The crossing number of composite knots

Marc Lackenby

University of Oxford
Let K be a knot in S^3.

Its crossing number $c(K)$ is the minimal number of crossings in a diagram for K.

If K_1 and K_2 are oriented knots, their connected sum $K_1 \# K_2$ is defined by:
Old conjecture: $c(K_1 \# K_2) = c(K_1) + c(K_2)$.

- $c(K_1 \# K_2) \leq c(K_1) + c(K_2)$ is trivial.
- True when K_1 and K_2 are alternating [Kauffman], [Murasugi], [Thistlethwaite] - follows from the fact that a reduced alternating diagram has minimal crossing number, which is proved using the Jones polynomial.
- Very little is known in general.

Theorem: [L]

$$\frac{c(K_1) + c(K_2)}{281} \leq c(K_1 \# K_2) \leq c(K_1) + c(K_2).$$
Theorem: [L]

\[
\frac{c(K_1) + \ldots + c(K_n)}{281} \leq c(K_1\#\ldots\#K_n) \leq c(K_1) + \ldots + c(K_n).
\]

The advantage of this more general formulation is:

We may assume that each \(K_i \) is prime.

Write \(K_i = K_{i,1}\#\ldots\#K_{i,m(i)} \).

Assuming the theorem for a sum of prime knots:

\[
c(K_1\#\ldots\#K_n) \geq \frac{\sum_{i=1}^n \sum_{j=1}^{m(i)} c(K_{i,j})}{281} \geq \frac{\sum_{i=1}^n c(K_i)}{281}.
\]

We may also assume that each \(K_i \) is non-trivial.
Distant unions

The distant union $K_1 \sqcup \ldots \sqcup K_n$ of knots K_1, \ldots, K_n:

![Diagram of distant union](image)

Lemma: $c(K_1 \sqcup \ldots \sqcup K_n) = c(K_1) + \ldots + c(K_n)$.

Lemma: \(c(K_1 \sqcup \ldots \sqcup K_n) = c(K_1) + \ldots + c(K_n) \).

Proof:

(\(\leq \)): Use minimal crossing number diagrams for \(K_1, \ldots, K_n \) to construct a diagram for \(K_1 \sqcup \ldots \sqcup K_n \).

(\(\geq \)): Let \(D \) be a minimal crossing number diagram of \(K_1 \sqcup \ldots \sqcup K_n \). Use this to construct a diagram \(D_i \) of \(K_i \) by discarding the remaining components. Then

\[
c(K_1 \sqcup \ldots \sqcup K_n) = c(D) \\
\geq c(D_1) + \ldots + c(D_n) \\
\geq c(K_1) + \ldots + c(K_n).
\]
Let D be a minimal crossing number diagram of $K_1 \# \ldots \# K_n$.

Use this to construct a diagram D' for $K_1 \sqcup \ldots \sqcup K_n$ such that $c(D') \leq 281 \ c(D)$. Then

$$c(K_1) + \ldots + c(K_n) = c(K_1 \sqcup \ldots \sqcup K_n) \leq c(D') \leq 281 \ c(D) = 281 \ c(K_1 \# \ldots \# K_n).$$
Creating $K_1 \sqcup \ldots \sqcup K_n$ from $K_1\# \ldots \# K_n$

Let $K = K_1\# \ldots \# K_n$.
Let $X =$ exterior of K.
Let $A_1, \ldots, A_n =$ the following annuli:
Let $K = K_1 \# \ldots \# K_n$.

Let $X =$ exterior of K.

Let $A_1, \ldots, A_n =$ the following annuli:

Remove the sub-arcs of K running from A_i to A_{i+1} (mod n).
Creating $K_1 \sqcup \ldots \sqcup K_n$ from $K_1 \# \ldots \# K_n$

Let $K = K_1 \# \ldots \# K_n$.
Let $X = \text{exterior of } K$.
Let $A_1, \ldots, A_n = \text{the following annuli:}$

![Diagram of annuli with labels A_1, α_1, α_i, A_n.]

Remove the sub-arcs of K running from A_i to $A_{i+1} \pmod n$.
Add an arc α_i on A_i, running between the two boundary components.
(In fact, we do something a bit more complicated than this.)
Creating D' from D

D may be complicated.
D' from D may be complicated.

Hence, the annuli $A_1 \cup \ldots \cup A_n$ might be embedded in a ‘twisted way’
Creating D' from D

D may complicated.

Hence, the annuli $A_1 \cup \ldots \cup A_n$ might be embedded in a ‘twisted way’

So, when we add the arcs $\alpha_1 \cup \ldots \cup \alpha_n$, we may introduce new crossings.
We need to control the arcs $\alpha_1 \cup \ldots \cup \alpha_n$.

So, we need to control how the annuli A_i are embedded in X (the exterior of K).

For this, we use normal surface theory.

This requires a triangulation of X.

In fact, we’ll use a handle structure.
Place four 0-handles near each crossing.
Place four 0-handles near each crossing.

Add four 1-handles.
Place four 0-handles near each crossing.

Add four 1-handles.

Near each edge of the diagram, add two 1-handles.
Add a 2-handle at each crossing.
Add a 2-handle in each region.
Add 2-handles along each ‘over-arc’ and ‘under-arc’ of the diagram. Finally, add 3-handles above and below the diagram.
The local picture near each 0-handle

We now have a handle structure on X, the exterior of K.

Let $A = A_1 \cup \ldots \cup A_n$.

