The crossing number of composite knots

Marc Lackenby

University of Oxford

Let K be a knot in S^{3}.
Its crossing number $c(K)$ is the minimal number of crossings in a diagram for K.

If K_{1} and K_{2} are oriented knots, their connected sum $K_{1} \sharp K_{2}$ is defined by:

K_{1}

K_{2}

$K_{1} \# K_{2}$

Old conjecture: $c\left(K_{1} \sharp K_{2}\right)=c\left(K_{1}\right)+c\left(K_{2}\right)$.

- $c\left(K_{1} \sharp K_{2}\right) \leq c\left(K_{1}\right)+c\left(K_{2}\right)$ is trivial.
- True when K_{1} and K_{2} are alternating [Kauffman], [Murasugi], [Thistlethwaite] - follows from the fact that a reduced alternating diagram has minimal crossing number, which is proved using the Jones polynomial.
- Very little is known in general.

Theorem: [L]

$$
\frac{c\left(K_{1}\right)+c\left(K_{2}\right)}{281} \leq c\left(K_{1} \sharp K_{2}\right) \leq c\left(K_{1}\right)+c\left(K_{2}\right) .
$$

Theorem: [L]

$$
\frac{c\left(K_{1}\right)+\ldots+c\left(K_{n}\right)}{281} \leq c\left(K_{1} \sharp \ldots \sharp K_{n}\right) \leq c\left(K_{1}\right)+\ldots+c\left(K_{n}\right) .
$$

The advantage of this more general formulation is:
We may assume that each K_{i} is prime.
Write $K_{i}=K_{i, 1} \not{ }^{\ldots} \ldots \sharp K_{i, m(i)}$.
Assuming the theorem for a sum of prime knots:

$$
c\left(K_{1} \sharp \ldots \sharp K_{n}\right) \geq \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} c\left(K_{i, j}\right)}{281} \geq \frac{\sum_{i=1}^{n} c\left(K_{i}\right)}{281} .
$$

We may also assume that each K_{i} is non-trivial.

DISTANT UNIONS

The distant union $K_{1} \sqcup \ldots \sqcup K_{n}$ of knots K_{1}, \ldots, K_{n} :

Lemma: $c\left(K_{1} \sqcup \ldots \sqcup K_{n}\right)=c\left(K_{1}\right)+\ldots+c\left(K_{n}\right)$.

Lemma: $c\left(K_{1} \sqcup \ldots \sqcup K_{n}\right)=c\left(K_{1}\right)+\ldots+c\left(K_{n}\right)$.
Proof:
(\leq) : Use minimal crossing number diagrams for K_{1}, \ldots, K_{n} to construct a diagram for $K_{1} \sqcup \ldots \sqcup K_{n}$.
(\geq) : Let D be a minimal crossing number diagram of $K_{1} \sqcup \ldots \sqcup K_{n}$. Use this to construct a diagram D_{i} of K_{i} by discarding the remaining components. Then

$$
\begin{aligned}
c\left(K_{1} \sqcup \ldots \sqcup K_{n}\right) & =c(D) \\
& \geq c\left(D_{1}\right)+\ldots+c\left(D_{n}\right) \\
& \geq c\left(K_{1}\right)+\ldots+c\left(K_{n}\right) .
\end{aligned}
$$

Let D be a minimal crossing number diagram of $K_{1} \sharp \ldots \sharp K_{n}$. Use this to construct a diagram D^{\prime} for $K_{1} \sqcup \ldots \sqcup K_{n}$ such that $c\left(D^{\prime}\right) \leq 281 c(D)$. Then

$$
\begin{aligned}
c\left(K_{1}\right)+\ldots+c\left(K_{n}\right) & =c\left(K_{1} \sqcup \ldots \sqcup K_{n}\right) \\
& \leq c\left(D^{\prime}\right) \\
& \leq 281 c(D) \\
& =281 c\left(K_{1} \sharp \ldots \sharp K_{n}\right) .
\end{aligned}
$$

Creating $K_{1} \sqcup \ldots \sqcup K_{n}$ From $K_{1} \sharp \ldots \sharp K_{n}$

Let $K=K_{1} \sharp \ldots \sharp K_{n}$.
Let $X=$ exterior of K.
Let $A_{1}, \ldots, A_{n}=$ the following annuli:

Let $K=K_{1} \sharp \ldots \sharp K_{n}$.
Let $X=$ exterior of K.
Let $A_{1}, \ldots, A_{n}=$ the following annuli:

Remove the sub-arcs of K running from A_{i} to $A_{i+1}(\bmod n)$.

