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Abstract. A conjectural construction of global points on modular abelian varieties is
proposed. These points are defined over the field cut out by the tensor induction (or Asai
representation) of a totally odd two-dimensional Galois representation of a real quadratic
field.
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Introduction

Let E be an elliptic curve over Q and let V be an Artin representation of Q, that is to
say, a finite-dimensional vector space over a finite extension κ ⊂ C of Q, called the field of
coefficients of V , endowed with a continuous linear action of GQ := Gal(Q̄/Q). The action
of GQ factors through the quotient Gal(H/Q) for a finite extension H of Q, referred to as
the field cut out by V , giving rise to a homomorphism

ϱ : Gal(H/Q) ↪→ GL(V ).

For each prime ℓ, denote by κℓ a completion of κ at a prime above ℓ. The pair (E, V )
gives rise to a continuous κℓ-linear representation of GQ whose underlying vector space is
the tensor product of the Tate module of E with V :

(1) WE,V,ℓ := Tℓ(E)⊗κℓ (V ⊗κ κℓ), where Tℓ(E) := (lim
n,←

E[ℓn])⊗Zℓ
κℓ.
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It is unramified at any rational prime p not dividing ℓND, where N and D are the conduc-
tors of E and V respectively. The frobenius element at such a p, denoted σp, is well-defined
up to conjugation in Aut(WE,V,ℓ). Its characteristic polynomial has coefficients in κ ⊂ κℓ
and does not depend on the choice of ℓ ̸= p.
The equivariant Birch and Swinnerton-Dyer conjecture relates the order of vanishing at

s = 1 of the Hasse-Weil-Artin L-series

(2) L(E, V, s) :=
∏
p∤ND

det(1− σp · p−s)−1

to the V -rank of E, defined as

(3) rank(E, V ) := dimκE(H)V , where E(H)V := homGQ(V,E(H)⊗ κ).

Conjecture BSD(E,V): ords=1L(E, V, s) = rank(E, V ).

Progress on this conjecture has been painstaking and hard-won. In the analytic rank 0
situation where L(E, V, 1) ̸= 0, it is known when V is one-dimensional [Kato], when V
is induced from certain ring class characters of an imaginary quadratic field [BD1] or a
real quadratic field [DR2], or when V is the tensor product of two odd irreducible two-
dimensional Artin representations [DR2].

Results in the analytic rank one case, where L(E, V, s) has a simple zero at s = 1, are
even more fragmentary and largely confined to scenarios where the vanishing of L(E, V, s) is
forced by parity considerations. This happens when V is isomorphic to its contragredient—
so that the functional equation relates the values of L(E, V, s) at s and 2 − s—and when
the sign in this functional equation, denoted sign(E, V ), is equal to −1. The L-function
L(E, V, s) is then essentially an odd function of s− 1, and hence vanishes to odd order at
the central point.

Assuming for simplicity that N and D are relatively prime to each other, the most basic
instances of this occur when the representation V is induced from a ring class character of
a quadratic field F . In that case, V is always self-dual and

(4) sign(E, V ) = εF (−N),

where εF is the quadratic Dirichlet character attached to F .

(a) When F is imaginary and εF (−N) = −1, the systematic vanishing of L(E, V, 1) is
accounted for by a plentiful supply of complex multiplication points defined over
all ring class fields of F of conductor prime to N , lying on suitable modular or
Shimura curves which uniformise E. The significance of the resulting Heegner
points in E(F ab) for the study of the Birch and Swinnerton Dyer conjecture can
hardly be overstated. These points are the basis for the important results of Gross-
Zagier [GZ] and Kolyvagin [Ko], and provide essentially the only instance where
a simple zero of L(E, V, s) at s = 1 can be parlayed into the construction of a
non-trivial element of E(H)V .
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(b) When F is real and εF (N) = −1, the role of Heegner points is ostensibly played
by the Stark-Heegner points introduced in [Dar], whose conjectural nature prevents
their being used to prove BSD(E, V ) in this case.

The article [DR2] does prove some non-trivial instances of BSD(E, V ) in the analytic
rank zero variant of scenario (b), where εF (N) = 1. The proof in this case is somewhat
roundabout and makes no use of Stark-Heegner points: rather it proceeds by realising
V as a direct summand of a tensor product V1 ⊗ V2 of two odd two-dimensional Artin
representations in order to reduce BSD(E, V ) to BSD(E, V1 ⊗ V2), which is proved using
global cohomology classes in H1(Q,WE,V1⊗V2,ℓ) arising from p-adic families of étale Abel-
Jacobi images of diagonal cycles in triple products of modular curves.

A motivation for singling out scenario (b) for special attention is that it has revealed
tantalising possibilities for constructing global points on elliptic curves in settings that lie
squarely beyond the scope of the theory of complex multiplication. It is natural to ask
whether other instances of self-dual V for which sign(E, V ) = −1 might lead to analogous—
conjectural, but entirely explicit —constructions of global points on E.
The setting where V = V1 ⊗ V2 is a self-dual tensor product of two odd irreducible

two-dimensional Artin representations may seem promising at first glance in light of the
progress initiated in [DR2]. However, one always has

(5) sign(E, V1 ⊗ V2) = 1 when gcd(N,D) = 1,

which makes this setting somewhat unpropitious for suggesting new Stark-Heegner point
constructions. (See however [DLR1] where p-adic regulators attached to L(E, V1⊗V2, s) are
related to appropriate “Stark points” in favorable “analytic rank two” scenarios, and the
work of Dall’Ava and Horawa [DaH] which focuses on situations of analytic rank one, where
the conductors of E and V1 ⊗ V2 are no longer assumed to be coprime. An ongoing work
in progress of Andreatta, Bertolini, Seveso and Venerucci [ABSV] approaches a similar
setting through the study of endoscopic lifts to unitary groups.)

Motivated by these considerations, this paper explores the setting where V is the tensor
induction, or Asai representation, of a two-dimensional Artin representation of a real qua-
dratic field F . The definition and key properties of this tensor induction are recalled in
Section 2. Let VerQF denote the transfer (Verlagerung) of a character of GF to a character
of GQ, which is dual to the transfer map Gab

Q −→Gab
F of group theory.

Sign Formula ([Pra, Thms B & D, Rk. 4.1.1]): Let V0 be a two-dimensional Artin rep-
resentation of a real quadratic field F of conductor D ⊂ OF with gcd(N,D) = 1 which is
odd at the two real places of F , and let

(6) V = Ind⊗(V0)

be the tensor induction of V0 from GF to GQ. If

(7) VerQF (detV0) = 1,

then V is self-dual and

(8) sign(E, V ) = εF (N).
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This strikingly simple recipe for sign(E, V ), which is identical to (4), suggests that E(H)V

is non-trivial for an explicit, systematic class of Asai representations, and it is natural to
seek a construction of the non-trivial elements of E(H)V whose existence is predicted by
the equivariant Birch and Swinnerton-Dyer conjecture, guided by the ideas in the proof of
the Gross-Zagier formula. Proposing such an analytic expression is one of the main goals
of this paper.

Assume from now on that V0 and V are as in the statement of the Sign Formula above,
and that sign(E, V ) = −1. It follows that εF (N) = −1, which implies that there is a prime
p dividing N with odd multiplicity for which εF (p) = −1. Fix such a p > 3 and assume
for simplicity that it divides N with multiplicity one.

In fact, the rest of the paper will focus solely on the case where the conductor N of E
satisfies the following somewhat stronger generalised Heegner hypothesis:

(9) N = pM, where εF (p) = −1, and εF (ℓ) = 1 for all ℓ|M.

This hypothesis, although stronger than the more natural condition εF (N) = −1, simplifies
the setting without eliding any of its essential features. It implies that there is an ideal
M ⊂ OF for which OF/M = Z/MZ, which shall be fixed from now on.

The Artin representation V0 is associated to a holomorphic Hilbert modular form over
F of parallel weight one, level D and character χ := detV0. Such a Hilbert modular form
is attached to a function

(10) G : I(F ) −→ κ

on the semigroup I(F ) of integral ideals of F , which is defined by extending by multiplica-
tivity the following definition on prime powers:

G(λ) = Trace
(
σλ|V Iλ

0

)
, G(λn+1) =

{
G(λ)G(λn)− χ(λ)G(λn−1) if λ ∤ D,
G(λ)n if λ|D,

where Iλ is the inertia group at λ and V Iλ
0 is the space of Iλ-invariants. Fix an ordering

of the real embeddings of F and for ν ∈ F , write ν1, ν2 ∈ R for the images of ν under
these two embeddings. To the function G and to the ideal M of OF is associated a Hilbert
modular generating series

(11) GM(τ1, τ2) :=
∑

ν∈(Md−1)+

G((ν)d)qν , qν := e2πi(ν1τ1+ν2τ2),

where the sum runs over all the totally positive elements of Md−1, and d denotes the
different ideal of OF . This generating series is a Hilbert modular form of parallel weight
one and character χ on the group

(12) Γ0(D;M) :=

{(
a b
c d

)
: a, d ∈ OF , b ∈ M−1, c ∈ MD

}
.



STARK-HEEGNER POINTS FOR ASAI REPRESENTATIONS 5

After choosing an embedding of F into a completion Fp at p, and a p-adic logarithm
logp : F

×−→Fp, we consider the following p-adic generating series deforming (11):

(13) G′M(τ1, τ2) :=
∑

ν∈(Md−1)+,
p∤ν

logp(ν)G((ν)d)q
ν .

Let

(14) Φ
(p)
DM := G′M(τ, τ), Φ

(p)
M := TraceDMM (Φ

(p)
DM)

denote the diagonal restriction of G′M and its formal trace from level DM to levelM . Here
D ≥ 1 is such that D ∩ Z = (D).

In Section 3, it is shown that Φ
(p)
M is a p-adic modular form of weight two and (tame)

level M . Let eord be the ordinary projection from this space of p-adic modular forms to
the space of classical modular forms of weight two and level N that are fixed by U2

p (and
hence new at p). The modular form attached to the Asai representation V , defined by

(15) ΦV := eord(Φ
(p)
M ) ∈M2(Γ0(N))

is a classical modular form of weight two on Γ0(N) that is new at p.
Let J0(N) denote the Jacobian of X0(N) and define

J0(N)(H)V = homGQ(V, J0(N)(H)⊗ κ)

as in (3). The main conjecture of this paper expresses it in terms of the p-adic logarithm
of a global point arising from an element of J0(N)(H)V .

The p-new part of J0(N), denoted J
(p)
0 (N) has purely toric reduction, and there is a

natural exact sequence arising from the Tate-Morikawa uniformisation of J
(p)
0 (N),

1−→X
j−→ T−→J

(p)
0 (N)(Q̄p)−→1,

where T is a p-adic torus, X := hom(T,Gm) is the character group of T (a free Z-module

of rank g = dim J
(p)
0 (N)), and j arises from the monodromy pairing X × X−→Gm. A

differential on T is said to be toric if it is of the form η∗(dt
t
) for some η ∈ X. Such a

differential is invariant under translation by j(X), and theorefore descends to a differential

on J
(p)
0 (N) . The space Ω1

tor of toric differentials on J
(p)
0 (N) is a free Z-module of rank g

by definition, and is endowed with a natural linear action of the Hecke operators Tn acting

as correspondences on J
(p)
0 (N). A toric differential is said to be generic if its translates

under the Hecke operators Tn span the Q-vector space Ω1
tor ⊗Q.

