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Abstract We present an efficient algorithm for computing certain special values
of Rankin triple product p-adic L-functions and give an application of this to the
explicit construction of rational points on elliptic curves.

1 Introduction

The purpose of this paper is to describe an efficient algorithm for computing certain
special values of Rankin triple product p-adic L-functions. These special values are
p-adic numbers and our algorithm computes them in polynomial-time in the desired
precision. This improves on existing algorithms which require exponential time in
the desired precision. Our method has the pleasant feature of also being applicable
to Rankin double product p-adic L-functions, and working equally well in weight
one as compared to higher weights (Sects. 2.2.5 and 2.3.3). We hope it will usefully
complement the powerful methods based upon overconvergent modular symbols for
computing p-adicL-functions [PS11], which the author understands are less readily
adaptable to higher product p-adic L-functions.

We describe an application of our algorithm to the efficient construction of ratio-
nal points on elliptic curves over Q. The curves we consider all have rank one and
relatively small conductor, and so this application does not yield any “new” points.
However, the constructions give experimental verification both of the correctness
of the implementation of our algorithm, and various sophisticated and new conjec-
tural constructions of rational points on elliptic curves. Even in the rank one setting
these constructions are of interest; for instance, they allow one to carry out by p-
adic means the complex analytic calculations in [DDLR] (see Example 3.1), and in
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fact p-adically interpolate points found using much older but not well-understood
methods. A different and enticing application of our algorithm is to the experimen-
tal study of conjectural constructions of “new” points on elliptic curves over certain
number fields using weight one modular forms [DLR]. In this paper though we shall
not address experimentally the calculation of these (Stark-Heegner) points attached
to weight one forms or the p-adic interpolation of points. We plan to return to these
questions in future joint work.

All of the applications of our algorithm are based upon ideas of Darmon and
Rotger [DRa, DRb]. In particular, Darmon encouraged the author to try to apply the
method for computing with overconvergent modular forms in [Lau11] to Rankin
p-adic L-functions, and gave him invaluable help during the implementation of the
algorithm and preparation of this paper. Much of the work behind this paper was
in making the methods in [Lau11] sufficiently fast in practice to turn a theoretical
algorithm (for higher level) into one useful for experimental mathematics.

In writing this paper the author had the choice between trying to give a compre-
hensive background to the theory necessary to define Rankin p-adic L-functions
and present the work of Darmon and Rotger, or distilling just enough to describe
his contribution. He chose the latter, since the long introduction to [DRb] is already
very clear but incompressible. This introduction should be read in parallel to our
brief (and simplified) description below by anyone wishing to get a deeper under-
standing of the significance of the algorithm in our paper. The reader should also
refer to that source for definitions of any unfamiliar terms below. (All the definitions
we shall really need are gathered in Sects. 2.1 and 2.3.1.)

Let f; g; h be newforms of weights k; l;m � 2, primitive characters �f ; �g ; �h
with �f �g�h D 1, and level N . Assume that the Heegner Hypothesis H [DRb,
Sect. 1] is satisfied. Let p be a prime not dividing the level N , and fix an embed-
ding of Q into Cp , the completion of an algebraic closure of the field of p-adic
numbers Qp . Assume f; g and h are ordinary at p. Let f ;g and h be the (unique)
Hida families of (overconvergent) p-adic modular forms passing through f; g and
h. The Rankin p-adic L-function L

f
p .f ;g;h/ associates to each triple of weights

.x; y; z/ in (a suitable subset of) Z3�2 a p-adic number Lfp .f ;g;h/.x; y; z/ 2 Cp .
It has a defining interpolation property over a certain set ḟ of unbalanced weights,
relating it to the special value of the classical (Garrett-)Rankin triple product L-
function at its central critical point. (Weights .x; y; z/ are balanced if the largest is
strictly smaller than the sum of the other two, and otherwise unbalanced.) The the-
orem of Darmon and Rotger [DRb, Theorem 1.3] equates its value at the balanced
weights to an explicit algebraic number times the p-adic Abel-Jacobi map of a cer-
tain cycle on a product of Kuga-Sato varieties evaluated at a particular differential
form. At balanced weights .x; y; z/ for reasons of sign the classical Rankin triple
product L-function vanishes at its central critical point, and so the special value
L
f
p .f ;g;h/.x; y; z/ is thought of as some kind of first derivative. (Darmon and

Rotger actually construct in addition L
g
p .f ;g;h/.x; y; z/ and Lhp.f ;g;h/.x; y; z/

but we only consider Lfp .f ;g;h/.x; y; z/ and shall omit from here-on the super-
script f .)
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In this paper we present an algorithm for computing Lp.f ;g;h/.x; y; z/ 2 Cp
for balanced weights .x; y; z/ to a given p-adic precision in polynomial-time in the
precision, provided p � 5 and under the following assumption on the weights. Let
us specialize the Hida families back to the original weights .k; l;m/ to recover the
newforms f , g and h, and assume that .k; l;m/ is a balanced triple. (This is only a
notational simplification—we are after all really interested in our original newforms,
the Hida families being introduced just to define the interpolation properties of the
L-function.) Our algorithm requires that k D l �mC 2. This is enough for all our
present and immediately envisaged arithmetic applications.

The problem which makes finding special values of Rankin triple product p-adic
L-functions challenging is that of computing ordinary projections of p-adic modu-
lar forms. That is, in the definition of Lp.f ;g;h/.k; l;m/ one encounters a p-adic
modular form “d�.1Ct/.gŒp�/�h” which is not classical, and then has to compute its
ordinary projection to some precision. Since this form is not classical any straight-
forward approach to this has exponential-time in the desired p-adic precision; for
example, by iterating the Atkin operator on q-expansions or on some suitable space
of classical modular forms (as the latter necessarily has exponential dimension in
the required precision, by consideration of weights cf. [Gou88, Proposition I.2.12
ii.]).

