A polynomial upper bound on Reidemeister moves

Marc Lackenby

21 March 2013

Unknot recognition

Given a knot diagram, can we decide whether it represents the unknot?

Unknot recognition

Given a knot diagram, can we decide whether it represents the unknot?

Goeritz's unknot

Unknot recognition

Given a knot diagram, can we decide whether it represents the unknot?

Haken's unknot

Unknot recognition

Given a knot diagram, can we decide whether it represents the unknot?

There is probably no simple way of doing so.

Reidemeister moves

Any two diagrams of a link differ by a sequence of Reidemeister moves:

If we knew in advance how many moves are required, we would have an algorithm to detect the unknot.

Computable upper bounds

Easy Theorem: The following are equivalent:

- There is an algorithm to decide whether a knot diagram represents the unknot.
- There is a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that, given an unknot diagram with n crossings, there is a sequence of at most $f(n)$ Reidemeister moves taking it to the trivial diagram.

Upper and lower bounds

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

Upper and lower bounds

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

Theorem: [Hass-Nowik, 2010] There exist unknot diagrams with n crossings which require at least $n^{2} / 25$ Reidemeister moves to trivialise.

Upper and lower bounds

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

Theorem: [Hass-Nowik, 2010] There exist unknot diagrams with n crossings which require at least $n^{2} / 25$ Reidemeister moves to trivialise.

Problem: Is there a polynomial upper bound?

Upper and lower bounds

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

Theorem: [Hass-Nowik, 2010] There exist unknot diagrams with n crossings which require at least $n^{2} / 25$ Reidemeister moves to trivialise.

Problem: Is there a polynomial upper bound?
[Thurston, 2011] 'a lot of people have thought about this question ... but this has been a very hard question to resolve'

A polynomial upper bound

Theorem: [L, 2012] Let D be a diagram of the unknot with n crossings. Then there is a sequence of at most $(231 n)^{11}$ Reidemeister moves that transforms D into the trivial diagram.

Haken's algorithm

Theorem: [Haken, 1961] There is an algorithm to determine whether a knot diagram represents the unknot.

Haken's algorithm

Theorem: [Haken, 1961] There is an algorithm to determine whether a knot diagram represents the unknot.

This uses normal surfaces.

Haken's algorithm

Theorem: [Haken, 1961] There is an algorithm to determine whether a knot diagram represents the unknot.

This uses normal surfaces.
A surface properly embedded in a triangulated 3-manifold is normal if it intersects each tetrahedron in a collection of triangles and squares.

Triangle

Square

The normal surface equations

Associated to a normal surface S, there is a list of integers which count the number of triangles and squares of each type. This is the vector [S].

The normal surface equations

Associated to a normal surface S, there is a list of integers which count the number of triangles and squares of each type. This is the vector [S].

These vectors satisfy a system of equations, called the matching equations.

$x_{1}+x_{2}=x_{3}+x_{4}$

The normal surface equations

Each vector also satisfies the compatibility conditions which assert that there cannot be two different square types in the same tetrahedron.

The normal surface equations

Each vector also satisfies the compatibility conditions which assert that there cannot be two different square types in the same tetrahedron.

Theorem: [Haken] There is a one-one correspondence between properly embedded normal surfaces and non-negative integer solutions to the matching equations that satisfy the compatibility conditions.

The normal surface equations

Each vector also satisfies the compatibility conditions which assert that there cannot be two different square types in the same tetrahedron.

Theorem: [Haken] There is a one-one correspondence between properly embedded normal surfaces and non-negative integer solutions to the matching equations that satisfy the compatibility conditions.

So, one can use tools from linear algebra.

The normal surface equations

Each vector also satisfies the compatibility conditions which assert that there cannot be two different square types in the same tetrahedron.

Theorem: [Haken] There is a one-one correspondence between properly embedded normal surfaces and non-negative integer solutions to the matching equations that satisfy the compatibility conditions.

So, one can use tools from linear algebra.
We say that a normal surface S is a sum of two normal surfaces S_{1} and S_{2} if

$$
[S]=\left[S_{1}\right]+\left[S_{2}\right] .
$$

The normal surface equations

Each vector also satisfies the compatibility conditions which assert that there cannot be two different square types in the same tetrahedron.

