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Abstract. A classical point of the Coleman-Mazur eigencurve is said to be exceptional if the
map to weight space is non-étale at that point. The goal of this paper is to revisit the p-adic
elliptic Stark conjecture of [DLR1] concerning a triple (f, g, h) of classical modular forms of
weights (2, 1, 1), and extend it to the setting where the p-stabilised eigenform g corresponds
to such an exceptional point.
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Introduction

A classical point of the Coleman-Mazur eigencurve is said to be exceptional if the map
to weight space is non-étale at that point, and a p-stabilised eigenform is called exceptional
if it corresponds to such a point. By a theorem of Hida, a classical ordinary eigenform
that is exceptional is necessarily of weight one. A result of Belläıche and Dimitrov [BDi1]
characterises the ordinary exceptional eigenforms in terms of the odd two-dimensional Artin
representation attached to them by the construction of Deligne-Serre. More precisely, g is
exceptional if and only if its Artin representation %g satisfies one of the following mutually
exclusive conditions:

(i) %g is induced from a finite order mixed signature character of a real quadratic field
in which the prime p splits, and maps the frobenius element at p to a linear trans-
formation with distinct eigenvalues. In this case, Cho and Vatsal showed that the
Coleman-Mazur eigencurve is smooth but not étale over weight space [CV] at the two
p-stabilisations of g.

(ii) %g is irregular, i.e., maps a frobenius element at p to a scalar matrix. In that case, the
(unique) p-stabilisation of g gives rise to a singular point on the eigencurve.
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In both cases, the generalised eigenspace attached to g in the space of overconvergent p-
adic modular forms of weight one is non-semisimple as a module over the Hecke algebra and
contains non-classical elements.

The article [DLR1] formulates an elliptic Stark conjecture arising from a triple (f, g, h) of
classical modular forms of weights (2, 1, 1). This conjecture equates an analytic term – an
overconvergent modular form of weight one built from f, g, and h as a kind of “p-adic iterated
integral” – and an algebraic term – a regulator involving the p-adic formal group logarithms
on the modular abelian variety attached to f of global points defined over the number field
cut out by the Artin representation %g⊗%h. In defining both sides of the conjectured equality,
essential use is made in loc.cit. of the circumstance that g is non-exceptional. The purpose of
this paper is to extend the conjecture of [DLR1] to the remaining cases, where g is exceptional.

This extension turns out to be far from routine, revealing genuinely new phenomena. The
iterated integral in the exceptional setting is best envisaged as an overconvergent modular
form of weight one in the generalised eigenspace attached to g. Its fourier coefficients are
expressed as “regulators of regulators” mixing the p-adic logarithms of algebraic numbers in
the field cut out by the adjoint of Vg and formal group logarithms of global points in the
Mordell-Weil group of E over the field cut out by Vg ⊗Vh. The definition of these “regulators
of regulators” rests crucially on the explicit description of the generalised eigenspace attached
to f and on the representation-theoretic identity

∧2(Vg ⊗ Vh) = Ad0(Vg)⊕Ad0(Vh)

between 6-dimensional Artin representations.
Section 1 introduces the set-up and briefly reviews the original elliptic Stark conjecture of

[DLR1]. The extensions of this conjecture to scenarios (i) and (ii) are described in Sections 2
and 3 respectively.

1. Brief review of the elliptic Stark conjecture

Fix a Dirichlet character χ : (Z/NZ)× → L× of modulus N ≥ 1 with values in a finite field
extension L/Q. Let Sk(N,χ)L ⊂ Mk(N,χ)L denote the spaces of classical cusp forms and
modular forms of weight k, level N and character χ with Fourier coefficients in L, and let
Soc
k (N,χ) and Moc

1 (N,χ) denote the corresponding spaces of overconvergent p-adic modular
forms of tame level N and character χ with coefficients in Qp. The character χ is suppressed
from the notation when it is trivial. The superscript ∨ will be used to denote the linear dual
of a vector space.

Given an integer N let TN denote the abstract Hecke algebra generated by the Hecke
operators {T` : ` - N,Uq : q | N}. If M is any TN -module and φ ∈ M is a simultaneous
TN -eigenvector, let Iφ ⊂ TN denote the kernel of the homomorphism TN−→L taking a Hecke
operator to its associated eigenvalue, and write M [φ] and M [[φ]] for the eigenspace and the
generalised eigenspace attached to Iφ, respectively:

M [φ] := M [Iφ] = {m ∈M : Tm = 0 for all T ∈ Iφ}, M [[φ]] :=
⋃
n≥1

M [Inφ ].

Let

πφ : M−→M [[φ]]

denote the canonical Hecke-equivariant projection onto the generalized eigenspace arising from
the primary decomposition theorem.
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For instance, if φ is a normalised newform in Sk(Nφ, χ)L, and N is any multiple of Nφ, the

space Sk(N,χ)L[φ] is the L-vector space spanned by {φ(qd) : d | NNg }. An element

φ̆ =
∑
d| N
Ng

adφ(qd) ∈ Sk(Np, χ)L[φ]

is called a test vector of level N attached to φ.

Fix a triple of classical eigenforms (f, g, h) ∈ S2(Nf ) × S1(Ng, χ)L × S1(Nh, χ̄)L of prim-
itive levels (Nf , Ng, Nh), weights (2, 1, 1) and nebentype characters (1, χ, χ̄). Write N =
l.c.m.(Nf , Ng, Nh) and let

h∗ := h⊗ χ ∈ S1(Nh, χ)L

denote the twist of h by χ.
Choose a prime p - NgNh such that ordp(Nf ) ≤ 1 and an embedding ιp : Q̄ ↪→ Q̄p. Let

Sk(N,χ)ord ⊂ Sk(N,χ) denote the subspace of p-ordinary modular forms with respect to the
chosen embedding and let

eord : Sk(N,χ)Q̄p−→S
ord
k (N,χ)Q̄p

denote Hida’s ordinary idempotent.
Assume for simplicity that f has rational Fourier coefficients and hence corresponds to

an elliptic curve E/Q. Let d = q ddq denote the Atkin-Serre differential operator on p-adic

modular forms, and let

F = d−1(f [p]) =
∑
p-n

an(f)

n
qn ∈ Soc

0 (N)

denote the overconvergent primitive of f . More generally, if f̆ is any test vector for f , the
primitive F̆ is defined exactly as in the equation above with f replaced by f̆ .

Let Vg be the Artin representation associated to it, realised as a vector space over L after
enlarging L if necessary, and let

%g : GQ−→Aut(Vg) ' GL2(L)

be the associated homomorphism of GQ. Note that the finite extension L ⊂ C can always be
chosen to be contained in a cyclotomic field. Let H be the number field cut out by %g, i.e.,
the smallest field for which %g factors through Gal (H/Q).

Let ℘ be the prime ideal of H above p determined by the embedding ιp. Since p - NgNh,
the arithmetic frobenius element

Frobp ∈ Gal (H/Q),

which is well defined up conjugation, acts on Vg, and its characteristic polynomial is equal to
the Hecke polynomial

x2 − ap(g)x+ χ(p) =: (x− αg)(x− βg)
attached to g at p. After possibly enlarging L, it may also be assumed that this coefficient
field contains the roots of unity αg and βg, i.e., that the frobenius element is diagonalisable.

It is assumed throughout this section and the next that g is regular, i.e., that αg 6= βg,
the scenario where g is irregular being confined to Section 3. Because of this assumption, the
GQp-module Vg decomposes naturally as a direct sum

Vg = V α
g ⊕ V β

g

of one-dimensional eigenspaces for Frobp, with eigenvalues αg and βg respectively.
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The p-stabilisations of g at p are the normalised eigenforms of weight one with Fourier
coefficients in L defined by

gα := g(z)− βgg(pz), gβ := g(z)− αgg(pz).

They are eigenvectors for the Up-operator satisfying

Upgα = αggα, Upgβ = βggβ.

Assume for simplicity that L is a subfield of Qp. This assumption allows %g to be viewed
as a Qp-linear representation via the natural action of GQ on the Qp-vector space Vg ⊗L Qp,
and is made solely to lighten the notations; it could easily be dispensed with by working with
the base change of Vg to the completion of L at a prime above p.