Our solution lies in the fact that “d�.1Ct/.gŒp�/ � h” is nearly overconvergent
[DRb, Sect. 2.4]. More precisely, our assumption (k D l � mC 2) on the weights
is exactly that which ensures it is overconvergent, and so the methods we developed
for computing with such forms in [Lau11] can be applied. We expect that our meth-
ods can be generalised to handle nearly overconvergent modular forms (using their
explicit description in [CGJ95]) and thus compute Rankin triple product p-adic L-
functions at any balanced point .x; y; z/, but we have not carried out any detailed
work in this direction. The main result of our paper is really the algorithm (and
its refinements) in Sect. 2.2 for computing the ordinary projection of certain over-
convergent modular forms and in addition the ordinary subspace. (We give a full
and rigorous analysis of this algorithm, but not of two aspects of our overall algo-
rithm for computing Rankin triple product p-adic L-functions. These are of minor
practical importance, see Note 2.3 (1) and (3), but difficult to analyse.)

Regarding arithmetic applications, the most immediate is the following one de-
duced by Darmon from [DRb, Theorem 1.3] and [DRS12, Lemma 2.4], in a personal
communication. Assume that f and g are newforms of weight 2 and trivial char-
acter, and that f has rational Fourier coefficients. Let Ef denote the elliptic curve
over Q associated to f , and logEf

W Ef .Qp/ ! Qp be the formal p-adic logarithm
map. Then there exists a point Pg 2 Ef .Q/ and a computable positive integer dg
such that

logEf
.Pg/ D 2dg

E0.g/E1.g/

E.g; f; g/
Lp.g; f ;g/.2; 2; 2/ : (1)

Here E.g; f; g/=E0.g/E1.g/ is the explicit non-zero algebraic (in fact quadratic)
number which occurs in the Darmon-Rotger formula [DRb, Theorem 1.3]—it de-
pends only upon the pth coefficients in the q-expansions of f and g. Thus if
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Lp.g; f ;g/.2; 2; 2/ is non-vanishing one can recover a point of infinite order on
Ef .Q/. (The integer dg is that which appears, in different notation “dT ” for
“T WD Tg”, in [DDLR, Remark 3.1.3].) The point Pg is closely related to clas-
sically constructed points (“Zhang points”). We give an example of this application
(Example 3.1), and understand it will be worked out in detail in the forthcoming
Ph.D. thesis of Michael Daub [Dau]. In addition, we also present a number of vari-
ations of this application which suggest generalisations of the different underlying
theoretical constructions and also illustrate our algorithm (Sect. 3).

The paper is organised in a simple manner, Sect. 2 containing the theoretical
background and algorithms, and Sect. 3 our illustrative computations.

Acknowledgements This paper would have been neither started nor finished without the constant
help and encouragement of Henri Darmon. It is a pleasure to thank him for this, and to thank also
David Loeffler, Victor Rotger and Andrew Wiles for enlightening discussions, and the anonymous
referee for many useful comments. This work was supported in part by a grant from the European
Research Council (204083).

2 The Algorithm

In this section we present our algorithm for computing the ordinary projection of
overconvergent modular forms and certain special values of Rankin triple product
p-adic L-functions.

2.1 Theoretical Background

We first gather some background material on overconvergent modular forms and the
ordinary subspace.

2.1.1 Katz Expansions of Overconvergent Modular Forms

Let N be a positive integer, and p � 5 be a prime not dividing N . Let

� W .Z=NZ/� �! Z�p

be a Dirichlet character with image in Z�p . The condition that � has image in Z�p is
partly for notational convenience, but see also Note 2.2 (4).

For each integer k let Mk.N; �;Zp/ denote the space of classical modular forms
for �1.N / with character � whose q-expansions at infinity have coefficients in Zp .
This is a free Zp-module of finite rank. Let Ep�1 be the classical Eisenstein series
of weight p � 1 and level 1 normalised to have constant term 1. For each integer
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i > 0, one may choose a free Zp-module Wi .N; �;Zp/ of MkCi.p�1/.N; �;Zp/
such that

MkCi.p�1/.N; �;Zp/ D Ep�1 �MkC.i�1/.p�1/.N; �;Zp/˚Wi .N; �;Zp/ :

(This choice is not canonical cf. [Kat73, p. 105].) Define

W0.N; �;Zp/ WDMk.N; �;Zp/ :

Let K be a finite extension of Qp with ring of integers B . Define Wi .N; �;B/ WD

Wi .N; �;Zp/ ˝Zp
B . For r 2 B the space Mk.N; �;BI r/ of r-overconvergent

modular forms is by (our) definition the space of all “Katz expansions” of the form

f D

1X
iD0

r i
bi

Eip�1
; bi 2Wi .N; �;B/ ; lim

i!1
bi D 0

where bi ! 0 as i ! 1 means the q-expansions of bi are more and more di-
visible by p as i goes to infinity, see [Kat73, Proposition 2.6.2]. We define
Mk.N; �;KI r/ WDMk.N; �;BI r/˝B K, a p-adic Banach space.

The element r 2 B plays a purely auxiliary role, determining the inner ra-
dius p� ordp.r/ of the annuli of overconvergence into the supersingular locus. (Here
ordp. � / is the p-adic valuation normalised with ordp.p/ D 1.) From a computa-
tional point of view it is more convenient for each rational number ˛ > 0 to consider
series of the form

f D

1X
iD0

pb˛ic
bi

Eip�1
; bi 2Wi .N; �;Zp/ :

We just write Mk.N; �;Zp; ˛/ for the space of all such elements and call it
again the space of ˛-overconvergent modular forms as no confusion is likely to
arise. The space of overconvergent modular forms Mk.N; �;Zp/ is the unionS
˛>0Mk.N; �;Zp; ˛/. In everything just defined we may also just forget the char-

acter � and consider the space Mk.N;Zp/ of overconvergent modular forms for
�1.N / itself.

2.1.2 The ordinary subspace

Any overconvergent modular form f 2 Mk.N;Zp/ is also a p-adic modular form
[Ser73, Sect. 1.4 (b)] and has a q-expansion, and we define the ordinary projection
in the usual way as eord.f / WD limn!1 U

nŠ
p .f /, where Up is the Atkin operator on

q-expansions, i.e.,
Up W

X
n

anq
n
7�!

