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Let K be a knot in S3.

Its crossing number ¢(K) is the minimal number of crossings in a
diagram for K.

If K1 and K5 are oriented knots, their connected sum K;§K5 is
defined by:

)& B

K1 #K>



Old conjecture: ¢(K14K2) = ¢(K1) + c¢(K3).
C(KluKQ) S C(Kl) -+ C(KQ) is trivial.

True when K; and K are alternating [Kauffman]|, [Murasugi|,
[Thistlethwaite] - follows from the fact that a reduced alternating
diagram has minimal crossing number, which is proved using the
Jones polynomial.

Very little is known in general.

Theorem: [L]

c(K1) + c(K>)

281 < e(K11K>) < o(Kq) + c¢(K>).




Theorem: [L]

(K1) 4+ ...+ c(Ky)
281

<c(Kif.. . 41K,) <c(Kyp)+ ...+ c(Ky).

The advantage of this more general formulation is:
We may assume that each K is prime.
Write Kz = Ki,lh “. uKz,m(z)

Assuming the theorem for a sum of prime knots:

Zz 12?@1 c(Ki,5) > Z?:l c(K;)
281 - 281 .

We may also assume that each K; is non-trivial.



DISTANT UNIONS

The distant union Ky LI... Ll K,, of knots K1,..., K,:

Q&

Lemma: ¢(K; U...UK,)=c(Ki)+ ...+ c(K,).



Lemma: ¢(K1U...UK,)=c(Ki)+ ...+ c(K,).
Proof:

(<): Use minimal crossing number diagrams for Kq,..., K, to
construct a diagram for K7 U ... L K,.

(>): Let D be a minimal crossing number diagram of K; U... U K,.

Use this to construct a diagram D; of K; by discarding the remaining
components. Then

c(KiU...UK,)=cD)



STRATEGY FOR THE MAIN THEOREM

Let D be a minimal crossing number diagram of Kif...{K,.

Use this to construct a diagram D’ for K; U ... U K, such that
c(D") <281 ¢(D). Then



CREATING K7 U...UK,, FROM Kif...1K,

Let K = Kq1f...1K,.
Let X = exterior of K.
Let Aq,..., A, = the following annuli:

K #.. #K,




CREATING K7 U...UK,, FROM Kif...1K,

Let K = Kq14...1K,,.
Let X = exterior of K.
Let Aq,..., A, = the following annuli:

Remove the sub-arcs of K running from A; to A;11 (mod n).



CREATING K7 U...UK,, FROM Kif...1K,

Let K = Kq14...1K,,.
Let X = exterior of K.
Let Aq,..., A, = the following annuli:

4 Ay
6 @ X S o—% O
Remove the sub-arcs of K running from A; to A;+1 (mod n).

Add an arc «; on A;, running between the two boundary components.

(In fact, we do something a bit more complicated than this.)



CREATING D’ FROM D

Q@Q}f@

K #.. #K,

D may be complicated.



CREATING D’ FROM D

K #.. #K,

D may complicated.

Hence, the annuli A; U... U A,, might be embedded in a ‘twisted

way’



CREATING D’ FROM D

D may complicated.

Hence, the annuli A; U... U A,, might be embedded in a ‘twisted

way’

So, when we add the arcs a; U ... U a,, we may introduce new

crossings.



We need to control the arcs v U ... U «y,.

So, we need to control how the annuli A; are embedded in X (the
exterior of K).

For this, we use normal surface theory.
This requires a triangulation of X.

In fact, we’ll use a handle structure.



A HANDLE STRUCTURE ON X FROM D

0-handle
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Place four 0-handles near each crossing.



A HANDLE STRUCTURE FROM D

Oh ndle
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1-handles

Place four 0-handles near each crossing.

Add four 1-handles.



A HANDLE STRUCTURE FROM D

N—handl%

1-handles

Place four 0-handles near each crossing.
Add four 1-handles.

Near each edge of the diagram, add two 1-handles.



Add a 2-handle at each crossing.



Add a 2-handle in each region.



Add 2-handles along each ‘over-arc’ and ‘under-arc’ of the diagram.

Finally, add 3-handles above and below the diagram.



THE LOCAL PICTURE NEAR EACH O-HANDLE

U .

—_ ~
/ / ~= N

We now have a handle structure on X, the exterior of K.

Let A=A, U...UA,.

We want to ambient isotope A into normal form ...



NORMAL SURFACE THEORY

Because A is incompressible and 0-incompressible, we may isotope

it into normal form.

ie. each component of intersection with the handles looks like:

0-handle 1-handle 2-handle

In addition, each component of intersection with the O-handles
satisfies certain conditions.

— only finitely many normal ‘disc types’.