Let
Wg = Ad(%g) := End0(Vg)

denote the adjoint representation associated to g, equipped with the conjugation action of GQ
on the space of trace zero endomorphisms of Vg. Since complex conjugation acts on Wg with
eigenvalues 1, −1 and −1, the L-vector space

(O×H ⊗Wg)
GQ = HomGQ(Wg,O×H ⊗ L)

is one-dimensional, by the Dirichlet unit theorem. Let u = ug be a basis of this 1-dimensional
space. There is an isomorphism of GQp-modules

Wg = L · eα/β ⊕ L · eβ/α ⊕ L · e1, where Frobp(eλ) = λeλ.

Set
uλ := u(eλ) ∈ (O×H ⊗ L)Frobp=λ.

As explained in [DLR1], the units uα/β and uβ/α are non-trivial and unique up to scaling by

L× precisely when g is non-exceptional.

Let L(f, g, h, s) denote the Garrett-Rankin triple-product L-function associated to the triple
(f, g, h), which in this case is also the Artin-Hasse-Weil L-series of the elliptic curve E twisted
by the tensor product %gh := %g ⊗ %h of the Artin representations associated to g and h. The
following hypotheses will be imposed throughout this paper:

(loc) The epsilon factors εq(L(f, g, h, s)) are +1 at all q | N .
(van) L(f, g, h, 1) = 0.

Assumption (loc) always holds when the primitive conductors of f , g and h have no prime
in common. It implies that the global root number is +1 and hence the order of vanishing of
L(f, g, h, s) at the central point s = 1 is even. Hence (loc) and (van) together imply that the
order of vanishing is at least 2.

When ords=1L(f, g, h, s) = 2, the equivariant Birch and Swinnerton-Dyer conjecture pre-
dicts that the L-vector space

(E(H)⊗ Vgh)GQ = HomGQ(Vgh, E(H)⊗ L), Vgh := Vg ⊗ Vh
is spanned by two linearly independent elements P and Q. Let {v1, v2} be a basis of the

L-vector space V β
g ⊗ Vh ⊂ Vgh, and define the elliptic regulator

(1) Rp(f, gα, h) = det

(
logE(P (v1)) logE(P (v2))
logE(Q(v1)) logE(Q(v2))

)
where logE : E(H℘)⊗Qp−→H℘ is the formal group law of E over the completion of H at ℘.

Let TrNNg : S1(Np, χ) → S1(Ngp, χ) denote the trace homomorphism from level N to level

Ng. For any choice of test vectors (f̆ , h̆) ∈ S2(Np)L[f ]× S1(Np, χ̄)L[h] set

(2) Φf̆gαh̆
= πgα

(
TrNNgeord(F̆ · h̆∗)

)
∈ Soc

1 (N,χ)Qp [[gα]].
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In addition to the regularity assumption, assume that %g is not induced from a character
of a real quadratic field in which p splits. As asserted in the introduction, this implies that

Soc
1 (N,χ)Qp [[gα]] = S1(Np, χ)Qp [gα]

and hence that Φf̆gαh̆
lies in S1(Np, χ)Qp [gα].

With these notations and assumptions in place, the elliptic Stark conjecture of [DLR1] can
now be recalled.

Conjecture 1.1. If ords=1L(E, %gh) ≥ 4, then Φf̆gαh̆
= 0, for any pair (f̆ , h̆) of test vectors.

If ords=1L(E, %gh) = 2, then

Φf̆gαh̆
=

Rp(f, gα, h)

logp(uβ/α)
· gα

up to a scalar in L that is non-zero for at least one pair (f̆ , h̆).

The reader is referred to [DLR2] for a discussion of the elliptic Stark conjecture at a non-
exceptional g when f ∈ M2(N) is an Eisenstein series, and the elliptic regulator of (1) is
replaced by an analogous unit regulator.

2. The elliptic Stark conjecture at smooth non-étale points

The object of this section is to extend Conjecture 1.1 to the case where the point attached
to g on the eigencurve is smooth but non-étale, that is to say, to formulate a variant in scenario
(i) of the introduction, where g is regular but induced from a character of a real quadratic
field in which p splits.

Accordingly, let K be a real quadratic field of discriminant D and let χK denote the even
quadratic Dirichlet character associated to it. Let

ψ : GK := Gal (K̄/K)−→C×

be a ray class character (of order m, conductor fψ and central character χψ) which is of mixed
signature, i.e., which is even at precisely one of the infinite places of K and odd at the other.

It is assumed throughout this section that g = θψ is Hecke’s theta series attached to ψ.
It is a holomorphic newform of weight 1, level Ng and nebentype character χ with Fourier
coefficients in L := Q(µm), where

Ng = D ·NormK/Qfψ, χ = χKχψ.

Assume g is regular at p and that the prime p splits in K/Q as p = ℘℘′. Let gα and
gβ be the two distinct p-stabilisations of g, which are eigenvectors for the Up operator with
eigenvalues α and β respectively.

In extending Conjecture 1.1 to this setting, two difficulties arise. Firstly, the denominator
in Conjecture 1.1 vanishes, since the Stark unit ug is the fundamental unit of K, on which
Frobp acts as 1, and whose components uα/β and uβ/α are therefore trivial. Secondly, the
numerical experiments carried out in Section 2.3 suggest that one should consider the coordi-
nate of the modular form Φf̆gαh̆

along a Hecke module generator of the generalized eigenspace

Soc
1 (Ng, χ)[[gα]], suitably normalized. At étale points, since S1(Ngp)[gα] = Soc

1 (Ng, χ)[[gα]] is
one-dimensional, this generator can be chosen to be the normalised eigenform gα. At non-
étale points, however, it becomes necessary to consider the coordinate along a vector in the
generalised eigenspace that is not in the classical eigenspace. Stating this conjecture precisely
requires a concrete description of Soc

1 (Ng)[[gα]] sufficient to put an L-rational structure on it,
or at least on its quotient by S1(Ngp)[gα]. This is the goal of the following section.
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2.1. The generalised eigenspace. Assume throughout the remainder of this section that

Soc
1 (Ng, χ)[[gα]] = Soc

1 (Ng, χ)[I2
gα ].

Conditional results in this direction have been obtained by Betina in [Bet]. As explained in
[DLR3], the above space is then two-dimensional and contains non-classical forms which do
not lie in the image of the natural inclusion

S1(Ngp, χ)[gα] ↪→ Soc
1 (Ng, χ)[I2

gα ].

A non-classical overconvergent form in Soc
1 (Ng, χ)[I2

gα ] is said to be normalised if its first
Fourier coefficient is equal to zero. Let

Soc
1 (Ng, χ)[I2

gα ]0 = {φ ∈ Soc
1 (Ng, χ)[I2

gα ] : a1(φ) = 0}
denote the space of such forms, noting that it gives rise to a natural decomposition

(3) Soc
1 (Ng, χ)[I2

gα ] = S1(Ngp, χ)[gα]⊕ Soc
1 (Ng, χ)[I2

gα ]0.

A non-zero normalised generalised eigenform in Soc
1 (Ng, χ)[I2

gα ]0, denoted

g[α :=

∞∑
n=2

an(g[α)qn,

is uniquely determined by gα up to scaling. The Hecke operators act on it by the rule

(4) T`g
[
α = a`(gα)g[α + a`(g

[
α)gα, Uqg

[
α = aq(gα)g[α + aq(g

[
α)gα,

for all primes ` - Ngp and all q|Ngp.

The main theorem of [DLR3] supplies a formula for the Fourier coefficients an(g[α) for a

suitable scaling of g[α. In order to describe it explicitly, let ψ′ denote the character deduced
from ψ by composing it with the involution in Gal (K/Q). The ratio ψ♥ := ψ/ψ′ is a totally
odd ring class character of K. Let H denote the ring class field of K which is fixed by the
kernel of ψ♥ , and set G := Gal (H/K).

