may perform a small homotopy so that h=1(S) is a

collection of properly embedded arcs and circles in D.

Suppose that there is some simple closed curve of h=1(S). Pick one C in-
nermost in D, bounding a disc D’. Since P’ is homotopically essential, we may
homotope D’ to an embedded disc in S. Perform a further small homotopy to
reduce |h=1(9)].

Hence, we may assume that there are no simple closed curves of h=1(S). If
there is more than one arc, at least two are extrememost in D. They separate off
discs Dy and D, from D. Similarly, if there is only one arc of h=1(9), it divides D
into two discs Dy and Dy. There are only three points of h~1(P), and so D, say,
contains at most one of these points. Hence, h(9D;) intersects P’ in at most three
points. Since P’ is homotopically essential, we may homotope D7 to an embedded
disc D' in Mg containing at most one vertex of P’ and no simple closed curves.

Replace D; with D’; and perform a homotopy to reduce |h=1(S)].

Repeat this process until h=1(S) = (. Then, use that P’ is homotopically
essential to construct the desired homotopy of D to an embedded disc in dM

containing at most one vertex of P and no simple closed curves. O

This completes steps 2, 3 and 4. A similar argument to that of Lemma 10.3

gives the following.

Lemma 10.4. Let M be a compact orientable 3-manifold with boundary pattern
P. Let S be an orientable incompressible pattern-incompressible surface properly
embedded in M. Let P’ be the boundary pattern inherited by Mg. If P’ is

essential, then so is P.



All that is now required in the proof of the Loop Theorem is to establish the

existence of special hierarchies. For this, we need extra machinery.

11. NORMAL SURFACES

Definition. A triangle (respectively, square) in a 3-simplex A2 is a properly
embedded disc D such that 0D intersects precisely three (respectively, four) 1-
simplices transversely in a single point, and is disjoint from the remaining 1-

simplices and all the vertices.

Figure 29.
Fix a triangulation T" of the 3-manifold M.

Definition. A properly embedded surface in M is in normal form with respect to
T if it intersects each 3-simplex in a finite (possibly empty) collection of disjoint

triangles and squares.

Theorem 11.1. Let M be a compact irreducible 3-manifold. Let S be a properly
embedded closed incompressible surface in M, with no component of S a 2-sphere.

Then, for any triangulation T of M, S may ambient isotoped into normal form.

Proof. First, a small ambient isotopy makes S transverse to the 2-skeleton of the
triangulation. Then S intersects each 2-simplex in a collection of arcs and simple
closed curves. We may assume that it misses the vertices of T. Let the weight

w(S) of S be the number of intersections between S and the 1-simplices.

Suppose first that there is a simple closed curve of intersection between S and

the interior of some 2-simplex. Pick one C' innermost in the 2-simplex, bounding
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a disc D in the 2-simplex. Then C bounds a disc D’ in S, since D is not a
compression disc for S. Since M is irreducible, we may ambient isotope D’ onto
D. This does not increase w(S). Hence, we may assume that S intersects each

2-simplex in a (possibly empty) collection of arcs.

If w(S) is zero, then each component of S lies in a 3-simplex. By Theorem
3.8, any such component is 2-sphere, contrary to assumption. We will perform a
sequence of ambient isotopies to the surface, which will reduce w(S) and hence

are guaranteed to terminate.

Let A2 be a 3-simplex of M. Suppose first that S intersects A® in something
other than a collection of discs. If there is a non-disc component of S N A3 with
non-empty boundary, then pick a curve of S N AA? innermost in A3 among all
curves not bounding discs of SNA3. This bounds a compression disc D for SNA3.
Since S is incompressible in M, D bounds a disc in S. Ambient isotope this disc
onto D to decrease w(S). If every component of SNA3 with non-empty boundary
is disc, then any closed component of SN A? lies in the complement of these discs,
which is a 3-ball. Hence, it is a 2-sphere by Theorem 3.8. Thus, we may assume

that each component of S N A? is a disc.