X
n

anpq
n :
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When k � 2 the image of eord on p-adic modular forms of level N over Zp is equal
to its image on the space of classical modular forms Mk.�1.N / \ �0.p/;Zp/ of
level Np with trivial character at p, see e.g. [Col96, Theorem 6.1] or for a precise
statement (when k � 3) [Gou88, Theorem II.4.3 ii]. We have for each � � 1 an
embedding

Mk.�1.N / \ �0.p
�/; B/ ,�! Mk.N;BI r/ (2)

for any r 2 B with ordp.r/ < 1=p��2.p C 1/, see (at least for N � 3) [Gou88,
Corollary II.2.8], and also [CGJ95, p. 25]. Thus taking � D 1 here, one observes
for k � 2 that the image of eord on p-adic modular forms of level N over Zp
is equal (after base change to B) to its image on Mk.N;BI r/ for any r 2 B with
ordp.r/ < p=.pC1/. We shall define the p-adic ordinary subspace over Zp in level
N , character � and weight k to be the image under eord ofMk.N; �;Zp; 1=.pC1//.
(We make this definition since this is precisely the space computed by Algorithm
2.1. For weight k � 2 this is equivalent to the usual definition as the image of p-
adic modular forms under eord, by our preceding observation. The definition should
also be equivalent for general weight (certainly overK) since the ordinary subspace
over K can be described as the space of overconvergent (generalised) eigenforms
of slope zero [Gou88, p. 59], and (generalised) eigenforms of finite slope are r-
overconvergent for any r with ordp.r/ < p=.p C 1/ [CGJ95, p. 25].)

2.2 Projection of Overconvergent Forms

Underlying our algorithm for computing Rankin p-adic L-functions is an algorithm
for computing ordinary projections of overconvergent modular forms and also a
basis for the ordinary subspace. It is an extension of [Lau11, Algorithm 2.1].

2.2.1 The Basic Algorithm

We first present the basic algorithm, before discussing the steps in more detail and
giving some practical refinements. Here the notation and assumptions are as in
Sect. 2.1.1. (We apologise that the notation “m” for the p-adic precision gives a
clash with that used for a weight in the introduction and later, but we wished to
follow closely that in [Lau11].)

Algorithm 2.1. Given an element H 2 Mk.N; �;Zp; 1=.p C 1// where 0 � k <
p � 1 and integer m � 1, this algorithm computes the image in

R WD ZŒŒq��
ı�
pm; qs.m;p/

�
of the ordinary projection eord.H/ and in addition the image in R of an echelonised
basis for the ordinary subspace. (Here s.m; p/ is some explicit function ofm and p
defined during the algorithm.)
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(1) [Dimensions] Write k0 WD k. Compute

n WD

�
p C 1

p � 1
.mC 1/

�
:

For i D 0; 1; : : : ; n compute di , the dimension of the space of classical modular
forms of levelN character � and weight k0Ci.p�1/. Computemi WD di�di�1,
for i � 1; m0 WD d0; and ` WD m0 Cm1 C � � � Cmn D dn. Compute working
precision

m0 WD mC

�
n

p C 1

�
:

Compute `0 � `, the Sturm bound for the space of classical modular forms of
level N , character � and weight k0 C .p � 1/n.

(2) [Complementary spaces] For each 0 � i � n compute a row-reduced basis Wi
of q-expansions in ZŒŒq��=.pm

0

; q`
0p/ for some choice of the complementary

space Wi .N; �;Zp/.
(3) [Katz expansions] Compute the q-expansion in ZŒŒq��=.pm

0

; q`
0p/ of the Eisen-

stein seriesEp�1.q/. For each 0 � i � n, let bi;1; : : : ; bi;mi
denote the elements

in Wi . Compute the “Katz basis” elements

ei;s WD p

j
i

pC1

k
E�ip�1bi;s

in ZŒŒq��=.pm
0

; q`
0p/.

(4) [Atkin operator] For each 0 � i � n and 1 � s � mi compute ti;s WD Up.ui;s/
in ZŒŒq��=.pm

0

; q`
0

/, whereUp is the Atkin operator on q-expansions and ui;s WD
ei;s .

(5) [Atkin matrix] Compute T , the ` � `0 matrix over Z=.pm
0

/ whose entries are
the coefficients in the q-expansions modulo q`

0

of the ` elements ti;s . Compute
E, the ` � `0 matrix over Z=.pm

0

/ whose entries are the coefficients in the q-
expansions modulo q`

0

of the ` elements ei;s . Use linear algebra over Z=.pm
0

/

to compute the matrixA0 over Z=.pm
0

/ such that T D A0E. LetA be the “Atkin
matrix” over Z=.pm/ obtained by reducing entries in A0 modulo pm.

(6) [Two-stage projection] Compute the image

H 2 ZŒŒq��
ı�
pm
0

; q`
0p
�
:

a. [Improve overconvergence] Compute Up.H/ 2 ZŒŒq��=.pm
0

; q`
0

/ and find
coefficients ˛i;s 2 Z=.pm/ such thatUp.H/ �

P
i;s ˛i;sei;s mod .pm; q`

0

/.
b. [Projection via Katz expansion] Compute a positive integer f such that all

the unit roots of the reverse characteristic polynomial of A lie in some ex-
tension of Zp with residue class field of degree f over Fp . Compute Ar�1

for r WD .pf � 1/pm using fast exponentiation. Compute 
 WD ˛Ar�1

where ˛ is the row vector .˛i;s/.
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Write 
 D .
i;s/ and return the ordinary projection

eord.H/ D
X
i;s


i;s ei;s 2 ZŒŒq��
ı�
pm; qs.m;p/

�
where s.m; p/ WD `0p.

(7) [Ordinary subspace] Compute Ar D Ar�1A and let f.Bi;s/g be the set of non-
zero rows in the echelon form B of the matrix Ar . ReturnX

i;s

Bi;s ei;s 2 ZŒŒq��
ı�
pm; qs.m;p/

�
for each non-zero row .Bi;s/, the image of a basis for the ordinary subspace.