If ` - N is any rational prime which is inert in K/Q, the corresponding prime ` of K splits
completely in H/K, and the set Σ` of primes of H above ` is endowed with the structure
of a principal G-set. Given λ ∈ Σ`, let u(λ) ∈ OH [1/λ]× ⊗ Q be any λ-unit of H satisfying
ordλ(u(λ)) = 1. While u(λ) is only defined up to units in O×H , the element

u(ψ♥ , λ) =
∑
σ∈G

ψ♥
−1(σ)⊗ u(λ)σ ∈ L⊗OH [1/`]×

is independent of the choice of generator u(λ), since there are no genuine units in L⊗O×H in
the eigencomponents for the totally odd character ψ♥ . The `-unit u(ψ♥ , λ) does depend on
the choice of λ ∈ Σ`. In [DLR3, §2], the character ψ is used to define a function η : Σ`−→µm
for which the element

(5) u(ψ♥ , `) := η(λ)⊗ u(ψ♥ , λ) ∈ L⊗OH [1/`]×

depends only on the inert prime ` and not on the choice of prime λ ∈ Σ` above it.
Recall the embeddings of L into Qp and of H into Q̄p, and let

logp : L⊗H×−→Q̄p

be the resulting p-adic logarithm on H×, extended to L⊗H× by L-linearity. The main result
of [DLR3] is the following.

Theorem 2.1. [DLR3] The normalised generalised eigenform g[α attached to gα can be scaled
in such a way that, for all primes ` - Ng,

a`(g
[
α) =

{
0 if χK(`) = +1;

logp u(ψ♥ , `) if χK(`) = −1.
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Taking g[α scaled as above, a global L-structure in the Qp-vector space Soc
1 (Ng, χ)[I2

gα ]0 can
be defined by setting

Soc
1 (Ng, χ)[I2

gα ]0,L = L · g[α.
Given φ ∈ Soc

1 (Ng, χ)[I2
gα ], write φ0 for its projection to Soc

1 (Ng, χ)[I2
gα ]0.

2.2. Statement of the conjecture. As in (2), for any choice of test vectors (f̆ , h̆) in level
N set

Φf̆gαh̆
= πgα(TrNNg

(
eord(F̆ · h̆∗))

)
∈ Soc

1 (Ng, χ)Qp [I
2
gα ]

and put as above

Φf̆gαh̆,0
∈ Soc

1 (Ng, χ)Qp [I
2
gα ]0.

Conjecture 2.2. There exists a period

Lgα ∈ Qp ⊗H×℘ with Frobp(Lgα) =
β

α
⊗ Lgα

which is well-defined up to multiplication by L× and depends only on gα, for which the equality

(6) Φf̆gαh̆,0
=

{
Rp(f,gα,h)
Lgα

· g[α, if ords=1L(E, %gh) = 2,

0 if ords=1L(E, %gh) ≥ 4,

holds up to a scalar in L that is non-zero for at least one pair of test vectors (f̆ , h̆) ∈ S2(N)[f ]×
S1(Np, χ̄)L[h].

Note that both the numerator and denominator on the right-hand side of (6) belong to
the same eigenspace for Frobp, with eigenvalue βg/αg, and hence that the ratio belongs to
Qp ⊂ Hp, consistent with the fact that this is clearly true of the left-hand side.

Remark 2.3. Conjecture 2.2 predicts in particular that when ords=1L(E, %gh, s) > 2, the
overconvergent modular form Φf̆gαh̆

is classical and thus

Φf̆gαh̆
= Lp · gα

for some Lp ∈ Qp. It would be interesting to better understand the nature of the p-adic
L-value Lp. The numerical experiments reported on below show that it does not vanish in
general: see for instance the case of the elliptic curve E145a, whose Mordell-Weil group over
H has rank 4.

2.3. Experimental evidence.

Example 2.4. Let χ7 and χ29 be the (odd and even, respectively) quadratic characters of
conductor 7 and 29, and set χ := χ7 ·χ29. These characters take values in L := Q. The space
S1(203, χ) is one dimensional and spanned by the weight one form

g = q + q4 − q7 − q9 + · · · ,
whose Artin representation has image isomorphic to the dihedral group D4. The representa-
tion %g is induced from a character of the real quadratic field Q(

√
29), and in addition from

characters of each of the imaginary quadratic fields Q(
√
−7) and Q(

√
−203).

The prime p = 5 splits in Q(
√

29), and the Hecke polynomial of g at p has distinct eigen-
values αg = 1 and βg = −1. Hence g admits two distinct p-stabilisations g1 and g−1. The

generalised eigenspace in level Ng attached to g1 is spanned by g1 and a second form g[1,

normalised as in the previous section by insisting a1(g[1) = 0. This form is then unique up

to scaling. Section 2.1 suggests a canonical choice of g[1 whose `-th Fourier coefficient is the
logarithm of an `-unit in a suitable ring class field. The more computationally convenient
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normalization in which the leading coefficient is 1 has been adopted here, and is distin-
guished from the canonically scaled form by denoting it g̃[1. Since χ29(2) = −1, it follows that

g̃[1 = q2 + · · · . (Note that the coefficients for g[1 itself differ from those for g̃[1 given below by
the factor logp u(ψ♥ , 2), where u(ψ♥ , 2) is the ratio of the roots of x2 +x+ 2. This factor does
not lie in Q5, but rather its unramified quadratic extension, so these coefficients would also
be less convenient to display.)

Choosing h = g, one has

(7) Vgh := Vg ⊗ Vg = L⊕Wg = (L⊕ L(χ29)) ⊕ (L(χ7)⊕ L(χ)) ,

where the quadratic Dirichlet characters arising on the right have been grouped according to
their behaviour on the Frobenius element at 5:

χ1(5) = χ29(5) = 1, χ7(5) = χ(5) = −1.

Consider the following elliptic curves given by their Cremona labels (as specified in the Magma
Computational Algebra System), namely

E35a : y2 + y = x3 + x2 + 9x+ 1 E145a : y2 + xy + y = x3 − x2 − 3x+ 2
E203b : y2 + xy + y = x3 + x2 − 2 E1015a : y2 + xy + y = x3 + x2 − x− 22
E1015c : y2 + y = x3 + 2x+ 3.

The ranks of the relevant isotypic parts of the Mordell-Weil groups are recorded in the fol-
lowing table in which the rows are indexed by elliptic curves and the columns by the four
quadratic characters appearing in (7):

χ1 χ29 χ7 χ
E35a 0 0 1 1
E145a 1 1 1 1
E203b 1 0 1 0
E1015a 0 0 1 1
E1015c 1 0 0 1

For the prime p = 5, the Frobenius eigenvalues are αg = 1 and βg = −1, and hence

αg · αg = 1, αg · βg = −1.

It follows from this that the elliptic regulator for E vanishes unless the total rank in each
block of columns is 1 for E. The rank data in the table above therefore implies that

Rp(f35a, g1, g) = Rp(f145a, g1, g) = Rp(f1015a, g1, g) = 0.

It was indeed verified numerically, to 35 digits of 5-adic precision, that the overconvergent
weight one forms

eg1(F35a · g), eg1(F145a · g), eg1(F1015a · g) ∈ Soc
1 (1015, χ)[[g1]]

are all classical (and in fact non-zero).
On the other hand, the analogous regulators attached to f203b and f1015c are non-zero,

consistent with the calculations

eg1 · eord(d−1(f203b)× g) = 1189789909636790159786755g1 + 1704079340765874348582088g̃[1
eg1 · eord(d−1(f1015c)× g) = 2079657114322222303457220g1 + 1107129050721161617336497g̃[1

which were carried out to a precision of 535. Conjecture 2.2 in this case gives a formula for
the coefficient of g̃[1 in each of these expressions. We are unable to numerically verify these
predictions for either of the forms individually, for lack of an explicit description of the period



ELLIPTIC STARK CONJECTURE AT EXCEPTIONAL WEIGHT ONE POINTS 9

Lg1 attached to g1. However, it was possible to verify the ratio of the two predictions. Namely
it was checked numerically that

(8)
1704079340765874348582088

1107129050721161617336497
=

7
12 logE203b,5

(P203b) logE203b,5
(Q203b)

2
5 logE1015c,5(P1015c) logE1015c,5(Q1015c)

,

where

P203b := (2,−5) ∈ E203b(Q), Q203b :=
(
0,−1

2(
√
−7 + 1)

)
∈ E203b(Q(

√
−7))

P1015c := (1, 2) ∈ E1015c(Q), Q1015c :=
(
−100

7 , 1
98(373

√
−203− 49)

)
∈ E1015c(Q(

√
−203))

and the rational numbers 7
12 and 2

5 appearing in numerator and denominator are the algebraic
factors of [DLR1, Equation (79)], which it was helpful to include, much as in the experiments
of [DLR1, Section 5.2] . The identity (8) was verified to 35 digits of 5-adic precision in perfect
agreement with Conjecture 2.2.