Now suppose that some disc D of S N A? intersects a 1-simplex ¢ more than
once, as in Figure 30. We claim that we can find such a disc D, and two points
of D N o, so that no other points of S N o lie between them on o. First pick two
points of DNo having no points of D No between them on o. Let 8 be the arc of o
between them. Note that 0D separates OA? into two discs and that 3 is properly
embedded in one of these. Hence, if D’ is any other disc of SN A3, it intersects 3
in an even number of points. Hence, we may find a disc D of S N A? intersecting
o in adjacent points on o. Let 8 be the arc of o between them, and let « be some
arc properly embedded in D joining these two points. Note that SN A? separates
A3 into 3-balls and that o U 3 lies in the boundary of one of these balls. Hence,
there is a disc D’ embedded in A3 with D' N (SUOA3) = a U 3. Then we may

use the disc D’ to ambient isotope S, reducing w(.S), as in Figure 30.

Hence, we may assume that each disc of S N A? intersects each 1-simplex at

most once. It is then a triangle or square. Hence, S is now normal. O
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Figure 30.

Theorem 11.2. Let M be a compact orientable irreducible 3-manifold. Then
there is some integer n(M) with the following property. If S is a closed properly
embedded incompressible surface in M with more than n(M) components, none
of which is a 2-sphere, then at least two components of S are parallel (with no

component of S in the product region between them).

Proof. We let n(M) = 21 (M; Zs) + 6t, where ¢ is the number 3-simplices in some
triangulation of M. Let S have components Si, ..., Sk, with & > n(M). Then, by
Theorem 11.1, S may be ambient isotoped into normal form. Note that Mg has
more than (3 (M; Zy)+6t components. Also, for each 3-simplex A3, all but at most
six components of A® — S is a product region, lying between adjacent triangles
or squares. Therefore, more than (;(M;Zs) components of Mg are composed
entirely of product regions. Each such component X of Mg is an I-bundle. If X is
not a product I-bundle, then it is an I-bundle over a non-orientable surface. Then
we can calculate that Hy(0X;7Zy) — H1(X;Zs) is not surjective. Hence, there is
a non-trivial summand of Hy(M;Zsy) for each such component X of M. So, at
most (31 (M; Zsy) are of this form. Hence, there is at least one product I-bundle of

Msg. Tts two boundary components are parallel in M. O
Lemma 11.3. Let M be a compact orientable 3-manifold, and let
M =M, S5 M, 52 T

be a partial hierarchy. Let X = N(OM US; U...US,_1). Then 0X — OM is

incompressible in X.
Proof. Consider a compression disc D for 0X — M in X. Let S; be the first
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surface in the hierarchy it intersects. Then we may assume D N .S; is a collection
of simple closed curves in the interior of D. Pick one innermost in D, bounding a
disc D;. This cannot be a compression disc for S;, and so it bounds a disc D5 in
S;. Remove Dy from D, replace it with Dy, and perform a small isotopy to reduce
|DNS;|. This does not introduce any new intersections with SqU...US;_1. Thus,
we may assume that D is disjoint from S;, and, repeating, from all of the surfaces
in the partial hierarchy. It therefore lies in the the space X, with the interior
of a small regular neighbourhood of S; U...US,_1 removed. This is a copy of
F x I, for a closed orientable surface F', with F' x {1} identified with 0X — OM.
But the boundary of F' x I is mi-injective, and hence incompressible, which is a

contradiction. O

Theorem 11.4. Let M be a compact orientable irreducible 3-manifold with non-
empty boundary and an essential boundary pattern P. Then M has a special
hierarchy. Furthermore, if M has non-empty boundary, we may assume that no

surface in this hierarchy is closed.

Proof. Suppose first that OM is compressible. Let D be a compression disc. If
there is a pattern-compression disc for D, then ‘compressing’ D along this disc
decomposes D into two discs. Both of these discs have fewer intersections with P,
and at least one of these is a compression disc for M. Focus on this disc, and
repeat until we have a pattern-incompressible compression disc for M. Decompose
M along this disc. By Lemma 10.1, the resulting manifold My inherits an essential
boundary pattern. If its boundary is compressible, cut again along a pattern-

incompressible compression disc. Repeat, giving a partial special hierarchy
Sl S2 i
M:M1 —>M2 —>—>MZ,

where OM; is incompressible in M;. We must reach such an M;, since the com-
plexity of OMs is less than that of M7, and so on. Push OM; a little into M,

giving a closed properly embedded surface Fj.
Claim. Fy is incompressible in M.

