STARK-HEEGNER POINTS FOR ASAI REPRESENTATIONS
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ABSTRACT. A conjectural construction of global points on modular abelian varieties is
proposed. These points are defined over the field cut out by the tensor induction (or Asai
representation) of a totally odd two-dimensional Galois representation of a real quadratic

field.
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INTRODUCTION

Let E be an elliptic curve over Q and let V' be an Artin representation of Q, that is to
say, a finite-dimensional vector space over a finite extension Kk C C of QQ, called the field of
coefficients of V, endowed with a continuous linear action of Gg := Gal(Q/Q). The action
of Gg factors through the quotient Gal(H/Q) for a finite extension H of Q, referred to as
the field cut out by V', giving rise to a homomorphism

o:Gal(H/Q) — GL(V).

For each prime ¢, denote by k; a completion of x at a prime above ¢. The pair (F,V)
gives rise to a continuous k,-linear representation of G whose underlying vector space is
the tensor product of the Tate module of E with V:

(1) Weve :=Ti(E) ®, (V ®, ke), where Ty(E):= (Luil El"]) ®z, ke
1
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It is unramified at any rational prime p not dividing /N D, where N and D are the conduc-
tors of I/ and V respectively. The frobenius element at such a p, denoted o, is well-defined
up to conjugation in Aut(Wg ). Its characteristic polynomial has coefficients in k C &y
and does not depend on the choice of ¢ # p.

The equivariant Birch and Swinnerton-Dyer conjecture relates the order of vanishing at
s = 1 of the Hasse-Weil-Artin L-series

(2) L(E,V,s):= [] det(l — o, -p~*)~"
ptND

to the V-rank of E, defined as
(3) rank(E, V) :=dim, E(H)", where E(H)" :=homg,(V, E(H) ® k).

Conjecture BSD(E,V): ord,-1 L(E,V,s) = rank(E, V).

Progress on this conjecture has been painstaking and hard-won. In the analytic rank 0
situation where L(E,V,1) # 0, it is known when V' is one-dimensional [Kato|, when V'
is induced from certain ring class characters of an imaginary quadratic field [BD1] or a
real quadratic field [DR2], or when V' is the tensor product of two odd irreducible two-
dimensional Artin representations [DR2].

Results in the analytic rank one case, where L(FE,V,s) has a simple zero at s = 1, are
even more fragmentary and largely confined to scenarios where the vanishing of L(E, V, s) is
forced by parity considerations. This happens when V' is isomorphic to its contragredient—
so that the functional equation relates the values of L(F,V,s) at s and 2 — s—and when
the sign in this functional equation, denoted sign(E, V), is equal to —1. The L-function
L(E,V,s) is then essentially an odd function of s — 1, and hence vanishes to odd order at
the central point.

Assuming for simplicity that N and D are relatively prime to each other, the most basic
instances of this occur when the representation V' is induced from a ring class character of
a quadratic field F'. In that case, V is always self-dual and

(4) Sign(E> V) = gF(_N)a
where € is the quadratic Dirichlet character attached to F'.

(a) When F' is imaginary and ep(—N) = —1, the systematic vanishing of L(E,V,1) is
accounted for by a plentiful supply of complex multiplication points defined over
all ring class fields of F' of conductor prime to N, lying on suitable modular or
Shimura curves which uniformise . The significance of the resulting Heegner
points in E(F®) for the study of the Birch and Swinnerton Dyer conjecture can
hardly be overstated. These points are the basis for the important results of Gross-
Zagier [GZ] and Kolyvagin [Ko|, and provide essentially the only instance where
a simple zero of L(E,V,s) at s = 1 can be parlayed into the construction of a
non-trivial element of E(H)".
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(b) When F' is real and ep(N) = —1, the role of Heegner points is ostensibly played
by the Stark-Heegner points introduced in [Dar|, whose conjectural nature prevents
their being used to prove BSD(FE, V') in this case.

The article [DR2] does prove some non-trivial instances of BSD(E, V') in the analytic
rank zero variant of scenario (b), where ep(N) = 1. The proof in this case is somewhat
roundabout and makes no use of Stark-Heegner points: rather it proceeds by realising
V as a direct summand of a tensor product V; ® V5 of two odd two-dimensional Artin
representations in order to reduce BSD(E, V) to BSD(F, V) ® V3), which is proved using
global cohomology classes in H'(Q, Wg1,601,.¢) arising from p-adic families of étale Abel-
Jacobi images of diagonal cycles in triple products of modular curves.

A motivation for singling out scenario (b) for special attention is that it has revealed
tantalising possibilities for constructing global points on elliptic curves in settings that lie
squarely beyond the scope of the theory of complex multiplication. It is natural to ask
whether other instances of self-dual V' for which sign(£, V') = —1 might lead to analogous—
conjectural, but entirely explicit —constructions of global points on F.

The setting where V= V; ® V5 is a self-dual tensor product of two odd irreducible
two-dimensional Artin representations may seem promising at first glance in light of the
progress initiated in [DR2]. However, one always has

(5) sign(E, Vi ® Vo) =1 when  ged(N, D) =1,

which makes this setting somewhat unpropitious for suggesting new Stark-Heegner point
constructions. (See however [DLR1]| where p-adic regulators attached to L(E, Vi ®V3, s) are
related to appropriate “Stark points” in favorable “analytic rank two” scenarios, and the
work of Dall’Ava and Horawa [DaH| which focuses on situations of analytic rank one, where
the conductors of E and Vi ® V5 are no longer assumed to be coprime. An ongoing work
in progress of Andreatta, Bertolini, Seveso and Venerucci [ABSV] approaches a similar
setting through the study of endoscopic lifts to unitary groups.)

Motivated by these considerations, this paper explores the setting where V' is the tensor
induction, or Asai representation, of a two-dimensional Artin representation of a real qua-
dratic field F. The definition and key properties of this tensor induction are recalled in
Section 2. Let Ver(% denote the transfer (Verlagerung) of a character of G to a character
of Gg, which is dual to the transfer map G —G5" of group theory.

Sign Formula ([Pra, Thms B & D, Rk. 4.1.1]): Let Vi be a two-dimensional Artin rep-
resentation of a real quadratic field F of conductor ® C Op with gcd(N,D) = 1 which is
odd at the two real places of F', and let

(6) V = Ind®(V})
be the tensor induction of Vi from G to Gg. If
(7) Ver? (det Vp) = 1,

then V' is self-dual and
(8) sign(E, V) = ep(N).
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This strikingly simple recipe for sign(£, V'), which is identical to (4), suggests that E(H)Y
is non-trivial for an explicit, systematic class of Asai representations, and it is natural to
seek a construction of the non-trivial elements of E(H)" whose existence is predicted by
the equivariant Birch and Swinnerton-Dyer conjecture, guided by the ideas in the proof of
the Gross-Zagier formula. Proposing such an analytic expression is one of the main goals
of this paper.

Assume from now on that V and V' are as in the statement of the Sign Formula above,
and that sign(F, V) = —1. It follows that ez(N) = —1, which implies that there is a prime
p dividing N with odd multiplicity for which ep(p) = —1. Fix such a p > 3 and assume
for simplicity that it divides N with multiplicity one.

In fact, the rest of the paper will focus solely on the case where the conductor N of F
satisfies the following somewhat stronger generalised Heegner hypothesis:

(9) N = pM, where ep(p) = —1, and ep(¢) = 1 for all £|M.

This hypothesis, although stronger than the more natural condition ep(N) = —1, simplifies
the setting without eliding any of its essential features. It implies that there is an ideal
M C Op for which Op /M = Z/MZ, which shall be fixed from now on.

The Artin representation V; is associated to a holomorphic Hilbert modular form over
F of parallel weight one, level ® and character y := det V4. Such a Hilbert modular form
is attached to a function

(10) G:I(F) — &

on the semigroup I(F') of integral ideals of F', which is defined by extending by multiplica-
tivity the following definition on prime powers:

G(\) = Trace (U,\|VOIA> , G\ = { 58390\”) ~ NG i iﬁ@?>

where I, is the inertia group at A and VOIA is the space of Iy-invariants. Fix an ordering
of the real embeddings of F' and for v € F, write v;,15 € R for the images of v under
these two embeddings. To the function G and to the ideal M of O is associated a Hilbert
modular generating series

(11) Gsm(ﬁ,ﬁ) — Z G((V)D)qy, qu — 627”‘(1/1714—1/272)7
ve(Mo—1),

where the sum runs over all the totally positive elements of 910!, and d denotes the
different ideal of Op. This generating series is a Hilbert modular form of parallel weight
one and character x on the group

(12) FO(Q;QJI)::{(CCL Z) a,d € Op, beM*, cei)ﬁ@}.
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After choosing an embedding of F' into a completion F, at p, and a p-adic logarithm
log, : F**——F), we consider the following p-adic generating series deforming (11):

(13) Go(71,72) == Z log, (V)G ((¥)0)q".
ve(@Mo—1)4,
ptv
Let
(14) Ohy = Gm(7,7), O = Tracel" (2F),)

denote the diagonal restriction of Gf, and its formal trace from level DM to level M. Here
D > 1 is such that ® NZ = (D).

In Section 3, it is shown that @g{}) is a p-adic modular form of weight two and (tame)
level M. Let eyq be the ordinary projection from this space of p-adic modular forms to
the space of classical modular forms of weight two and level N that are fixed by Uz (and
hence new at p). The modular form attached to the Asai representation V', defined by

(15) Dy = cora (D)) € My(To(N))

is a classical modular form of weight two on I'o(/V) that is new at p.
Let Jo(N) denote the Jacobian of Xy(N) and define

Jo(N)(H)" = home, (V, Jo(N)(H) @ )

as in (3). The main conjecture of this paper expresses it in terms of the p-adic logarithm

of a global point arising from an element of Jo(N)(H)".