3. The elliptic Stark conjecture at non-smooth points

This chapter turns to the setting where g is irregular at p, i.e., where its Hecke polynomial
at p has multiple roots. This extension turns out to be the least routine and brings to light
essentially new phenomena, arising from the fact that the “p-adic iterated integrals” associated
to (f, g, h), which in the regular setting are classical weight one forms, need not be classical
when g is irregular.

3.1. The generalised eigenspace. Let g ∈ S1(Ng, χ)L be an eigenform that is irregular at
p, that is to say, αg = βg. Just as in the previous section, it is assumed throughout that

Soc
1 (Ng, χ)[I2

gα ] = Soc
1 (Ng, χ)[[gα]].

This is expected to hold true in general and the reader is referred to [BDi2] for several results
in this direction when g is CM.

The above space decomposes naturally as a direct sum

Soc
1 (Ng, χ)[I2

gα ] = S1(Ngp, χ)[gα]⊕ Soc
1 (Ng, χ)[I2

gα ]0,

where

Soc
1 (Ng, χ)[I2

gα ]0 = {φ ∈ Soc
1 (Ng, χ)[I2

gα ] : a1(φ) = ap(φ) = 0}.
The classical space S1(Ngp, χ)[gα] is two-dimensional and spanned by gα and g(qp). The

Hecke operators T` for ` - Ngp and Uq for q | Ng act semisimply on S1(Ngp, χ)[gα] but Up does
not, as

Upgα = αgα, Upg(qp) = αg(qp) + gα.

An explicit description of Soc
1 (Ng, χ)[I2

gα ]0 was provided in [DLR4]. Recall that Wg :=
Ad(Vg) is equipped with the following additional structures compatible with the action of
GQ:

(1) the inner product 〈A,B〉 := Tr(AB),
(2) Lie bracket: [A,B] = AB −BA,
(3) The determinant function: det(A,B,C) := 〈A, [B,C]〉.

As in previous sections let H denote the field cut out by Wg, and let G = Gal (H/Q), which
is isomorphic to a dihedral group or to one of A4, S4 or A5. The irregularity hypothesis on g
implies that p splits completely in H, so that Hp := H⊗Qp is isomorphic, as a Qp-algebra, to
d = #G copies of Qp, on which G acts as the regular representation. Let θW ∈ L[G] denote
the idempotent in the group ring of G giving rise to the projection onto the Wg-isotypic
component.
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Recall the unit ug spanning (O×H ⊗Wg)
GQ considered in §1. The embedding ιp chosen at

the outset restricts to a field immersion H ↪→ Qp and thus logp(ug) lies in Wg ⊗L Qp. For
every prime ` - Ngp,

(9) dim(OH [1/`]× ⊗Wg)
GQ =

{
2 if g is regular at `

4 if g is irregular at `.

Hence, if g is regular at `, there exists a well-defined element

ug(`) ∈ (OH [1/`]× ⊗Wg)
GQ

up to scaling and multiples of ug because dim(OH [1/`]× ⊗Wg)
GQ/(O×H ⊗Wg)

GQ = 1.
A canonical choice of ug(`) is obtained by choosing a prime λ of H lying above ` and setting

ug(`) := θW (xλ), where xλ is a generator of the principal ideal λh, with h the class number of
H. In this way, when Wg is regular at `, one obtains what amounts to a fairly natural basis
(ug, ug(`)) of (OH [1/`]× ⊗Wg)

GQ .

Theorem 3.1. There exists an isomorphism

(10) Φ :
Wg ⊗L Qp

Qp · logp(ug)
−→ Soc

1 (Ng, χ)[[gα]]0

satisfying, for all ` - Ngp,

a`(Φ(w)) =

{
det(w, logp(ug), logp(ug(`))) if g is regular at `;

0 if g is irregular at `.

Proof. This follows from [DLR4, Th. 5.3]. �

3.2. Statement of the conjecture. As in the introduction, together with the irregular
weight 1 eigenform g ∈ S1(Ng, χ) considered above, let f ∈ S2(Nf ) and h ∈ S1(Nh, χ̄) be
classical normalised newforms and set N := lcm(Nf , Ng, Nh).

The object of this section is formulating an elliptic Stark conjecture describing the projec-
tion of the modular form

Φfgαh ∈ Soc
1 (N,χ)[[gα]]

introduced in (2) onto the space Soc
1 (N,χ)[[gα]]0. Conjecture 3.3, which is the main con-

tribution of the present chapter, proposes an explicit formula for this non-classical p-adic
overconvergent modular form, by proposing a formula for its fourier coefficients.

The following simple lemma is a key ingredient in the formulation of Conjecture 3.3 below
in the irregular setting.

Lemma 3.2. Set Vgh := Vg ⊗ Vh. There is a canonical decomposition of L[GQ]-modules

Vgh ∧ Vgh = Wg ⊕Wh.

Proof. Recall that the Dirichlet character χ satisfies

χ = ∧2Vg, χ−1 = ∧2Vh.

The Artin representation Vgh ⊗ Vgh therefore decomposes as

Vgh ⊗ Vgh = (Vg ⊗ Vg)⊗ (Vh ⊗ Vh)

= (χ⊕ Sym2(Vg))⊗ (χ−1 ⊕ Sym2(Vh))

= 1 ⊕ Wg ⊕ Wh ⊕ Sym2(Vg)⊗ Sym2(Vh),(11)

where the general identity V ⊗ V = ∧2V ⊕ Sym2(V ) has been used in the penultimate line
above, and the identities Wg = Sym2(Vg)(χ

−1) and Wh = Sym2(Vh)(χ) have been used to
reach the conclusion. The cross-terms Wg and Wh that arise in (11) are precisely those coming
from the antisymmetric part ∧2(Vgh) of Vgh⊗ Vgh, while the remaining terms (which account
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for a 9 + 1 = 10 =
(

5
2

)
dimensional space) come from the symmetric tensors. The lemma

follows. �

Let
pg : Vgh ∧ Vgh−→Wg, ph : Vgh ∧ Vgh−→Wh

denote the GQ-equivariant projections arising from Lemma 3.2.
Denoting by Hgh the field cut out by Vgh, the choice of a prime of Hgh above p determines

an embedding of Hgh into Q̄p, giving rise to a p-adic formal group logarithms

logE,p : E(Hgh)−→Q̄p, log⊗2
E,p : E(Hgh)⊗2−→Q̄p

attached to E. When dim(E(Hgh)⊗Vgh)GQ = 2, choose an L-basis (P,Q) of (E(Hgh)⊗Vgh)GQ ,
and define the formal regulator R(f, g, h) by setting

(12) R(f, g, h) := P ∧Q ∈
2∧

((E(Hgh)⊗ Vgh)GQ) ⊂ (E(Hgh)⊗2 ⊗ ∧2Vgh)GQ ,

and decreeing that R(f, g, h) = 0 whenever E(Hgh)⊗Vgh)GQ is not two-dimensional. We then
set

(13) Rg(E, Vgh) := pg(R(E, Vgh)) ∈ (E(Hgh)⊗2 ⊗Wg)
GQ ,

and finally write
Rp(f, g, h) := log⊗2

E,p(Rg(E, Vgh)) ∈ Wg ⊗ Q̄p.

Recall from (10) the isomorphism

Φ :
Wg ⊗L Qp

Qp · logp(ug)

∼−→ Soc
1 (Ng, χ)[[gα]]0.

The elliptic Stark conjecture at irregular primes can now be stated precisely.

Conjecture 3.3. There exists a period

Lgα ∈ Qp

which is well-defined up to multiplication by L× and depends only on gα, for which the equality

(14) Φf̆gαh̆,0
=

{
Φ(Rp(f,g,h))
Lgα

, if ords=1L(E, %gh) = 2,

0 if ords=1L(E, %gh) ≥ 4,

holds up to a scalar in L that is non-zero for at least one pair of test vectors (f̆ , h̆) ∈ S2(N)[f ]×
S1(Np, χ̄)L[h].

3.3. Some S3 examples. Let K be an imaginary quadratic field of discriminant −D and let
χK denote the quadratic character associated to K.