The surface F; separates M into two components: M; and X = N (OMUS; U
...US;_1). By assumption, Fj is incompressible in M;. By Lemma 11.3, F} is

incompressible in X. This proves the claim.
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Each 2-sphere component of dM; bounds a 3-ball. If every component of dM;
is a 3-ball, then we have constructed our special hierarchy as required. Suppose
therefore that at least one component of 0M; is not a 2-sphere. By Theorem 7.6,
M contains a properly embedded connected incompressible 2-sided non-separating
surface S. If M; has non-empty boundary, then we may assume that 05 is non-
empty. If S has a pattern-compression disc, then ‘compress’ S along this disc
giving a surface S’. Then S’ is incompressible and 2-sided, and at least one
component S7 of S’ is non-separating. Then either x(S1) > x(5), or x(S1) = x(95)
and |S; N P| < |S N P|. Hence, we may assume that S is pattern-incompressible.
Cut along this surface to give M;,1. If OM;,1 is compressible, then, as above,
compress it as far as possible to give a closed incompressible surface F5 in M. Note
that F} and Fy are disjoint. Continue this process. If we have not stopped by
the time we have constructed Fj, ()41, Theorem 11.2 implies that at some stage
F; and Fj are parallel for some ¢ < j, with no Fj, in the product region between
them. Some S, lies in this product region. The theorem is then proved by the

following lemma. O

Lemma 11.5. Let F' be a compact orientable surface. Then there is no connected
non-separating incompressible surface S properly embedded in F x [0,1] that is

disjoint from F x {1}.

Proof. If F is closed, pick a simple closed curve C' in F' that does not bound a disc.
Then C x [0,1] is an annulus A. A small ambient isotopy of S ensures that SN A
is a collection of arcs and simple closed curves. We may remove all simple closed
curves of SN A that bound discs in A. If there is an arc, it has both its endpoints
in C x {0}. We may find such an arc separating off a disc of A with interior
disjoint from S. ‘Compress’ S along this disc to reduce |S N A|. The result is still
an incompressible surface, and at least one component is non-separating. Hence,
we may assume that S N A contains only simple closed curves. By ‘compressing’
S along annuli in A, we may remove each of these. Hence, we may assume that S
lies in (F'—C') x [0, 1]. Therefore, we may assume that F' has non-empty boundary.
Pick a collection « of arcs properly embedded in F' which cut F to a disc. Apply
an argument as above to ensure that S is disjoint from « x [0,1]. It is then a
disc properly embedded in (F — N («)) x [0, 1], which is a 3-ball. It is therefore

separating. O
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12. TOPOLOGICAL RIGIDITY

In this section, we will prove that homotopy equivalent closed Haken 3-
manifolds are homeomorphic. The main ingredients are the existence of hierarchies
and the loop theorem. A vital part of the argument is a version of topological
rigidity for surfaces. Its proof is instructive, since it follows the same approach as

the 3-manifold case.

Theorem 12.1. Let F and G be connected compact surfaces with 71 (F) # 0.
Let f: (F,0F) — (G, 0G) be a map with f.: 7 (F') — 71 (G) injective. Then, there
is a homotopy through maps f;: (F,0F) — (G,0G) with fy = f and either

(i) fi: F — G is a covering map, or
(ii) F is an annulus or Mébius band and fi(F') C 0G.

If, for some components C' of OF, f|c is a covering map, we can require that
file = flc for all t.

Lemma 12.2. Let f: (F,0F) — (G,0G) be a map between connected surfaces
with non-empty boundary such that

1. flor is not injective, and its restriction to each component of OF is a cover,
2. fom(F) — m(G) is an isomorphism,
3. m(F) # 0, and
4. F is compact.
Then conclusion (ii) of Theorem 12.1 holds.

Proof. By (1), there are two points in 0F mapping to the same point in 0G,
and there is a path 7: I — F joining them. Then f o~ is a loop in G. By (2),
there is a loop 3 in F based at v(0) such that f.([8]) = [f o7]~! € 71 (G, fv(0)).
Then o = (.v is a path (I,0I) — (F,0F) such that «(0) # «(1) and foais a

homotopically trivial loop in G.