The p-new part of Jy(NV), denoted Jép )(N ) has purely toric reduction, and there is a
natural exact sequence arising from the Tate-Morikawa uniformisation of Jép )(N )

1—X L T— JP (N)(Q,)—1,
where T is a p-adic torus, X := hom(7, G,,) is the character group of T' (a free Z-module
of rank g = dim Jép)(N)), and j arises from the monodromy pairing X x X—G,,. A
differential on 7' is said to be toric if it is of the form n*(%) for some n € X. Such a
differential is invariant under translation by j(X), and theorefore descends to a differential
on JP(N) . The space QL of toric differentials on J(N) is a free Z-module of rank g

by definition, and is endowed with a natural linear action of the Hecke operators T;, acting

as correspondences on Jép )(N ). A toric differential is said to be generic if its translates
under the Hecke operators T}, span the Q-vector space Q)  ® Q.

tor

Main Conjecture. There is a point Py € Jép)(N)(H) ® Kk belonging to the image of an
element of Jép)(N)(H)V, and a generic toric differential w on Jép)(N) for which

(16) Oy =Y log, (Tu(Pv))q"

One of the simplest cases of this conjecture is considered in [DPV], where V} is taken to
be the direct sum of the trivial character and an odd (unramified) ring class character v
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of F, and G is the Hilbert Eisenstein series over F' of parallel weight one attached to this
pair of characters. The Asai representation of V; is then equal to

Asai(Vy) = V =13 1@ Ind2 ().

The main result of [DPV] expresses the nth fourier coefficients of the modular form &y
(where M =1 and N = p) as a linear combination of RM values of the winding cocycle

(17) Ju € H'(SLy(Z[1/p]), A/C}),

where A is the multiplicative group of rigid analytic functions on the Drinfeld p-adic
upper half-plane H,. More precisely, the set of RM points on SLy(Z[1/p])\H, of (prime-
to-p) discriminant Dp = Disc(F) is endowed with an action of the class group of F, and
the main result of loc.cit. is the equality,

(18) a,(Py) = Z (o) log, NrmJ,, [T, 7],
o€Gal(H/F)

where the value J,,[7] of the cocycle J,, at an RM point has been extended to RM divisors
by multiplicativity, and Nrm denotes the norm from Q,2 to Q,. The general theory of rigid
analytic and meromorphic cocycles predicts that the RM values J,[T,,7°] map to points in
Jo(p)(H) under the Tate-Morikawa uniformisation of Jy(p). The Main Conjecture of this
paper can thus be envisaged as an extension of (18) to a setting where Hilbert Eisenstein
series are replaced by general Hilbert modular forms of weight one (satisfying the self-
duality assumption).

For an earlier discussion that also aims to place (18) in a more general framework, see
[FLPSW].

1. REFINEMENT OF THE MAIN CONJECTURE
Write

(19) Oy =3 Ay f+ B
f

where the sum is taken over a basis of normalised newforms in Sy(T'g(N)) and &9 is an
oldform. Our goal is to reformulate the main conjecture of the introduction as a description
of the coefficients Ay ; in this decomposition.

The Q-algebra Ty generated by the Hecke operators T, with ged(m, N) = 1 acting on
S2(T'o(N)) is an étale algebra, isomorphic to a product of totally real fields. Assume that
k is large enough to split Ty, i.e., that

']I'N®/<;z@/<;,
f

where the sum is taken over pairs (f, Ny) with f a normalised newform of level N¢|N with
coefficients in x. The idempotents 7y € Tx ® k attached to this decomposition lead to a
direct sum decomposition

Jo(N)(H) ® & = @D Jo(N)(H);,
!
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where Jo(N)(H)f = 7p(Jo(N)(H) ® k). The “Stark-Heegner point” Py of the Main
Conjecture of the introduction is the sum of its f-isotypic components:

Py =Y Prj+Proa € Jo(N)@r, where Py; = my(Py) € Jo(N)(H); .
f

The main conjecture of the introduction can be reformulated as follows:

Conjecture 1.1. The coefficient Ay, arising in the spectral expansion (19) of @y is given
by

(20) Av.y = log,(Pyy)

up to a multiplicative constant in k.

To further lighten the notations, we will focus henceforth on the case where f is a weight
two newform of level N with rational fourier coefficients, i.e., a form that corresponds to
an elliptic curve E/Q of conductor N. In that case, the field x can simply be taken to be
the field of coefficients of the Artin representation V.

The running assumption that p divides N implies that £ has multiplicative reduction
at p, and hence that

() +1 if E has split multiplicative reduction at p,
a, :=a =
P g —1 if E has non-split multiplicative reduction at p.

The base change of E to the quadratic unramified extension Q2 of Q, admits a rigid-
analytic uniformization according to Tate’s theory. Namely, there is a p-adic period ¢r €
pZ, and an isomorphism of rigid-analytic varieties over Q,

(21) (I)Tate : @; /q% % E(Qp)
which is defined over Q, when a, = +1 and over Q,2 when a, = —1.

Let log,, : @; —Q, denote the branch of the p-adic logarithm such that log,(qe) = 0,
and define

1OgTaLte : E(@p)HQp? lOgTate(:E) = logp (I)iite(x)'

Note that logp,,. is defined only at primes of multiplicative reduction, and is different from
that with respect to the canonical differential on E itself (denoted logg, in [DLR1]). Up
to a non-zero rational factor, we then have

]‘ng<PV,f) = IOgTate(PV»f)‘

The main goal of this section is to further refine Conjecture 1.1 by predicting when
the coordinate Ay ; in (19) gives rise to a non-trivial element of the Mordell-Weil group
Jo(N)(H)s. More precisely, the global sign of the Hasse-Weil Artin L-function L(E,V,s)
is —1 and hence this L-function vanishes to odd order. If ords—1 L(F,V,s) = 1, then there
is a unique irreducible constituent Wi of V= Wy @& W; for which

L(E, W(), 1) % 0, ordszlL(E, Wl, 8) = 1.
Letting ag and B¢ = ag' denote the eigenvalues of the frobenius element at p in Gp

acting on the Artin representation V} attached to GG, Proposition 2.2 below asserts that
the eigenvalues of 0, in Gg on its tensor induction V" are 1, —1, a¢ and Sg.
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Conjecture 1.2. The scalar Ay 5 is non-trivial if and only if the following two conditions
are satisfied:
(I) ords—1 L(E,V,s) = 1;
(II) The invariant a, € {£1} has multiplicity 1 as an eigenvalue of the frobenius element
op acting on V', and its associated eigenvector belongs to Wi.

When the above conditions hold, then A,y = logr..(Py.f) and the global point Py s lies
in the image of E(H)V1. More precisely, this point forms a basis of the one dimensional
subspace of this image on which o, acts with the eigenvalue a,.

The remainder of this paper will be devoted to describing evidence for Conjecture 1.2.
Theorem 4.5 provides theoretical evidence in the special case where G is associated to
the theta series of a character of a biquadratic field, and Section 5 documents a series of
numerical experiments in support of this conjecture which also illuminate some of its more
subtle features.

2. ASAI REPRESENTATIONS

This section collects a few simple facts about Asai representations, in the level of gener-
ality that is relevant to the constructions of this article.

Let & be a finite group and let G' be a subgroup of index two in &. The induction to &
of a finite-dimensional representation Vj of G is the space of G-invariant functions

Ind&(Vp) := {n : &—V} satisfying n(gz) = gn(z), for all g € G}
endowed with the action of v € & given by
(v - m) (@) = nlay).
Since a vector in Ind(%(Vo) is completely determined by its values on a system of coset
representatives for G\®, the representation Ind$(V;) is identified with Vj @ V; after fixing
an element 79 € & — G, and sending 7 to (n(1),7n(79)). Conjugation by this element 7,
determines an automorphism of G' which will be written as g — ¢’ := 797, *. Under the

identification of Ind$ (V) with Vy @ Vj determined by 79, the action of & on the latter
space is given by

_ | (gv1, g'v) if g € G,
(22) 9((v1,02)) = { (97 w2, Togu1) i g € & —G.

The tensor induction of Vy to &, denoted Ind®(V;), is defined by replacing direct sums
with tensor products in (22). Its underlying vector space is V' := 1 ® Vj, with action of
& defined by

_ J gui®g'vy ifgeq,
(23) g(v1 @ v2) = { g7y vy ® Togu, if g€ B — G.

Lemma 2.1. The character x,, attached to V = Ind®(V;) is given by

_ xw@xy, (9), ifgeG,
Xv(g)_{ v (99 ifge®—G.
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Proof. For g € G, the formula for x, (g) follows directly from (23). Consider the sec-
ond case, where g belongs to & — (G, and assume for notational simplicity that V is
two-dimensional, although the general case can be treated in the same way. Since the
isomorphism class of the Asai induction does not depend on the choice of 7y € & — G that
was made to define it, we may set 79 = g. Every element of G acts semisimply on 1} since
G is finite; let v,, v € Vg be an eigenbasis for g acting on Vp, with eigenvalues o and 3
respectively. Relative to the basis (v, ® V4, Vs ® v, V4 ® Vg, V5 ® v,) for V', the action of g
is given by

G(Va ® Vo) = @ Vg & Vg, 9(vg ®vg) = B - v3 ® v,
9(Va ®vg) = v+ V5 @ Va, 9(vs ® Vo) = B+ Vo ® vg.

The matrix of ¢ in this basis is therefore given by

(24) M, =

oo ™o

0
0
0
o)

SO O
oo o

The result follows directly. 0J

If V4 is a one-dimensional representation of GG, associated to a character y : G—C*,
the tensor induction of Vj coincides with the transfer of x.

Of special interest for the constructions of this article are two-dimensional representa-
tions Vj of G satisfying the condition

(25) Ind® det (V) = 1.

Proposition 2.2. If Vi is a two dimensional representation of G satisfying (25), then
V = Ind®Vj is a self-dual Artin representation. The eigenvalues of any g € & — G acting
on'V are equal to 1, —1, o, and B = a~ ', where o and 3 are the eigenvalues of ¢g*> € G
acting on Vj.

Proof. If g belongs to G, let o and [ be the eigenvalues of g acting on Vj, and let o’
and " denote the eigenvalues of ¢’. Assumption (25) implies that aSa/s" = 1, while the
eigenvalues for g on V are equal to ad’, aff’, fa/, and S5’. This set of eigenvalues is
therefore closed under the map ¢ — ¢, and hence the trace of g acting on V is real. If g
belongs to & — G, then letting o and 3 denote the eigenvalues of ¢ acting on Vj, condition
(25) implies that

(26) af = det(Vp)(g*) = Ind® det(Vo)(g) = 1.