This section attempts to make the conjecture above as precise as possible, in the setting
where g ∈ S1(D,χK) is a theta series attached to a cubic unramified class character ψ of K
and p is a prime at which g is irregular. The cyclic extension H/K cut out by ψ is Galois
over Q with Galois group Gal (H/Q) = S3.

Since ψ has order 3, it takes values in L = Q(
√
−3) and the Fourier coefficients of g lie in

Q, because

a`(g) =

{
0 if ` inert in K,

ψ(L) + ψ̄(L) if ` = LL split in K,

for every prime ` - D. In particular, g∗ = g. Moreover, it follows that the roots of the `-th
Hecke polynomial x2 − a`(g)x+ χK(`) are{

αg,` = 1, βg,` = −1 if ` is inert in K,

αg,` = ψ(L), βg,` = ψ(L) if ` = LL splits in K.
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Note that ψ(L) ∈ {1, −1±
√
−3

2 }. Hence g is regular at all inert primes and at those split primes
for which ψ(L) 6= 1.

Fix for the remainder of this section a prime p - D that splits in K as p = ℘℘̄ and such
that ψ(℘) = 1, so that g is irregular at p with x2 − ap(g)x+ 1 = (x− 1)2.

Note that Vgg := Vg⊗Vg = 1⊕χK ⊕Vg. Fix a basis {e1, eK , eψ, eψ̄} of Vgg compatible with
this decomposition, in such a way that GQ fixes e1, acts on eK through χK and satisfies

%g(σ)eψ = ψ(σ)eψ, %g(σ)eψ̄ = ψ̄(σ)eψ̄

for every σ ∈ GK and %(c)eψ = eψ̄, where c ∈ GQ \ GK denotes complex conjugation. Note
also that

(15) Wg = χK ⊕ Vg = 〈eK , eψ, eψ̄〉.
Recall the conjectural isomorphism

Φ : Wg ⊗L Qp/〈logp(u)〉 ∼−→ Soc
1 (D,χK)[[g1]]0

from (10). The unit u = ug generating the Wg-isotypical component of O×H decomposes as
u = uψ̄⊗eψ +uψ⊗eψ̄ for some uψ, uψ̄ on which GK acts through ψ and ψ̄, respectively. Thus

the coordinates of logp(u) in the above basis of Wg are (0, log uψ̄, log uψ). Hence a basis of

the domain of Φ is given by {w1 = [eK ], w2 = [aeψ + beψ̄]} where a log uψ − b log uψ̄ = 1. It

follows that Soc
1 (D,χK)[[g1]]0 ought to be spanned by

(16) g[1 := Φ(w1) and g[2 := Φ(w2).

The Fourier coefficients of g[1 (resp. g[2) at primes ` - Dp can be computed according to the

recipe in (10). Namely a`(g
[
i ) = 0 at all ` = LL split in K such that ψ(L) = 1 – because in

such case g is irregular at ` – and otherwise
(17)

a`(g
[
1) = det

 1 0 0
0 log uψ̄ log uψ

log u(`)K log u(`)ψ̄ log u(`)ψ

 = log(uψ̄) log(u(`)ψ)− log(uψ) log(u(`)ψ̄),

and

(18) a`(g
[
2) = det

 0 a b
0 log uψ̄ log uψ

log u(`)K log u(`)ψ̄ log u(`)ψ

 = log u(`)K .

Here u(`) = ug(`) ∈ OH [1/`]× is the `-unit described in §3.1 and u(`)K , u(`)ψ̄, u(`)ψ denote
its components at eK , eψ and eψ̄, respectively.

When ` is inert in K, u(`)K is trivial because OK [1/`]× = Z[1/`]× by Dirichlet’s theorem

for S-units. Hence there are no `-units on which GQ acts through χK and this means g[2 is
supported at primes ` that split in K and such that ψ(L) 6= 1.

When ` splits in K, it follows from (9) and (15) that (OH [1/`]×⊗Wg)
GQ = OK [1/`]×[χK ]⊕

O×H [ψ]. In particular there are no proper `-units in H× on which GK acts through ψ (and

likewise for ψ̄) and hence a`(g
[
1) = 0. Thus g[1 is supported at primes that remain inert in K.

Let E/Q be an elliptic curve of conductor dividing Dp and let f ∈ S2(Dp) be the weight 2
eigenform associated to it.

3.3.1. Rank patterns (1, 0, 1) and (0, 1, 1) over Vgg. Assume that E(K) has rank one and Vg
also occurs with multiplicity one in E(H). Up to replacing E with its twist by χK , it can be
assumed that E has rank 1 already over Q. Hence the rank pattern is (1, 0, 1) with respect to
the decomposition Vgg = 1⊕χK ⊕Vg, and a similar story applies for the rank pattern (0, 1, 1)
after twisting by χK .
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Under the running assumptions (E(H) ⊗ Vgg)
GQ has a basis consisting of P ⊗ e1 and

Qψeψ̄ +Qψ̄eψ, where P is in E(Q) and (Qψ, Qψ̄) generate a copy of Vg in E(H).
According to the definitions in §3.2, it can be observed that

Rg(E, Vgg) = P ⊗Qψ̄ ⊗ eψ + P ⊗Qψ ⊗ eψ̄
and thus

Rp(f, g, h) = logE,p(P ) logE,p(Qψ̄)eψ + logE,p(P ) logE,p(Qψ)eψ̄

in Vg ⊗ Q̄p ⊂ Wg ⊗ Q̄p. An elementary computation shows that the class of Rp(f, g, h) in
Wg ⊗L Qp/〈logp(u)〉 is

[Rp(f, g, h)] = RE,ψ · w2

where

RE,ψ = det

(
logp uψ logp uψ̄

logE,p(P ) logE,p(Qψ) logE,p(P ) logE,p(Qψ̄)

)
.

Let
Φf,g,g,0 = eg1(Fg)0 ∈ Soc

1 (D,χK)[[g1]]0

denote the overconvergent modular form attached to the triple (f, g, g) in the previous sections.
Conjecture 3.3 predicts that

(19) Φf,g,g,0
?
=
RE,ψ
Lg1

· g[2

up to an algebraic factor in Q(
√
−3)×.

3.3.2. Rank pattern (1, 1, 0) over Vgg. Assume in this paragraph that both E and its K-twist
E ⊗ χK have rank 1 over Q but Vg does not occur in the Mordell-Weil group of E/H. Hence
the rank pattern is (1, 1, 0) with respect to the decomposition of Vgg.

In this case (E(H)⊗ Vgg)GQ = E(K)⊗Q = P ⊗ e1 ⊕ PK ⊗ eK . Hence

Rg(E, Vgg) = P ⊗ PK ⊗ eK , Rp(f, g, h) = logE,p(P ) logE,p(PK)eK

and Conjecture 3.3 predicts that

(20) Φf,g,g,0
?
=

logE,p(P ) logE,p(PK)

Lg1
· g[1

up to a non-zero rational number.

3.3.3. Rank pattern (1, 1) over Vgh with h Eisenstein. Let now h = E(1, χK) be the weight
one Eisenstein series associated to χK . Note that Vgh = Vg ⊕ Vg. Let {eψ, eψ̄} and {fψ, fψ̄}
be bases of the two copies of Vg, as above.

Assume now the rank (1, 1) scenario where Vg occurs with multiplicity 1 in E(H). In that
case, (E(H)⊗Vgh)GQ has a basis consisting of Qψeψ̄+Qψ̄eψ and Qψfψ̄+Qψ̄fψ. The regulator
then becomes

(21) R(E, Vgh) = Qψ ⊗Qψeψ̄ ∧ fψ̄ +Qψ̄ ⊗Qψ̄eψ ∧ fψ +Qψ ⊗Qψ̄(eψ̄ ∧ fψ + eψ ∧ fψ̄)

and Rg(E, Vgh) is the Wg-component of the above expression.
The Wg-component of Vgh ∧ Vgh appearing in Lemma 3.2 is spanned by the vectors

eψ̄ ∧ fψ̄, eψ ∧ fψ, eψ̄ ∧ fψ − eψ ∧ fψ̄.
Note the different sign in the expression of the third vector above compared with the one
appearing in (21): vector eψ̄ ∧ fψ + eψ ∧ fψ̄ does not belong to the Wg-component of Vgh∧Vgh
but rather in the Wh-component. This implies that, in the basis of Wg chosen in (15):

Rg(E, Vgh) = Qψ ⊗Qψ ⊗ eψ +Qψ̄ ⊗Qψ̄ ⊗ eψ̄,
and thus
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Rp(f, g, h) = log2
E,p(Qψ)⊗ eψ + log2

E,p(Qψ̄)⊗ eψ̄.
A similar computation as above yields that Conjecture 3.3 predicts in this case that

(22) Φf,g,h,0
?
= Bg[2

where, up to an algebraic factor in Q(
√
−3)×:

B =
1

Lg1
× det

(
logp uψ logp uψ̄

logE,p(Qψ̄) logE,p(Qψ̄) logE,p(Qψ) logE,p(Qψ)

)
.