Let $K=K_{1} \sharp \ldots \sharp K_{n}$.
Let $X=$ exterior of K.
Let $A_{1}, \ldots, A_{n}=$ the following annuli:

Remove the sub-arcs of K running from A_{i} to $A_{i+1}(\bmod n)$.
Add an arc α_{i} on A_{i}, running between the two boundary components.
(In fact, we do something a bit more complicated than this.)

Creating D^{\prime} from D

D may be complicated.

Creating D^{\prime} from D

D may complicated.
Hence, the annuli $A_{1} \cup \ldots \cup A_{n}$ might be embedded in a 'twisted way'

Creating D^{\prime} from D

D may complicated.
Hence, the annuli $A_{1} \cup \ldots \cup A_{n}$ might be embedded in a 'twisted way'

So, when we add the arcs $\alpha_{1} \cup \ldots \cup \alpha_{n}$, we may introduce new crossings.

We need to control the arcs $\alpha_{1} \cup \ldots \cup \alpha_{n}$.
So, we need to control how the annuli A_{i} are embedded in X (the exterior of K).

For this, we use normal surface theory.
This requires a triangulation of X.
In fact, we'll use a handle structure.

A handle structure on X from D

Place four 0-handles near each crossing.

A handle structure from D

Place four 0-handles near each crossing.
Add four 1-handles.

Place four 0-handles near each crossing.
Add four 1-handles.
Near each edge of the diagram, add two 1-handles.

Add a 2-handle at each crossing.

Add a 2-handle in each region.

Add 2-handles along each 'over-arc' and 'under-arc' of the diagram.
Finally, add 3-handles above and below the diagram.

The local Picture near each 0-HANDLE

We now have a handle structure on X, the exterior of K.
Let $A=A_{1} \cup \ldots \cup A_{n}$.
We want to ambient isotope A into normal form ...

Because A is incompressible and ∂-incompressible, we may isotope it into normal form.
ie. each component of intersection with the handles looks like:

0-handle

1-handle

2-handle

In addition, each component of intersection with the 0-handles satisfies certain conditions.
\longrightarrow only finitely many normal 'disc types'.

An example of a normal disc type:

Recall that we must add an embedded arc α_{i} on each annulus A_{i}, running between the two boundary components.

Any such arc will do.
We may arrange that

- $\alpha_{1} \cup \ldots \cup \alpha_{n}$ misses the 2-handles
- respects the product structure on the 1-handles.

Pick α_{i} so that it has minimal length (subject also to an extra condition).

This implies that it intersects each normal disc in at most one arc.

Inserting the arcs $\alpha=\alpha_{1} \cup \ldots \cup \alpha_{n}$ gives a diagram D^{\prime} for $K_{1} \sqcup \ldots \sqcup K_{n}$:

Its crossings come in 3 types.

Inserting the arcs $\alpha=\alpha_{1} \cup \ldots \cup \alpha_{n}$ gives a diagram D^{\prime} for $K_{1} \sqcup \ldots \sqcup K_{n}$:

Proof of the main theorem

D^{\prime} has 3 types of crossings:

$K-K$ crossings	$\leq c(D)$
$\alpha-K$ crossings	$\leq 4 c(D) \times 6$
$\alpha-\alpha$ crossings	$\leq 4 c(D) \times 64$

TOTAL
$\leq 281 c(D)$

Wishful thinking: We'd be done if we could arrange that A intersected each handle in one of finitely many possible configurations.