For i = 0 and 1, let J; be the component of OF containing a(i). (Possibly,
Jo = Jy.) Orient J; in some way, so that it is a loop based at «(i). Let K be the
component of G containing foa(0) = foa(l). Then f.([Jo]) and fi([c.J1.a71])
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are both non-zero powers of [K] in 71 (G, fa(0)), by (1). Hence, by (2), some
power of [Jo] is some power of [a.Ji.a™!] in w1 (F,a(0)). Let z = «(0). Let
p: (F, %) — (F, ) be the covering of F such that p,m,(F, %) = i,m1(Jo, z), where
i: Jo — F is the inclusion map. Lift a to a path & starting at Z. Let Ji be the
component of AF containing &(i). Since some power of [a.J;.o '] is some power

of [Jo] € my(F,z), Jy is compact.
Claim. j() 7é jl.

Otherwise, since m(Jy) — w1 (F) is an isomorphism, we may homotope @&
(keeping its endpoints fixed) to a path a; in Jy. But then fopo ay is a loop in
K which lifts to a path under the covering f|;,: Jo — f(Jo) C K. Since fopoay
is null-homotopic in G, m1(K) — m1(G) is therefore not injective. Hence G is a
disc and so, by (2), m1(F) = 0. However, this contradicts (3) and so this proves

the claim.
Claim. F is compact.
We have the following exact sequence:
0 — Hyo(F,Jo U J1;Zs) — Hi(Jo U Jy; Zs) — Hy(F;Zs).

The last of the above groups is isomorphic to Hi(Jy; Zg) = Zsy. The middle group
is Zo ® Zo. Hence, the first group must be non-trivial. Hence, F is a compact

surface.

The only compact surface with the property that some power of one boundary
component can be freely homotoped into one power of another boundary compo-
nent is an annulus. Since x(F) is a multiple of x(F), F is an annulus or Mdbius
band. Using that f o « is homotopically trivial, we can retract f into dG. So (ii)

of Theorem 12.1 holds. O

Proof of Theorem 12.1. Let p: G — G be the cover where p,mi(G) = fomi(F).

Construct a lift -
G
F L

Then f* is an isomorphism. We will show that f may homotoped so that either

(i) or (ii) hold. This will prove the result.
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Note that each boundary component of F is m-injective in F. Hence, if f is
not already a covering map on OF, we may homotope it to so that it is a cover.
If f |oF is not a homeomorphism, then by Lemma 12.1, case (ii) of Theorem 12.1
holds for f and hence f. So, we may assume that f |oF is a homeomorphism onto

its image.
Claim. G is compact.

If G is non-compact, then m (é) is free. So, F' is not a closed surface. Note

that the following commutes
Hy(F,0F;Z3) — Hi(OF;Zs)

! !

Hy(G,0G;Z2) — Hi(0G;Zo)
Since the map along the top has non-zero image and the map on the right is
injective, their composition is not the zero map. Hence, Hg(é, 9G: Zs) is non-

trivial and so G is compact.

By looking at f instead of f, it therefore suffices to consider the case where
f« is an isomorphism and f|sr is a homeomorphism onto its image. Consider
first the case where OG is non-empty. Pick a collection A of properly embedded
arcs in G which cut it to a disc. We may homotope f (keeping it unchanged on
OF) so that f~1(A) is a collection of properly embedded arcs and simple closed
curves. If there is any simple closed curve, its image in G lies in an arc, and
hence is homotopically trivial. Hence, each simple closed curve of f~*(A) bounds
a disc. By repeatedly considering an innermost such curve, we may homotope f

to remove all such simple closed curves.

Since f|or is a homeomorphism, the endpoints of each arc of f~!(A) map
to distinct points in G. Hence, we may homotope f|ar(f-1(ajuar) so that it is a
homeomorphism. But the remainder F— (f~*(A)UJF) maps to a disc in G. Since
f is mi-injective, F — (f~1(A) U F) is a collection of discs. A map of a disc to a
disc that is a homeomorphism from boundary to boundary may be homotoped to

a homeomorphism. Hence, we have therefore homotoped f to a homeomorphism.