The next example gave the first evidence in the S3 setting in support of Conjecture 3.3.

Example 3.4. Let χ be the quadratic character of conductor 83. The space S1(83, χ) is one
dimensional and spanned by the S3-form

g = q − q3 + q4 − q7 − q11 − q12 + q16 − q17 + · · · .

Let

h = 3/2 + q + 2q3 + q4 + 2q7 + 3q9 + 2q11 + 2q12 + q16 + · · ·
be the Eisenstein series in M1(83, χ). Choose p = 23, which is split in K = Q(

√
−83), and note

a23(g) = 2. This corresponds to an irregular case, in which there is a unique p-stabilisation
g1.

Consider two curves of conductor dividing 23 · 83 = 1909 namely

E83a : y2 + xy + y = x3 + x2 + x
E1909a : y2 + y = x3 − 4x+ 2

labelled 83a and 1909a in Cremona’s table, with associated newforms f83a and f1909a.
On the analytic side, for f = f83a and f1909a, consider the projections

Φf,g1,g = eg1 · eord(d−1(f)× g) = αg1 + β̃g̃[1 + γ̃g̃[2 + δg(qp)

Φf,g1,h = eg1 · eord(d−1(f)× h) = α′g1 + β̃′g̃[1 + γ̃′g̃[2 + δ′g(qp).

Here g̃[i denotes the canonical flat form g[i from (16), but scaled to have leading coefficient 1.
This is computationally more convenient, and in any case only a ratio which cancels leading
terms shall be considered. Thus g̃[1 = q2 + · · · and g̃[2 = q3 + · · · . (See Example 3.5 for more
discussion on this point.)

The coefficients were computed to precision 2315, as shown in the following tables. Write
α83a for the top left entry in the first table, and likewise for the remaining entries.

Curve α β̃ γ̃ δ
83a 48760277293702435198 0 −76690635484322354011 93085274895986171577

1909a −691900318506344283 0 0 0

Curve α′ β̃′ γ̃′ δ′

83a −97234278703633451870 0 40444443783855159045 −60119850903882168619
1909a −62665548622385483459 0 −116101535509698118782 74624323060871198940

On the algebraic side, let H be the Hilbert class field of K, which is given explicitly as
H = Q(a) where

a6 − 6a4 + 9a2 + 17107628 = 0.

Take the elliptic unit

u = (41a4 − 16921a2 + 2201900)/3252456,



ELLIPTIC STARK CONJECTURE AT EXCEPTIONAL WEIGHT ONE POINTS 15

a root of x3−2x2−2x−1 = 0 in H. The ranks with which the relevant representations occur
in E(H) for each elliptic curve are as follows:

Curve 1 χ Vg
83a 1 0 1

1909a 2 1 1

Recall again that Vgg = 1⊕ χ⊕ Vg and Vgh = Vg ⊕ Vg.
Let us first focus just on the curve E83a, which shall be denoted by E. The curve E is of

rank 1 over Q with generator P = (0,−1). Write Q for the Heegner point of discriminant
−83 on E, namely

Q =
(
(59a4 + 2093a2 + 1079612)/3252456, (−41a4 + 16921a2 − 5454356)/3252456

)
.

Let ω be a primitive cube root of unity in the unramified extension of Q23 of degree 2, and
σ denote a generator of Gal (H/K). Define

logE,p(Qψ) = logE,p(Q) + ω logE,p(Q
σ) + ω2 logE,p(Q

σ2
)

logE,p(Qψ) = logE,p(Q) + ω2 logE,p(Q
σ) + ω logE,p(Q

σ2
)

logp(uψ) = logp(u) + ω logp(u
σ) + ω2 logp(u

σ2
)

logp(uψ) = logp(u) + ω2 logp(u
σ) + ω logp(u

σ2
).

One finds

logp(uψ) logE,p(P ) logE,p(Qψ)− logp(uψ) logE,p(P ) logE,p(Qψ)

logp(uψ)(logE,p(Qψ))2 − logp(uψ)(logE,p(Qψ))2
=

1

2
· γ̃83a

γ̃′83a

to 15 digits of 23-adic precision. This is in perfect agreement with Conjecture 3.3. (See the

coefficients of g[2 in (19) and (22), and recall the scaling coefficient between g̃[2 and g[2 cancels.)
Note that by taking a ratio the unknown period Lg1 , which depends only upon the form g1,
has been cancelled out.

For the curve E′ = E1909a, let Q′ be the Heegner point

((−5683a4 + 1525691a2 − 159135172)/269953848,

(−6646a5 + 1067831a3 − 431437291a− 1867180782)/3734361564).

With definitions as above, we find

logp(uψ)(logE,p(Qψ))2 − logp(uψ)(logE,p(Qψ))2

logp(uψ)(logE′,p(Q
′
ψ))2 − logp(uψ)(logE′,p(Q

′
ψ

))2
=

112

22 · 72
· γ̃

′
83a

γ̃′1909a

.

Again here the unknown period Lg1 has been cancelled. Finally notice that the representation
Vgg occurs with multiplicity 2+1+1 = 4 in the Mordell-Weil group of E1909a. So in agreement
with Conjecture 3.3, the form Φf1909a,g1,g,0 here is zero, but intriguingly the projection to
the classical subspace of the generalised eigenspace is non-zero. This rank 4 non-vanishing
phenomenon shall be revisited in Example 3.8.

The following is another S3 example, giving further evidence of a similar nature to that in
Example 3.4 for Conjecture 3.3, but in addition illustrates a different aspect of it.

Example 3.5. Let χ be the quadratic character of conductor 59. The space S1(59, χ) is one
dimensional and spanned by the S3-form

g = q − q3 + q4 − q5 − q7 − q12 + q15 + q16 + 2q17 − q19 + · · · .
Let

h = 3/2 + q + 2q3 + q4 + 2q5 + 2q7 + 3q9 + 2q12 + 4q15 + q16 + 2q17 + 2q19 + · · ·
be the Eisenstein series in M1(59, χ). Choose p = 17 which is split in K = Q(

√
−59), and

note that a23(g) = 2. The p-stabilisation g1 is then unique.
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We consider four curves of conductor 1003 = 59 · 17.

Ea : y2 + y = x3 − x2 + x+ 1
Eb : y2 + xy + y = x3 − 8x− 11
Ec : y2 + xy + y = x3 − x2 + 63x− 332
Ed : y2 + y = x3 − 41x+ 135,

labelled 1003a, 1003b, 1003c and 1003d in Cremona’s tables. Let fa, fb, fc, fd be the associated
newforms.

On the analytic side, consider for f = fa, fb, fc and fd the projections

Φf,g1,g = eg1 · eord(d−1(f)× g) = αg1 + β̃g̃[1 + γ̃g̃[2 + δg(qp)

Φf,g1,h = eg1 · eord(d−1(f)× h) = α′g1 + β̃′g̃[1 + γ̃′g̃[2 + δ′g(qp).

Here the forms g̃[i are as defined in (16), but we take the computationally convenient scaling

in which the leading coefficients are 1. So in this case g̃[1 = q2 + · · · and g̃[2 = q3 + · · · . Note

from (18) that g[2 = log17(u(3)K) · g̃[2 where u(3)K = (7
√
−59− 5)/54 ∈ Q17 and so with the

canonical scaling the coefficient is γ = γ̃/ log17(u(3)K). We shall likewise discuss the scaling

of g[1 later.
These coefficients were computed to precision 1740, and are displayed to a precision of 1720

in the following two tables. (The ∗ indicates a 17-adic unit which has been suppressed to save
space.) Here we shall write αa for the top left entry of the first table, and so on.