Main Conjecture. There is a point PV ∈ J
(p)
0 (N)(H) ⊗ κ belonging to the image of an

element of J
(p)
0 (N)(H)V , and a generic toric differential ω on J

(p)
0 (N) for which

(16) ΦV =
∞∑
n=1

logω(Tn(PV ))q
n.

One of the simplest cases of this conjecture is considered in [DPV], where V0 is taken to
be the direct sum of the trivial character and an odd (unramified) ring class character ψ
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of F , and G is the Hilbert Eisenstein series over F of parallel weight one attached to this
pair of characters. The Asai representation of V0 is then equal to

Asai(V0) =: V = 1⊕ 1⊕ IndQ
F (ψ).

The main result of [DPV] expresses the nth fourier coefficients of the modular form ΦV

(where M = 1 and N = p) as a linear combination of RM values of the winding cocycle

(17) Jw ∈ H1(SL2(Z[1/p]),A×/C×p ),
where A× is the multiplicative group of rigid analytic functions on the Drinfeld p-adic
upper half-plane Hp. More precisely, the set of RM points on SL2(Z[1/p])\Hp of (prime-
to-p) discriminant DF = Disc(F ) is endowed with an action of the class group of F , and
the main result of loc.cit. is the equality,

(18) an(ΦV ) =
∑

σ∈Gal(H/F )

ψ(σ)−1 logpNrmJw[Tnτ
σ],

where the value Jw[τ ] of the cocycle Jw at an RM point has been extended to RM divisors
by multiplicativity, and Nrm denotes the norm from Qp2 to Qp. The general theory of rigid
analytic and meromorphic cocycles predicts that the RM values Jw[Tnτ

σ] map to points in
J0(p)(H) under the Tate-Morikawa uniformisation of J0(p). The Main Conjecture of this
paper can thus be envisaged as an extension of (18) to a setting where Hilbert Eisenstein
series are replaced by general Hilbert modular forms of weight one (satisfying the self-
duality assumption).

For an earlier discussion that also aims to place (18) in a more general framework, see
[FLPSW].

1. Refinement of the main conjecture

Write

(19) ΦV =
∑
f

λV,f · f + Φold
V ,

where the sum is taken over a basis of normalised newforms in S2(Γ0(N)) and Φold
V is an

oldform. Our goal is to reformulate the main conjecture of the introduction as a description
of the coefficients λV,f in this decomposition.

The Q-algebra TN generated by the Hecke operators Tm with gcd(m,N) = 1 acting on
S2(Γ0(N)) is an étale algebra, isomorphic to a product of totally real fields. Assume that
κ is large enough to split TN , i.e., that

TN ⊗ κ ≃
⊕
f

κ,

where the sum is taken over pairs (f,Nf ) with f a normalised newform of level Nf |N with
coefficients in κ. The idempotents πf ∈ TN ⊗ κ attached to this decomposition lead to a
direct sum decomposition

J0(N)(H)⊗ κ =
⊕
f

J0(N)(H)f ,
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where J0(N)(H)f := πf (J0(N)(H) ⊗ κ). The “Stark-Heegner point” PV of the Main
Conjecture of the introduction is the sum of its f -isotypic components:

PV :=
∑
f

PV,f + PV,old ∈ J0(N)⊗ κ, where PV,f := πf (PV ) ∈ J0(N)(H)Vf .

The main conjecture of the introduction can be reformulated as follows:

Conjecture 1.1. The coefficient λV,f arising in the spectral expansion (19) of ΦV is given
by

(20) λV,f = logω(PV,f )

up to a multiplicative constant in κ.

To further lighten the notations, we will focus henceforth on the case where f is a weight
two newform of level N with rational fourier coefficients, i.e., a form that corresponds to
an elliptic curve E/Q of conductor N . In that case, the field κ can simply be taken to be
the field of coefficients of the Artin representation V0.

The running assumption that p divides N implies that E has multiplicative reduction
at p, and hence that

ap := ap(E) =

{
+1 if E has split multiplicative reduction at p,

−1 if E has non-split multiplicative reduction at p.

The base change of E to the quadratic unramified extension Qp2 of Qp admits a rigid-
analytic uniformization according to Tate’s theory. Namely, there is a p-adic period qE ∈
pZp and an isomorphism of rigid-analytic varieties over Q̄p

(21) ΦTate : Q̄×p /qZE
∼−→ E(Q̄p)

which is defined over Qp when ap = +1 and over Qp2 when ap = −1.
Let logp : Q̄×p −→Q̄p denote the branch of the p-adic logarithm such that logp(qE) = 0,

and define
logTate : E(Q̄p)−→Q̄p, logTate(x) := logpΦ

−1
Tate(x).

Note that logTate is defined only at primes of multiplicative reduction, and is different from
that with respect to the canonical differential on E itself (denoted logE,p in [DLR1]). Up
to a non-zero rational factor, we then have

logω(PV,f ) = logTate(PV,f ).

The main goal of this section is to further refine Conjecture 1.1 by predicting when
the coordinate λV,f in (19) gives rise to a non-trivial element of the Mordell-Weil group
J0(N)(H)f . More precisely, the global sign of the Hasse-Weil Artin L-function L(E, V, s)
is −1 and hence this L-function vanishes to odd order. If ords=1L(E, V, s) = 1, then there
is a unique irreducible constituent W1 of V = W0 ⊕W1 for which

L(E,W0, 1) ̸= 0, ords=1L(E,W1, s) = 1.

Letting αG and βG = α−1G denote the eigenvalues of the frobenius element at p in GF

acting on the Artin representation V0 attached to G, Proposition 2.2 below asserts that
the eigenvalues of σp in GQ on its tensor induction V are 1,−1, αG and βG.
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Conjecture 1.2. The scalar λV,f is non-trivial if and only if the following two conditions
are satisfied:

(I) ords=1L(E, V, s) = 1;
(II) The invariant ap ∈ {±1} has multiplicity 1 as an eigenvalue of the frobenius element

σp acting on V , and its associated eigenvector belongs to W1.

When the above conditions hold, then λV,f = logTate(PV,f ) and the global point PV,f lies
in the image of E(H)W1. More precisely, this point forms a basis of the one dimensional
subspace of this image on which σp acts with the eigenvalue ap.

The remainder of this paper will be devoted to describing evidence for Conjecture 1.2.
Theorem 4.5 provides theoretical evidence in the special case where G is associated to
the theta series of a character of a biquadratic field, and Section 5 documents a series of
numerical experiments in support of this conjecture which also illuminate some of its more
subtle features.

2. Asai representations

This section collects a few simple facts about Asai representations, in the level of gener-
ality that is relevant to the constructions of this article.

Let G be a finite group and let G be a subgroup of index two in G. The induction to G
of a finite-dimensional representation V0 of G is the space of G-invariant functions

IndG
G(V0) := {η : G−→V0 satisfying η(gx) = gη(x), for all g ∈ G}

endowed with the action of γ ∈ G given by

(γ · η)(x) = η(xγ).

Since a vector in IndQ
F (V0) is completely determined by its values on a system of coset

representatives for G\G, the representation IndG
G(V0) is identified with V0 ⊕ V0 after fixing

an element τ0 ∈ G − G, and sending η to (η(1), η(τ0)). Conjugation by this element τ0
determines an automorphism of G which will be written as g 7→ g′ := τ0gτ

−1
0 . Under the

identification of IndG
G(V0) with V0 ⊕ V0 determined by τ0, the action of G on the latter

space is given by

(22) g((v1, v2)) =

{
(gv1, g

′v2) if g ∈ G,
(gτ−10 v2, τ0gv1) if g ∈ G−G.

The tensor induction of V0 to G, denoted Ind⊗(V0), is defined by replacing direct sums
with tensor products in (22). Its underlying vector space is V := V0 ⊗ V0, with action of
G defined by

(23) g(v1 ⊗ v2) =

{
gv1 ⊗ g′v2 if g ∈ G,
gτ−10 v2 ⊗ τ0gv1 if g ∈ G−G.

Lemma 2.1. The character χ
V
attached to V = Ind⊗(V0) is given by

χ
V
(g) =

{
χ

V0
(g)χ

V0
(g′), if g ∈ G,

χV0(g
2) if g ∈ G−G.
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Proof. For g ∈ G, the formula for χ
V
(g) follows directly from (23). Consider the sec-

ond case, where g belongs to G − G, and assume for notational simplicity that V0 is
two-dimensional, although the general case can be treated in the same way. Since the
isomorphism class of the Asai induction does not depend on the choice of τ0 ∈ G−G that
was made to define it, we may set τ0 = g. Every element of G acts semisimply on V0 since
G is finite; let vα, vβ ∈ V0 be an eigenbasis for g2 acting on V0, with eigenvalues α and β
respectively. Relative to the basis (vα⊗ vα, vβ ⊗ vβ, vα⊗ vβ, vβ ⊗ vα) for V , the action of g
is given by

g(vα ⊗ vα) = α · vα ⊗ vα, g(vβ ⊗ vβ) = β · vβ ⊗ vβ,

g(vα ⊗ vβ) = α · vβ ⊗ vα, g(vβ ⊗ vα) = β · vα ⊗ vβ.

The matrix of g in this basis is therefore given by

(24) Mg :=


α 0 0 0
0 β 0 0
0 0 0 β
0 0 α 0

 .

The result follows directly. □

If V0 is a one-dimensional representation of G, associated to a character χ : G−→C×,
the tensor induction of V0 coincides with the transfer of χ.

Of special interest for the constructions of this article are two-dimensional representa-
tions V0 of G satisfying the condition

(25) Ind⊗ det(V0) = 1.

Proposition 2.2. If V0 is a two dimensional representation of G satisfying (25), then
V := Ind⊗V0 is a self-dual Artin representation. The eigenvalues of any g ∈ G−G acting
on V are equal to 1, −1, α, and β = α−1, where α and β are the eigenvalues of g2 ∈ G
acting on V0.

Proof. If g belongs to G, let α and β be the eigenvalues of g acting on V0, and let α′

and β′ denote the eigenvalues of g′. Assumption (25) implies that αβα′β′ = 1, while the
eigenvalues for g on V are equal to αα′, αβ′, βα′, and ββ′. This set of eigenvalues is
therefore closed under the map ζ 7→ ζ̄, and hence the trace of g acting on V is real. If g
belongs to G−G, then letting α and β denote the eigenvalues of g2 acting on V0, condition
(25) implies that

(26) αβ = det(V0)(g
2) = Ind⊗ det(V0)(g) = 1.