Now consider the case where G is closed. Pick a simple closed curve C in G
that does not bound a disc. Homotope f so that f~1(C) is a collection of simple

closed curves in F, none of which bounds discs. Then f|p_inn(r-1(0))): F —
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int(N(f~1(C))) — G —int(N(C)) is 7 -injective. We have proved the theorem in
the case of surfaces with non-empty boundary. Consider therefore a component of
F—int(N(f~1(C))). If it is an annulus or M&bius band that can be homotoped into
C, then perform this homotopy. A further small homotopy reduces the number
of components of f~!(C). Hence, we may assume that case (i) applies to each

component of F' — int(N(f~1(C))). Then we have homotoped f to a cover. O

We can now tackle topological rigidity for Haken 3-manifolds. The full result

is the following.

Theorem 12.3. Let M and N be Haken 3-manifolds. Suppose that there is
a map f:(M,0M) — (N,0N) such that f.:m (M) — 71 (N) is injective, and
such that for each component B of OM, (f|g)«: m(B) — mi(B’) is injective,
where B’ is the component of ON containing f(B). Then there is a homotopy
f: (M,0M) — (N,0N) such that fy = f and either

(i) fi: M — N is a covering map,
(ii)) M is an I-bundle over a closed surface and f1(M) C ON, or
(iii) N and M are solid tori D* x S' and
fi:D?*x S' - D* x §*
(r,0,0) — (r,p0 + g9, 5¢),

where p,s € Z — {0} and q € Z.

If, for any components B of OM, f|p is already a cover, then we may assume that
filp = f|p for all t.

Corollary 12.4. Let M and N be closed Haken 3-manifolds. Then a homotopy

equivalence between them can be homotoped to a homeomorphism.

In order to prove Theorem 12.3, we will need the following result. Its proof

can be found in Chapter 10 of Hempel’s book (Theorem 10.6).

Theorem 12.5. Let M be a compact orientable irreducible 3-manifold, and sup-
pose that w1 (M) contains a finite index subgroup isomorphic to the fundamental
group of a closed surface other than S* or RP?. Then M is an I-bundle over some

closed surface.
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Lemma 12.6. Suppose that f: (M,0M) — (N,0N) is a map between connected

orientable irreducible 3-manifolds with non-empty boundary such that
1. floasr is not injective, and its restriction to each component of M is a cover,
2. form (M) — m(N) is an isomorphism, and
3. M is compact.

Then either (ii) or (iii) of Theorem 12.3 holds.

Proof. This proof was omitted in the lectures. The argument is very similar to that
of Lemma 12.2. By (1), there are two points in M mapping to the same point in
ON, and there is a path 7: I — M joining them. Then fo-~ is aloop in N. By (2),
there is a loop 3 in M based at v(0) such that f.([8]) = [f o]t € 71 (IV, f(0)).
Then oo = .y is a path (I,0I) — (M,9M) such that

(%) @(0) # a(1) and f o « is a homotopically trivial loop in N.

For i = 0 and 1, let J; be the component of M containing (i) = x;.
(Possibly, Jy = J1.) Let K be the component of ON containing y = f o a(0) =
foa(l). Let p: (M, &o) — (M, x0) be the covering of M such that p,m (M, Zg) =
i0xm1(Jo, To), where ig: Jy — M is the inclusion map. Lift o to a path & starting
at & and ending at i, say. Let J; be the component of M containing é(i).

There is a commutative diagram G
m(Jo,z0) %" m(K,y)

[ |
w1 (M, xq) ELN m1(N,y)
haOl1x

71 (J1, 1) (f‘iz* m1 (K, y)
where i and i1 are the relevant inclusion maps, and ¥, is the ‘change of base-
point map’ (M, z1) — w1 (M, o) sending a loop ¢ based at z; to a.f.a™l.
Commutativity of the lower half of the diagram follows from the fact that f o «
is homotopically trivial. Since f|;, is a finite sheeted covering, we conclude that
Yai1.m1(J1, 1) Nigem1(Jo, xo) has finite index in each term. This intersection is
p*wagl*m(jl,fvl), where i;: J; — M is the inclusion map. Hence, we conclude
that Jj is compact and that a nonzero power of each loop in Jo is freely homotopic

in M to a loop in jl. Note also that p\joz jo — Jy is a homeomorphism.
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Case 1. There is some path « satisfying (x) which also satisfies
(#*) « is not homotopic (keeping da fixed) to a path in OM.