In this algorithm we assume that the q-expansion of the input modular form H

can be computed in polynomial-time in N;p and any desired p-adic and q-adic
precisions. Regarding the complexity of the whole algorithm, we just refer the
reader to the analysis of Steps 1-5 in [Lau11, Sects. 3.2.2 and 3.3.1], and observe
that Steps 6 and 7 can be carried out using standard methods in linear algebra. In
particular, the algorithm is certainly polynomial time in N;p and m.

2.2.2 Proof of Correctness

The analysis of the correctness of the algorithm is very similar to that in [Lau11,
Sect. 3.2.1]. The essential idea is the following. One considers an infinite square
matrix for the Atkin Up operator on the space of 1=.pC1/-overconvergent modular
forms w.r.t. some choice of Katz basis. Reducing this (assumed integral, see Note
2.2 (3)) matrix modulo pm, it vanishes except for an1� ` strip down the lefthand
side. The matrix A modulo pm we compute is the ` � ` matrix which occurs in the
top lefthand corner, for our choice of basis (this is proved in [Lau11, Sect. 3]). We
would like to iterate the infinite matrix on the infinite row vector representing an
overconvergent modular form H . When H 2 Mk.N; �;Zp; p=.p C 1// we notice
that the coefficients in the infinite vector representing H w.r.t. our Katz basis decay
p-adically (since p=.p C 1/ > 1=.p C 1/) and in fact vanish modulo pm, except
for the first ` elements (see the final paragraph in [Lau11, Sect. 3.4.2]). Hence we
can iterate Up on H by iterating the finite matrix A on a finite vector of length `.
(The actual power r is chosen to ensure that we iterate sufficiently often to obtain
the correct answer modulo pm.) In our application to Rankin p-adicL-functions we
will find that in fact H 2 Mk.N; �;Zp; 1=.p C 1//. Hence the preliminary Step 6
(a) is to apply the Up operator once to q-expansions to improve overconvergence by
a factor p, see [Lau11, Equation (2)] and Note 2.2 (3). (There is a loss of precision
of m0 � m when one writes Up.H/ as a Katz expansion, cf. the last paragraph of
[Lau11, Sect. 3.2.1] where a similar loss occurs during the computation of the matrix
A.) Observe that this preliminary step is harmless, since we need to compute the el-
ements in our Katz basis to the higher precision modulo q`

0p anyway. (To make the
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above argument completely rigorous one fusses over the minor difference between
r-overconvergent for all ordp.r/ < p=.p C 1/, and p=.p C 1/-overconvergent, as
in [Lau11, Sect. 3.2.1].)

Note 2.2. We make some minor comments on the algorithm.

(1) For weight k � 2 the ordinary subspace can be computed instead using classical
methods; however, our algorithm is the only “polynomial-time” method known
to the author for computing this subspace in weight k � 1.

(2) We assume that the smallest non-zero slope s0 of (the Newton polygon of) the
reverse characteristic polynomial of A is such that dm=s0e � .pf � 1/pm. This
is reasonable as the smallest non-zero slope which has ever been experimentally
observed is 1=2. (One could of course compute s0 and adjust r accordingly to
remove this assumption.) The integer f can be easily computed by reducing the
matrix A modulo p. The exponent m rather than m � 1 in the definition of r
accounts for the possibility that the unit roots may lie in ramified extensions. (So
ur � 1 mod pm for each unit root u, and ur � 0 mod pm for all other roots u
of the reverse characteristic polynomial.)

(3) The correctness of the algorithm relies on the assumption that we can solve T D
A0E for a p-adically integral matrixA0, although the theory only guarantees that
pA0 has integral coefficients, see [Lau11, Note 3.2, Sect. 3.2.1] and also [Gou88,
II.3], [Kat73, Sect. 3.11]. One could modify the algorithm (or rather the refined
version in Sect. 2.2.4) to remove this assumption; however, in practice the author
has never encountered a situation in which the matrix A0 fails to have p-adically
integral coefficients.

(4) The assumption that ZŒ�� embeds in Zp allows one to exploit fast algorithms for
matrix and polynomial arithmetic over rings of the form Zp=.pm/ Š Z=.pm/
which are integrated into the systems MAGMA and SAGE. The algorithm works
perfectly well in principle without this assumption, but it will be much more
difficult to get a comparably fast implementation.

(5) The hypothesis 0 � k < p � 1 can be removed as follows. In Step 1 write
k WD k0 C j.p � 1/ where 0 � k0 < p � 1. In Step 4 compute

G WD Ep�1.q/=Ep�1.q
p/ and Gj 2 ZŒŒq��

ı�
pm
0

; q`
0p
�
;

and let ui;s WD Gj ei;s . The matrixA computed in Step 5 is then for the “twisted”
Atkin operator Up ı Gj . After Step 6 (a) multiply the q-expansion of Up.H/
by E�jp�1 and in Step 6 (b) multiply the q-expansion

P
i;s 
i;s ei;s by Ejp�1 and

return this product as eord.H/. In Step 7 multiply each q-expansionX
i;s

bi;s ei;s

by Ejp�1 to get the basis for ordinary space. For j � 1, to ensure E�jp�1Up.H/
lies in the correct space one should multiply it by pdj=.pC1/e; and so the final
answer will only be correct modulo pm�dj=.pC1/e. (One could of course also just
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run the algorithm without twisting, but then the auxiliary parameters n; `;m0 etc
would have to be worked out afresh, since the algorithm would no longer be an
extension of [Lau11, Algorithm 2.1].)

(6) In practice the output q-adic precision s.m; p/ D `0p is always large enough
for our needed application to Rankin p-adic L-functions. One can insist though
on any output precision s0 � `0p simply by computing the Katz basis elements
in Step 3 to that q-adic precision.