Since the matrix of g acting on V relative to a suitable basis is given by (24), its trace
α + β is real, and the self-duality of V follows. The second assertion in Proposition 2.2
follows likewise from (24) and (26). □
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3. Reinterpretation via p-adic L-functions

The purpose of this section is to relate the conjecturally global point PV,f of Conjecture
1.2 to derivatives of suitable p-adic L-functions. This will lead to some theoretical evidence
for Conjecture 1.2 when V0 is induced from a character of a quadratic extension of F which
is biquadratic over Q (Theorem 4.5).

Following the notations of earlier sections, recall that G is the holomorphic Hilbert
eigenform of conductor D, nebentype χ and parallel weight 1 over a real quadratic field F
whose Asai representation is isomorphic to V , and that f ∈ S2(N) is a normalised newform
associated to an elliptic curve E of conductor N = pM by modularity. Here as above p > 3
is a prime and M ≥ 1 an integer relatively prime to p. It is assumed that (N,DFD) = 1
and (F,N) satisfy the generalised Heegner hypothesis of (9).

Because Upf = ±f , the weight two newform f is ordinary at p. It can therefore be
realized as the weight two specialization of a Hida family of modular forms, denoted f .
This Hida family is a formal q-expansion with coefficients in a finite flat extension Λf of
the Iwasawa algebra Λ := Zp[[(1 + pZp)×]] ≃ Zp[[T ]], as defined in [DR1, Def. 2.16], whose
specialisations at a dense set of classical points are classical eigenforms of tame level N
and varying weights. More precisely, the spaces

Xf := homalg(Λf ,Cp), X := homalg(Λ,Cp) = homgrp((1 + pZp)×,C×p )

are endowed with a natural structure of p-adic analytic spaces. The weight space X contains
the integers as a countable dense subset via the inclusion k 7→ (x 7→ xk−2), and restriction
gives a finite flat morphism

w : Xf−→X ,
called the weight map. By definition, the specialisation fx := x(f) of f at a point x ∈ Xf

is an ordinary overconvergent p-adic eigenform of level N and weight k := w(x). When
k := w(x) belongs to Z>2, Hida’s classicality theorem implies that fx is a classical modular
form of weight k on Γ0(N) which is new at the primes dividing M and is a simultaneous
eigenvector for the Hecke operators, satisfying

Upfx = αxfx, with αx ∈ O×Cp
.

The Hida family f is uniquely characterised by these properties along with the condition
that fx0 = f , where x0 ∈ Xf is a suitable classical point of weight w(x0) = 2.

The ordinarity of fx when w(x) > 2 implies that fx cannot be new at p: rather, it is the
ordinary p-stabilisation of a classical normalised newform of level M , denoted f ◦x .

Let L(f ◦x , V, s) denote the Hecke-Artin L-series attached to f ◦x and to V , i.e., to the
tensor product of V with the compatible system of two-dimensional Galois representations
attached to f ◦x . A twisted variant of Rankin’s method, which will be detailed below, implies
that L(f ◦x , V, s) admits analytic continuation and a functional equation relating its values
at s and k − s. Denoting by sign(fx, V ) the sign that arises in this functional equation,
the generalised Heegner hypothesis (9) implies that

sign(fx, V ) =

{
−1 if x = x0;
1 if k := w(x) > 2.
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In particular, the central critical values L(f ◦x , V, k/2) need not vanish when k > 2.
It is therefore natural to attempt to interpolate these values p-adically to a function

on Xf . Starting with the fundamental work of Ichino [Ich] and following the principles
of [DR1], this task has been undertaken recently in the literature in various degrees of
generality thanks to the contributions of Hsieh [Hs], Blanco-Fornea [BF], Chen-Cheng
[CC], Ishikawa [Ish], Kazi [Kazi] and Kazi-Loeffler [KL].

In order to describe the results, recall the Hilbert generating series GM(τ1, τ2) attached
to G and M in (11). Let

δk1 =
1

2πi

(
d

dτ1
− i

k1
2y1

)
be the partial Shimura-Maass derivative operator mapping holomorphic Hilbert modular
forms of weight (k1, k2) to nearly holomorphic Hilbert modular forms of weight (k1+2, k2),
and write

δtk1 := δk1+2t−2 ◦ · · · ◦ δk1+2 ◦ δk1
for its t-fold iterate. The nearly holomorphic modular form

δt1GM(τ1, τ2) ∈Mnh
1+2t,1(Γ0(D,M))

transforms like a holomorphic Hilbert modular form of weight (1 + 2t, 1) under the action
of the congruence subgroup of (12). For any even weight k = 2t + 2 > 2, the diagonal
restriction

Hnh
k (q) := δt1GM(τ, τ) ∈Mnh

k (Γ0(DM))

is a nearly holomorphic modular form of weight k and level DM . Let

(27) Hk := eholTr
DM
M Hnh

k ∈Mk(Γ0(M))

denote the holomorphic projection of its trace to level M . Then for all x ∈ Xf with
w(x) = k > 2, let

(28) I(f ◦x , G) :=
⟨Hk, f

◦
x⟩

⟨f ◦x , f ◦x⟩
,

where ⟨ , ⟩ denotes the Petersson scalar product on weight k modular forms.

Let d1 := q1
d
dq1

be the partial d operator which maps Hilbert modular forms of weight

(k1, k2) to nearly overconvergent Hilbert modular forms of weight (k1 + 2, k2). The gener-
ating series

(29) dt1GM(q1, q2) :=
∑

ν∈(Md−1)+

νt1 ·G((ν)d)q
ν1
1 q

ν2
2 ∈ Mno

1+2t,1(Γ0(D,M))

is the q-expansion of a nearly overconvergent p-adic Hilbert modular form of weight (1 +
2t, 1). Its diagonal restriction

Hno
k := dt1GM(q, q) ∈Mno

k (Γ0(DM))

is a nearly overconvergent modular form of weight k and tame level DM . Let

H♭
k := eordTr

DM
M Hno

k ∈Mk(Γ0(N))

be the classical modular form of weight k and level N obtained by applying to Hno
k :
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(1) the trace map TrDMM from overconvergent forms of level DM to level M ;
(2) the ordinary projection eord from overconvergent modular forms of tame level M to

classical ordinary modular forms of level N .

The geometric principles evoked in the proof of [DR1, Prop. 2.8] imply that

H♭
k = eordHk,

and henceH♭
k can be envisaged as a p-adic avatar of the modular formHk of (27). Replacing

Hk by H♭
k in (28) leads to an alternate expression for I(f ◦x , G) in terms of the period

⟨H♭
k, fx⟩⟨fx, fx⟩−1.
Although more genuinely p-adic in nature, this quantity does not interpolate p-adically

to an analytic or even continuous function of x ∈ Xf , because the quantity νt arising in
the fourier coefficients of dt1GM are only analytic functions of t when p ∤ ν. This motivates
replacing the form dt1GM(q1, q2) by its p-depletion in (29):

(30) dt1G
[p]
M(q1, q2) :=

∑
ν∈(Md−1)+

p∤ν

νt1G((ν)d)q
ν1
1 q

ν2
2 ,

a modular generating series whose fourier coefficients interpolate to p-adic analytic func-
tions of t ∈ (Z/(p2 − 1)Z)× Zp. Let

H
[p]
k := eordTr

DM
M

(
dt1G

[p]
M(q, q)

)
∈Mk(Γ0(N))

be the ordinary projection of the trace to level M of the diagonal restriction of this nearly
overconvergent Hilbert modular form, and set

(31) Lp(f , V )(x) :=
⟨H [p]

k , fx⟩
⟨fx, fx⟩

, k := w(x).

This quantity interpolates to a p-adic meromorphic function of x, denoted Lp(f , V ), and
commonly referred to as the twisted triple-product p-adic L-function. Since it suffices
for our purposes, here we have limited ourselves to introduce this p-adic L-function as a
single-variable function on the weight variable of f , but the reader is invited to consult the
references above for a three-variable version of it.

As anticipated before, Lp(f , V ) interpolates the square-root of the algebraic part of
central critical classical L-values, which we now describe more precisely. Here we state
a version of this result proved by Ishikawa in [Ish, Theorem 1.5.1] although the above
references show it holds in greater generality and under more relaxed assumptions.

Recall that αG and βG are the eigenvalues of the frobenius element at p in GF acting on
the Artin representation V0 attached to G, and the eigenvalues of σp in GQ on its tensor
induction V are 1,−1, αG and βG, by Proposition 2.2.

Given two functions A(x) and B(x) on a subset of classical points of Xf that is dense
for the rigid-analytic topology, we will write

(32) A(x) ∼ B(x)

if they differ by a quantity that interpolates to a p-adic meromorphic function on Xf that
is regular at x0 and whose value at x0 belongs to κ×. We call such functions admissible.
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Theorem 3.1 (Ishikawa). Assume

(Hp) The mod p residual Galois representation ϱ̄f : GQ−→GL2(Fp) is absolutely irre-
ducible and the restriction of ϱ̄f to the decomposition group at p is the sum of two
distinct characters.

(HM) The local admissible representation associated to f at a prime q | M is not super-
cuspidal (which is automatically fulfilled when q ||M).

For all classical points x ∈ Xf of weight k = 2t+ 2 with t ≥ 0 we have

Lp(f , V )(x)2 ∼ E(fx, V )

E0(fx)
Lalg(f

◦
x , V, k/2)

where

(33) E(fx, V ) =

(
1− ptαG

αx

)2(
1− ptβG

αx

)2

, E0(fx) =
(
1− pk−1

α2
x

)2

and

(34) Lalg(f
◦
x , V, k/2) =

(k−2
2
!)4

π2k⟨f ◦x , f ◦x⟩2
L(f ◦x , V, k/2).

Proof. This follows from [Ish, Theorem 1.5.1]. Indeed, observe first that all assumptions
in loc. cit. are fulfilled, since our running hypothesis that (N,DFD) = 1 implies Ishikawa’s
set Σ− is empty. The formula in loc. cit. asserts that

Lp(f , V )(x)2 = Γfx,g(0)
L(f ◦x , V, k/2)

(−1)αgDtΩ2
fx

E†(fx, g)
∏

ℓ∈Σdist

(1 + ℓ−1)2
∏

ℓ∈Σexcep

((ℓ+ 1)2 − α2
x)

2

where

(i) Γfx,g(s) is the Gamma function introduced in [Ish, (1.2.1)], whose value at s = 0
is (k−2

2
!)4π−2k up to a power of 2 (whose exponent is a polynomial in k), and thus

interpolates to an admissible function;
(ii) Σdist and Σexcep are finite sets of primes distinct from p introduced in [Ish, §1.5];

note that the functions ((ℓ + 1)2 − α2
x)

2 interpolate to admissible p-adic analytic
functions on Xf ;

(iii) the period Ωfx is defined at the end of [Ish, §1.4] and is precisely the Petersson scalar
product ⟨f ◦x , f ◦x⟩ quoted above, up to an Euler-like factor Ep(fx,Ad) introduced in
loc.cit, a power of 2 that again interpolates to an admissible function of k, and a
function denoted x(ηf ) given by a choice of generator of the congruence ideal of fx,
which also interpolates to an admissible p-adic analytic function on Xf .