Then Jy # J;. Otherwise, since m(Jy) — m1(M) is surjective, & would
homotope into Jy and pro jecting this homotopy would contradict (xx). In addition,
we can conclude that jo is incompressible in M. If not, we could write 7T1(M )
as a free product, with 7T1(j1) conjugate to a subgroup of one factor. This is
not possible, since 7T1(j1) maps to a subgroup of finite index in 7T1(M ). Thus,
i0v:m1(Jo) — w1 (M) is injective, and therefore an isomorphism. Hence, iq is a
homotopy equivalence, as all the higher homotopy groups of Jo and M are trivial.

We have the exact sequence
0— Hg(M, j() U jl;Zg) — Hg(jo U jl;Zg) — HQ(M; Zg)

Since Hy(Jo U J1; %) = Zy @ Zo and Ho(M; Zy) =2 Hy(Jo; Zo) = Zo, we deduce
that Hg(M, Jo U Jq: Zs) is non-trivial, and hence M is compact. Hence, i0+m1(Jo)
has finite index in m(M). By Theorem 12.5, M is an I-bundle over a closed

surface.

We now obtain a homotopy retracting M into ON. The map ig.: w1 (Jy) —
m1(M) is a injection. For otherwise, Jy is compressible and hence so is jo, which
we already know not be the case. This implies that m1 (K) — 71 (V) is an injection.
For if some element of 1 (K') were sent to the identity in 71 (N), then some power
of it would lie in the image of m1(Jy) and hence Jy would not be mi-injective.
Consider the covering ¢: N — N corresponding to f.m; (Jo). An appropriate lifting
f of f takes Jy and .J; into a component K of ¢~ '(K) (the same component since
[foa] =1). The map 71 (K) — m(N) is necessarily surjective, and it is injective
since 7 (K) — w1 (N) is injective. All higher homotopy groups of K and N are
trivial, and so the inclusion of K into N is a homotopy equivalence. Hence, there is

a deformation retract of N onto K, by a homotopy p;: N — N. Then f, = gopiof

homotopes M into dN. Hence we have conclusion (ii) of Theorem 12.3.

Note that if F' sends two different components of OM to the same component
of ON, then we may find a path « satisfying (x) and (). Hence, the theorem
holds in this case. On the other hand, if F' sends distinct components of M to

distinct components of N, then the right-hand map in the following diagram is
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injective:

Hy(M,OM) — Hy(dM)
|7 |7
Hs5(N,ON) — Hy(ON)
Thus, H3(N,dN) is non-trivial, and therefore N is compact.

Case 2. No path « satisfies both (%) and ().

Then every path « satisfying () is homotopic (keeping its endpoints fixed) to
a path oy in O0M. Hence, Jy = J1. The loop f o« is not contractible in K, since
flJ, is a cover onto K. However f o ay is homotopically trivial in N. Therefore,
K is compressible in N. We wish to show that K is a torus and deduce (iii) of

Theorem 12.3.

If f maps two distinct components of M to the same component of N then
there is a path (8 joining these components such that f o 3 is a loop. Since f, is
surjective, we may assume that [f o 3] = 1, and hence 3 satisfies (%) and ().
Therefore, f takes distinct components of M to distinct components of ON. Note

that f|j, is not injective, since « satisfies (x).

Now f is a homotopy equivalence, and so

x(0M)

= x(M) = x(N) =

(Here, we are using the assumption that N is compact.) Let M have components

J1,...,J, and suppose that f|;, is n;-sheeted. Then

D nx(F(1:) =Y x(Ji) = x(OM) = x(ON) = > x(£(1;)).

So, n; = 1 unless x(f(J;)) = 0. Since n; > 1, x(K) = 0 and so K is a torus.
We have already established that K is compressible. Thus NV is a solid torus,
since this is the only irreducible 3-manifold with a compressible torus boundary
component. Also, Jy is a torus and 71(Jy) — w1 (M) = 71 (N) = Z. Therefore, Jy
is compressible and M is a solid torus. It is now straightforward to homotope f

so that is in the form required by (iii) of Theorem 12.3. O
Proof of Theorem 12.3. Consider first the case where N is non-empty. Let
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p: N — N be the cover such that p,m (N) = f.m (M). Consider the lift

N

f
S
M LN

Then f* is an isomorphism. We will show that f may homotoped so that either
(i), (ii) or (iii) holds. This suffices to prove the theorem. For if (i) holds for f, then
po f is a covering map. If (ii) holds for f, then composing the homotopy with p,
we may homotope M into &N. Suppose that (iii) holds for f. In particular, N is
a solid torus. Then, N must have compressible boundary. Since it is irreducible,
and has boundary a torus, it must be a solid torus. Therefore, p is a standard
finite covering of the solid torus over itself. The composition of this with f is a

map as in (iii), as required.

