Three-dimensional manifolds Michaelas Term 1999

Examples Sheet 1

Surfaces

- 1. Prove the 2-dimensional pl Schoëflies theorem: any properly embedded simple closed curve in a 2-sphere is ambient isotopic to the standard simple closed curve.
- 2. Classify (up to ambient isotopy) all the simple closed curves properly embedded in an annulus. What about such curves in a torus?
- 3. Show that any compact orientable surface with negative Euler characteristic is expressible as union of pairs of pants glued along their boundary curves.
- 4. Show that, if C is a homotopically trivial simple closed curve properly embedded in an orientable surface, then C bounds an embedded disc. (One approach to this is to use questions 2 and 3).

SURFACES IN 3-MANIFOLDS

- 5. Show that if a prime orientable 3-manifold M contains a compressible torus boundary component, then M is the solid torus.
- 6. Find a compressible torus T properly embedded in some prime orientable 3-manifold M, such that no component of M-T is a solid torus.
- 7. Let M be a compact 3-manifold. Suppose that we cut this 3-manifold along a sequence of properly embedded incompressible surfaces, and end with a collection of 3-balls. Show that M is prime. Apply this to the 3-manifold given as an example at the end of Lecture 1 (the space obtained by attaching thickened punctured tori to a thickened torus).

HEEGAARD SPLITTINGS

8. Show that any closed orientable 3-manifold has Heegaard splittings of arbitrarily high genus.

- 9. Define the Heegaard genus h(M) of a closed orientable 3-manifold M to be the minimal genus of a Heegaard splitting for M. Show that $h(M_1 \# M_2) \le h(M_1) + h(M_2)$. (In fact, equality always holds.)
- 10. Find closed orientable 3-manifolds with arbitrarily large Heegaard genus.

Dehn Surgery

11. Let L be a link in S^3 . Let M be a 3-manifold obtained by surgery on L. Let C be a collection of simple closed curves, one on each component of $\mathcal{N}(L)$, that each bounds a disc in one of the attached solid tori, but none of which bounds a disc in $\partial \mathcal{N}(L)$. Show that the homeomorphism class of M only depends on the isotopy class of C in $\partial \mathcal{N}(L)$.

These curves C are usually specified by assigning a 'slope' in $\mathbb{Q} \cup \infty$ to each component of L. A slope p/q (where p and q are coprime integers) on a component K of L determines a curve on $\partial \mathcal{N}(K)$, which represents $(p,q) \in \mathbb{Z} \oplus \mathbb{Z} = H_1(\partial \mathcal{N}(K))$. Here, the identification between $\mathbb{Z} \oplus \mathbb{Z}$ and $H_1(\partial \mathcal{N}(K))$ is chosen so that a curve representing (1,0) bounds a disc in $\partial \mathcal{N}(K)$ and a curve representing (0,1) is homologically trivial in $H_1(S^3 - K)$.

- 12. What is the manifold obtained by surgery on the unknot with slope 0? What about 1/q surgery, or more generally, p/q surgery on the unknot?
- 13. Show that any 3-manifold obtained by 1/q surgery on a knot in S^3 has the same homology as S^3 .
- 14. Show that any 3-manifold M obtained by surgery on a knot, with slope zero, has $H_1(M) = \mathbb{Z}$. Construct an explicit non-separating orientable surface properly embedded in M.
- 15. Show that any closed orientable 3-manifold is obtained by surgery on a link in S^3 using only integral surgery slopes.
- 16. Construct a surgery descriptions of each lens space using only integral surgery slopes. (Express an element of $SL(2,\mathbb{Z})$ as a product of 'standard' matrices.)
- 17. Using question 12, show that any closed orientable 3-manifold is obtained by surgery on a link in S^3 , where each component of the link is unknotted.

- 18. Is there a way of giving a surgery description of a compact orientable 3-manifold with non-empty boundary?
- 19. Let M be a 3-manifold obtained by surgery on the trefoil knot (the non-trivial knot with three crossings). Show that M has Heegaard genus at most two. (One of these spaces is the famous Poincaré homology 3-sphere.)

ONE-SIDED AND TWO-SIDED SURFACES

- 20. Show that if an orientable prime 3-manifold M contains a properly embedded $\mathbb{R}P^2$, then M is a copy of $\mathbb{R}P^3$.
- 21. In the lens space M obtained by 6/1 surgery on the unknot, construct a properly embedded copy of the non-orientable surface N_3 . Show that this is incompressible, but that the map $\pi_1(N_3) \to \pi_1(M)$ induced by inclusion is not injective.