Since the ratio E†(fx, g)/Ep(fx,Ad)2 is readily seen to be equal to the ratio E(fx, V )/E0(fx),
it follows that Ishikawa’s formula quoted above is equal to the one recorded in the main
statement of the theorem after removing quantities that visibly interpolate to an admissible
p-adic meromorphic function on Xf . □

Remark 3.2. It is instructive to compare the “p-adic multiplier” E(fx, V )E0(fx)−1 of The-
orem 3.1 with the ostensibly more complicated expression in [DR1, Theorem 4.7], where
G is replaced by a pair (g, h) of elliptic modular forms of weight one, and V is replaced
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by the tensor product Vgh of the odd two-dimensional Artin representations attached to g
and h. In that setting, the factor that enters into the p-adic interpolation is given by

(35) E+(fx, Vgh) · E0(fx)−1 · E1(fx)−1,
where

(36) E+(fx, Vgh) =
4∏
i=1

(
1− ptγi

αx

)
,

with γ1, γ2, γ3 and γ4 the eigenvalues of σp acting on Vgh, and

E0(fx) =
(
1− pk−1

α2
x

)
, E1(fx) =

(
1− pk−2

α2
x

)
.

Replacing Vgh by V in (36) and noting that 1 and −1 occur among the σp-eigenvalues on
V , we find

(37)
E+(fx, V )

E0(fx)E1(fx)
=

(1− αGp
t)(1− βGp

t)E1(fx)
E0(fx)E1(fx)

=
E(fx, V )

E0(fx)
,

and hence the p-adic multipliers in [BF] and [DR1] are consistent.

The next result can be viewed as a Gross-Zagier formula for Lp(f , V ) since it expresses
its first derivative at x = x0 in terms of the p-adic logarithm of the point PV,f of Conjecture
1.2. The weight map w is étale at x0 and the standard local parameter at k = 2 in X
induces a local parameter on Xf at x0, with respect to which the derivatives evoked in the
following theorem are to be taken.

Theorem 3.3. We have

(38)
d

dx
Lp(f , V )|x=x0 = CλV,f

for some constant C ∈ κ×.

Proof. The generating series G′M(q1, q2) of (13) can be written as

G′M =
d

dt

(
dt1G

[p]
M

)
t=0

.

The reader is cautioned that the letter d appears in this equation in two different guises,
whose distinct meanings should nonetheless be apparent from the context. It follows that
the ordinary modular form ΦV of (15) is given by

(39) ΦV =
d

dk
(H

[p]
k )k=2.

The modular forms H
[p]
k are the classical specialisations of a Λ-adic family of ordinary

modular forms. By (31), the component of this Λ-adic form along the eigenform f is equal
to Lp(f , V ) · f . Since Lp(f , V )(x0) = 0, projecting the equality (39) to the f -isotypic
component we obtain

d

dx
Lp(f , V )x=x0 = λV,f

up to a constant in κ×, as claimed. □
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In view of (20) we may thus recast Conjecture 1.1 in the following equivalent way.

Conjecture 3.4. The derivative of the twisted triple-product p-adic L-function at x = x0
is given by

(40)
d

dx
Lp(f , V )|x=x0 = logω(PV,f )

up to a multiplicative constant in κ.

4. Hilbert theta series

Let K/F be a quadratic extension of the real quadratic field F , and let

ψ : GK−→ κ×

be a finite order character of K. The case where G = θψ is the Hilbert theta series
over F attached to ψ provides a particularly enticing setting for Conjecture 1.2, since
the associated Asai representation then factors through a finite abelian extension of (the
Galois closure of) K. The possibility of varying ψ suggests the construction of a systematic
collection of global points on elliptic curves defined over such abelian extensions.

To remain within the scope of the main conjecture in the introduction, it will be assumed
throughout that

(1) ψ is of mixed signature at any pair of real places of K that lie over a common real
place of F . This ensures that the Artin representation V0 is odd at both real places
of F , and that G = θψ is a holomorphic Hilbert modular form of parallel weight
one.

(2) The induced representation V0 of GF satisfies the assumption in equation (7) of the
introduction, implying that V is self-dual.

We begin by spelling out what this second condition on the self-duality of V implies about
ψ. Let χ

K/F
be the quadratic character of GF attached to K.

Lemma 4.1. Let V0 be the induced representation of GF attached to ψ, and let V denote
its tensor induction to Q. Then V is self-dual if and only if

VerQF (χK/F
) · VerQK(ψ) = 1.

Proof. Since

det(V0) = χ
K/F

· VerFK(ψ),
it follows from the transitivity of the transfer map that

VerQF det(V0) = VerQF (χK/F
) · VerQK(ψ).

Lemma 4.1 now follows from (7). □

The quadratic character VerQF (χK/F
) of GQ that arises in Lemma 4.1 can be described

explicitly, according to the following analysis in three cases.
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Case 1. If K/Q is a biquadratic field, the transfer map from Gal(K/Q) to Gal(K/F ) is
the trivial homomorphism, and hence

(41) VerQF (χK/F
) = 1.

Case 2. If K/Q is a cyclic quartic extension, the transfer map from Gal(K/Q) to
Gal(K/F ) has kernel equal to Gal(K/F ) and induces an isomorphism from Gal(F/Q)
to Gal(K/F ) by passing to the quotient. Therefore

(42) VerQF (χK/F
) = χ

F/Q .

Case 3. If K/Q is a non-Galois quartic extension, then the normal closure K̃ of K has
Galois group isomorphic to the dihedral group D8 of order 8. It is a biquadratic extension
of F , and hence F = K̃Π where Π ≃ Z/2Z × Z/2Z is a Klein four-group in D8. There
are exactly two other subgroups of order 4 in D8: the cyclic group of order 4 and a second
Klein four-group, denoted Π⋆. Let F⋆ = K̃Π⋆ be the quadratic extension of Q associated
to Π⋆ under the Galois correspondence.

A direct group-theoretic calculation reveals that the transfer map ϕΠ : D8−→Π has
kernel Π⋆ and identifies D8/Π⋆ with the center {±1} of D8 (viewed as a subgroup of Π),
i.e.,

ϕΠ(g) =

{
1 if g ∈ Π⋆,

−1 if g /∈ Π⋆.

It follows that

(43) VerQF (χK/F
) = χ

F⋆/Q
.

Corollary 4.2. The Asai representation arising from the two-dimensional representation
V0 = IndFKψ is self-dual if and only if

VerQK(ψ) = 1, when K/Q is bi-quadratic,

VerQK(ψ) = χ
F/Q , when K/Q is cyclic,

VerQK(ψ) = χ
F⋆/Q

, when K/Q is not normal.

Proof. This follows by combining (41), (42), and (43), with Lemma 4.1. □

4.1. Biquadratic extensions. We now focus further on the scenario where K is a qua-
dratic extension of F that is biquadratic over Q. It then contains two further quadratic
extensions of Q, denoted K1 and K2. Because F is a real quadratic field, the fields K1 and
K2 are either both real, or both imaginary, depending on whether K is a totally real or
CM extension of F .
Let

ψ1 = VerK1
K (ψ), ψ2 = VerK2

K (ψ)

denote the transfers of ψ to GK1 and GK2 respectively.

Lemma 4.3. The characters ψ1 and ψ2 are ring class characters of their respective qua-
dratic fields. If K1 and K2 are real, then ψ1 and ψ2 have opposite parity, i.e., ψ2 is totally
odd when ψ1 is totally even, and vice-versa.
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Proof. Corollary 4.2 implies that VerQK1
(ψ1) = VerQK2

(ψ2) = 1, and this implies the first
assertion. The second assertion follows from the assumption that ψ has mixed signature
at any pair of real places of K that lie above a common real place of F . □

Recall that V0 := IndFK(ψ) is the representation of GF induced from ψ, and that V =
Ind⊗(V0) is the associated Asai representation of GQ.

Proposition 4.4. The Artin representation V decomposes as

V = V1 ⊕ V2, where V1 := IndQ
K1
(ψ1), V2 := IndQ

K2
(ψ2).

Proof. Let σ, σ1, σ2, τ , τ1 and τ2 denote the non-trivial elements of Gal(K/F ), Gal(K/K1),
Gal(K/K2), Gal(F/Q), Gal(K1/Q), and Gal(K2/Q) respectively, as summarized in the
following field diagram:

(44) K
σ1

σ
σ2

K1

τ1

F

τ

K2

τ2

Q

The character of the induced representation V0 is given by the formula

χ
V0
(g) =

{
ψ(g) + ψσ(g) if g ∈ GK ;

0 if g ∈ GF −GK ,

and the character of V is given by

χ
V
(g) =

{
χ

V0
(g)χ

V0
(gτ ) if g ∈ GF ;

χ
V0
(g2) if g ∈ GQ −GF .

These two formulae can be used to show that

(45) χ
V
(g) = χ

V1
(g) + χ

V2
(g),

according to the following division into three cases:

Case 1: g ∈ GK . Then

χ
V
(g) = χ

V0
(g)χ

V0
(gτ )

= (ψ(g) + ψσ(g))(ψσ1(g) + ψσ2(g))

= (ψψσ1 + ψσψσ2)(g) + (ψψσ2 + ψσψσ1)(g)

= (ψ1 + ψτ11 )(g) + (ψ2 + ψτ22 )(g)

= χ
V1
(g) + χ

V2
(g).

Case 2: g ∈ GF −GK = (GQ −GK1) ∩ (GQ −GK2). Then

χ
V
(g) = χ

V0
(g)χ

V0
(gτ ) = 0.



18 HENRI DARMON, ALAN LAUDER AND VICTOR ROTGER

Since g belongs to neither GK1 or GK2 , we also have

χ
V1
(g) = χ

V2
(g) = 0,

and (45) follows.

Case 3. g ∈ GQ −GF = (GK1 −GK2) ⊔ (GK2 −GK1). Then g
2 belongs to GK and hence

χ
V
(g) = χ

V0
(g2) = ψ(g2) + ψσ(g2)

=

{
(ψψσ1 + ψσψσ2)(g) = (ψ1 + ψτ11 )(g) if g ∈ GK1 −GK2

(ψψσ2 + ψσψσ1)(g) = (ψ2 + ψτ22 )(g) if g ∈ GK2 −GK1

=

{
χ

V1
(g) + 0 if g ∈ GK1 −GK2

0 + χ
V2
(g) if g ∈ GK2 −GK1

= χ
V1
(g) + χ

V2
(g).

The proposition follows. □

As in Section 1, let E be an elliptic curve over Q of conductor N = pM where p is a
prime that remains inert in F and M ≥ 1 is a positive number all whose prime divisors
split in F . Letting Dψ1 , Dψ2 denote the conductors of the central characters of ψ1, ψ2,
we further assume that (N,DFDψ1Dψ2) = 1. Finally, let us also assume throughout this
section that hypotheses (Hp) and (HM) in Theorem 3.1 are in place for the eigenform f
associated to E.