2.2.3 Finding Complementary Spaces in Step 2

A key step in the algorithm is the efficient construction in practice of the im-
age in ZŒŒq��=.pm

0

; q`
0p/ of a basis for some choice of complementary spaces

Wi .N; �;Zp/, for each 0 � i � n. The author’s implementation (which at the
time of the computations in this paper was restricted to trivial and quadratic char-
acters �) is based upon suggestions of David Loeffler and John Voight. The idea
is to use the multiplicative structure on the ring of modular forms: One fixes a
choice of weight bound B � 1 and computes the image in ZŒŒq��=.pm

0

; q`
0p/ of

a ZŒ�0�-basis for each of the spaces of classical modular forms Mb.N; �
0;Q.�0//

where 1 � b � B and �0 vary over a set of characters which generate a group
containing �. One then reduces these basis elements modulo .p; q`

0

/ and for each
0 � i � n looks for random products of these q-expansions which generate an Fp-
vector space of dimension di and have weight k0 C i.p � 1/ and character �. This
is done in a recursive manner. Once one has computed the required forms in weight
k0C .i � 1/.p � 1/ one maps then (via the identity map) into weight k0C i.p � 1/
(recall Ep�1 � 1 mod p) and generates a further mi D di � di�1 linearly inde-
pendent forms in weight k0 C i.p � 1/ and character �. The correct choices of
products, which give forms not in the space already generated, are “encoded” in an
appropriate manner; that is, the basis elements for each weight b and character �0

are stored as an ordered list, and products of them (modulo .p; q`
0

/) can then be
represented by “codes” which give the positions chosen in each list.

Having found these correct choices modulo .p; q`
0

/ one then repeats the process
modulo .pm

0

; q`
0p/ to find the complementary spaces Wi .N; �;Zp/, but crucially

this time using the “codes” to only take products of modular forms which give some-
thing not in the Zp-span of the forms already computed. In this way when working
to the full precision one does not waste time computing products of modular forms
that lie in the space one has already generated. (It surprised the author to discover
that in practice in some examples, e.g. Example 3.5, one can generate many such
“dud” forms—this is probably related to parity conditions on the order of vanishing
of modular forms of low weight at elliptic points.)

A good bound to take is B WD 6, but one can vary this, playing the time it takes
to generate the spaces in low weight off against the time spent looking for suitable
products. This choice of bound fits with some theoretical predictions communicated
to the author by David Loeffler.
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2.2.4 A Three-Stage Projection in Step 6

In Algorithm 2.1 we find U rp .H/, where r is chosen so that the answer is correct
modulo pm, in two separate stages. First, one computes

Up.H/ 2Mk.N; �;Zp; p=.p C 1//

using q-expansions. Second, one computes U r�1p .Up.H// using Katz expansions.
However, the matrix A has size growing linearly with m and so the computation of
the high power Ar�1 becomes a bottleneck as the precision m increases.

A better aproach is to factor the projection map into three parts, as follows. Write
s0 for the smallest non-zero slope in the characteristic series of A (one can safely
just set s0 WD 1=2). Computing Adm=s0e and writing its non-zero rows (which are
w.r.t. the Katz basis) as q-expansions in ZŒŒq��=.pm; q`

0p/ gives (the image of) a
basis for the ordinary subspace. One can now compute a matrix Aord over Z=.pm/
for the Up operator on this basis by explicitly computing with q-expansions. This
matrix is significantly smaller than A itself, since its dimension has no dependence
on m. To project H , one computes as before Up.H/ using q-expansions, then
U
dm=s0e
p .Up.H// via Katz expansions as the product ˇ WD ˛Adm=s0e. Next, one

writes the “Katz vector” ˇ as the image of a q-expansion in ZŒŒq��=.pm; q`
0p/ and

thus as a new vector ˇ0 over Z=.pm/ in terms of the basis for the ordinary subspace.
Finally, one computes

U r�dm=s0e�1p on U dm=s0ep .Up.H// as 
 0 WD ˇ0A
r�dm=s0e�1
ord

and returns the q-expansion associated to 
 0 as the ordinary projection ofH modulo
.pm; qs.m;p//.

This three-stage projection method also works for k < 0 or k � p � 1, but one
must take care to twist and un-twist by powers of Ep�1 at the appropriate times.

2.2.5 Avoiding Weight One Forms

In the case that k D 1, one can compute the ordinary projection eord.H/ of the
weight one form H without doing any computations in weight one, except comput-
ing the q-expansion ofH itself modulo .pm

0

; q`
0p/. The idea is to use the Eisenstein

series to “twist” up to weight p D 1C .p� 1/. That is, one proceeds as in Note 2.2
(5), only writing k D 1 D k0 C j.p � 1/ where now k0 WD p and j WD �1. In ad-
dition, when generating complementary spaces (see Sect. 2.2.3) one only computes
bases of classical modular forms in low weights 2 � b � B.

The author has implemented this variation in both MAGMA and SAGE, and used
it to compute the characteristic series of the Atkin operator on p-adic overconver-
gent modular forms in weight one (for a quadratic character, and various levels N
and primes p) without computing the q-expansions of any modular forms in weight
one.
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2.3 Application to p-Adic L-Functions

We now describe the application of Algorithm 2.1 to the computation of p-adic
L-functions.

2.3.1 Definition of Rankin Triple Product p-adic L-Functions

Let f; g; h be newforms of balanced weights k; l;m � 2, primitive characters
�f ; �g ; �h, with �f �g�h D 1 and level N . Assume that the Heegner hypothe-
sis H from [DRb, Sect. 1] is satisfied, e.g. N is squarefree and for each prime `
dividing N the product of the `th Fourier coefficients of f; g and h is

�`
kClCm�6

2 :

Write k D lCm�2�2t with t � 0, which is possible since the sum of the weights
must be even. We fix an embedding Q ,! Cp and assume f; g and h are ordinary
at p. That is, the pth coefficient in the q-expansion of each is a p-adic unit.

Define the map d D q d
dq on q-expansions as

d W
X
n�0

anq
n
7�!