We are assuming that the restriction of f to each boundary component of M
is 7p-injective onto its image component of M. Hence, by Theorem 12.1, we may
homotope f|ons to a covering. So, flaas is a cover. If flaas sends two distinct
components of M to the same component of N, then, by Lemma 12.6, (ii) or
(iii) of 12.3 hold. So, we may assume that f loas sends distinct components of
OM to distinct components of ON. Hence, the right-hand map in the following

diagram is injective.

Hs(M,0M) — Hy(OM)
|7 |7
H3(N,ON) — Hy(dN)
So, the fundamental class in H3(M,dM ) has non-trivial image in H 3(N ,ON ) and

hence N is compact.

Hence, it suffices to consider the case where f, is an isomorphism. By Lemma
12.6, we may assume that f|gas is a homeomorphism onto ON, for otherwise either
(ii) or (iii) holds.

Let

S S. Sy —
N=N 25N, 22 2N,

be a hierarchy. By Theorem 11.4, we may assume that each surface has non-

empty boundary. Let Fy = f~1(S;). After a homotopy of f (fixed on OM), we
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may assume that F} is a 2-sided incompressible surface, no component of which
is a 2-sphere. We may also assume that f maps N (F;) onto N (S7) in way that

sends fibres homeomorphically to fibres. The following diagram commutes.

n LS
| |
M L

By Theorem 3.3, m1(Fy) — m1 (M) is injective and hence 1 (Fy) — m1(.S71) is injec-
tive. Note that the restriction of f to 0F} is a homeomorphism. If any component
of Fy is a disc, so is S1, and hence so is every component of Fy. We therefore
homotope f|r, keeping f|gr, fixed, so that it is a homeomorphism on each com-
ponent. If no component of F; is a disc, then we may apply Theorem 12.1. Note
that (ii) of Theorem 12.1 cannot hold, since f|sp, is a homeomorphism. So we may
homotope f|g, to a covering map, keeping f|sp, fixed. This homotopy extends to
M, so that f still sends fibres of N(F}) onto fibres of N(S7). The cover f|g, is
a homeomorphism on its boundary, and hence is a homeomorphism. Therefore,
f restricts to a map My = M — int(N(F})) — Na that is a homeomorphism be-
tween the boundaries of these 3-manifolds. Applying an argument similar to that
in Theorem 3.3, we get that 71 (My) — w1 (M) is injective. Hence, My — Ny is

mi-injective.

Arguing inductively, we may assume that (i), (ii) or (iii) holds for My — Nbs.
However, neither (ii) nor (iii) holds, except possibly |[p| = |s| = 1 in (iii), since
floas, is a homeomorphism. Thus, f|as, is a cover. It is a homeomorphism near

OM,, and therefore f is a homeomorphism. This proves the inductive step.

The induction starts with M,, — N,,, with IV,, a collection of 3-balls. Since the
restriction of this map to each component of 0M,, is mi-injective, each component
of OM,, is a 2-sphere. But M, is irreducible. Hence, it is a collection of 3-balls.

The map may therefore be homotoped to a homeomorphism.

Suppose now that N is closed. Let S be an orientable incompressible surface
in N, no component of which is a 2-sphere. Then we may homotope f so that
F = f~1(S) is an orientable incompressible surface in M, no component of which
is a 2-sphere. As above, the map f|p: F' — S is mi-injective and may therefore be
homotoped to a cover. Also, f|y—intnv(ry): M — int(N(F)) — N —int(N(S)) is
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mi-injective. Apply the theorem in the case of bounded 3-manifolds to this map.
No component of M —int(N(F)) satisfies (iii) of Theorem 12.3. If any component
satisfies (ii), we may homotope f to reduce |F|. Therefore, we may assume that
(i) holds for each component of M — int(N(F)). We have therefore homotoped f

to a cover. O
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