Theorem: [Haken] There is a one-one correspondence between properly embedded normal surfaces and non-negative integer solutions to the matching equations that satisfy the compatibility conditions.

So, one can use tools from linear algebra.
We say that a normal surface S is a sum of two normal surfaces S_{1} and S_{2} if

$$
[S]=\left[S_{1}\right]+\left[S_{2}\right] .
$$

A normal surface is fundamental if it is not a sum of other normal surfaces.

Fundamental normal surfaces

Theorem: [Haken] Suppose M is triangulated solid torus. Then M contains a meridian disc in normal form.

Fundamental normal surfaces

Theorem: [Haken] Suppose M is triangulated solid torus. Then M contains a meridian disc in normal form and that is fundamental.

Fundamental normal surfaces

Theorem: [Haken] Suppose M is triangulated solid torus. Then M contains a meridian disc in normal form and that is fundamental.

Theorem: [Haken] There is an algorithm to construct all fundamental normal surfaces.

Fundamental normal surfaces

Theorem: [Haken] Suppose M is triangulated solid torus. Then M contains a meridian disc in normal form and that is fundamental.

Theorem: [Haken] There is an algorithm to construct all fundamental normal surfaces.

Haken's algorithm:

1. Construct a triangulation of the knot exterior.
2. Find all fundamental normal surfaces.
3. Check whether one is a spanning disc.

An exponential upper bound on Reidemeister moves

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

An exponential upper bound on Reidemeister moves

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

This relies on:
Theorem: [Hass-Lagarias, 2001] Let M be a compact triangulated 3 -manifold with t tetrahedra. Then each fundamental normal surface has at most $t 2^{7 t+2}$ squares and triangles.

An exponential upper bound on Reidemeister moves

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot with n crossings, there is a sequence of at most $2^{k n}$ Reidemeister moves taking it to the trivial diagram, where $k=10^{11}$.

This relies on:
Theorem: [Hass-Lagarias, 2001] Let M be a compact triangulated 3 -manifold with t tetrahedra. Then each fundamental normal surface has at most $t 2^{7 t+2}$ squares and triangles.

Outline of their argument:

1. Construct a triangulation of the knot exterior from the diagram.
2. Find a spanning disc which is fundamental.
3. Slide the unknot over this disc.
4. Each slide across a triangle or square leads to a bounded number of Reidemeister moves.

From exponential to polynomial?

There is no way to improve the estimate on the number of triangles and squares.

From exponential to polynomial?

There is no way to improve the estimate on the number of triangles and squares.

In fact:
Theorem: [Hass-Snoeyink-Thurston, 2001] There exist unknots consisting of $10 n+9$ straight arcs, for which any piecewise linear spanning disc must have at least 2^{n-1} triangular faces.

Rectangular diagrams

A rectangular diagram is a diagram which is a union of horizontal and vertical arcs, such that at each crossing, the over-arc is the vertical one.

Rectangular diagrams

A rectangular diagram is a diagram which is a union of horizontal and vertical arcs, such that at each crossing, the over-arc is the vertical one.

The number of horizontal (or vertical) arcs is the arc index of the diagram.

Moves on rectangular diagrams

Cyclic permutation of the edges

Moves on rectangular diagrams

Stabilisations and destabilisations

Exchange move:
interchanging parallel edges of the rectangular diagram, as long as they have no edges between them, and their pairs of endpoints do not interleave.

Dynnikov's theorem

Theorem: [Dynnikov, 2004] Any rectangular diagram of the unknot can be reduced to the trivial diagram using cyclic permutations, exchange moves and destabilisations.

Dynnikov's theorem

Theorem: [Dynnikov, 2004] Any rectangular diagram of the unknot can be reduced to the trivial diagram using cyclic permutations, exchange moves and destabilisations.
ie no stabilisations are required!

Dynnikov's theorem

Theorem: [Dynnikov, 2004] Any rectangular diagram of the unknot can be reduced to the trivial diagram using cyclic permutations, exchange moves and destabilisations.
ie no stabilisations are required!
Corollary: [Dynnikov, 2004] Given any diagram of the unknot with n crossings, there is a sequence of Reidemeister moves taking it to the trivial diagram, so that each diagram in this sequence has at most $2(n+1)^{2}$ crossings.