Since the matrix of g acting on V relative to a suitable basis is given by (24), its trace
a + [ is real, and the self-duality of V' follows. The second assertion in Proposition 2.2
follows likewise from (24) and (26). O
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3. REINTERPRETATION VIA p-ADIC L-FUNCTIONS

The purpose of this section is to relate the conjecturally global point Py ¢ of Conjecture
1.2 to derivatives of suitable p-adic L-functions. This will lead to some theoretical evidence
for Conjecture 1.2 when Vj is induced from a character of a quadratic extension of F' which
is biquadratic over Q (Theorem 4.5).

Following the notations of earlier sections, recall that G is the holomorphic Hilbert
eigenform of conductor ®, nebentype x and parallel weight 1 over a real quadratic field F’
whose Asai representation is isomorphic to V', and that f € Sy(V) is a normalised newform
associated to an elliptic curve E of conductor N = pM by modularity. Here as above p > 3
is a prime and M > 1 an integer relatively prime to p. It is assumed that (N, Dp®) = 1
and (F, N) satisfy the generalised Heegner hypothesis of (9).

Because U,f = +£f, the weight two newform f is ordinary at p. It can therefore be
realized as the weight two specialization of a Hida family of modular forms, denoted f.
This Hida family is a formal g-expansion with coefficients in a finite flat extension Ag of
the Iwasawa algebra A := Z,[[(1 + pZ,)*]| ~ Z,[[T], as defined in [DR1, Def. 2.16], whose
specialisations at a dense set of classical points are classical eigenforms of tame level N
and varying weights. More precisely, the spaces

X := hom,s(Ag, C,), X = hom, (A, C,) = homyg,,((1 + pZ,)™, (C;)

are endowed with a natural structure of p-adic analytic spaces. The weight space X contains
the integers as a countable dense subset via the inclusion k +— (x — 2%72), and restriction
gives a finite flat morphism

w: XAp— X,

called the weight map. By definition, the specialisation f, := z(f) of f at a point x € X
is an ordinary overconvergent p-adic eigenform of level N and weight k := w(z). When
k := w(x) belongs to Z>2, Hida’s classicality theorem implies that f, is a classical modular
form of weight & on I'g(N) which is new at the primes dividing M and is a simultaneous
eigenvector for the Hecke operators, satisfying

Upfo = apfe, with o, € Oép.

The Hida family f is uniquely characterised by these properties along with the condition
that f,, = f, where xzy € X; is a suitable classical point of weight w(zg) = 2.

The ordinarity of f, when w(z) > 2 implies that f, cannot be new at p: rather, it is the
ordinary p-stabilisation of a classical normalised newform of level M, denoted f;.

Let L(f:,V,s) denote the Hecke-Artin L-series attached to f and to V, i.e., to the
tensor product of V' with the compatible system of two-dimensional Galois representations
attached to fr. A twisted variant of Rankin’s method, which will be detailed below, implies
that L(f?2,V,s) admits analytic continuation and a functional equation relating its values
at s and k — s. Denoting by sign(f,, V') the sign that arises in this functional equation,
the generalised Heegner hypothesis (9) implies that

. | =1 ifa = xp;
sign(fz, V) = { 1 if k= wiz) > 2.
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In particular, the central critical values L(f7,V, k/2) need not vanish when k > 2.

It is therefore natural to attempt to interpolate these values p-adically to a function
on X;. Starting with the fundamental work of Ichino [Ich] and following the principles
of [DR1], this task has been undertaken recently in the literature in various degrees of
generality thanks to the contributions of Hsieh [Hs|, Blanco-Fornea [BF], Chen-Cheng
[CC], Ishikawa [Ish], Kazi [Kazi] and Kazi-Loeffler [KL].

In order to describe the results, recall the Hilbert generating series Gon(71, 72) attached

to G and M in (11). Let
1 d Ky
b = — L ik
2w \ dmny 211

be the partial Shimura-Maass derivative operator mapping holomorphic Hilbert modular
forms of weight (k1, ko) to nearly holomorphic Hilbert modular forms of weight (k; + 2, k),
and write

5,21 = 5k1+2t—2 0---0 5k1+2 e} 6k1
for its t-fold iterate. The nearly holomorphic modular form

81 Gam(71, 72) € MYy, (To(D, M)

transforms like a holomorphic Hilbert modular form of weight (1 4 2¢, 1) under the action
of the congruence subgroup of (12). For any even weight £k = 2t + 2 > 2, the diagonal
restriction

HyM(q) := 8;Gon(7, 7) € M (To(DM))

is a nearly holomorphic modular form of weight k£ and level DM. Let
(27) Hk = €h01TI']\D/[MH,?h S Mk<F0(M))
denote the holomorphic projection of its trace to level M. Then for all x € X} with
w(z) =k > 2, let

<Hk‘a fo)
28 I(f),G) = ——=,
(28) [z, G) (3, 12)
where ( , ) denotes the Petersson scalar product on weight & modular forms.

Let d; := qld;:]ll be the partial d operator which maps Hilbert modular forms of weight
(k1, k2) to nearly overconvergent Hilbert modular forms of weight (k; + 2, k2). The gener-
ating series
(29) diGul(q, ) = Y vi-GWP)a'as* € M2y, (To(D, M)

ve(Mo—1),

is the g-expansion of a nearly overconvergent p-adic Hilbert modular form of weight (1 +
2t,1). Tts diagonal restriction

Hy® == diGan(q, q) € Mi°(To(DM))
is a nearly overconvergent modular form of weight k& and tame level DM. Let
H} = eqd TrM HX® € My, (To(N))
be the classical modular form of weight k& and level N obtained by applying to H;°:
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(1) the trace map TrM from overconvergent forms of level DM to level M;

(2) the ordinary projection eqq from overconvergent modular forms of tame level M to
classical ordinary modular forms of level N.

The geometric principles evoked in the proof of [DR1, Prop. 2.8] imply that
HZ - eordea

and hence H can be envisaged as a p-adic avatar of the modular form Hy, of (27). Replacing
H, by H; in (28) leads to an alternate expression for I(f°, G) in terms of the period
CHE, fo) (o fo)

Although more genuinely p-adic in nature, this quantity does not interpolate p-adically
to an analytic or even continuous function of x € X¢, because the quantity v arising in
the fourier coefficients of d{Gyy are only analytic functions of ¢ when p { v. This motivates
replacing the form d!Gop(q1, g2) by its p-depletion in (29):

(3()) dthE[{])t] (qla Q2) = Z VfG((V)D)%qulz/Q;

ve(®Mo—1)
a modular generating series whose fourier coefficients interpolate to p-adic analytic func-
tions of ¢t € (Z/(p* — 1)Z) x Z,. Let

HP = eorg TrPM (dgcg;;@, q)> e My(To(N))

be the ordinary projection of the trace to level M of the diagonal restriction of this nearly
overconvergent Hilbert modular form, and set

_ 1) _
(31) Z,(£, V) (x) : AR k= w(x).
This quantity interpolates to a p-adic meromorphic function of z, denoted .Z,(f, V'), and
commonly referred to as the twisted triple-product p-adic L-function. Since it suffices
for our purposes, here we have limited ourselves to introduce this p-adic L-function as a
single-variable function on the weight variable of f, but the reader is invited to consult the
references above for a three-variable version of it.

As anticipated before, .Z,(f, V') interpolates the square-root of the algebraic part of
central critical classical L-values, which we now describe more precisely. Here we state
a version of this result proved by Ishikawa in [Ish, Theorem 1.5.1] although the above
references show it holds in greater generality and under more relaxed assumptions.

Recall that ag and g are the eigenvalues of the frobenius element at p in G acting on
the Artin representation V| attached to G, and the eigenvalues of o, in Gg on its tensor
induction V are 1, —1, ag and S¢, by Proposition 2.2.

Given two functions A(z) and B(z) on a subset of classical points of X that is dense
for the rigid-analytic topology, we will write

(32) A(z) ~ B(x)

if they differ by a quantity that interpolates to a p-adic meromorphic function on A that
is regular at o and whose value at xy belongs to k™. We call such functions admissible.



STARK-HEEGNER POINTS FOR ASAI REPRESENTATIONS 13

Theorem 3.1 (Ishikawa). Assume

(H,) The mod p residual Galois representation oy : Go— GLo(F,) is absolutely irre-
ducible and the restriction of oy to the decomposition group at p is the sum of two
distinct characters.

(Hyp) The local admissible representation associated to f at a prime q | M is not super-
cuspidal (which is automatically fulfilled when q || M ).

For all classical points v € Xy of weight k = 2t + 2 with t > 0 we have

2 V)@ ~ eV e vk

50(fx)
where
(33)  ElfuV)= (1—p;0‘6') (1—2’;&") LGl = (1—p0;)
and
(31) Lag(FoVik/2) = S22 e vk,
e w2 (fe, oy M

Proof. This follows from [Ish, Theorem 1.5.1]. Indeed, observe first that all assumptions
in loc. cit. are fulfilled, since our running hypothesis that (N, Dp®) = 1 implies Ishikawa’s
set X7 is empty. The formula in loc. cit. asserts that
L(f2, V. k/2) _

zr V> gT i 1 Vi 1\2 ¢ 1 2 2)\2
T € Ueo) L+ TT (17 =)

fexndist (e excep

Z(£,V)(2)* =Ty, 4(0)

where

(i) I'y, 4(s) is the Gamma function introduced in [Ish, (1.2.1)], whose value at s = 0
is (%!)‘%_2’“ up to a power of 2 (whose exponent is a polynomial in k), and thus
interpolates to an admissible function;

(i) LUt and $e°°P are finite sets of primes distinct from p introduced in [Ish, §1.5];
note that the functions ((¢ + 1)? — a?2)? interpolate to admissible p-adic analytic
functions on A¥;

(iii) the period €, is defined at the end of [Ish, §1.4] and is precisely the Petersson scalar
product (f2, f2) quoted above, up to an Euler-like factor &,(f,, Ad) introduced in
loc.cit, a power of 2 that again interpolates to an admissible function of k£, and a
function denoted x(n¢) given by a choice of generator of the congruence ideal of f,
which also interpolates to an admissible p-adic analytic function on A%.