When combined with the Artin formalism for Hasse-Weil-Artin L-series, Proposition 4.4
implies the factorisation

L(f ◦x , V, k/2) = L(f ◦x , V1, k/2) · L(f ◦x , V2, k/2)(46)

= L(f ◦x/K1, ψ1, k/2) · L(f ◦x/K2, ψ2, k/2)

for all classical x ∈ Xf , and suggests that a similar principle might apply to p-adic L-series
interpolating these special values.

In order to state this more precisely, let Ω+
x and Ω−x be the real and imaginary periods

attached to f ◦x , as introduced e.g. in [Hi2, p. 488]. As explained in loc. cit., [Ish, §1.4] and
[BD2, §1.1], these periods can be chosen in such a way that

(47) Ω+
xΩ
−
x = ⟨f ◦x , f ◦x⟩.

Let D1 and D2 denote the discriminants of K1 and K2 respectively. Following [BD2,
(93)] and [BD3, Theorem 3.5], the algebraic parts of the special values attached to f ◦x and
the ring class characters ψi of Ki (i = 1, 2) are obtained by setting

(48) Lalg(f ◦x/Ki, ψi, k/2) =
(k−2

2
!)2D

k−1
2

i

(2π)k Ωx,ψi

L(f ◦x/Ki, ψi, k/2),

where the period Ωx,ψi
is given as in [BD3, Definition 3.4] by

Ωx,ψi
=

 Ω+
xΩ
−
x if Di < 0;

(Ω+
x )

2 if Di > 0 and ψi is even;
(Ω−x )

2 if Di > 0 and ψi is odd.
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Note that in our statement of (48) we have formulated a different power of π with respect
to [BD2] and [BD3], which is due to the different normalizations in the definition of the
Petersson scalar product adopted in loc. cit. versus [Ish].

Comparing these definitions with the one in Theorem 3.1, we see that for all classical
x ∈ Xf of weight k > 2:

(49) Lalg(f
◦
x , V, k/2) ∼ Lalg(f

◦
x/K1, ψ1, k/2) · Lalg(f

◦
x/K2, ψ2, k/2).

The generalised Heegner hypothesis (9) for V implies that all the primes ℓ|M have the
same splitting behaviours in K1 and K2, since they are split in F/Q. Let

Σ := {ℓ|M∞ such that εKi
(ℓ) = −1}

be the set of places of Q dividing M∞ at which the quadratic field K1 (and hence also
K2) is inert.

The sign in the functional equations for L(f ◦x , V1, s) and L(f ◦x , V2, s) are controlled by
the parity of the cardinality of Σ:

sign(f ◦x , V1) = sign(f ◦x , V2) = (−1)#Σ.

When #Σ is odd, the central critical values L(f ◦x/Ki, ψi, k/2) vanish identically, and one
has no resort but to set

(50) Lp(f , Vi) = 0.

When #Σ is even, the special values L(f ◦x , Vi, k/2) can be expressed in terms of elementary
quantities attached to optimal embeddings of orders in Ki (of suitable conductor, equal to
the conductor of the character ψi) in the quaternion algebra B ramified at Σ. This explicit
expression forms the basis for the construction of p-adic L-functions Lp(f , Vi) (i = 1, 2) on
Xf .

This p-adic L-function is constructed in [BD2] and [BD3] when Ki is imaginary and
real respectively, where they are also denoted Lp(f/Ki, ψi). They satisfy the interpolation
property

(51) Lp(f , Vi)(x)
2 ∼ E+(f ◦x , Vi)2

E0(f ◦x)E1(f ◦x)
Lalg(f

◦
x , Vi, k/2), i = 1, 2,

where E+(f ◦x , Vi) is the p-adic multiplier attached to f ◦x and Vi, as defined in (36) after
replacing Vgh with Vi. Note that

(52) E+(fx, V1 ⊕ V2) = E+(fx, V1) · E+(fx, V2).
For imaginary quadratic fields, the construction is detailed in [BD2, §3.2], and generalised

in [Mok, §3]. For real quadratic fields, see [BD3, §3.2] and its further refinements given
in [LV, §4.4, 4.5]. We also refer to the work of Hernández and Molina [HM] for a recent
construction of these p-adic L-functions that applies to the general setting considered here
in all cases.

Theorem 4.5. There is a factorization of p-adic L-functions

Lp(f , V ) ∼ Lp(f/K1, ψ1) · Lp(f/K2, ψ2),

where ∼ is defined in (32).
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Proof. Note first that Theorem 3.1 is in force thanks to our running hypotheses. If #Σ is
odd, the right-hand side is identically 0, and so is the left-hand side in light of Theorem
3.1 and (46). When #Σ is even, it follows from Theorem 3.1 and equations (37), (49), (51)
and (52) that both sides of the factorization claimed in the statement are rigid-analytic
functions taking the same values in a Zariski dense subset of Xf , up to an admissible
function. This yields the theorem. □

Since the prime p||N is inert in F/Q and Gal (K/Q) = Z/2Z × Z/2Z, it follows that
pOF necessarily splits in K/F . In particular, p has different splitting behaviours in the
quadratic fields K1 and K2. From now on in this section, these two fields will be ordered
in such a way that p remains inert in K1 and splits in K2. (Note that this convention is
not followed in Section 5.) This implies that σp acts on V1 with eigenvalues ±1, and on V2
with eigenvalues αG and βG = α−1G , and that

(53) sign(E, V1) = −sign(f ◦x , V1), sign(E, V2) = sign(f ◦x , V2)

for all classical x ∈ Xf of weight k > 2.
The following theorem is the main result of this section:

Theorem 4.6. Assume that either

(1) K1 and K2 are imaginary quadratic fields, or
(2) K1 and K2 are real quadratic fields, and the conjectures of [Dar, §5] on Stark-

Heegner points hold for (K1, ψ1).

Then Conjecture 1.2 is true.

Proof. By Theorem 3.3, the scalar λV,f is equal to the first derivative of Lp(f , V ) at x = x0
up to a multiplicative constant in κ×.

Assume first #Σ is odd. As already argued above, in this case Lp(f , V ) vanishes iden-
tically on Xf and hence λV,f = 0. This is aligned with Conjecture 1.2, as conditions (I)
and (II) of that conjecture are not both fulfilled. Indeed, if condition (I) were true, namely
ords=1L(E, V, s) = 1, it would follow from (53) that

sign(E, V1) = 1, sign(E, V2) = −1,

and therefore
L(E, V1, s) ̸= 0, ords=1L(E, V2, s) = 1,

so that W0 ⊇ V1 and W1 ⊆ V2 in the notation of Conjecture 1.2. But σp acts with
eigenvalues 1 and −1 on V1, and therefore condition (II) would not be met.

Assume now that #Σ is even. By Theorem 4.5, Lp(f , V ) has a simple zero at x = x0 if
and only if

(54) ordx=x0Lp(f , V1) + ordx=x0Lp(f , V2) = 1.

Since
sign(E, V1) = −1, sign(E, V2) = 1,

equation (51) implies the p-adic L-function Lp(f , V1) vanishes at x0 and hence (54) is
equivalent to

(55) ordx=x0Lp(f , V1) = 1, Lp(f , V2)(x0) ̸= 0.
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Note that E+(f ◦x , V2) = (1 − αG

αx
)(1 − βG

αx
). Hence it follows again from (51) that

Lp(f , V2)(x0) ̸= 0 if and only if

(56) L(E/K,ψ2, 1) ̸= 0 and ap ̸= αG, βG.

Besides, by [BD2, §4.4], [Mok, §3], [BD3, §4], [LV, Theorem 4.31], [HM, Theorem 8.2],
we have

(57)
d

dx
Lp(f , V1)x=x0 = C1 logTate(xE,V1 + apx

σp
E,V1

), C1 ∈ κ×

where xE,V1 is a local point in E(Qp2), with coordinates in the quadratic unramified exten-
sion Qp2 of Qp. Note xE,V1 + apx

σp
E,V1

lies in the ap-eigenspace for the action of σp.
Moreover, xE,V1 is

• the image of a global point QE,V1 ∈ E(H)V1 under the natural embedding E(H) ↪→
E(Qp2), given by a Heegner point on a Shimura curve attached to the odd set
Σ ∪ {p} of places, when K1 is an imaginary quadratic field;

• a Stark-Heegner point attached to the p-adic uniformisation of E via rigid analytic
cocycles, which is predicted to arise from a global point QE,V1 ∈ E(H)V1 similarly
as above, by the conjectures of [Dar, §5].

The Gross-Zagier formula in the scenario whereK is imaginary ([GZ]) and its conjectural
extension to real quadratic fields (cf. [Dar, §5]) imply that L(f, V1, s) has a simple zero at
s = 1 if and only if QE,V1 is not trivial in E(H)⊗ κ.

If V1 is irreducible (which is precisely the case when ψ2
1 ̸= 1), then the image of E(H)V1

in E(Qp2)⊗ κ is a two-dimensional κ-vector space spanned by xE,V1 and x
σp
E,V1

, and hence

QE,V1 is non-trivial if and only if PE,V1 := QE,V1 + apQ
σp
E,V1

is non-trivial, and this in turn
is equivalent to the non-vanishing of (57). Note that the irreducible component W1 of V
introduced in Conjecture 1.2 is V1 in this case.

If V1 decomposes as the sum of a pair of 1-dimensional sub-representations V1 = W1 ⊕
W ′

1, then we may order them accordingly to the notations in Conjecture 1.2, so that
ords=1L(E,W1, s) = 1 and L(E,W ′

1, 1) ̸= 0. Let ϵ = ±1 denote the eigenvalue of σp acting
on W1. In the favorable case where ϵ = ap, then PE,V1 := QE,V1 + apQ

σp
E,V1

is a generator

of E(H)W1 , and its image in E(Qp2) is the local point appearing in the right-hand side of
(57). In particular (57) again does not vanish. In the unfortunate case that ϵ = −ap, the
global point QE,V1 + apQ

σp
E,V1

lies in E(H)W
′
1 = 0 and hence (57) vanishes.

Summing up, we conclude that λV,f ̸= 0 if and only if

(i) L(E/K,ψ2, 1) ̸= 0 and ords=1L(E/K,ψ1, s) = 1,
(ii) ap ̸= αG, βG,
(iii) the eigenvector of eigenvalue ap lies in W1 ⊆ V1.

Since L(E, V, s) = L(E/K,ψ1, s)L(E/K,ψ2, s), we have proved (subject to the conjec-
tures in [Dar, §5] in the case of real quadratic fields) that λV,f ̸= 0 if and only if conditions
(I) in (II) in Conjecture 1.2 hold, and in that case λV,f = logTate(PV,f ) for a point PV,f that
forms a basis of the one-dimensional subspace of the image of E(H)W1 on which σp acts
with eigenvalue ap. □
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5. Numerical experiments

In this section we present some numerical experiments which both illustrate various
aspects of Theorem 4.6 and give further evidence in support of the broader Conjecture
1.2. We begin by considering examples illuminating Theorem 4.6 in the case where K is
a biquadratic field. These examples were computed prior to the formulation of Conjecture
1.2 and the proof of Theorem 4.6, and were key to suggesting their finer detail. They
also suggest an analogous but subtly different conjecture when the nearly overconvergent
family interpolating dtGM is replaced by a Hida family of parallel weight specialising to G
in weight (1, 1).