Arc presentations

Let S^{1} be the unknot in S^{3}, called the binding circle.
Foliate the complement of the binding circle by open discs called pages.

A link L is in an arc presentation if

- it intersects the binding circle in finitely many points called vertices;
- it intersects each page in the empty set or a single arc joining distinct vertices.

Arc presentations and rectangular diagrams

There is a one-one correspondence

arc presentations
\longleftrightarrow
rectangular diagrams up to cyclic permutation

Dynnikov's argument

Let S be the spanning disc for the unknot.
Then S inherits a singular foliation from its intersections with the pages.

Local pictures of the singular set:

(a)

(b)

(c)

(d)

(e)
(a): vertex of S (where it intersects the binding circle)
(b): local max/min of S (a 'pole')
(c): interior saddle of S
(d): boundary vertex of S
(e): boundary saddle of S

A separatrix is a component of a leaf with an endpoint in a saddle.

Dynnikov's argument

The valence of a vertex of S is the number of separatrices coming out of it.

An Euler characteristic argument implies that there is always one of:

- A pole
- A 2-valent interior vertex
- A 3-valent interior vertex
- A 1-valent boundary vertex

Dynnikov's argument

The valence of a vertex of S is the number of separatrices coming out of it.

An Euler characteristic argument implies that there is always one of:

- A pole
- A 2-valent interior vertex
- A 3-valent interior vertex
- A 1-valent boundary vertex

In each case, there is a modification to the arc presentation and S which reduces the number of singularities of S.

Dynnikov's argument

The valence of a vertex of S is the number of separatrices coming out of it.

An Euler characteristic argument implies that there is always one of:

- A pole
- A 2-valent interior vertex
- A 3-valent interior vertex
- A 1-valent boundary vertex

In each case, there is a modification to the arc presentation and S which reduces the number of singularities of S.

Each modification is achieved using exchange moves, cyclic permutations and possibly a destabilisation.

A 1-valent boundary vertex

A 1-valent boundary vertex

A 2-valent interior vertex

A 2-valent interior vertex

Main idea of proof

- Blend Dynnikov's methods with the use of normal surfaces.

A triangulation from an arc presentation

Fix an arc presentation of a link L with arc index n.
Then there is a triangulation of S^{3} with n^{2} tetrahedra in which L is simplicial.

A triangulation from an arc presentation

Fix an arc presentation of a link L with arc index n.
Then there is a triangulation of S^{3} with n^{2} tetrahedra in which L is simplicial.

The binding circle is also simplicial.

Outline of proof

- Start with a diagram of the unknot K with n crossings.

Outline of proof

- Start with a diagram of the unknot K with n crossings.
- Isotope it to a rectangular diagram with arc index $7 n$.

Outline of proof

- Start with a diagram of the unknot K with n crossings.
- Isotope it to a rectangular diagram with arc index $7 n$.
- From this, create a triangulation of S^{3} with $(7 n)^{2}$ tetrahedra in which K and the binding circle are simplicial.

Outline of proof

- Start with a diagram of the unknot K with n crossings.
- Isotope it to a rectangular diagram with arc index $7 n$.
- From this, create a triangulation of S^{3} with $(7 n)^{2}$ tetrahedra in which K and the binding circle are simplicial.
- Find a normal spanning disc with at most (roughly) $2^{343 n^{2}}$ vertices.

Outline of proof

- Start with a diagram of the unknot K with n crossings.
- Isotope it to a rectangular diagram with arc index $7 n$.
- From this, create a triangulation of S^{3} with $(7 n)^{2}$ tetrahedra in which K and the binding circle are simplicial.
- Find a normal spanning disc with at most (roughly) $2^{343 n^{2}}$ vertices.
- We know that there is a 3-valent or 2-valent interior vertex or a 1 -valent boundary vertex (we can ensure that it has no poles).

Outline of proof

- Start with a diagram of the unknot K with n crossings.
- Isotope it to a rectangular diagram with arc index $7 n$.
- From this, create a triangulation of S^{3} with $(7 n)^{2}$ tetrahedra in which K and the binding circle are simplicial.
- Find a normal spanning disc with at most (roughly) $2^{343 n^{2}}$ vertices.
- We know that there is a 3-valent or 2-valent interior vertex or a 1 -valent boundary vertex (we can ensure that it has no poles).
- Find large collection of these which have 'parallel' stars.