Since the ratio E1( f., 9)/E,(fz, Ad)? is readily seen to be equal to the ratio E(f., V) /Eo(fz),
it follows that Ishikawa’s formula quoted above is equal to the one recorded in the main
statement of the theorem after removing quantities that visibly interpolate to an admissible
p-adic meromorphic function on A%. O

Remark 3.2. Tt is instructive to compare the “p-adic multiplier” E(f,, V)& (f.)~* of The-
orem 3.1 with the ostensibly more complicated expression in [DR1, Theorem 4.7, where
G is replaced by a pair (g, h) of elliptic modular forms of weight one, and V' is replaced
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by the tensor product Vi, of the odd two-dimensional Artin representations attached to g
and h. In that setting, the factor that enters into the p-adic interpolation is given by

(35) 5+(f:ra Vgh) ’ Eo(fx)il ’ Sl(fw)ila
where

4 -
(30 (v =TT (1-21).

i=1
with 71, 72,73 and 74 the eigenvalues of o, acting on Vg, and

Eolfs) = (1 - pf;) L&) = (1 - pj:) -

xT x

Replacing Vg, by V in (36) and noting that 1 and —1 occur among the o,-eigenvalues on
V, we find

37) Efa,V) _ (L—aep)(1 = Bap)ei(fa) _ E(f,V)

Eo(f2)E1(f2) Eo(fz)E1(fz) &)
and hence the p-adic multipliers in [BF| and [DR1] are consistent.

The next result can be viewed as a Gross-Zagier formula for .Z,(f, V') since it expresses
its first derivative at * = ¢ in terms of the p-adic logarithm of the point Py ; of Conjecture
1.2. The weight map w is étale at xy and the standard local parameter at k = 2 in X
induces a local parameter on Xy at o, with respect to which the derivatives evoked in the
following theorem are to be taken.

Theorem 3.3. We have
d

(38) %D%(ﬂ V)|I:£U0 = C>‘V,f

for some constant C' € K.

Proof. The generating series Gy(q1, g2) of (13) can be written as
d
Gy = - (41GH)
Mo VM
The reader is cautioned that the letter d appears in this equation in two different guises,

whose distinct meanings should nonetheless be apparent from the context. It follows that
the ordinary modular form ®y of (15) is given by

d
(39) Dy = %(HE]),CZQ.

The modular forms H,[f I are the classical specialisations of a A-adic family of ordinary
modular forms. By (31), the component of this A-adic form along the eigenform f is equal
to Z,(f,V) - £. Since Z,(f,V)(xo) = 0, projecting the equality (39) to the f-isotypic
component we obtain

d

%"Zﬂ(ﬂ V)x=x0 = >‘V7f

up to a constant in k*, as claimed. O
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In view of (20) we may thus recast Conjecture 1.1 in the following equivalent way.

Conjecture 3.4. The derivative of the twisted triple-product p-adic L-function at x = xg
s given by

d
(40) %gpd‘a V)\x:?co - logw(PV,f)

up to a multiplicative constant in k.

4. HILBERT THETA SERIES
Let K/F be a quadratic extension of the real quadratic field F', and let
'Lb Gg—> K

be a finite order character of K. The case where G = 0, is the Hilbert theta series
over F' attached to v provides a particularly enticing setting for Conjecture 1.2, since
the associated Asai representation then factors through a finite abelian extension of (the
Galois closure of) K. The possibility of varying ¢ suggests the construction of a systematic
collection of global points on elliptic curves defined over such abelian extensions.

To remain within the scope of the main conjecture in the introduction, it will be assumed
throughout that

(1) 4 is of mixed signature at any pair of real places of K that lie over a common real
place of F'. This ensures that the Artin representation Vj is odd at both real places
of I, and that G = 0, is a holomorphic Hilbert modular form of parallel weight
one.

(2) The induced representation Vg of G satisfies the assumption in equation (7) of the
introduction, implying that V is self-dual.

We begin by spelling out what this second condition on the self-duality of V' implies about
Y. Let x,. . be the quadratic character of Gr attached to K.

Lemma 4.1. Let Vi be the induced representation of Gg attached to 1, and let V' denote
its tensor induction to Q. Then V is self-dual if and only if

Veri (X, ) - Verg () = 1.
Proof. Since
det(Vo) = Xy pr - Verk (¢),

it follows from the transitivity of the transfer map that
Ver(% det(Vp) = Ver?;i(XK/F) . Ver}%(w).
Lemma 4.1 now follows from (7). O

The quadratic character Ver%(xK ,») of Gg that arises in Lemma 4.1 can be described
explicitly, according to the following analysis in three cases.
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Case 1. If K/Q is a biquadratic field, the transfer map from Gal(K/Q) to Gal(K/F) is
the trivial homomorphism, and hence

(41) Verf (e ) = 1.

Case 2. If K/Q is a cyclic quartic extension, the transfer map from Gal(K/Q) to
Gal(K/F) has kernel equal to Gal(K/F) and induces an isomorphism from Gal(F/Q)
to Gal(K/F) by passing to the quotient. Therefore

(42) Ver%(XK/F) = Xryg-

Case 3. If K/Q is a non-Galois quartic extension, then the normal closure K of K has
Galois group isomorphic to the dihedral group Dg of order 8. It is a biquadratic extension
of F, and hence F = K™ where I ~ Z/27 x 7/27 is a Klein four-group in Dg. There
are exactly two other subgroups of order 4 in Dg: the cyclic group of order 4 and a second
Klein four-group, denoted II,. Let F, = K™ be the quadratic extension of Q associated
to IT* under the Galois correspondence.

A direct group-theoretic calculation reveals that the transfer map ¢y : Dg——II has
kernel I, and identifies Dg/TI, with the center {1} of Dg (viewed as a subgroup of IT),
ie.,

1 if g € 114,
¢n(g) = { —1 ifg ¢TI,

It follows that
(43) vef%(XK/F> = Xr /0

Corollary 4.2. The Asai representation arising from the two-dimensional representation

Vo = Ind%4p is self-dual if and only if
Ver%(w) =1, when K/Q is bi-quadratic,
Ver% (v) = Xpjgr  when K/Q is cyclic,
Ver (1) = Xr, o0 When K/Q is not normal.

Proof. This follows by combining (41), (42), and (43), with Lemma 4.1. O

4.1. Biquadratic extensions. We now focus further on the scenario where K is a qua-
dratic extension of F' that is biquadratic over Q. It then contains two further quadratic
extensions of Q, denoted K and K. Because F' is a real quadratic field, the fields K7 and
K5 are either both real, or both imaginary, depending on whether K is a totally real or
CM extension of F'.

Let

Y1 = Ver? (1), Yy = Veffl? (¥)
denote the transfers of 1 to Gk, and G, respectively.

Lemma 4.3. The characters 1y and 1o are ring class characters of their respective qua-
dratic fields. If Ky and Ky are real, then 1, and 1o have opposite parity, i.e., 1y is totally
odd when 1y s totally even, and vice-versa.
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Proof. Corollary 4.2 implies that Ver%1 (1) = Ver%2 (12) = 1, and this implies the first
assertion. The second assertion follows from the assumption that ¢/ has mixed signature
at any pair of real places of K that lie above a common real place of F. O

Recall that Vj := Ind% (1) is the representation of G induced from 4, and that V =
Ind®(Vp) is the associated Asai representation of Gyg.

Proposition 4.4. The Artin representation V decomposes as
V=V o, where  Vy = Indy (¢1), Vi :=Ind} (¥s).

Proof. Let 0, 01, 09, T, 71 and 7, denote the non-trivial elements of Gal(K/F), Gal(K/K}),
Gal(K/K,), Gal(F/Q), Gal(K;/Q), and Gal(K>/Q) respectively, as summarized in the
following field diagram:

(44) K

K F Ky
Q

The character of the induced representation Vj is given by the formula

_ ) vlg) +v7(9) ifgeEGk;
XVo@—{ 0 if g€ Cr— Gr.

and the character of V is given by

~ xw(@xy,(97)  ifg € G
Xv (g) { XVO (g%) if gc GQ — GF

These two formulae can be used to show that
(45) Xy (9) = X, (9) + Xy, (9),
according to the following division into three cases:
Case 1: g € Gg. Then
Xv(9) = Xy (9)Xy, (97)
= (W) +¢7(9)) (W (9) +¢7(g))
= (L7 +9797)(g) + (W7 + 77 )(g)
= (V1 +¢7)(9) + (Y2 + ¥3°)(9)
= Xy, (9) + X0, (9)-
Case 2: g € Gy — G = (Gg — Gk,) N (Gg — Gk,). Then

Xy (9) = Xy, (9)X, (97) = 0.
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Since g belongs to neither Gk, or Gg,, we also have

Xy, (9) = Xy, (9) = 0,
and (45) follows.
Case 3. g € Gg — Gp = (Gk, — Gk,) U (Gk, — Gg,). Then ¢* belongs to Gk and hence

Xv(9) = Xy, (6°) = U(g*) +97(g%)

{ (Yo +¢797)(g) = (Y1 +¥T)(9)  if g € Gk, — Gk,
(VY72 + 7Y 7)(g) = (Y2 +93°)(9) if g € Gk, — Gk,

_ [ xy (9 +0 ifg€Gxk —Gr,
0 +XV2 (g) if g € GKz - GK1

= Xy, (9) + Xy, (9)-
The proposition follows. O

As in Section 1, let E be an elliptic curve over Q of conductor N = pM where p is a
prime that remains inert in F' and M > 1 is a positive number all whose prime divisors
split in F'. Letting D,,, Dy, denote the conductors of the central characters of 1, 15,
we further assume that (N, DpDy, Dy,) = 1. Finally, let us also assume throughout this
section that hypotheses (H,) and (Hy,) in Theorem 3.1 are in place for the eigenform f
associated to F.

When combined with the Artin formalism for Hasse-Weil-Artin L-series, Proposition 4.4
implies the factorisation

(46) L(f2.V.k/2) = L(f2.VA,k/2) - L(f2, Vo, k/2)
= L(f;/K1,¢1,k/2)-L(f;’/K%%,k/Q)

for all classical x € Xf, and suggests that a similar principle might apply to p-adic L-series
interpolating these special values.