Curve α β̃ γ̃ δ
1003a ∗/172 0 181419707557488881222715032/17 ∗/17
1003b ∗/17 0 −523847743247977448668851186 · 17 ∗
1003c ∗/17 0 −251265137798087771136751941/17 ∗/17
1003d ∗/17 10625252200361504978696209/17 0 0

Curve α′ β̃′ γ̃′ δ′

1003a ∗/17 0 −477989696282588760904328152 ∗
1003b ∗/172 0 582090391597267739281836759/17 ∗/17
1003c ∗/17 0 −379264218879673945263387983 ∗
1003d ∗/17 57161456039491177003705817/17 0 0

Let H be the Hilbert class field of K = Q(
√
−59). On the algebraic side, the ranks with

which the relevant representations occur in E(H) for each elliptic curve are as follows:

Curve 1 χ Vg
1003a 1 0 1
1003b 0 1 1
1003c 0 1 1
1003d 1 1 0

Following the notation in Example 3.4, for each of the curves 1003a, 1003b and 1003c there is
a point P , which generates E(Q) for 1003a and which generates the χ-component of E(K)
for 1003b and 1003c. For example

Pa = (1,−2), Pb = (−167/16, (−269
√
−59 + 302)/64).

We do not write down Pc as it is of very large height. Likewise we have points Qψ and Qψ̄
which generate the Vg-component for each of these three curves. (Again we shall not write
these large points down.) We return to the curve 1003d shortly.

Using the three curves we are now able to test Conjecture 3.3 in two different ways. Namely
we can take a ratio considering Φf,g1,g,0 and Φf,g1,h,0 for a fixed form f = fa, fb or fc. Second,
we can consider a ratio in which the two weight one forms are now fixed but f varies; for



ELLIPTIC STARK CONJECTURE AT EXCEPTIONAL WEIGHT ONE POINTS 17

example, by considering Φfa,g1,g,0 and Φfb,g1,g,0. In each case the ratio cancels the unknown
period Lg1 .

In terms of the coefficients computed in the tables, using the first ratio test Conjecture 3.3
predicts, as in Example 3.4, that

logp(uψ) logE,p(P ) logE,p(Qψ)− logp(uψ) logE,p(P ) logE,p(Qψ)

logp(uψ)(logE,p(Qψ))2 − logp(uψ)(logE,p(Qψ))2
= C · γ̃

γ̃′

for some C ∈ L. Note that the righthand side also equals C · γ/γ′ since the log17(u(3)K)
cancels. In these experiments, and in agreement with Conjecture 3.3, we found that C =
−1

2 ,−
1
2 and −2 for the three curves 1003a, 1003b and 1003c, respectively, to 40 digits of

17-adic precision.
For the second ratio test we shall first look at Φfa,g1,g,0 and Φfb,g1,g,0. Conjecture 3.3 then

predicts that

logp(uψ) logEb,p(Pb) logEb,p(Qb,ψ)− logp(uψ) logEb,p(Pb) logEb,p(Qb,ψ)

logp(uψ) logEa,p(Pa) logEa,p(Qa,ψ)− logp(uψ) logEa,p(Pa) logEa,p(Qa,ψ)
= Ca,b ·

γ̃b
γ̃a

for some Ca,b ∈ L. Note again the righthand side also equals Ca,b ·γb/γa. Since the curve E is
varying, we have adorned the notation above with subscripts a and b to distinguish between
points on the two curves. We find that indeed

Ca,b =
33

26

to 40-digits of 17-adic precision, in complete agreement with Conjecture 3.3.
Performing the same test but now with 1003a and 1003c we find that

Ca,c =
34

24

to 40-digits of 17-adic precision.
Let us now bring the fourth curve 1003d into play. Note here that Vgh = Vg⊕Vg occurs with

multiplicity zero in the Mordell-Weil group E(H) and so Conjecture 3.3 makes no prediction

at all on the coefficients α′d, β̃
′
d, γ̃
′
d and δ′d. However, once again Vgg has multiplicity two, but

in this case by (20) we expect up to non-zero scaling in L that

Φfd,g,g,0 =
logEd,p(Pd) logEd,p(Rd)

Lg1
g[1.

Here

Pd = (9/4,−63/8) ∈ Ed(Q), Rd = (−201/25, (241
√
−59− 125)/250) ∈ Ed(K).

We now consider the ratio of Φfa,g1,g,0 and Φfd,g1,g,0. Conjecture 3.3 predicts that

logEd,p(Pd) logEd,p(Rd)

logp(uψ) logEa,p(Pa) logEa,p(Qa,ψ)− logp(uψ) logEa,p(Pa) logEa,p(Qa,ψ)
= Ca,d ·

βd
γa

for some Ca,d ∈ L. Note in this case we have from (17) and (18) that

βd
γa

=
β̃d
γ̃a
·

logp(u(3)K)

logp(uψ̄) logp(u(2)ψ)− logp(uψ) logp(u(2)ψ̄)
.

Here u(2)ψ and u(2)ψ̄ are constructed by starting with a root of x3 + x2 − x − 2 in H and

following a similar recipe to that described for uψ and uψ̄ in Example 3.4. (Note also that
as in Example 2.4 the coefficient βd itself does not lie in Q17 so would be less convenient to
display.) Experimentally, we find to 40 digits of 17-adic precision that

Ca,d = −32

27
,
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in complete agreement with Conjecture 3.3.

3.4. D4 examples. Let K be an imaginary quadratic field as before and g ∈ S1(D,χK) be a
theta series attached to an unramified class character ψ : GK−→Q(

√
−1)× of order 4.

Similar to the S3-case, the roots of the `-th Hecke polynomial x2 − a`(g)x + χK(`) at a
prime ` - D are {

αg,` = 1, βg,` = −1 if ` is inert in K,

αg,` = ψ(L), βg,` = ψ(L) if ` = LL splits in K.

Let p - D be a prime that splits in K as p = ℘℘̄ and is such that ψ(℘) = ±1, so that g is
irregular at p. Again we have g∗ = g but the main difference with the previous example is
that now Vgg = 1⊕ χK ⊕ χK′ ⊕ χF where K ′ (resp.F ) is an imaginary (resp. real) quadratic
field. Hence Vgg decomposes completely as the direct sum of four quadratic characters and
we may fix a basis {e1, eχK , eχK′ , eχF } of Vgg compatible with this decomposition.

The adjoint representation Wg is the quotient of Vgg by the trivial character and thus
Wg = 〈eχK , eχK′ , eχF 〉. Set H = KF , the field cut out by ψ2. We have Gal (H/Q) = D4.
Since there are no non-torsion units in the ring of integers of an imaginary quadratic field,
(O×H ⊗Wg)

GQ is spanned by u = uF ⊗ eχF where uF is the fundamental unit in F .
Hence the coordinates of logp(u) in the above basis of Wg are (0, 0, log uF ) and a basis of

the domain of Φ may be taken to be{
wK =

[eχK′ ]

logp(uF )
, wK′ =

[eχK ]

logp(uF )

}
.

According to (10), Soc
1 (D,χK)[[g1]]0 is expected to be spanned by

g[K := Φ(wK) and g[K′ := Φ(wK′).

Moreover, we should have a`(g
[
K) = a`(g

[
K′) = 0 at all ` = LL split in K such that ψ(L) = ±1,

while at the remaining primes:

a`(g
[
K′) = det

1/ logp(uF ) 0 0
0 0 logp(uF )

logp u(`)K logp u(`)K′ logp u(`)F

 = − logp(u(`)K′),

a`(g
[
K) = det

 0 1/ logp(uF ) 0
0 0 logp uF

logp u(`)K logp u(`)K′ logp u(`)F

 = logp(u(`)K).

As explained in the previous section, u(`)K is trivial when ` is inert in K, and likewise

u(`)K′ is trivial when ` remains inert in K ′. It follows that a`(g
[
K) = 0 whenever ` is inert in

K and a`(g
[
K′) = 0 at primes ` inert in K ′.