Outline of proof

- Start with a diagram of the unknot K with n crossings.
- Isotope it to a rectangular diagram with arc index $7 n$.
- From this, create a triangulation of S^{3} with $(7 n)^{2}$ tetrahedra in which K and the binding circle are simplicial.
- Find a normal spanning disc with at most (roughly) $2^{343 n^{2}}$ vertices.
- We know that there is a 3-valent or 2-valent interior vertex or a 1 -valent boundary vertex (we can ensure that it has no poles).
- Find large collection of these which have 'parallel' stars.
- Perform a single exchange move and reduce the number of singularities by a factor of roughly

$$
\left(1-\frac{1}{n^{2}}\right) .
$$

Parallelism

Let T be a triangulation with N tetrahedra.

Parallelism

Let T be a triangulation with N tetrahedra.
Let S be a normal surface. Then the normal triangles and squares in S come in at most $5 N$ types.

Triangle

Square

Parallelism

Let T be a triangulation with N tetrahedra.
Let S be a normal surface. Then the normal triangles and squares in S come in at most $5 N$ types.

Triangle

Square

The same principle applies to the stars of vertices of S.

Parallelism

So, the stars of vertices of S come in at most $5(7 n)^{2}$ types.

Parallelism

So, the stars of vertices of S come in at most $5(7 n)^{2}$ types.
We know that there is a 3 -valent or 2 -valent interior vertex or a 1 -valent boundary vertex.
So, if there are V vertices of S, we would expect there to be a collection of at least

$$
\frac{1}{5(7 n)^{2}} v
$$

3 -valent/ 2 -valent $/ 1$-valent vertices, all of which have parallel stars.

Parallelism

So, the stars of vertices of S come in at most $5(7 n)^{2}$ types.
We know that there is a 3 -valent or 2 -valent interior vertex or a 1 -valent boundary vertex.
So, if there are V vertices of S, we would expect there to be a collection of at least

$$
\frac{1}{5(7 n)^{2}} v
$$

3 -valent/ 2 -valent $/ 1$-valent vertices, all of which have parallel stars.
But how do we prove this??

Exploiting Euler characteristic

The argument implying that there is a 3 -valent or 2 -valent interior vertex or a 1 -valent boundary vertex actually implies that

- either the number of such vertices is a definite proportion of the total number of vertices (and so the above reasoning works),

Exploiting Euler characteristic

The argument implying that there is a 3 -valent or 2 -valent interior vertex or a 1 -valent boundary vertex actually implies that

- either the number of such vertices is a definite proportion of the total number of vertices (and so the above reasoning works),
- or there are lots of vertices which 'contribute zero' to the Euler characteristic of S.

Exploiting Euler characteristic

The argument implying that there is a 3 -valent or 2 -valent interior vertex or a 1 -valent boundary vertex actually implies that

- either the number of such vertices is a definite proportion of the total number of vertices (and so the above reasoning works),
- or there are lots of vertices which 'contribute zero' to the Euler characteristic of S. An example of such a vertex:

Exploiting Euler characteristic

In the latter case, we show that these regions patch together to form a normal torus which forms a summand for the disc, contradicting an assumption that it is fundamental.
(In fact, we show that it cannot be a 'vertex' surface.)

Exploiting Euler characteristic

In the latter case, we show that these regions patch together to form a normal torus which forms a summand for the disc, contradicting an assumption that it is fundamental.
(In fact, we show that it cannot be a 'vertex' surface.)
This requires a subtle argument involving branched surfaces.

Split links

Theorem: [L, 2012] Let D be a diagram of a split link with n crossings. Then there is a sequence of at most $(48 n)^{11}$ Reidemeister moves taking it to a disconnected diagram.

Split links

Theorem: [L, 2012] Let D be a diagram of a split link with n crossings. Then there is a sequence of at most $(48 n)^{11}$ Reidemeister moves taking it to a disconnected diagram.

Note that the polynomial is slightly smaller than in the case of the unknot.

This is because the boundary of the spanning disc causes technical difficulties.

Where next?

- Is there a polynomial time algorithm to recognize the unknot?

Where next?

- Is there a polynomial time algorithm to recognize the unknot?
- Can one find polynomial upper bounds on Reidemeister moves for other knot types?