In order to state this more precisely, let 0} and 2 be the real and imaginary periods
attached to f2, as introduced e.g. in [Hi2, p.488]. As explained in loc. cit., [Ish, §1.4] and
[BD2, §1.1], these periods can be chosen in such a way that

(47) QI = (f, f2)
Let D; and Dy denote the discriminants of K; and K, respectively. Following [BD2,

(93)] and [BD3, Theorem 3.5], the algebraic parts of the special values attached to f2 and
the ring class characters v; of K; (i = 1,2) are obtained by setting

(ugz %
22 T(f K k2
(Qﬂ_)k Qm’wl (ffL'/ (2] 1/}27 / )7
where the period €2, 4, is given as in [BD3, Definition 3.4] by

QrQ; it D; <0
ey, =< (5)? if D; >0 and ¢ is even;
(2,)? if D; > 0 and v; is odd.

x

(48) L(f7 /K i, k[2) =
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Note that in our statement of (48) we have formulated a different power of 7 with respect
to [BD2] and [BD3|, which is due to the different normalizations in the definition of the
Petersson scalar product adopted in loc. cit. versus [Ish].

Comparing these definitions with the one in Theorem 3.1, we see that for all classical
x € Xg of weight k > 2:

(49) Laig(f2, Vi E/2) ~ Lag(f7 /K1, 1, k/2) - Lag(f7/ K2, b2, k/2).

The generalised Heegner hypothesis (9) for V implies that all the primes ¢|M have the
same splitting behaviours in K; and Kj, since they are split in F/Q. Let

Y = {{|Moo such that ek, ({) = —1}
be the set of places of Q dividing Moo at which the quadratic field K; (and hence also
K5) is inert.

The sign in the functional equations for L(f2, Vi, s) and L(f2, Vs, s) are controlled by
the parity of the cardinality of X:

sign(f, V1) = sign(f7, Va) = (=1)>.

When #3 is odd, the central critical values L(f/K;, 1;, k/2) vanish identically, and one
has no resort but to set

(50) L(£,V;) = 0.

When #Y is even, the special values L(f2,V;, k/2) can be expressed in terms of elementary
quantities attached to optimal embeddings of orders in K; (of suitable conductor, equal to
the conductor of the character ;) in the quaternion algebra B ramified at 3. This explicit
expression forms the basis for the construction of p-adic L-functions .Z,(f,V;) (i = 1,2) on
Xy

This p-adic L-function is constructed in [BD2] and [BD3] when Kj; is imaginary and
real respectively, where they are also denoted .Z,(f/ K, ¢;). They satisfy the interpolation

property

g+(facc)7 ‘/7,)2

Eo(f2)E (1)
where &€, (f2,V;) is the p-adic multiplier attached to f2 and V;, as defined in (36) after
replacing Vg, with V;. Note that

For imaginary quadratic fields, the construction is detailed in [BD2, §3.2], and generalised
in [Mok, §3]. For real quadratic fields, see [BD3, §3.2] and its further refinements given
in [LV, §4.4, 4.5]. We also refer to the work of Herndndez and Molina [HM] for a recent
construction of these p-adic L-functions that applies to the general setting considered here
in all cases.

(51) (£, Vi) ()* ~ Lag(fs, Visk/2),  1=1,2,

Theorem 4.5. There is a factorization of p-adic L-functions
D%(ﬂ V) ~ "%(f/Klv wl) ’ gp(f/K% wQ)?
where ~ is defined in (32).
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Proof. Note first that Theorem 3.1 is in force thanks to our running hypotheses. If #X is
odd, the right-hand side is identically 0, and so is the left-hand side in light of Theorem
3.1 and (46). When #3] is even, it follows from Theorem 3.1 and equations (37), (49), (51)
and (52) that both sides of the factorization claimed in the statement are rigid-analytic
functions taking the same values in a Zariski dense subset of Xy, up to an admissible
function. This yields the theorem. 0

Since the prime p||N is inert in F/Q and Gal (K/Q) = Z/27 x 7./2Z, it follows that
pOpF necessarily splits in K/F. In particular, p has different splitting behaviours in the
quadratic fields K; and K5. From now on in this section, these two fields will be ordered
in such a way that p remains inert in K; and splits in K. (Note that this convention is
not followed in Section 5.) This implies that o, acts on V; with eigenvalues £1, and on V5
with eigenvalues ag and fg = 0451, and that

(53) sign(&, V1) = —sign(f;, V1), sign(E, Va) = sign(f;, V2)

for all classical z € Xy of weight k£ > 2.
The following theorem is the main result of this section:

Theorem 4.6. Assume that either
(1) Ky and Ky are imaginary quadratic fields, or
(2) Ky and Ko are real quadratic fields, and the conjectures of [Dar, §5| on Stark-
Heegner points hold for (Ky,v1).

Then Congecture 1.2 is true.

Proof. By Theorem 3.3, the scalar Ay, s is equal to the first derivative of .Z,(f, V') at = = x
up to a multiplicative constant in x*.

Assume first #¥ is odd. As already argued above, in this case .Z,(f, V') vanishes iden-
tically on Af and hence Ay, ; = 0. This is aligned with Conjecture 1.2, as conditions (I)
and (II) of that conjecture are not both fulfilled. Indeed, if condition (I) were true, namely
ords—1 L(E,V,s) = 1, it would follow from (53) that

sign(E, ;) =1, sign(E, V) = —1,
and therefore
L(E,Vi,s) #0, ordse1 L(E, Vo, 8) =1,
so that Wy 2 Vi and Wy C V5, in the notation of Conjecture 1.2. But o, acts with
eigenvalues 1 and —1 on Vj, and therefore condition (IT) would not be met.

Assume now that #X is even. By Theorem 4.5, .Z,(f, V') has a simple zero at x = x if
and only if

(54) ord,— -2, (£, V1) + ord,—y, -2, (£, Vo) = 1.
Since
SigH(E7 ‘/1) = _]-7 Sign(Ea VYQ) = 1a
equation (51) implies the p-adic L-function .Z,(f,V;) vanishes at xy and hence (54) is
equivalent to

(55) ordy—q, -2, (£, V1) =1, Z,(£,V2) (o) # 0.
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Note that &;(f;,V2) = (1 — 29)(1 — ﬁ—i) Hence it follows again from (51) that
Z,(£,V5)(x) # 0 if and only if

(56) L(E/K, ’QDQ, 1) 7é 0 and Qp 7£ aag, ﬁg.

Besides, by [BD2, §4.4], [Mok, §3|, [BD3, §4], [LV, Theorem 4.31|, [HM, Theorem 8.2],
we have
d
dx
where 2y, is a local point in E(Q,2), with coordinates in the quadratic unramified exten-
sion Q2 of Q,. Note zgy, + apxUE‘j v, lies in the a,-eigenspace for the action of o,.
Moreover, zg v, is
e the image of a global point Qgy, € E(H)"* under the natural embedding E(H) <
E(Q,2), given by a Heegner point on a Shimura curve attached to the odd set
Y U {p} of places, when K is an imaginary quadratic field;
e a Stark-Heegner point attached to the p-adic uniformisation of E via rigid analytic
cocycles, which is predicted to arise from a global point Qg 1, € E(H)" similarly
as above, by the conjectures of [Dar, §5].

(57) L& V1)a=zo = Cr10grae(TE 1 + apx(pr,Vl)a Cy € r”

The Gross-Zagier formula in the scenario where K is imaginary ([GZ]) and its conjectural
extension to real quadratic fields (cf. [Dar, §5]) imply that L(f, V1, s) has a simple zero at
s = 1if and only if Qg 1, is not trivial in E(H) ® k.

If Vi is irreducible (which is precisely the case when 12 # 1), then the image of F(H)"
in £(Q,2) ® k is a two-dimensional s-vector space spanned by zpy, and xUEP v,» and hence
QE,v, is non-trivial if and only if Pgy, := Qg + apQUEIj v, 1s non-trivial, and this in turn
is equivalent to the non-vanishing of (57). Note that the irreducible component W; of V'
introduced in Conjecture 1.2 is V; in this case.

If Vi decomposes as the sum of a pair of 1-dimensional sub-representations V; = W; @
W/{, then we may order them accordingly to the notations in Conjecture 1.2, so that
ords—1 L(E,Wy,s) =1 and L(E,W{,1) # 0. Let € = £1 denote the eigenvalue of o, acting
on Wj. In the favorable case where € = a,, then Pgy, = Qg + apQUE’jVI is a generator
of E(H)", and its image in E(Q,2) is the local point appearing in the right-hand side of
(57). In particular (57) again does not vanish. In the unfortunate case that e = —a,, the
global point Qp.v; + a,QFy, lies in E(H)"1 = 0 and hence (57) vanishes.

Summing up, we conclude that Ay s # 0 if and only if

(1) L(E/K, ¢2, ].) 7é 0 and ordszlL(E/K, 77/)1, S) = ]_,
(i) a, # ac, Be,

(ili) the eigenvector of eigenvalue a, lies in Wy C Vj.

Since L(E,V,s) = L(E/K, 1, s)L(E/K, 1y, s), we have proved (subject to the conjec-
tures in [Dar, §5] in the case of real quadratic fields) that Ay s # 0 if and only if conditions
(I) in (II) in Conjecture 1.2 hold, and in that case Ay = logp.(Pv.f) for a point Py, ; that
forms a basis of the one-dimensional subspace of the image of F(H)"* on which o, acts
with eigenvalue a,,. 0
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5. NUMERICAL EXPERIMENTS

In this section we present some numerical experiments which both illustrate various
aspects of Theorem 4.6 and give further evidence in support of the broader Conjecture
1.2. We begin by considering examples illuminating Theorem 4.6 in the case where K is
a biquadratic field. These examples were computed prior to the formulation of Conjecture
1.2 and the proof of Theorem 4.6, and were key to suggesting their finer detail. They
also suggest an analogous but subtly different conjecture when the nearly overconvergent
family interpolating d'Gyy is replaced by a Hida family of parallel weight specialising to G
in weight (1,1).

5.1. Biquadratic extensions: the CM setting.

5.1.1. The basic set-up. Let Dy and Dy be negative coprime fundamental discriminants and
let Dp := Dy - Dy > 0. Assume that these discriminants are odd and that D;, Dy < —3.
Define as in (44)

F:=Q(/Dr), K =QWDi), K::=Q(/Dy), and K :=Q(v/Di,/Ds).

The biquadratic field K is an odd genus field of the real quadratic field F: an unramified
CM quadratic extension of F' that is also abelian over QQ, with Galois group isomorphic to
7.)27 x 7.]27.

We consider the simplest non-trivial setting, in which the quadratic fields K, K5 and
F have class numbers 3, 1 and 1 respectively. The narrow class number of F' is then equal
to 2, and K is the narrow Hilbert class field of F'. The extension K/F has (relative) class
number 3.