But this probably isn't possible.
However, there are only finitely many configurations of disc types.
Key Claim 1. α can be chosen to run over at most 2 normal discs of each disc type in each handle.

This $\Rightarrow \alpha$ intersects each handle in one of finitely many possible configurations, and we're done.

What if a handle contains more than one copy of a normal disc? Then, any two such discs are normally parallel.

Between any two normally parallel adjacent discs, there is a copy of $D^{2} \times I$.

These patch together to form an I-bundle embedded in the exterior of A, called a 'parallelity bundle' \mathcal{B}.

Some Terminology
Cut X along the annuli A.
Throw away the component with a copy of A in its boundary. Let M be the rest.

Then $M=X_{1} \sqcup \ldots \sqcup X_{n}$, where each X_{i} is the exterior of K_{i}. Let S be the copy of A in M.
M inherits a handle structure from the handle structure on X.
The space between two adjacent normal discs of A becomes a 'parallelity handle' of M.

Claim 2. We may pick α so that it misses the parallelity bundle \mathcal{B}.
This \Rightarrow Claim 1, because if a normal disc of A has parallel copies on both sides, it lies in a parallelity handle of M.

In fact, it is convenient to enlarge \mathcal{B} to a larger I-bundle \mathcal{B}^{\prime}.
We'll arrange for α to miss \mathcal{B}^{\prime} and hence \mathcal{B}.

A GENERALISED PARALLELITY BUNDLE
is a 3 -dimensional submanifold \mathcal{B}^{\prime} of (M, S) such that

- \mathcal{B}^{\prime} is an I-bundle over a compact surface F;
- the ∂I-bundle is $\mathcal{B}^{\prime} \cap S$;
- \mathcal{B}^{\prime} is a union of handles;
- any handle in \mathcal{B}^{\prime} that intersects the I-bundle over ∂F is a parallelity handle;
- $\operatorname{cl}\left(M-\mathcal{B}^{\prime}\right)$ inherits a handle structure.

The ∂I-bundle is the horizontal boundary of \mathcal{B}^{\prime}.
The I-bundle over ∂F is the vertical boundary.

Claim 3: Possibly after modifying its handle structure, (M, S) contains a generalised parallelity bundle \mathcal{B}^{\prime} such that:

- \mathcal{B}^{\prime} contains every parallelity handle of M;
- \mathcal{B}^{\prime} is a collection of I-bundles over discs.

The horizontal boundary is a union of discs in the annuli A.
\Rightarrow it cannot separate the two components of ∂A_{i}.
$\Rightarrow \alpha$ can be chosen to miss \mathcal{B}^{\prime}
\Rightarrow Claim 2.

Recall: \mathcal{B} is the parallelity bundle.
Enlarge this to a maximal generalised parallelity bundle \mathcal{B}^{\prime}.
Claim 4: The ∂I-bundle of a maximal generalised parallelity bundle is incompressible.

Main idea of proof:
If the ∂I-bundle were compressible, then we would (probably) get an arrangement like:

\longrightarrow Enlarge \mathcal{B}^{\prime} over (disc) $\times I$ region.
Contradicts maximality of \mathcal{B}^{\prime}.

- Claim 4.

Because the horizontal boundary of \mathcal{B}^{\prime} is an incompressible subsurface of A, it is a union of discs and annuli parallel to core curves.

How to deal with annular components of the ∂I-Bundle The corresponding component of \mathcal{B}^{\prime} is an I-bundle over an annulus. Its vertical boundary is two incompressible annuli in M.

Since each K_{i} is prime, these are boundary parallel in M.

Keep applying this sort of modification to the handle structure Claim 3. \quad Main Theorem.

satellite knot K

companion knot L

Conjecture: $c(K) \geq c(L)$.
Theorem: [L] There is a universal computable constant $N \geq 1$ with following property. If K is a non-trivial satellite knot, with companion knot L, then $c(K) \geq c(L) / N$.