X
n�0

nanq
n :

Then for s � 0, the map d s acts on p-adic modular forms increasing weights by 2s
[Ser73, Théorème 5(a)]. For a p-adic modular form a.q/ WD

P
n�0 anq

n let

aŒp� WD
X

n�1;p−n

anq
n

denote its p-depletion. Then for s � 1 the map

a 7�! d�s.aŒp�/ D

1X
nD1;p−n

an

ns
qn

acts on p-adic modular forms shifting weights by �2s [Ser73, Théorème 5(b)]. So
d�.1Ct/.gŒp�/ � h is a p-adic modular form of weight l � 2.1C t /C m D k and
character �g�h D ��1f .

Let f � be the dual form to f and f �.p/ be the ordinary p-stabilisation of f �,
see [DRb, Sects. 1 and 4]. So f �.p/ is an ordinary eigenform of character ��1

f
. We

define

Lp.f ;g;h/.k; l;m/ WD c
�
f �.p/; eord.d

�.1Ct/.gŒp�
�
� h// 2 Cp :

Here we are assuming the action of the Hecke algebra on the ordinary subspace
in weight k is semisimple (which the author understands is well-known for N
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squarefree since k � 2) and c.f �.p/; � / denotes the coefficient of f �.p/ when
one writes an ordinary form � as a linear combination of ordinary eigenforms, see
[Hid93, p. 222]. (Darmon and Rotger take a different but equivalent approach, us-
ing the Poincaré pairing in algebraic de Rham cohomology to extract the coefficient
Lp.f ;g;h/.k; l;m/ [DRb, Proposition 4.6].)

2.3.2 Computation of Rankin Triple Product p-adic L-Functions

We shall now (with another apology) introduce the clashing notation m to refer to
the p-adic precision, as in Sect. 2.2. We wish to apply Algorithm 2.1 to compute
eord.H/ forH WD d�.1Ct/.gŒp�/�hmodulo pm (and q-adic precision s.m; p/) and
also a basis for the ordinary subspace in level N , weight k and character � WD ��1

f
.

(So we should assume that the image of � lies in Zp and g and h are defined over
Zp , but see also Notes 2.2 (4) and 2.3 (2).) Given these, one can use Hecke operators
on the ordinary subspace to extract the coefficient c.f �.p/; eord.H//, see Note 2.3
(3), as f �.p/ (andH ) are easy to compute (at least within MAGMA and SAGE using
the algorithms from [Ste07]).

For our projection algorithm to work we require thatH is overconvergent (rather
than just nearly overconvergent [DRb, Sect. 2.4]) and in particular that

H 2Mk.N; �;Zp; 1=.p C 1// for � WD ��1f :

Overconvergence is guaranteed provided t D l � 2, since a 7! d�s.aŒp�/ maps
overconvergent forms in weight 1 C s to overconvergent forms in weight 1 � s
[Col96, Proposition 4.3]. That is, provided

k D m � l C 2 (3)

we will have that d�.1Ct/.gŒp�/, and hence also H , is overconvergent. When this
condition is not satisfied our algorithm with fail.

Regarding the precise radius of convergence of d�.1Ct/.gŒp�/, Darmon has ex-
plained to the author that when our condition (3) is met the methods used by
Coleman (the geometric interpretation of the d operator in terms of the Gauss-
Manin connection [DRb, Sect. 2.4]) show the form d�.1Ct/.gŒp�/ lies in the space
Mk.N; �g ; KI r/ for any r 2 B � Cp with ordp.r/ < 1=.pC1/. Let us outline the
argument to get an idea why this is true. First, the p-depletion gŒp� WD .1�VpUp/g
is a classical modular form for �1.N / \ �0.p2/ with trivial character at p and
infinite slope. (Here Vp is the one-sided inverse of Up [DRb, Equation (13)] and
increases the level of Up.g/ by p.) Hence by (2) with � WD 2, gŒp� lies in
M`.N; �g ; BI r/ for any r 2 B with ordp.r/ < 1=.p C 1/. Next, [Col96, The-
orem 5.4] gives an explicit relation between the action of powers of the d operator
on spaces of overconvergent modular forms and that of the Gauss-Manin connec-
tion of certain de Rham cohomology spaces associated to rigid analytic modular
curves. This relationship associates to gŒp� a trivial class in the de Rham coho-
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mology space (the righthand side of [DRb, Equation (36)] for “r” equals t and
any “"” less than 1=.p C 1/), and hence one in the image of the Gauss-Manin
connection. (The class is trivial because the form has infinite slope, cf. [Col96,
Lemma 6.3].) The Gauss-Manin connection preserves the radius of convergence,
and taking the preimage and untangling the relationship one finds that d�.1Ct/.gŒp�/
is an overconvergent modular form of the same radius of convergence as gŒp�,
i.e. d�.1Ct/.gŒp�/ 2 M`.N; �g ; KI r/ for any r 2 B with ordp.r/ < 1=.p C 1/.
Thus multiplying by h (and using (2) with � WD 1 to determine the overconvergence
of h itself) we find also

d�.1Ct/.gŒp�/ � h 2Mk.N; �;KI r/ (4)

for any r 2 B with ordp.r/ < 1=.p C 1/.

Note 2.3.

(1) The above argument does not quite show that H WD d�.1Ct/.gŒp�/ � h lies in
Mk.N; �;Zp; 1=.p C 1// as for this one would need to replace “K” by “B” in
(4). However, the author just assumed this was true, and this was not contra-
dicted by our experiments; in particular, when one could relate the value of the
Rankin p-adicL-function to the p-adic logarithm of a point on an elliptic curve,
the relationship held to exactly the precision predicted by the algorithm. To be
completely rigorous though one would have to carry out a detailed analysis of
Darmon’s argument and the constructions used by Coleman (and one may have
to account for some extra logarithmic growth and loss of precision).

(2) It is helpful to notice that the map

� W .g; h/ 7�! eord.d
�.1Ct/.gŒp�/ � h/

is bi-linear in g and h. Thus one can compute �..g; h// by first computing it on
a product of bases for the spaces Sl .N; �g/ and Sm.N; �h/. This is useful when
these spaces are defined over Zp but the newforms themselves are defined over
algebraic number fields which do not embed in Zp .