An example of a normal disc type:




Recall that we must add an embedded arc «; on each annulus A;,
running between the two boundary components.

Any such arc will do.

We may arrange that

a1 U. ..U a, misses the 2-handles

respects the product structure on the 1-handles.

Pick a; so that it has minimal length (subject also to an extra
condition).

This implies that it intersects each normal disc in at most one arc.



THE DIAGRAM D’

Inserting the arcs « = o1 U ... U a, gives a diagram D’ for
Kl I Knl

closely follows (\ /
fK
a subset 0 -

"! - s,
—~——e " 'l
.S% crossing

Its crossings come in 3 types.



WHAT WE’'RE AIMING FOR

Inserting the arcs o« = o1 U ... U a, gives a diagram D’ for
Kl (I I Knl

closely follows \ /
fK
a subset 0 -

.
bounded number *
of parallel arcs e

K

one of fini
many tangles:
o-0L Crossings



PROOF OF THE MAIN THEOREM

D’ has 3 types of crossings:

K — K crossings < ¢(D)
a — K crossings < 4C(D)
a — « crossings <4c¢(D) % 64

TOTAL < 281 ¢(D)



WISHFUL THINKING: We’d be done if we could arrange that A
intersected each handle in one of finitely many possible
configurations.

But this probably isn’t possible.
However, there are only finitely many configurations of disc types.

Ky CLAIM 1. « can be chosen to run over at most 2 normal discs
of each disc type in each handle.

This = « intersects each handle in one of finitely many possible

configurations, and we're done.



PARALLELITY BUNDLES

What if a handle contains more than one copy of a normal disc?
Then, any two such discs are normally parallel.

Between any two normally parallel adjacent discs, there is a copy of
D? x I.

These patch together to form an /-bundle embedded in the exterior
of A, called a ‘parallelity bundle’ 5.



SOME TERMINOLOGY
Cut X along the annuli A.
Throw away the component with a copy of A in its boundary.
Let M be the rest.
Then M = X, Ul ... U X,,, where each X, is the exterior of Kj.
Let S be the copy of A in M.
M inherits a handle structure from the handle structure on X.

The space between two adjacent normal discs of A becomes a
‘parallelity handle’ of M.



CrAIM 2. We may pick a so that it misses the parallelity bundle B.

This = Claim 1, because if a normal disc of A has parallel copies on

both sides, it lies in a parallelity handle of M.
In fact, it is convenient to enlarge B to a larger I-bundle 5’.

We'll arrange for « to miss B’ and hence B.



A GENERALISED PARALLELITY BUNDLE
is a 3-dimensional submanifold B’ of (M, S) such that
B’ is an I-bundle over a compact surface F'
the 0I-bundle is B’ N S;

B’ is a union of handles;

any handle in B’ that intersects the I-bundle over JF is a parallelity
handle;

cl(M — B’) inherits a handle structure.

The dI-bundle is the horizontal boundary of B’.
The I-bundle over JF is the vertical boundary.



CLAIM 3: Possibly after modifying its handle structure, (M, .S)
contains a generalised parallelity bundle B’ such that:

e 3’ contains every parallelity handle of M;

e 3’ is a collection of I-bundles over discs.
The horizontal boundary is a union of discs in the annuli A.
= it cannot separate the two components of 0A,.
= « can be chosen to miss B’

= Claim 2.



How TO PROVE CLAIM 3
Recall: B is the parallelity bundle.
Enlarge this to a maximal generalised parallelity bundle 5.

CrAIM 4: The 0I-bundle of a maximal generalised parallelity bundle

is incompressible.
Main idea of proof:

If the OI-bundle were compressible, then we would (probably) get an

arrangement like:



possible other

component of B’
component

with compressible

horizontal bW\ of B

— Enlarge B’ over (disc)x [ region.
Contradicts maximality of B’. 0 Claim 4.

Because the horizontal boundary of B’ is an incompressible
subsurface of A, it is a union of discs and annuli parallel to core

curves.



How TO DEAL WITH ANNULAR COMPONENTS OF THE O/-BUNDLE
The corresponding component of B’ is an I-bundle over an annulus.
Its vertical boundary is two incompressible annuli in M.

Since each K is prime, these are boundary parallel in M.

annulus x / boundary
component of M

of B’

7]

—

remove

Keep applying this sort of modification to the handle structure —
Claim 3. 0 Main Theorem.



SATELLITE KNOTS

satellite knot K companion knot L

Conjecture: c¢(K) > c(L).

Theorem: [L] There is a universal computable constant N > 1 with
following property. If K is a non-trivial satellite knot, with
companion knot L, then ¢(K) > ¢(L)/N.