The Hilbert class field H of the quartic field K is a cyclic cubic extension of K, and
a degree 12 Galois extension of Q which admits six irreducible Artin representations:
the four one-dimensional representations 1, p,, €p,, and €p,,, attached to the quadratic
Dirichlet characters of conductors 1, Dy, D, and Dpg respectively, and two irreducible
two-dimensional representations

W = Ind} v, W ® ep,,

where y is any of the two cubic unramified characters of Kj.
Let

¢ : ClK/F — LX, L= @(Cg)
be a non-trivial cubic character of the relative class group of K/F. The induced represen-
tation Vj := Ind% (¢) is a two-dimensional representation of G, whose tensor induction
to Q is given by
Vi=Ind*(Vy) =1®¢ep, ®W.
The Artin representation Vj induced by ¢ corresponds to a Hilbert theta series G = Gy,
which is described as a function on the ideals of I’ by the formula

Gy= Y w)

Jel(K),
Norm(J)=I
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Recall that the construction of a weight (1,1) modular generating series 6, attached to G
also depends on the choice of an ideal 9t := (1) in Op. In the notation of the introduction,
the theta series 6, = Go(71, 72) is given by the formula in (11). Moreover, the p-depletion
of 6, is the weight (1, 1) specialisation of a natural p-adic theta family, given by dthg[)’;% in
(30). (Beware the two different uses of the term “theta” here.) If 9t = (v) belongs to the
trivial narrow ideal class of F', i.e., if v is totally positive, then the class of ()0 in the class
group Clg is not a norm from Clg and hence the sum defining G((»)0) is empty, so that

the p-adic theta family dtG[mpz] vanishes identically. So it is necessary to choose an ideal (1)
whose associated narrow ideal class is non-trivial, i.e., for which Norm(n) < 0. Note there
is no element in O of norm —1, and hence that the integer |Norm(n)| is strictly greater
than 1. Since K/F is unramified, the diagonal restriction of the theta series 6, lies in
Sa(|[Norm(n)|). In the notation of the introduction, we have

M = |Norm(n)|, D=1.
Note that all the primes dividing M must necessarily split in F'.
Let p be a prime which is inert in F. We consider elliptic curves E of square-free
conductor pM with associated eigenforms fr € Sa(pM). Since pM satisfies condition (9)
of the introduction, the Asai representation V' is expected to occur with odd multiplicity

in the Mordell-Weil group of E.
Let us assume now that this multiplicity is one. This implies that the rank patterns

( rank(E(Q)), rank(E”*(Q)), dimhome, (W, E(H)L) )

are equal to either (1,0,0), (0,1,0) or (0,0,1). The parities of ranks on each component
which occur are correlated to the eigenvalues of o, on the Asai representation, and in the
rank one setting the following three scenarios are the only ones that can occur:

Frobenius eigenvalues ‘ Asai ranks

(1;_1,(@),(:3_1)) (17070) or (07170>
(1,-1,(1,1)) (1,0,0) or (0,1,0)
(1,1,(1,-1)) (0,0,1)

Write

/\9 - )\9<¢7 (77)7197 fE)

for the coefficient along fr of the diagonal restriction of the derivative (G (71, 72) in (13))

of the p-adic theta family through 6,,. Note that, in the notation of the introduction, the

diagonal restriction of the derivative is given by @S\Z) in (14). Here D =1 and so it is not

necessary to lower the level of ®,; by taking its trace from level DM to level M.

Conjecture 1.2 makes the predictions shown in Table 1, which are proved in Theorem
4.6. In this table, the global points P, P~, and Py, are generators of E(Q) ® Q, of
E(K;) ® Q, and of the image of a generator of E(H)}" on which o, acts as —1. In the
cases arising in the fifth and sixth lines of the table, E has rank 1 over any cubic subfield
of the Hilbert class field of K7, and after choosing an embedding of one of these fields into
Q,2, there are global points Pjf, and Py, upon which o, acts by +1 and —1, respectively.
In line 5, note that A\g = 0 when a,(F) = 1, because +1 does not have multiplicity one in
the Asai representation itself.
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Cinonaines | Ranks | ay(B) | CgEeTE A
L1 (1,=1,(¢5,65)) | (1,0,0) | +1 | logrye(P¥)
2 (1’_1’(C37<u3_1)) (170’0) -1 0
3.0 (1,-1,(¢, ¢ 1) [ (0,1,0) | +1 0
4 (17_17(C37C3_1)> (07170) —1 1OgTate(P7>
5.1 (1,1,(1,-1)) (0,0,1) | —+1 0
6 (1’17(17_1)) (07071) -1 logTate(PVT/)
7.0 (1,—-1,(1,1)) (1,0,0) | =+1 0
8. 1(1,—-1,(1,1)) (0,1,0) | +1 0
9. (17_17(171>) (07170) —1 logTate<P_>

>

TABLE 1. Prediction for Ay in the CM biquadratic setting.

5.1.2. Hida deformations of eigenforms. We now take a small detour. This paper has as
its focus theta deformations of Hilbert eigenforms. But one can also study the analogous
question for Hida deformations of eigenforms. That is, the first infinitesimal deformation
of an eigenform in the p-adic Hida family in parallel weight through that eigenform (this
family is unique, except in certain exceptional cases). Studying this setting numerically
and formulating a conjecture here was one of the starting points for this paper.

The Hida setting has the practical disadvantage that currently one only disposes of
explicit Hida deformations in the case of CM forms. The experimental evidence in this
setting suggests though that letting

AHida = )\Hida<wa (77)720, fE)

denote the coefficient along fg of the diagonal restriction of the derivative of the p-adic
Hida family in parallel weight through an ordinary stabilisation of 6, the behaviour is
exactly the same as for A\g except one only need require that a,(E) has multiplicity one in
the component of the Asai representation which itself occurs with multiplicity one in the
Mordell-Weil group. For theta deformations, multiplicity one is required in the full Asai
representation. As a consequence, if one replaces Ay by Agiga in Table 1 there is no change,
except in line 5 where
)\Hida = IOgTate(PVIt')’

and in line 7 in which for rank (1,0,0) and a,(E) = +1 we get Agida = 10gae(PT).

In the even more special case of the dihedral quartic setting, there is also a third natural
family to consider. To explain to the origin of this, note that the Hida family in parallel
weight can be constructed explicitly by using grossencharacters associated to 1. The
infinity type in this grossencharacter arises from a power of the norm map from K down
to the imaginary quadratic field (K or K3) in which p splits. Replacing this norm map
by the one down to the imaginary quadratic field in which p is inert yields another natural
and entirely explicit family.

Curiously, in all examples that have been calculated, the coefficient “Ajer¢” resulting
from this new family is logp,,.(PF) in the o,-eigenvalues (1, —1, (3, ¢; ")) and ranks (1, 0,0)
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and (0,1,0) scenarios, regardless of the splitting type of E at p. It would be interesting
to formulate a systematic description of the behaviour of the coefficient “Ajert” in the
remaining settings.

The same notations Ay and (when computable) Agiga shall be used beyond the CM
biquadratic setting, in the examples in Sections 5.2, 5.3 and 5.4.

5.1.3. Biquadratic extensions: numerical examples in the CM setting. We were able to nu-
merically compute with all the class number 3 and 1 imaginary quadratic fields (satisfying
our mild hypothesis) and reasonably small values of p. We focussed on the relatively small
primes p = 5,7, 11, which already gave rise to a wealth of examples. The computations il-
lustrated both the vanishing in rank 3 settings, and the proposed interpretation of Ay, Agiqa
(and sometimes Ajer) in rank 1 settings. Without describing all the experiments in detail,
the discussion below presents some illustrative examples covering almost all the essential
different cases.

More precisely, the phenomena predicted in rows 1 to 4 of Table 1 are illustrated in
Examples 5.1, 5.2, 5.3 and 5.4; rows 5 and 6 in Example 5.5; and most cases in rows 7 to
9 in Example 5.6. These examples also illustrate the unproven predictions for Ag;q. and
partial predictions for A, which are evoked in Section 5.1.2.

We begin by considering two Asai rank (1,0, 0) examples in which the o,-cigenvalues are
(1,—1,(¢3,¢31)), one where the elliptic curve has split multiplicative reduction at p and
the other where it has non-split reduction.

Ezample 5.1. Let Dy := —31 and Dy := —67. The field K; = Q(1/—31) has class number
3, while Ky = Q(v/—67) has class number 1, and F' = Q(+/31 - 67) has class number 1 but

narrow class number 2. Let

w : CIK/F — LX, L= Q(Cg)
be a character of order 3 of the biquadratic field K.

Let
14++/31-67
( i 2 > GOF,

n =22+ Norm(n) = —13, M =13.

Choose p := 7, which is inert in F. Note that S3(7) = S3(13) = {0}, and in particular
there are no elliptic curves of conductor 7 or 13.

Let E be the elliptic curve of conductor 91 = 7 - 13 labelled 916 in Cremona’s tables,
which is given by the equation

By +y=a>+2>—To+5.

It corresponds to a newform fr € S5(91). Letting H denote the Hilbert class field of K, the
multiplicities with which the Asai representation V' occur within the Mordell-Weil group
E(H)p are (1,0,0). That is to say, F has rank 1 over Q, and this rank does not increase
over Q(+/—67) or over any of the cubic subfields of H of discriminant —31.

Furthermore, E has split multiplicative reduction at 7, so a7(F) = +1. One finds

Ao = (1= (3) - Miida = Ainers = —4184884843330974 - 7 (mod 7).
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Let PT = (3, —5) be a generator for £(Q). Then one checks that
Ao = logp,.(P1)  (mod 7).
Ezxample 5.2. Set Dy := —83 and D, := —67, and take

1+ /83" 67)
2

1 = 1585843 — 41969 ( € Op, Norm(n) = -8, M =8.

The prime p := 11 is inert in F', and there is an elliptic curve F of conductor 88, labelled
88a in Cremona’s tables,
E:y?=2%—da +4.

This elliptic curve now has non-split multiplicative reduction at p, i.e., a,(E) = —1. It has
rank one over Q, with Mordell-Weil group generated by PT = (2,—2), and just as in the
preceding example this rank stays the same over Q(1/—67) or any of the cubic subfields of
H of discriminant —83.