(3) The author implemented a number of different approaches to computing

c
�
f �.p/; eord.H/

�
:

The most straightforward is to compute matrices for the Hecke operators U`
(for `jNp/ and T` (otherwise) on the ordinary subspace for many small ` by
explicitly computing on the q-expansion basis for the ordinary subspace output
by Algorithm 2.1. One can then try to project onto the “f �.p/-eigenspace” us-
ing any one of these matrices. One difficulty which arises is that congruences
between eigenforms may force a small loss of p-adic precision during this step.
(Congruences with Eisenstein series can be avoided for k � 2 by using classi-
cal methods to compute a basis for the ordinary cuspidal subspace, and work-
ing with that space instead.) We did not carry out a rigorous analysis of what
loss of precision could occur due to these congruences, but in our examples it



Efficient Computation of Rankin p-Adic L-Functions 15

was never more than a few p-adic coefficients and one could always determine
exactly what loss of precision had occurred after the experiment. The author
understands from discussions with Wiles that one should be able to compute an
“upper bound” on the p-adic congruences which can occur, and thus on the loss
of precision. This bound of course is entirely independent of the precision m.
However, such a calculation is beyond the scope of this paper.

2.3.3 Single and Double Product L-Functions

The author understands that usual p-adic L-functions can be computed using our
methods, by substituting Eisenstein series for newforms in the appropriate places in
the triple product L-function, cf. [BD, Sect. 3]. However, he has not looked at this
application at all, as the methods based upon overconvergent modular symbols are
already very good (for k � 2) [PS11]. One can similarly compute double product
Rankin p-adic L-functions using our approach. In particular, we have used our al-
gorithm to compute a (suitably defined) Rankin double product p-adic L-function
special value “Lp.f ;g/.2; 1/” for f of weight 2 and g of weight 1, see the forth-
coming [DLR] and also [DRa, Conjecture 10.1].

3 Examples

In this section we shall freely use the notation from [DRb, Sect. 1]. We implemented
our basic algorithms in both MAGMA and SAGE, but focussed our refinements on
the former and all the examples we present here were computed using this package.
The running time and space for the examples varied from around 100 seconds with
201 MB RAM (Example 3.4) to around 19000 seconds with 9.7 GB RAM (Example
3.3) on a 2.93 GHz machine.

All of the examples here are for weights k; l;mwith k D m�lC2 and t D l�2,
where t D 0, i.e., l D 2 and k D m (and in fact f D h). We implemented our algo-
rithm for arbitrary t � 0 and computed Lp.f ;g;h/.k; l;m/ in cases when t > 0;
however, the author does not know of any geometric constructions of points when
t > 0 (or even in the case k D m � 2 when f ¤ h) and so we do not present these
computations here.

We begin with an example of the explicit construction of rational points men-
tioned in our introduction, see Equation (1).

Example 3.1. Let Ef W y2Cy D x3�x2�2xC2 be the rank 1 curve of conductor
57 with Cremona label “57a” associated to the cusp form

f WD q � 2q2 � q3 C 2q4 � 3q5 C 2q6 � 5q7 C q9 C : : : :
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We choose two other newforms of level 57 (associated to curves of rank zero):

g1 WD q C q
2
C q3 � q4 � 2q5 C q6 � 3q8 C q9 � : : :

g2 WD q � 2q
2
C q3 C 2q4 C q5 � 2q6 C 3q7 C q9 � : : : :

Taking p WD 5 and writing f ;g1;g2 for the Hida families we compute the special
values

L5.g1; f ;g1/.2; 2; 2/ � �260429402433721822483 mod 530

5L5.g2; f ;g2/.2; 2; 2/ � �279706401244025789341 mod 531 :

One computes that for each newform gi , if one multiplies the operator of projection
onto the gi -eigenspace by 3 then one obtains an element in the integral (rather than
rational) Hecke algebra. Thus equation (1) predicts that there exist global points
P1; P2 2 Ef .Q/ such that

logEf
.Pi / D 6 �

E0.gi /E1.gi /

E.gi ; f; gi /
� L5.gi ; f ;gi / :

One finds

logEf
.P1/ � 37060573996879427247 � 5 mod 530

logEf
.P2/ � �18578369245374641968 � 5 mod 530 :

Adapting the method in [KP07, Sect. 2.7] we recover the points

P1 D

�
�
1976

7569
;
750007

658503

�
D �16P

and P2 D .0; 1/ D 4P , where P WD .2;�2/ is a generator for Ef .Q/.

Next we look at an example where the Darmon-Rotger formula may be applied,
but the application to constructing points has not been fully worked out. (At least, at
the time of author’s computations—we understand from a personal communication
from Darmon and Rotger that this has now been done.)

Example 3.2. Let Ef W y2 C xy C y D x3 � x2 be the rank 1 curve of conductor
53 with Cremona label “53a” associated to the cusp form

f WD q � q2 � 3q3 � q4 C 3q6 � 4q7 C 3q8 C 6q9 C : : : :

There is one newform g of level 53 and weight 4 and trivial character with rational
Fourier coefficients:

g WD q C q3 � 8q4 � 18q5 C 2q7 � 26q9 C 54q11 C : : : :
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Taking p WD 7 and writing f and g for the Hida families we compute the special
value

L7.g; f ;g/.4; 2; 4/ � �12581507765759084963366603 mod 730 :

The Darmon-Rotger formula [DRb, Theorem 1.3] then predicts that

AJ7.�/.�u�r
g ˝ !f ˝ !g/ D

E0.g/E1.g/

E.g; f; g/
L7.g; f ;g/.4; 2; 4/

and we find that

AJ7.�/.�u�r
g ˝ !f ˝ !g/ � 1025211670724558054729221 � 7 mod 730 :

Equation (1) does not apply in this setting, but one can hope that this equals
logEf

.P / for some point P 2 Ef .Q/˝Q. Exponentiating one finds a point

bP D �x.bP /; y.bP /� 2 E1.Q7/

with coordinates 72x.bP /; 73y.bP / modulo 730 (where E WD Ef ).
We have jE.F7/j D 12 and translating bP by elements Q 2 E.Q7/Œ12� we find

exactly one rational point, P D .0;�1/ (see the method in [KP07, Sect. 2.7]). Thus
we have computed a generator in a rather elaborate manner.