5.1. Biquadratic extensions: the CM setting.

5.1.1. The basic set-up. LetD1 andD2 be negative coprime fundamental discriminants and
let DF := D1 ·D2 > 0. Assume that these discriminants are odd and that D1, D2 < −3.
Define as in (44)

F := Q(
√
DF ), K1 := Q(

√
D1), K2 := Q(

√
D2), and K := Q(

√
D1,

√
D2).

The biquadratic field K is an odd genus field of the real quadratic field F : an unramified
CM quadratic extension of F that is also abelian over Q, with Galois group isomorphic to
Z/2Z× Z/2Z.
We consider the simplest non-trivial setting, in which the quadratic fields K1, K2 and

F have class numbers 3, 1 and 1 respectively. The narrow class number of F is then equal
to 2, and K is the narrow Hilbert class field of F . The extension K/F has (relative) class
number 3.

The Hilbert class field H of the quartic field K is a cyclic cubic extension of K, and
a degree 12 Galois extension of Q which admits six irreducible Artin representations:
the four one-dimensional representations 1, εD1 , εD2 , and εDF

, attached to the quadratic
Dirichlet characters of conductors 1, D1, D2 and DF respectively, and two irreducible
two-dimensional representations

W = IndQ
K1
χ, W ⊗ εD2 ,

where χ is any of the two cubic unramified characters of K1.
Let

ψ : ClK/F → L×, L := Q(ζ3)

be a non-trivial cubic character of the relative class group of K/F . The induced represen-
tation V0 := IndFK(ψ) is a two-dimensional representation of GF , whose tensor induction
to Q is given by

V := Ind⊗(V0) = 1⊕ εD2 ⊕W.

The Artin representation V0 induced by ψ corresponds to a Hilbert theta series G = Gψ

which is described as a function on the ideals of F by the formula

G(I) =
∑

J∈I(K),
Norm(J)=I

ψ(J).
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Recall that the construction of a weight (1, 1) modular generating series θψ attached to G
also depends on the choice of an ideal M := (η) in OF . In the notation of the introduction,
the theta series θψ = GM(τ1, τ2) is given by the formula in (11). Moreover, the p-depletion

of θψ is the weight (1, 1) specialisation of a natural p-adic theta family, given by dt1G
[p]
M in

(30). (Beware the two different uses of the term “theta” here.) If M = (ν) belongs to the
trivial narrow ideal class of F , i.e., if ν is totally positive, then the class of (ν)d in the class
group ClF is not a norm from ClK and hence the sum defining G((ν)d) is empty, so that

the p-adic theta family dtG
[p]
M vanishes identically. So it is necessary to choose an ideal (η)

whose associated narrow ideal class is non-trivial, i.e., for which Norm(η) < 0. Note there
is no element in OF of norm −1, and hence that the integer |Norm(η)| is strictly greater
than 1. Since K/F is unramified, the diagonal restriction of the theta series θψ lies in
S2(|Norm(η)|). In the notation of the introduction, we have

M = |Norm(η)|, D = 1.

Note that all the primes dividing M must necessarily split in F .
Let p be a prime which is inert in F . We consider elliptic curves E of square-free

conductor pM with associated eigenforms fE ∈ S2(pM). Since pM satisfies condition (9)
of the introduction, the Asai representation V is expected to occur with odd multiplicity
in the Mordell-Weil group of E.
Let us assume now that this multiplicity is one. This implies that the rank patterns

( rank(E(Q)), rank(ED2(Q)), dimhomGQ(W,E(H)L) )

are equal to either (1, 0, 0), (0, 1, 0) or (0, 0, 1). The parities of ranks on each component
which occur are correlated to the eigenvalues of σp on the Asai representation, and in the
rank one setting the following three scenarios are the only ones that can occur:

Frobenius eigenvalues Asai ranks
(1,−1, (ζ3, ζ

−1
3 )) (1, 0, 0) or (0, 1, 0)

(1,−1, (1, 1)) (1, 0, 0) or (0, 1, 0)
(1, 1, (1,−1)) (0, 0, 1)

Write
λθ = λθ(ψ, (η), p, fE)

for the coefficient along fE of the diagonal restriction of the derivative (G′M(τ1, τ2) in (13))
of the p-adic theta family through θψ. Note that, in the notation of the introduction, the

diagonal restriction of the derivative is given by Φ
(p)
M in (14). Here D = 1 and so it is not

necessary to lower the level of ΦM by taking its trace from level DM to level M .
Conjecture 1.2 makes the predictions shown in Table 1, which are proved in Theorem

4.6. In this table, the global points P+, P−, and P−W are generators of E(Q) ⊗ Q, of
E(K2) ⊗ Q, and of the image of a generator of E(H)WL on which σp acts as −1. In the
cases arising in the fifth and sixth lines of the table, E has rank 1 over any cubic subfield
of the Hilbert class field of K1, and after choosing an embedding of one of these fields into
Qp2 , there are global points P+

W and P−W upon which σp acts by +1 and −1, respectively.
In line 5, note that λθ = 0 when ap(E) = 1, because +1 does not have multiplicity one in
the Asai representation itself.
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Frobenius
eigenvalues Ranks ap(E)

Coefficient λθ
along fE.

1. (1,−1, (ζ3, ζ
−1
3 )) (1, 0, 0) +1 logTate(P

+)
2. (1,−1, (ζ3, ζ

−1
3 )) (1, 0, 0) −1 0

3. (1,−1, (ζ3, ζ
−1
3 )) (0, 1, 0) +1 0

4. (1,−1, (ζ3, ζ
−1
3 )) (0, 1, 0) −1 logTate(P

−)
5. (1, 1, (1,−1)) (0, 0, 1) +1 0
6. (1, 1, (1,−1)) (0, 0, 1) −1 logTate(P

−
W )

7. (1,−1, (1, 1)) (1, 0, 0) ±1 0
8. (1,−1, (1, 1)) (0, 1, 0) +1 0
9. (1,−1, (1, 1)) (0, 1, 0) −1 logTate(P

−)

Table 1. Prediction for λθ in the CM biquadratic setting.

5.1.2. Hida deformations of eigenforms. We now take a small detour. This paper has as
its focus theta deformations of Hilbert eigenforms. But one can also study the analogous
question for Hida deformations of eigenforms. That is, the first infinitesimal deformation
of an eigenform in the p-adic Hida family in parallel weight through that eigenform (this
family is unique, except in certain exceptional cases). Studying this setting numerically
and formulating a conjecture here was one of the starting points for this paper.

The Hida setting has the practical disadvantage that currently one only disposes of
explicit Hida deformations in the case of CM forms. The experimental evidence in this
setting suggests though that letting

λHida = λHida(ψ, (η), p, fE)

denote the coefficient along fE of the diagonal restriction of the derivative of the p-adic
Hida family in parallel weight through an ordinary stabilisation of θψ, the behaviour is
exactly the same as for λθ except one only need require that ap(E) has multiplicity one in
the component of the Asai representation which itself occurs with multiplicity one in the
Mordell-Weil group. For theta deformations, multiplicity one is required in the full Asai
representation. As a consequence, if one replaces λθ by λHida in Table 1 there is no change,
except in line 5 where

λHida = logTate(P
+
W ),

and in line 7 in which for rank (1, 0, 0) and ap(E) = +1 we get λHida = logTate(P
+).

In the even more special case of the dihedral quartic setting, there is also a third natural
family to consider. To explain to the origin of this, note that the Hida family in parallel
weight can be constructed explicitly by using grossencharacters associated to ψ. The
infinity type in this grossencharacter arises from a power of the norm map from K down
to the imaginary quadratic field (K1 or K2) in which p splits. Replacing this norm map
by the one down to the imaginary quadratic field in which p is inert yields another natural
and entirely explicit family.

Curiously, in all examples that have been calculated, the coefficient “λinert” resulting
from this new family is logTate(P

±) in the σp-eigenvalues (1,−1, (ζ3, ζ
−1
3 )) and ranks (1, 0, 0)
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and (0, 1, 0) scenarios, regardless of the splitting type of E at p. It would be interesting
to formulate a systematic description of the behaviour of the coefficient “λinert” in the
remaining settings.

The same notations λθ and (when computable) λHida shall be used beyond the CM
biquadratic setting, in the examples in Sections 5.2, 5.3 and 5.4.

5.1.3. Biquadratic extensions: numerical examples in the CM setting. We were able to nu-
merically compute with all the class number 3 and 1 imaginary quadratic fields (satisfying
our mild hypothesis) and reasonably small values of p. We focussed on the relatively small
primes p = 5, 7, 11, which already gave rise to a wealth of examples. The computations il-
lustrated both the vanishing in rank 3 settings, and the proposed interpretation of λθ, λHida

(and sometimes λinert) in rank 1 settings. Without describing all the experiments in detail,
the discussion below presents some illustrative examples covering almost all the essential
different cases.

More precisely, the phenomena predicted in rows 1 to 4 of Table 1 are illustrated in
Examples 5.1, 5.2, 5.3 and 5.4; rows 5 and 6 in Example 5.5; and most cases in rows 7 to
9 in Example 5.6. These examples also illustrate the unproven predictions for λHida and
partial predictions for λinert which are evoked in Section 5.1.2.
We begin by considering two Asai rank (1, 0, 0) examples in which the σp-eigenvalues are

(1,−1, (ζ3, ζ
−1
3 )), one where the elliptic curve has split multiplicative reduction at p and

the other where it has non-split reduction.

Example 5.1. Let D1 := −31 and D2 := −67. The field K1 = Q(
√
−31) has class number

3, while K2 = Q(
√
−67) has class number 1, and F = Q(

√
31 · 67) has class number 1 but

narrow class number 2. Let

ψ : ClK/F → L×, L := Q(ζ3)

be a character of order 3 of the biquadratic field K.
Let

η := 22 +

(
1 +

√
31 · 67
2

)
∈ OF , Norm(η) = −13, M = 13.

Choose p := 7, which is inert in F . Note that S2(7) = S2(13) = {0}, and in particular
there are no elliptic curves of conductor 7 or 13.

Let E be the elliptic curve of conductor 91 = 7 · 13 labelled 91b in Cremona’s tables,
which is given by the equation

E : y2 + y = x3 + x2 − 7x+ 5.

It corresponds to a newform fE ∈ S2(91). Letting H denote the Hilbert class field of K, the
multiplicities with which the Asai representation V occur within the Mordell-Weil group
E(H)L are (1, 0, 0). That is to say, E has rank 1 over Q, and this rank does not increase
over Q(

√
−67) or over any of the cubic subfields of H of discriminant −31.

Furthermore, E has split multiplicative reduction at 7, so a7(E) = +1. One finds

λθ = (1− ζ3) · λHida = λinert = −4184884843330974 · 7 (mod 720).
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Let P+ = (3,−5) be a generator for E(Q). Then one checks that

λθ = logTate(P
+) (mod 720).