A numerical calculation shows that

)\9 = >\Hida =0 (HlOd 1120>

exactly as predicted by the theory, and a further calculation reveals the tantalising numer-
ical identity

Ainert = =5 - V=3 - logpo (P1)  (mod 11%).

The next two examples examine settings where the Mordell-Weil ranks are (0,1,0),
the o,-eigenvalues are (1,—1,(¢3,¢;")), and E has either split or non-split multiplicative
reduction at p.

Example 5.3. Let Dy := —83 and D, := —11 and pick

1+\/83-11>
— € Op,

n = 745+ 51 ( Norm(n) = -8, M =8.

The prime p := 7 is inert in F' and also in K.
Let E the elliptic curve of conductor 56 = 7 - 8 labelled 560 in Cremona’s tables:
E:y?=a%—2%—4.

It has rank 0 over Q, but rank 1 over Ky = Q(1/—11), and again rank 0 over any the cubic
subfields of H of discriminant —83. Furthermore F has split reduction at p. As predicted,
a calculation shows that

)\9 = >\Hida =0 (mod 720).
The relevant point now to consider is P~ := (—7,6y/—11) € E(K,). We compute
Ainert = (5563318767325300¢ + 5291061116602757) - 7 (mod 720),

where Q2 = Q,(c) with ¢* + 6¢+ 3 =0, and find

1
Ainert = 3 V=3 -10gm.(P7) (mod 7).
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Ezxample 5.4. Let Dy := —31 and Dy := —7 and choose

1+4++31-
#) € Op, Norm(n) = —6, M =6.

n = —1888 — 275 (
Let p := 5, which is inert in F" and also in Ky = Q(v/—7).
We take E the elliptic curve labelled 30a in Cremona’s tables,

E:y4+ay+y=2>+2z+2.

This curve has non-split multiplicative reduction at p. Just as in Example 5.3 we have
Asai ranks (0, 1,0) and the relevant point to consider is

P~ = ((=3vV-7-9)/8,(=3v~T7+31)/16) € E(K>).
We verify that
Ao = (1+3) - Mida = Ainert = 5248359978986 -5 (mod 52),

and that
Ao = 10gr,(P7)  (mod 5%°).

The following experiments consider two Asai rank (0,0, 1) examples, which necessarily
have o,-eigenvalues (1,1, (1,—1))), when a,(£) = 1 and —1. These are the most interesting
since the irreducible component of the Asai representation which occurs with multiplicity
one in the Mordell-Weil group is two-dimensional, cuts out a cubic abelian extension of
K, and supports points in both the plus and minus eigenspace for o,.

Ezample 5.5. Let Dy := —23 and Dy := —43 and

1++v23-43
n:=16 — (%) € Op, Norm(n) = -7, M=T.

Let p := 11, which is inert in F'.
Although Sy(M) = {0}, there are three elliptic curves of conductor 77 = pM, which are
labelled 77a,77b,77c in the tables of Cremona:
E,:y*+y=a%+2x
Ey:y*+y =2+ 2% — 49z + 600
E,: > +ay=a%+ 2>+ 42+ 11.

These curves non-split, non-split and split multiplicative reduction at p = 11, respectively.

Recall that H is the Hilbert class field of the quartic field K = F'(/—23), and that the
subfields cut out by the Asai representation V' are Ky = Q(v/—43) (of class number one),
and the Galois closure of any of the cubic subfields of H of conductor —23. (These are
also subfields of the Hilbert class field H; of the class number three field K; = Q(v/—23).)
The cubic subfield is isomorphic to Q(u) where u? — 3u? — 23 = 0.

The Asai ranks for the elliptic curve E, are (1,1,1), i.e., E, has rank 1 over Q, and its
rank jumps to 2 over both K5 and the cubic subfield Q(u) of conductor —23. As expected,
we observe that

)\theta = >\Hida = /\inert =0 (mOd 1120)7
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so that all three invariants vanish up to the computed precision.
Turning next to FEj,, which has non-split reduction at 11, the Asai ranks are equal to
(0,0,1). Let
Qw = ((—u® + 6u + 10)/3, (Tu® + 35u — 71)/9) € E,(Q(u)).
The global point Py, € E(Q,2) in the negative eigenspace for o, is obtained as follows.
Let u; and uy be the two roots of 2* — 32? — 23 = 0 in Q2 which are not in Q, and are

conjugate to each other. Replacing u in the point Qy above by u; and us yields two points
(1 and ()2 in E(Q,2) which are conjugate under o,. Define

Py =Q1— Q2.
Numerically, one finds
2 Ao = Aida = 14646999780697863202 - 11 (mod 112°),
and .
2 Xo = Mida = —x 10g1ue(Pyy)  (mod 11%9).

Finally, the elliptic curve E, has split reduction at 11 and Asai ranks (0,0, 1). The global

point on E, over the cubic subfield of the Hilbert class field of K7 is equal to
Qu = (26 = 5u—1)/9, (~u* = u+9)/3) € E(Qu),

The point P, € E(Q,) in the positive eigenspace for o, is obtained from Qy by mapping
u to the unique root of 2* — 3z% — 23 that lies in Q,.

Numerically we verify that

A =0 (mod 11%),
as predicted since a,(E.) = +1 occurs with multiplicity 3 as an eigenvalue for o, on V.
On the other hand,
Mtida = (—10945417843758550651a — 7729417228947654133) - 11 (mod 1129),

where a? + 7a + 2 = 0, and
1
>\Hida = 5 TV -3~ logTate(P;Ir/) (HlOd 1120)7

as expected since a,(E.) has multiplicity 1 in the component W of the Asai representation
which occurs with rank 1 in the Mordell-Weil group. (For E, and Ej the value Ajer 18
non-zero, but we have no interpretation of it to offer.)

Finally we consider Asai rank (1,0, 0) and (0, 1, 0) examples, but where the o,-eigenvalues
are (1,—1,(1,1)). The smallest prime occurring in any example in this setting is p = 17.

Ezxample 5.6. Let Dy := —59 and D5 := —11 and

EOF7

1++v59-11
n = 35786444535052398935 — 2703365279120236257 (%)

so that M = —Norm(n) = 8.
Letting p := 17 we find the o,-eigenvalues on the Asai components are (1, —1,(1,1)).
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First consider the curve of conductor Mp labelled 136a:
E, :y* =23+ 2 — 4u.

It has ranks (1,0,0) and split reduction at p. But since 41 also occurs as an eigenvalue in
the dimension 2 component of the Asai representation, Theorem 4.6 predicts that Ay = 0
and we indeed observe this numerically (to precision 171%). However, since +1 occurs with
multiplicity one in the component of the Asai representation which itself has rank one in
the Mordell-Weil group, we expect Agiq, to be more interesting, and indeed find that

MHida = (—8218050809a + 52843470025) - 17 (mod 17%°)

where a? + 16a + 3 = 0, and that
25+ 1
2

)\Hida = ' logTate<P+> (mOd 1710)

where P = (2, —2) generates E,(Q) modulo torsion. On the other hand we also find that
/\inert =0 (mOd 1710).

Consider next the curve labelled 1360:
Ey:y*=2°— 2% —8r — 4.
This has ranks (0, 1,0) and non-split reduction at p. We find as expected that

1
Ag = —55227507250 - 17 = Ninert = 2 Mtiaa = 5 1ogpe(P7) - (mod 17'7),

where P~ = (—430/891, —18512y/—11/88209) € E,(K>) is a generator modulo torsion.

5.1.4. Further examples for CM biquadratic extensions. We computed some further exam-
ples in settings very close to that outlined in Section 5.1.3. Namely, when K; had class
number 5 and K5 class number 1, and when K7 had class number 5 and K5 class num-
ber 3. We spare the reader any details, beyond saying that they were in agreement with
our theorem for the theta derivation coefficient Ay and in line with our expectation (from
Section 5.1.2) for the Hida derivation coefficient Apiqa.

5.2. Biquadratic extensions: the RM setting. Let Dy =¢=1mod 4 and Dy, = ¢ xr
where ¢, ¢, r are distinct primes with ¢, = 3 mod 4. We assume Q(1/D;) has narrow class
number 1, and Q(1/D5) has class number 1 but narrow class number 2.

Define
F = Q(v/D1D,) and K = Q(v/Dy,v/Dy).

Then K is an unramified totally real extension of F' which is Galois over Q. The field F
has class number 2 and narrow class number 4.

There is a mixed signature Hecke character v on K of order 2 with trivial finite conductor
Or. By induction one obtains as before a (totally odd) 2-dimensional Galois representation
Vo of F'. The four dimensional Asai induction of V decomposes as

Asai(Vp) =1@ e, Be, Der

where ¢/, €4, €, are quadratic characters attached to the fields Q(V10),Q(/=q) and Q(v/=r)
respectively.
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After choosing an ideal () C O which is trivial in the class group but non-trivial in the
narrow class group, i.e. an element 7 of negative norm, one obtains the Fourier expansion
of a Hilbert modular form 6, on F of weight (1,1). Note that here as K is the only
unramified extension of F', there cannot exist a CM extension of F' and Hecke character
on that CM extension which defines a Hilbert Modular Form of trivial level Op. So in
particular, the theta series 6, has RM but no CM.

Let p be a prime which is inert in /. We observe that always then pOx = PP’ for distinct
prime ideals in Ok. Let E be an elliptic curve of conductor pM, where M := |Norm(n)|.
Just as in the CM dihedral examples of Section 5.1, the possible patterns of ranks of the
Asai components in the Mordell-Weil group and corresponding eigenvalues of o, on these
components are correlated with the pair (¢(P),a,(£)). Without going into too much
detail, observe that Conjecture 1.2 only predicts the non-vanishing of Ay in the 25% of
times in which (¢(P),a,(E)) = (+1,—1). We give below a selection of examples in that
setting (our coefficients vanished experimentally in the other settings, as expected).

Note that these examples give evidence for our conjecture beyond what can be proved
in our main theorem (Theorem 4.6). Our theorem only predicts “N\g = logp,.(P)” for a
Stark-Heegner point P, and these are only known in this setting to be local points. Our
examples show P is a global point.

Example 5.7. Let

D, : =13, Dy:=57=3x19, € Op, M =3,

<1+\/13-57>
n=-l4- | —

and choose p := 7, which is inert in F'. We take
E:yf+ay=a>—4zr—1

to be the elliptic curve labelled 21a in the tables of Cremona. This curve has non-split
multiplicative reduction at p. Let

P~ = ((—V13+3)/2,V13 — 3) € E(Q(V13)).