Let E/Q be an elliptic curve of conductor dividing Dp and for any quadratic field M let
EM denote the twist of E by χM . Set

(rQ, rK , rK′ , rF ) := (rankE(Q), rankEK(Q), rankEK′(Q), rankEF (Q))

and assume throughout that rQ + rK + rK′ + rF = 2. We further assume for simplicity that
there are exactly two fields M1, M2 among {Q,K,K ′, F} such that rM1 = 1 and rM2 = 1.
Then (E(H)⊗Vgg)GQ has a basis consisting of P ⊗eχ1 and Q⊗eχ2 . The regulator introduced
in §3.2 is then

Rg(E, Vgh) = P ⊗Q⊗ eχ1χ2

so that

(23) Rp(f, g, h) = logE,p(P ) logE,p(Q)⊗ eχ1χ2 .

Note that χ1χ2 is always one of the characters χK , χK′ or χF .



ELLIPTIC STARK CONJECTURE AT EXCEPTIONAL WEIGHT ONE POINTS 19

Write eg1(F × g) as

(24) eg1(F × g) = αg1 + βg[K + γg[K′ + δg(qp),

so that its projection to Soc
1 (D,χK)[[g1]]0 is eg1(F × g)0 = βg[K + γg[K′ .

In light of (23), Conjecture 3.3 predicts that



β = γ = 0 if χ1χ2 = χF

β =
logp(uF ) logE,p(P ) logE,p(Q)

Lg1
, γ = 0 if χ1χ2 = χK′

β = 0, γ =
logp(uF ) logE,p(P ) logE,p(Q)

Lg1
if χ1χ2 = χK

up to a non-zero algebraic factor in Q(
√
−1).

The numerical examples below provide evidence for this conjecture and even give a hint to
what the mysterious denominator Lg1 should be in this case:

Conjecture 3.6. Let K be an imaginary quadratic field and g ∈ S1(D,χK) be the theta
series attached to an unramified class character ψ : GK−→Q(

√
−1)× of order 4. Let uK(p) ∈

OK [1/p]× and uK′(p) ∈ OK′ [1/p]× be fundamental p-units. Then

Lg1 = log2
p(uF )(logp(uK(p))− logp(uK′(p)))

up to a non-zero algebraic factor in Q(
√
−1).

The numerical examples below also illustrate an intriguing phenomenon that goes beyond
Conjecture 3.3. Namely, when χ1χ2 = χF , we not only verify that β = γ = 0 as predicted
above, but it also hints at what the coefficient δ along g(qp) should be. Namely:

Conjecture 3.7. Assume χ1χ2 = χF . Then

δ =
logE,p(P ) logE,p(Q)

logp(uF )

up to a non-zero algebraic factor in Q(
√
−1).

Example 3.8. Let χ8 and χ−7 be the (even and odd, respectively) quadratic characters of
conductors 8 and −7 and let χ := χ8 · χ−7. The space S1(56, χ) is one-dimensional and
spanned by the form

g = q − q2 + q4 − q7 − q8 − q9 + · · · .

Let p = 23, an irregular prime for g. We have a23(g) = 2, with χ8(23) = χ−7(23) = χ(23) = 1.
We consider all curves of conductor dividing 23× 56 in the next table. Here the second to

fifth columns give the ranks r(E), r(E,χ8), r(E,χ−7) and r(E,χ−56) and the sixth to ninth
columns the coefficients in (24) to precision 2310.
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Curve id χ8 χ−7 χ−56 α β γ δ
14a 0 0 0 0 0 0 0 0
46a 0 0 1 1 −3975097185284 0 0 −945005819843
56a 0 1 1 0 14352457709431 5640666171804/23 0 0
56b 0 0 0 0 0 0 0 0
92a 0 1 1 0 2618172201698 12672525684729/23 0 0
92b 1 0 0 1 −19716303118943 5063646764719/23 0 0
161a 0 2 0 0 0 0 0 0
184a 1 0 0 1 −8849640277357 −12034743090295/23 0 0
184b 1 1 0 0 2488846330016 0 0 11712106557302
184c 0 0 1 1 12767670057052 0 0 13912542397730
184d 0 0 1 1 20082611393598 0 0 17675998850758
322a 1 1 1 1 0 0 0 0
322b 0 0 0 0 0 0 0 0
322c 0 1 0 1 0 0 −14074337071266/23 0
322d 1 0 0 1 −14031025892117 −14899260693889/23 0 0
644a 1 0 0 1 13192495681964 −1819657478174/23 0 0
644b 1 0 1 0 0 0 −17882538474414/23 0
1288a 1 1 0 0 −12887806466128 0 0 −9022365673563
1288b 0 2 1 1 14163609502103 0 0 0
1288c 0 0 1 1 15725566502785 0 0 −4411481895818
1288d 0 2 0 0 0 0 0 0
1288e 1 1 1 1 0 0 0 0
1288f 1 1 1 1 0 0 0 0
1288g 0 1 1 0 −17462205584266 14360194422860/23 0 0
1288h 1 0 0 1 5344148518790 −9657587156908/23 0 0
1288i 0 1 0 1 0 0 19841263299919/23 0

The fundamental 23-units in Q(
√
−7) and Q(

√
−56) and fundamental unit in Q(

√
8) are

as follows: Let u−7 ∈ Q23 be the unit root of x2 − 8x + 23, u−56 ∈ Q23 the unit root of
x2 − 6x+ 23, and u8 ∈ Q23 the ratio of the roots of x2 − 2x− 1.

We examine curves with each possible rank pattern. Note that the equalities stated below
were checked to precision 2310.

Let E be the elliptic curve 46a, which has rank pattern 0011. We take

P =
(
(−
√
−7− 3)/2,−2

)
, Q =

(
1177/800, (42891

√
−14− 23540)/32000

)
and find

δ =
2 · 11

23
×

logE,p(P ) · logE,p(Q)

logp(u8)
.

Let E be the elliptic curve 184b, which has rank pattern 1100. We take

P = (2,−1), Q = (3/2,
√

2/4)

and find

δ =
27 · 32

11 · 23
×

logE,p(P ) · logE,p(Q)

logp(u8)
.

Let E be the elliptic curve 92a, which has rank pattern 0110. We take

P =
(

2
√

2 + 4, 6
√

2 + 11
)
, Q :=

(
−(
√
−7 + 1)/2, 1

)
and find

β = − 25 · 32

11 · 23
×

logE,p(P ) logE,p(Q)

logp(u8)(logp(u−7)− logp(u−56))
.

Let E be the elliptic curve 322d, which has rank pattern 1001. We take

P = (0, 2), Q =
(
−380/63, (−3904

√
−14 + 3990)/1323

)
and find

β = −2 · 5 · 11

23
×

logE,p(P ) logE,p(Q)

logp(u8)(logp(u−7)− logp(u−56))
.

Let E be the elliptic curve 322c, which has rank pattern 0101. We take

P =
(√

2− 1,−
√

2 + 1
)
, Q =

(
19/28, (51

√
−14− 329)/392

)
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and find

γ = −2 · 11

23
×

logE,p(P ) logE,p(Q)

logp(u8)(logp(u−7)− logp(u−56))
.

Let E be the elliptic curve 644b, which has rank pattern 1010. We take

P = (4, 7), Q =
(
−301/9,−2005

√
−7/27

)
and find

γ = − 25 · 32

11 · 23
×

logE,p(P ) logE,p(Q)

logp(u8)(logp(u−7)− logp(u−56))
.

The rational numbers which appear seem closely related to a modified version of the al-
gebraic factor in [DLR1, Equation (79)]. Namely, if one removes the first factor from the
denominator of that expression (as it vanishes) then what remains gives for the six curves
above, respectively, the rational numbers

2 · 11

23
,

25 · 32

11 · 23
,

25 · 32

11 · 23
,

2 · 11

23
,

2 · 11

23
,

25 · 32

11 · 23
.

To conclude notice that the curves 1288e and 1288f have rank 4 = 1 + 1 + 1 + 1, and here
the projection to the generalised eigenspace appears to be zero. However, for 1288b the rank
patter is 4 = 0 + 2 + 1 + 1 and the projection is now non-zero and supported on the classical
form g(q). This non-vanishing phenomenon in rank 4 is similar to that for curve 1909a in
Example 3.4. This suggests that in the rank 4 setting using irregular weight one forms one
might be able to construct non-vanishing Selmer classes, in the same way that non-vanishing
classes are constructed in the rank 2 setting using regular weight one forms in [DR2].
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