The author also considered again the curve Ef with Cremona label “57a” but
took g to be the unique newform of level 57 and weight 4 with trivial character and
rational Fourier coefficients, and found that

AJ5.�/.�u�r
g ˝ !f ˝ !g/ � �

15

13
logEf

.P / mod 531

for P WD .2;�2/ a generator of Ef .Q/. (So here p D k � 1, and we used the
“twisted” version of the algorithm described in Note 2.2 (5).)

The next example has a similar flavour but involves cusp forms of odd weight.

Example 3.3. Let Ef W y2C y D x3C x2 be the rank 1 curve of conductor 43 with
Cremona label “43a” associated to the cusp form

f WD q � 2q2 � 2q3 C 2q4 � 4q5 C 4q6 C q9 C 8q10 C 3q11 C : : : :

Let � be the Legendre character modulo 43. Then we find unique newforms g 2
S3.43; �/ and h 2 S5.43; �/ with rational Fourier coefficients:

g WD q C 4q4 C 9q9 � 21q11 C : : :

h WD q C 16q4 C 81q9 C 199q11 C : : : :
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Taking p WD 11 and writing f ;g and h for the Hida families we compute the
special values

L11.g; f ;g/.3; 2; 3/ � �7831319270947510009065871543799 mod 1130

L11.h; f ;h/.5; 2; 5/ � 4791560577275108790581414445515 mod 1130 :

Using the Darmon-Rotger formula we compute

AJ11.�/.�u�r
g ˝!f˝!g/ � �646073276230754578213318125190�11 mod 1130:

Rather than attempt to recover a point from this, we take the generator P D .0; 0/

for Ef .Q/ and compute logEf
.P / and then try to determine a relationship. One

finds
AJ11.�/.�u�r

g ˝ !f ˝ !g/ �
258

107
logEf

.P / mod 1130 :

(We checked that multiplying the relevant projection operator by 2 � 107 gives an
element in the integral Hecke algebra.) Similarly we found

AJ11.�/.�u�r
h ˝ !f ˝ !h/ � �

6708

5647
logEf

.P / mod 1130 :

The examples above suggest the construction in [DRS12] can be generalised, at
least in a p-adic setting.

We now look at some examples in which one removes one of the main conditions
in the Darmon-Rotger theorem [DRb, Theorem 1.3] itself, that the prime does not
divide the level. In each example rather than try to recover a rational point, we look
for an algebraic relationship between the logarithm of a generator and the special
value we compute.

Example 3.4. Let Ef W y2C y D x3C 2x be the rank 1 curve of conductor 77 with
Cremona label “77a” associated to the cusp form

f WD q � 3q3 � 2q4 � q5 � q7 C 6q9 � q11 C : : : :

Let g be the level 11 and weight 2 newform (associated to a rank zero elliptic curve):

g WD q � 2q2 � q3 C 2q4 C q5 C 2q6 � 2q7 � 2q9 � 2q10 C q11 C : : : :

We take the prime p WD 7, which divides the level of f , and writing f and g for the
Hida families compute

L7.g; f ;g/.2; 2; 2/ � �1861584104004734313229493 � 7 mod 731 :

Taking the generator P D .2; 3/ we compute logEf
.P / mod 731 and find that

logEf
.P /=7L7.g; f ;g/.2; 2; 2/ satisfies the quadratic equation 1600t2C48tC9 D

0 modulo 729.
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The factor p which occurs in the expression relating the special value to the log-
arithm of a point when the prime divides the level is also seen in the next examples.

Example 3.5. Let Ef W y2 C xy C y D x3 � 80x � 275 and Eg W y2 C xy C y D
x3 � x2 � 12x C 18 be the rank 1 curves of conductor 469 with Cremona labels
“469a” and “469b”, respectively, associated to the cusp forms

f WD q C q2 C q3 � q4 � 3q5 C q6 � q7 � 3q8 � 2q9 � 3q10 C : : :

g WD q � q2 � 3q3 � q4 C q5 C 3q6 � q7 C 3q8 C 6q9 � q10 C : : : :

Taking the prime p WD 7 we compute

L7.g; f ;g/.2; 2; 2/ � 1435409545849510941783817 mod 730

L7.f ;g; f /.2; 2; 2/ � 6915472639041460159095363 mod 730 :

Using generators Pf D .�5; 4/ and Pg D .2;�1/ for Ef .Q/ and Eg.Q/, respec-
tively, we found

7L7.g; f ;g/.2; 2; 2/ � 4 logEf
.Pf / mod 730

35L7.f ;g; f /.2; 2; 2/ � �16 logEg
.Pg/ mod 730 :

In the above example the “tame” level used in our computation was N D 67 D

469=7. In the next example it is one: for tame level one the author’s algorithm does
not use the theory of modular symbols at all, cf. [Lau11, Sect. 3.2].

Example 3.6. LetEf W y2CxyCy D x3Cx2�x be the rank 1 curve of conductor
89 with Cremona label “89a” associated to the cusp form

f WD q � q2 � q3 � q4 � q5 C q6 � 4q7 C 3q8 � 2q9 C q10 � 2q11 C : : : :

Let g be the level 89 and weight 2 newform (associated to a rank zero elliptic curve):

g WD q C q2 C 2q3 � q4 � 2q5 C 2q6 C 2q7 � 3q8 C q9 � 2q10 � 4q11 C : : : :

Taking the prime p WD 89 we found that

89L89.g; f ;g/.2; 2; 2/ � 72 logEf
.P / mod 8921

where P D .0; 0/ is a generator.

The author understands that the above examples are consistent with on-going
work of Darmon and Rotger to generalise their formula to the situation in which the
prime p does divide the level N [DRc].
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