Then
Mg = 903550508804407 x 7 = —4 - logp,o(P~) (mod 7%9).

Example 5.8. Let

GOFv

14++/13-93
Dy =13, Dy:=93=3x3l, 1 =28983+ 532 (%)

so that M = 3. Choose p := 7. We again take E to be the elliptic curve 21a and P~ as in
the preceding example. Then we have

g = —903550508804407 x 7 = 4 - logp,.(P~) (mod 7).

Ezxample 5.9. Let
Dy :=5, Dy:=93=3x 31,
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14++v5-93
7]:10+< +2 >60F7 M:67 p;:?_

and choose

Let
E:y+aoy+y=a>+2>—4dc+5
be the elliptic curve 42a, which has non-split multiplicative reduction at p. After defining
we observe that
Ao = 3617170189375121 x 7 = A\g = 2 - logp,o(P~) (mod 7%).
Ezxample 5.10. Let
D;:=193, Dy =33=3x11,

and choose

60}7’7 M:8, p:7

1+ /193~
n = —2707 + 67 <#)

We take
E:y=2*+2+2
to be the elliptic curve 56a, which has non-split multiplicative reduction at p, and
P~ =(-26,2v—11) € E(Q(v—11)).
Then
Ao = 3274774510128699 x 7 = —2 - logp,.(P~) (mod 7).
Ezxample 5.11. Let
Dy := 181, Dy =21=3x1,

and choose

14 +/181-21
n=—5— 1441 (%) € Op,

We take

E:y*+aoy=a2—2>—42+3
to be the elliptic curve labelled 55a in the tables of Cremona. This curve has non-split
multiplicative reduction at p. Define

P~ =(1,(—V=3—1)/2) € E(Q(v/=3)).

Then
Ao = 834444252005378646 x 11 = 2 - logr,.(P~) (mod 11%).

Observe that in the RM case the Hida coefficients Ag;q, from Section 5.1.2 may still be
defined, but we do not know how to efficiently compute them.
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5.3. A cyclic quartic extension. We now give an example which is beyond the reach of
our current theorem and the machinery of Heegner and Stark-Heegner points (though still
within the purview of CM extensions).

Ezample 5.12. Let I := Q(v/17) and

1+ /17
5

Then K := F(y/a) is a CM extension of F which is a cyclic quartic extension of the rational
field. We have 17 - Og = P* for a prime ideal P. The group of Hecke characters of K of
conductor P is Z/27 x Z/8Z and we take 1 to be an element of order 4 in this group.

The diagonal restriction of the theta series 6y, attached to v lies in Sy(4 x 17), a space
of dimension 7. (Here F' has narrow class number 1 and the Fourier expansion for 6, is
found using the trivial ideal Op.) Note that the diagonal restriction of 6, is killed by the
Hecke operators Us(Uy — I) and Uy + 1.

Let p := 5, which is inert in F'. Using our computational methods, it is possible then to
consider all elliptic curves of conductor divisibly by 5 and dividing 5 x 68. In the Magma
computer algebra package these have Cremona labels

20a, 85a, 170a, 170b, 170c, 170d, 170e, 340a.

(Beware however that this labelling of the curves in Magma of conductor 170 is not the
same as that in [LMFDB].) Letting V; be the induction of ¢ to G and V' its Asai induction
to Q, the representation V' is self-dual and decomposes as a direct sum

Asai(Vy) = x4 ® Xes D M7 D 7q7-

Here x4 and ygg are quadratic characters of conductors 4 and 68, and 7,7 a quartic character
of conductor 17. Using Magma we compute that the order of vanishing of L(E, Asai(Vp))(s)
at s = 1is (very likely to be) one when E is the curve 20a, 170c or 170d, and even otherwise.

Because the diagonal restriction of the Hilbert modular theta series 6, is non-zero, we
need to modify our theta derivative using a Hecke operator which kills the p-depletion of
this non-zero form. In practice we must use Us(Uy — I) or Uy; + I. (The modification
is done on Fourier expansions themselves, and is very time-consuming, thus limiting the
choice to the simplest possibilities.)

Let fooa, fimoe and fi704 denote the weight two eigenforms attached to the three remaining
curves. We observe Uy(Uy — I) Kills fao, and fi7oe, and Uy + I kills fi70. and fi704. In
particular, we cannot extract any non-zero values for the curve labelled 170c using these
modifications. We shall thus focus on the curves with labels 20a and 170d.

We consider first

a:=—8

Fooe 1 Y% = 23 + 22 + 4 + 4,
which has non-split multiplicative reduction at p = 5. The rank one component of Mordell-
Weil appearing in the Asai representation is generated by

P~ :=(-53/4,91v/—17/8).
The frobenius element o, acts by —1 on this point, and we find that
Mg = 8-1ogp.(P) (mod 5%).
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Working with the Hida rather than theta derivation, we can get slightly higher precision
and find

MHida = 337558 - 5 = 8 - logp,o (P~)  (mod 5').
Next consider
Biroq: y* +ay +y =2’ — 32 46,
which has split multiplicative reduction at p. Here the rank one component of Mordell-Weil
appearing in V' is generated by

P = (=5,-10v/ -1+ 2),
and o, acts by +1 on this point. We find
Ao = 8- logr.(PT)  (mod 5%).

Working with the Hida rather than theta derivation, we can again get higher precision and
find

Atiida = 818912872 - 5% = 8 - logy,,o(P*)  (mod 5'°).

Observe our precisions for Ay are much lower than in previous examples. This is because
we had to further act upon the Fourier expansion of the theta derivative by small powers
of U, to “improve overconvergence”.

Remark 5.13. The modular form fy, is not a full eigenform in S5(340), and there is
not a canonical choice of “test vector” in the old space (fa0a(q), f20a(q'7)) C So(340) it
generates to take the coefficient along. Given our modification by U;7 + I it was natural
and convenient to choose the unique f in this space with (U7 + I)(f) = fa0a-

5.4. A non-Galois quartic extension. Our final example is beyond both the reach of
Heegner and Stark-Heegner points, and even outside that of CM extensions.

Ezample 5.14. Let F = Q(+/301) and

=301 —17

= > ’
which has norm —3. We have 3 - Op = PP’ where P = (a) and P’ = (/) with o :=

(v/301 — 17)/2. Define K := F(y/a) and
g 5v/301 87\/a+\/3_1 18
4 2

The field K is a non-Galois quartic extension of signature (2, 1), with Galois closure a
degree 8 extension of Q. There is a Hecke character 1 of order 2 of K factoring through the
extension K (1/f3) such that the diagonal restriction of the associated series 6, (constructed
using the trivial ideal Op) lies in S5(3); in particular, it has trivial character. (Finding non-
Galois quartic extensions and Hecke characters where the diagonal restriction has quadratic
character is much easier. The point of this example is that the character is trivial.) Very

conveniently S»(3) is zero, and so this diagonal restriction must vanish. Thus we do not
need to modify our theta derivative by any Hecke operators.

€ K, Normg,p(f) =



34 HENRI DARMON, ALAN LAUDER AND VICTOR ROTGER

Letting Vg be the induction of 1 to G, the Asai representation itself is self-dual and
decomposes as a direct sum

AS&I(%) =16 X3 © W903

where Y3 is a quadratic character of conductor 3 and Wyg3 an irreducible 2-dimensional
representation of conductor 903.

We consider small primes p which are inert in F' and for which we have curves in levels
p or 3p. First, we take p := 13 and consider the curve Fsqg, labelled 39a by Cremona.
The ranks of the components of the Asai representation in the Mordell-Weil group are
(0,1,2). Since we are in a rank 3 setting, Conjecture 1.2 predicts the component along the
attached weight two form f39, of the theta derivative should be zero. And we observe this
numerically (to precision 13°).

Now let p := 17. Here we may consider two curves, labelled 17a and 5la. The ranks
in the Asai representation of the Mordell-Weil group are respectively (0,0,1) and (0, 1,0).
The o,-eigenvalues on the three components of Asai(V;) are +1,—1 and £i. The curve
labelled 17a has split multiplicative reduction at p, but in any case +1 (or —1) does not
occur as an o,-eigenvalue on Wygs. So our conjecture predicts the component of the theta
derivative along fi7, should be zero, as we observe numerically (to precision 17°).

More interestingly, the other curve

E51a:y2+y:x3+x2+x—l

has non-split reduction at p, and here —1 does occur as an eigenvalue on the rank 1
component. The relevant generator is

P~ = ((V=3-1)/2,(V=3—1)/2) € E51,(Q(v=3)),

and we find
Ao = 734096 - 17 = 4 - logp,..(P~) (mod 17°).

5.5. Beyond Hecke characters. Let g be an exotic modular form of weight 1 and qua-
dratic character y. Given a real quadratic field F', one may restrict the Galois represen-
tation p, of Q to F', and then take the Asai induction of that to get a four dimensional
representation Asai(p,|q,). Since x is quadratic we find this Asai representation is self-
dual. This is the most appealing setting in which to do further experimental work, and
some partial progress has been made in that direction.

The smallest examples to consider are the exotic forms in levels 283 and 331, which have
projective image Sy. (See for example the webpage accompanying [BL], or [LMFDB].) For
each of these, using code for computing Hilbert class fields in Magma we were able to find
the degree 48 fields through which each of the linear representations for these forms factors.
Then given F = Q(v/Dr) with Dy = 1 mod 4 (and Dy inert in Q(v/—283) or Q(v/—331),
respectively), we could find both the diagonal restriction of the theta family and of its
derivative. The (so far) insurmountable difficulty we then encounter is that the diagonal
restriction of the theta family lies in 55(283) (or S2(331) respectively), which is a space
of dimension 23 (respectively 27). And it seems difficult in practice to modify the family
by a Hecke operator on Fourier expansions to kill a p-depletion of this form, a necessary
step to move from the largely mysterious world of “p-adic mock modular forms” to that
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of (nearly) overconvergent ones. Note that forms in latter infinite dimensional spaces are
far more amenable to computation, using the methods of [AL1, AL2]. It is evident that
a better theoretical and computational understanding of p-adic mock modular forms is
required in order to push the experimental work further.
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