Example 5.2. Set D1 := −83 and D2 := −67, and take

η := 1585843− 41969

(
1 +

√
83 · 67
2

)
∈ OF , Norm(η) = −8, M = 8.

The prime p := 11 is inert in F , and there is an elliptic curve E of conductor 88, labelled
88a in Cremona’s tables,

E : y2 = x3 − 4x+ 4.

This elliptic curve now has non-split multiplicative reduction at p, i.e., ap(E) = −1. It has
rank one over Q, with Mordell-Weil group generated by P+ = (2,−2), and just as in the
preceding example this rank stays the same over Q(

√
−67) or any of the cubic subfields of

H of discriminant −83.
A numerical calculation shows that

λθ = λHida = 0 (mod 1120)

exactly as predicted by the theory, and a further calculation reveals the tantalising numer-
ical identity

λinert = −5 ·
√
−3 · logTate(P+) (mod 1120).

The next two examples examine settings where the Mordell-Weil ranks are (0, 1, 0),
the σp-eigenvalues are (1,−1, (ζ3, ζ

−1
3 )), and E has either split or non-split multiplicative

reduction at p.

Example 5.3. Let D1 := −83 and D2 := −11 and pick

η := 745 + 51

(
1 +

√
83 · 11
2

)
∈ OF , Norm(η) = −8, M = 8.

The prime p := 7 is inert in F and also in K2.
Let E the elliptic curve of conductor 56 = 7 · 8 labelled 56b in Cremona’s tables:

E : y2 = x3 − x2 − 4.

It has rank 0 over Q, but rank 1 over K2 = Q(
√
−11), and again rank 0 over any the cubic

subfields of H of discriminant −83. Furthermore E has split reduction at p. As predicted,
a calculation shows that

λθ = λHida = 0 (mod 720).

The relevant point now to consider is P− := (−7, 6
√
−11) ∈ E(K2). We compute

λinert = (5563318767325300c+ 5291061116602757) · 7 (mod 720),

where Qp2 = Qp(c) with c
2 + 6c+ 3 = 0, and find

λinert =
1

2
·
√
−3 · logTate(P−) (mod 720).
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Example 5.4. Let D1 := −31 and D2 := −7 and choose

η := −1888− 275

(
1 +

√
31 · 7
2

)
∈ OF , Norm(η) = −6, M = 6.

Let p := 5, which is inert in F and also in K2 = Q(
√
−7).

We take E the elliptic curve labelled 30a in Cremona’s tables,

E : y2 + xy + y = x3 + x+ 2.

This curve has non-split multiplicative reduction at p. Just as in Example 5.3 we have
Asai ranks (0, 1, 0) and the relevant point to consider is

P− := ((−3
√
−7− 9)/8, (−3

√
−7 + 31)/16) ∈ E(K2).

We verify that

λθ = (1 + ζ3) · λHida = λinert = 5248359978986 · 5 (mod 520),

and that
λθ = logTate(P

−) (mod 520).

The following experiments consider two Asai rank (0, 0, 1) examples, which necessarily
have σp-eigenvalues (1, 1, (1,−1))), when ap(E) = 1 and −1. These are the most interesting
since the irreducible component of the Asai representation which occurs with multiplicity
one in the Mordell-Weil group is two-dimensional, cuts out a cubic abelian extension of
K1, and supports points in both the plus and minus eigenspace for σp.

Example 5.5. Let D1 := −23 and D2 := −43 and

η := 16−

(
1 +

√
23 · 43
2

)
∈ OF , Norm(η) = −7, M = 7.

Let p := 11, which is inert in F .
Although S2(M) = {0}, there are three elliptic curves of conductor 77 = pM , which are

labelled 77a, 77b, 77c in the tables of Cremona:

Ea : y
2 + y = x3 + 2x

Eb : y
2 + y = x3 + x2 − 49x+ 600

Ec : y
2 + xy = x3 + x2 + 4x+ 11.

These curves non-split, non-split and split multiplicative reduction at p = 11, respectively.
Recall that H is the Hilbert class field of the quartic field K = F (

√
−23), and that the

subfields cut out by the Asai representation V are K2 = Q(
√
−43) (of class number one),

and the Galois closure of any of the cubic subfields of H of conductor −23. (These are
also subfields of the Hilbert class field H1 of the class number three field K1 = Q(

√
−23).)

The cubic subfield is isomorphic to Q(u) where u3 − 3u2 − 23 = 0.
The Asai ranks for the elliptic curve Ea are (1, 1, 1), i.e., Ea has rank 1 over Q, and its

rank jumps to 2 over both K2 and the cubic subfield Q(u) of conductor −23. As expected,
we observe that

λtheta = λHida = λinert = 0 (mod 1120),
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so that all three invariants vanish up to the computed precision.
Turning next to Eb, which has non-split reduction at 11, the Asai ranks are equal to

(0, 0, 1). Let

QW = ((−u2 + 6u+ 10)/3, (7u2 + 35u− 71)/9) ∈ Eb(Q(u)).

The global point P−W ∈ E(Qp2) in the negative eigenspace for σp, is obtained as follows.
Let u1 and u2 be the two roots of x3 − 3x2 − 23 = 0 in Qp2 which are not in Qp and are
conjugate to each other. Replacing u in the point QW above by u1 and u2 yields two points
Q1 and Q2 in E(Qp2) which are conjugate under σp. Define

P−W = Q1 −Q2.

Numerically, one finds

2 · λθ = λHida = 14646999780697863202 · 11 (mod 1120),

and

2 · λθ = λHida = −1

5
· logTate(P−W ) (mod 1120).

Finally, the elliptic curve Ec has split reduction at 11 and Asai ranks (0, 0, 1). The global
point on Ec over the cubic subfield of the Hilbert class field of K1 is equal to

QW = ((2u2 − 5u− 7)/9, (−u2 − u+ 9)/3) ∈ Ec(Q(u)).

The point P+
W ∈ E(Qp) in the positive eigenspace for σp is obtained from QW by mapping

u to the unique root of x3 − 3x2 − 23 that lies in Qp.
Numerically we verify that

λθ = 0 (mod 1120),

as predicted since ap(Ec) = +1 occurs with multiplicity 3 as an eigenvalue for σp on V .
On the other hand,

λHida = (−10945417843758550651a− 7729417228947654133) · 11 (mod 1120),

where a2 + 7a+ 2 = 0, and

λHida =
1

2
·
√
−3 · logTate(P+

W ) (mod 1120),

as expected since ap(Ec) has multiplicity 1 in the component W of the Asai representation
which occurs with rank 1 in the Mordell-Weil group. (For Ea and Eb the value λinert is
non-zero, but we have no interpretation of it to offer.)

Finally we consider Asai rank (1, 0, 0) and (0, 1, 0) examples, but where the σp-eigenvalues
are (1,−1, (1, 1)). The smallest prime occurring in any example in this setting is p = 17.

Example 5.6. Let D1 := −59 and D2 := −11 and

η := 35786444535052398935− 2703365279120236257

(
1 +

√
59 · 11
2

)
∈ OF ,

so that M = −Norm(η) = 8.
Letting p := 17 we find the σp-eigenvalues on the Asai components are (1,−1, (1, 1)).
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First consider the curve of conductor Mp labelled 136a:

Ea : y
2 = x3 + x2 − 4x.

It has ranks (1, 0, 0) and split reduction at p. But since +1 also occurs as an eigenvalue in
the dimension 2 component of the Asai representation, Theorem 4.6 predicts that λθ = 0
and we indeed observe this numerically (to precision 1710). However, since +1 occurs with
multiplicity one in the component of the Asai representation which itself has rank one in
the Mordell-Weil group, we expect λHida to be more interesting, and indeed find that

λHida = (−8218050809a+ 52843470025) · 17 (mod 1710)

where a2 + 16a+ 3 = 0, and that

λHida =
2ζ3 + 1

2
· logTate(P+) (mod 1710)

where P+ = (2,−2) generates Ea(Q) modulo torsion. On the other hand we also find that
λinert = 0 (mod 1710).

Consider next the curve labelled 136b:

Eb : y
2 = x3 − x2 − 8x− 4.

This has ranks (0, 1, 0) and non-split reduction at p. We find as expected that

λθ := −55227507250 · 17 = λinert = 2 · λHida =
1

2
· logTate(P−) (mod 1710),

where P− = (−430/891,−18512
√
−11/88209) ∈ Eb(K2) is a generator modulo torsion.

5.1.4. Further examples for CM biquadratic extensions. We computed some further exam-
ples in settings very close to that outlined in Section 5.1.3. Namely, when K1 had class
number 5 and K2 class number 1, and when K1 had class number 5 and K2 class num-
ber 3. We spare the reader any details, beyond saying that they were in agreement with
our theorem for the theta derivation coefficient λθ and in line with our expectation (from
Section 5.1.2) for the Hida derivation coefficient λHida.

5.2. Biquadratic extensions: the RM setting. Let D1 = ℓ ≡ 1 mod 4 and D2 = q× r
where ℓ, q, r are distinct primes with q, r ≡ 3 mod 4. We assume Q(

√
D1) has narrow class

number 1, and Q(
√
D2) has class number 1 but narrow class number 2.

Define
F = Q(

√
D1D2) and K = Q(

√
D1,

√
D2).

Then K is an unramified totally real extension of F which is Galois over Q. The field F
has class number 2 and narrow class number 4.

There is a mixed signature Hecke character ψ onK of order 2 with trivial finite conductor
OF . By induction one obtains as before a (totally odd) 2-dimensional Galois representation
V0 of F . The four dimensional Asai induction of V0 decomposes as

Asai(V0) = 1⊕ εℓ ⊕ εq ⊕ εr

where εℓ, εq, εr are quadratic characters attached to the fields Q(
√
ℓ),Q(

√
−q) and Q(

√
−r)

respectively.
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After choosing an ideal (η) ⊂ OF which is trivial in the class group but non-trivial in the
narrow class group, i.e. an element η of negative norm, one obtains the Fourier expansion
of a Hilbert modular form θψ on F of weight (1, 1). Note that here as K is the only
unramified extension of F , there cannot exist a CM extension of F and Hecke character
on that CM extension which defines a Hilbert Modular Form of trivial level OF . So in
particular, the theta series θψ has RM but no CM.
Let p be a prime which is inert in F . We observe that always then pOK = PP ′ for distinct

prime ideals in OK . Let E be an elliptic curve of conductor pM , where M := |Norm(η)|.
Just as in the CM dihedral examples of Section 5.1, the possible patterns of ranks of the
Asai components in the Mordell-Weil group and corresponding eigenvalues of σp on these
components are correlated with the pair (ψ(P ), ap(E)). Without going into too much
detail, observe that Conjecture 1.2 only predicts the non-vanishing of λθ in the 25% of
times in which (ψ(P ), ap(E)) = (+1,−1). We give below a selection of examples in that
setting (our coefficients vanished experimentally in the other settings, as expected).