We want to ambient isotope A into normal form ...
Because A is incompressible and ∂-incompressible, we may isotope it into normal form.

ie. each component of intersection with the handles looks like:

\[
\begin{align*}
0\text{-handle} & \quad 1\text{-handle} & \quad 2\text{-handle} \\
\end{align*}
\]

In addition, each component of intersection with the 0-handles satisfies certain conditions.

\Rightarrow only finitely many normal ‘disc types’.
An example of a normal disc type:
Recall that we must add an embedded arc α_i on each annulus A_i, running between the two boundary components.

Any such arc will do.

We may arrange that

- $\alpha_1 \cup \ldots \cup \alpha_n$ misses the 2-handles

- respects the product structure on the 1-handles.

Pick α_i so that it has minimal length (subject also to an extra condition).

This implies that it intersects each normal disc in at most one arc.
Inserting the arcs $\alpha = \alpha_1 \cup \ldots \cup \alpha_n$ gives a diagram D' for $K_1 \sqcup \ldots \sqcup K_n$:

Its crossings come in 3 types.
What we’re aiming for

Inserting the arcs $\alpha = \alpha_1 \cup \ldots \cup \alpha_n$ gives a diagram D' for $K_1 \sqcup \ldots \sqcup K_n$:

closely follows a subset of K

bounded number of parallel arcs

one of finitely many tangles; α-α crossings

$= D'$

α-K crossings

K-K crossing
Proof of the main theorem

D' has 3 types of crossings:

- $K - K$ crossings $\leq c(D)$
- $\alpha - K$ crossings $\leq 4c(D) \times 6$
- $\alpha - \alpha$ crossings $\leq 4c(D) \times 64$

TOTAL $\leq 281 \ c(D)$
Wishful thinking: We’d be done if we could arrange that A intersected each handle in one of finitely many possible configurations.

But this probably isn’t possible.

However, there are only finitely many configurations of disc types.

Key Claim 1. α can be chosen to run over at most 2 normal discs of each disc type in each handle.

This $\Rightarrow \alpha$ intersects each handle in one of finitely many possible configurations, and we’re done.
Parallelity bundles

What if a handle contains more than one copy of a normal disc? Then, any two such discs are normally parallel.

Between any two normally parallel adjacent discs, there is a copy of $D^2 \times I$.

These patch together to form an I-bundle embedded in the exterior of A, called a ‘parallelity bundle’ B.
Cut X along the annuli A.

Throw away the component with a copy of A in its boundary.

Let M be the rest.

Then $M = X_1 \sqcup \ldots \sqcup X_n$, where each X_i is the exterior of K_i.

Let S be the copy of A in M.

M inherits a handle structure from the handle structure on X.

The space between two adjacent normal discs of A becomes a ‘parallelity handle’ of M.
Claim 2. We may pick α so that it misses the parallellity bundle \mathcal{B}.

This \Rightarrow Claim 1, because if a normal disc of A has parallel copies on both sides, it lies in a parallellity handle of M.

In fact, it is convenient to enlarge \mathcal{B} to a larger I-bundle \mathcal{B}'.

We’ll arrange for α to miss \mathcal{B}' and hence \mathcal{B}.
A generalised parallelity bundle

is a 3-dimensional submanifold \mathcal{B}' of (M, S) such that

• \mathcal{B}' is an I-bundle over a compact surface F;

• the ∂I-bundle is $\mathcal{B}' \cap S$;

• \mathcal{B}' is a union of handles;

• any handle in \mathcal{B}' that intersects the I-bundle over ∂F is a parallelity handle;

• $\text{cl}(M - \mathcal{B}')$ inherits a handle structure.

The ∂I-bundle is the horizontal boundary of \mathcal{B}'. The I-bundle over ∂F is the vertical boundary.
Claim 3: Possibly after modifying its handle structure, \((M, S)\) contains a generalised parallelity bundle \(\mathcal{B}'\) such that:

- \(\mathcal{B}'\) contains every parallelity handle of \(M\);
- \(\mathcal{B}'\) is a collection of \(I\)-bundles over discs.

The horizontal boundary is a union of discs in the annuli \(A\).

\(\Rightarrow\) it cannot separate the two components of \(\partial A_i\).

\(\Rightarrow\) \(\alpha\) can be chosen to miss \(\mathcal{B}'\)

\(\Rightarrow\) Claim 2.
How to prove Claim 3

Recall: B is the parallelity bundle.

Enlarge this to a maximal generalised parallelity bundle B'.

Claim 4: The ∂I-bundle of a maximal generalised parallelity bundle is incompressible.

Main idea of proof:

If the ∂I-bundle were compressible, then we would (probably) get an arrangement like:
→ Enlarge \mathcal{B}' over $(\text{disc}) \times I$ region.

Contradicts maximality of \mathcal{B}'. \hfill \Box \text{ Claim 4.}

Because the horizontal boundary of \mathcal{B}' is an incompressible subsurface of A, it is a union of discs and annuli parallel to core curves.
How to deal with annular components of the ∂I-bundle

The corresponding component of B' is an I-bundle over an annulus. Its vertical boundary is two incompressible annuli in M. Since each K_i is prime, these are boundary parallel in M.

Keep applying this sort of modification to the handle structure \rightarrow

Claim 3. □ Main Theorem.
Conjecture: $c(K) \geq c(L)$.

Theorem: [L] There is a universal computable constant $N \geq 1$ with following property. If K is a non-trivial satellite knot, with companion knot L, then $c(K) \geq c(L)/N$.