Note that these examples give evidence for our conjecture beyond what can be proved
in our main theorem (Theorem 4.6). Our theorem only predicts “λθ = logTate(P )” for a
Stark-Heegner point P , and these are only known in this setting to be local points. Our
examples show P is a global point.

Example 5.7. Let

D1 := 13, D2 := 57 = 3× 19, η = −14−

(
1 +

√
13 · 57
2

)
∈ OF , M = 3,

and choose p := 7, which is inert in F . We take

E : y2 + xy = x3 − 4x− 1

to be the elliptic curve labelled 21a in the tables of Cremona. This curve has non-split
multiplicative reduction at p. Let

P− = ((−
√
13 + 3)/2,

√
13− 3) ∈ E(Q(

√
13)).

Then

λθ = 903550508804407× 7 = −4 · logTate(P−) (mod 720).

Example 5.8. Let

D1 := 13, D2 := 93 = 3× 31, η = 8983 + 532

(
1 +

√
13 · 93
2

)
∈ OF ,

so that M = 3. Choose p := 7. We again take E to be the elliptic curve 21a and P− as in
the preceding example. Then we have

λθ = −903550508804407× 7 = 4 · logTate(P−) (mod 720).

Example 5.9. Let

D1 := 5, D2 := 93 = 3× 31,
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and choose

η = 10 +

(
1 +

√
5 · 93
2

)
∈ OF , M = 6, p := 7.

Let

E : y2 + xy + y = x3 + x2 − 4x+ 5

be the elliptic curve 42a, which has non-split multiplicative reduction at p. After defining

P− = (−
√
5, 2

√
5− 1) ∈ E(Q(

√
5)),

we observe that

λθ = 3617170189375121× 7 = λθ = 2 · logTate(P−) (mod 720).

Example 5.10. Let

D1 := 193, D2 = 33 = 3× 11,

and choose

η = −2707 + 67

(
1 +

√
193 · 33
2

)
∈ OF , M = 8, p := 7.

We take

E : y2 = x3 + x+ 2

to be the elliptic curve 56a, which has non-split multiplicative reduction at p, and

P− = (−26, 2
√
−11) ∈ E(Q(

√
−11)).

Then

λθ = 3274774510128699× 7 = −2 · logTate(P−) (mod 720).

Example 5.11. Let

D1 := 181, D2 = 21 = 3× 7,

and choose

η := −5− 1441

(
1 +

√
181 · 21
2

)
∈ OF , M = 5, p := 11.

We take

E : y2 + xy = x3 − x2 − 4x+ 3

to be the elliptic curve labelled 55a in the tables of Cremona. This curve has non-split
multiplicative reduction at p. Define

P− = (1, (−
√
−3− 1)/2) ∈ E(Q(

√
−3)).

Then

λθ = 834444252005378646× 11 = 2 · logTate(P−) (mod 1120).

Observe that in the RM case the Hida coefficients λHida from Section 5.1.2 may still be
defined, but we do not know how to efficiently compute them.
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5.3. A cyclic quartic extension. We now give an example which is beyond the reach of
our current theorem and the machinery of Heegner and Stark-Heegner points (though still
within the purview of CM extensions).

Example 5.12. Let F := Q(
√
17) and

α := −8− 1 +
√
17

2
.

ThenK := F (
√
α) is a CM extension of F which is a cyclic quartic extension of the rational

field. We have 17 · OK = P 4 for a prime ideal P . The group of Hecke characters of K of
conductor P is Z/2Z× Z/8Z and we take ψ to be an element of order 4 in this group.
The diagonal restriction of the theta series θψ attached to ψ lies in S2(4 × 17), a space

of dimension 7. (Here F has narrow class number 1 and the Fourier expansion for θψ is
found using the trivial ideal OF .) Note that the diagonal restriction of θψ is killed by the
Hecke operators U2(U2 − I) and U17 + I.
Let p := 5, which is inert in F . Using our computational methods, it is possible then to

consider all elliptic curves of conductor divisibly by 5 and dividing 5× 68. In the Magma
computer algebra package these have Cremona labels

20a, 85a, 170a, 170b, 170c, 170d, 170e, 340a.

(Beware however that this labelling of the curves in Magma of conductor 170 is not the
same as that in [LMFDB].) Letting V0 be the induction of ψ to GF and V its Asai induction
to Q, the representation V is self-dual and decomposes as a direct sum

Asai(V0) = χ4 ⊕ χ68 ⊕ η17 ⊕ η17.

Here χ4 and χ68 are quadratic characters of conductors 4 and 68, and η17 a quartic character
of conductor 17. Using Magma we compute that the order of vanishing of L(E,Asai(V0))(s)
at s = 1 is (very likely to be) one when E is the curve 20a, 170c or 170d, and even otherwise.

Because the diagonal restriction of the Hilbert modular theta series θψ is non-zero, we
need to modify our theta derivative using a Hecke operator which kills the p-depletion of
this non-zero form. In practice we must use U2(U2 − I) or U17 + I. (The modification
is done on Fourier expansions themselves, and is very time-consuming, thus limiting the
choice to the simplest possibilities.)

Let f20a, f170c and f170d denote the weight two eigenforms attached to the three remaining
curves. We observe U2(U2 − I) kills f20a and f170c, and U17 + I kills f170c and f170d. In
particular, we cannot extract any non-zero values for the curve labelled 170c using these
modifications. We shall thus focus on the curves with labels 20a and 170d.
We consider first

E20a : y
2 = x3 + x2 + 4x+ 4,

which has non-split multiplicative reduction at p = 5. The rank one component of Mordell-
Weil appearing in the Asai representation is generated by

P− := (−53/4, 91
√
−17/8).

The frobenius element σp acts by −1 on this point, and we find that

λθ = 8 · logTate(P−) (mod 58).
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Working with the Hida rather than theta derivation, we can get slightly higher precision
and find

λHida = 337558 · 5 = 8 · logTate(P−) (mod 510).

Next consider

E170d : y
2 + xy + y = x3 − 3x+ 6,

which has split multiplicative reduction at p. Here the rank one component of Mordell-Weil
appearing in V is generated by

P+ := (−5,−10
√
−1 + 2),

and σp acts by +1 on this point. We find

λθ = 8 · logTate(P+) (mod 59).

Working with the Hida rather than theta derivation, we can again get higher precision and
find

λHida = 818912872 · 52 = 8 · logTate(P+) (mod 516).

Observe our precisions for λθ are much lower than in previous examples. This is because
we had to further act upon the Fourier expansion of the theta derivative by small powers
of Up, to “improve overconvergence”.

Remark 5.13. The modular form f20a is not a full eigenform in S2(340), and there is
not a canonical choice of “test vector” in the old space ⟨f20a(q), f20a(q17)⟩ ⊂ S2(340) it
generates to take the coefficient along. Given our modification by U17 + I it was natural
and convenient to choose the unique f̃ in this space with (U17 + I)(f̃) = f20a.

5.4. A non-Galois quartic extension. Our final example is beyond both the reach of
Heegner and Stark-Heegner points, and even outside that of CM extensions.

Example 5.14. Let F = Q(
√
301) and

α :=
−
√
301− 17

2
,

which has norm −3. We have 3 · OF = PP ′ where P = (α) and P ′ = (α′) with α′ :=
(
√
301− 17)/2. Define K := F (

√
α) and

β :=
5
√
301− 87

4

√
α +

√
301− 18

2
∈ K, NormK/F (β) = α′.

The field K is a non-Galois quartic extension of signature (2, 1), with Galois closure a
degree 8 extension of Q. There is a Hecke character ψ of order 2 of K factoring through the
extension K(

√
β) such that the diagonal restriction of the associated series θψ (constructed

using the trivial ideal OF ) lies in S2(3); in particular, it has trivial character. (Finding non-
Galois quartic extensions and Hecke characters where the diagonal restriction has quadratic
character is much easier. The point of this example is that the character is trivial.) Very
conveniently S2(3) is zero, and so this diagonal restriction must vanish. Thus we do not
need to modify our theta derivative by any Hecke operators.
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Letting V0 be the induction of ψ to GF , the Asai representation itself is self-dual and
decomposes as a direct sum

Asai(V0) = 1⊕ χ3 ⊕W903

where χ3 is a quadratic character of conductor 3 and W903 an irreducible 2-dimensional
representation of conductor 903.

We consider small primes p which are inert in F and for which we have curves in levels
p or 3p. First, we take p := 13 and consider the curve E39a labelled 39a by Cremona.
The ranks of the components of the Asai representation in the Mordell-Weil group are
(0, 1, 2). Since we are in a rank 3 setting, Conjecture 1.2 predicts the component along the
attached weight two form f39a of the theta derivative should be zero. And we observe this
numerically (to precision 135).

Now let p := 17. Here we may consider two curves, labelled 17a and 51a. The ranks
in the Asai representation of the Mordell-Weil group are respectively (0, 0, 1) and (0, 1, 0).
The σp-eigenvalues on the three components of Asai(V0) are +1,−1 and ±i. The curve
labelled 17a has split multiplicative reduction at p, but in any case +1 (or −1) does not
occur as an σp-eigenvalue on W903. So our conjecture predicts the component of the theta
derivative along f17a should be zero, as we observe numerically (to precision 175).

More interestingly, the other curve

E51a : y
2 + y = x3 + x2 + x− 1

has non-split reduction at p, and here −1 does occur as an eigenvalue on the rank 1
component. The relevant generator is

P− = ((
√
−3− 1)/2, (

√
−3− 1)/2) ∈ E51a(Q(

√
−3)),

and we find
λθ = 734096 · 17 = 4 · logTate(P−) (mod 176).

5.5. Beyond Hecke characters. Let g be an exotic modular form of weight 1 and qua-
dratic character χ. Given a real quadratic field F , one may restrict the Galois represen-
tation ρg of Q to F , and then take the Asai induction of that to get a four dimensional
representation Asai(ρg|GF

). Since χ is quadratic we find this Asai representation is self-
dual. This is the most appealing setting in which to do further experimental work, and
some partial progress has been made in that direction.

The smallest examples to consider are the exotic forms in levels 283 and 331, which have
projective image S4. (See for example the webpage accompanying [BL], or [LMFDB].) For
each of these, using code for computing Hilbert class fields in Magma we were able to find
the degree 48 fields through which each of the linear representations for these forms factors.
Then given F = Q(

√
DF ) with DF = 1 mod 4 (and DF inert in Q(

√
−283) or Q(

√
−331),

respectively), we could find both the diagonal restriction of the theta family and of its
derivative. The (so far) insurmountable difficulty we then encounter is that the diagonal
restriction of the theta family lies in S2(283) (or S2(331) respectively), which is a space
of dimension 23 (respectively 27). And it seems difficult in practice to modify the family
by a Hecke operator on Fourier expansions to kill a p-depletion of this form, a necessary
step to move from the largely mysterious world of “p-adic mock modular forms” to that
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of (nearly) overconvergent ones. Note that forms in latter infinite dimensional spaces are
far more amenable to computation, using the methods of [AL1, AL2]. It is evident that
a better theoretical and computational understanding of p-adic mock modular forms is
required in order to push the experimental work further.
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