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Abstract. This paper describes an application of some ideas from ho-
motopy theory to the problem of computing the number of solutions
to a multivariate polynomial equation over a finite field. The benefit of
the homotopy approach over more direct methods is that the running-
time is far less dependent on the number of variables. The method was
introduced by the author in another paper, where specific complexity
estimates were obtained for certain special cases. Some consequences of
these estimates are stated in the present paper.

1 Introduction

A basic problem in computational mathematics is to solve a system of poly-
nomial equations with coefficients in a field. By “solve” one typically means
finding a solution, or perhaps all of the solutions if there are known to be only
finitely many. When the field admits a non-trivial norm, such as the field of real
numbers, then powerful analytic methods can be brought to bear. For example,
Newton’s method for locating zeros of a real polynomial, and its various gener-
alisations [1]. However, when no such norm exists, one is forced to fall back on
algebraic techniques. Consider, for example, a single polynomial equation in one
variable over a finite prime field. Using a deterministic algorithm, Berlekamp’s
root-counting algorithm, one can compute in an efficient manner the number of
solutions of the equation in the prime field, see [3, Chapter 14]. By an ingenious
application of randomisation, one can actually find all the solutions efficiently.
However, finding a solution efficiently using a deterministic algorithm seems a
much more difficult, and as yet unsolved, problem. By “efficient” here, and else-
where, I mean in polynomial-time in the size of the input.

The purpose of the present short paper is to describe a method I have re-
cently been exploring for the related problem of counting, rather than finding,
solutions to equations; specifically, for computing the number of rational solu-
tions to a single multivariate polynomial equation over a finite field [6]. This
technique involves deforming one polynomial into another. Such deformations
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only make any intuitive sense over a field, such as the real numbers, which ad-
mits a non-trivial norm. However, by the application of some rather deep theory,
based upon work of Dwork from the 1960s [2], these deformations also become
useful over finite fields. My work is inspired by the paper of Dwork in which
he uses deformations to prove the “functional equation of the zeta function of
a smooth projective hypersurface”. From the point of view of algorithms, the
interesting aspect of Dwork’s deformation theory is that it can lead to remark-
able improvements in computational complexity. The algorithms I will describe
bear a passing resemblance to the “homotopy methods” for locating zeros of a
system of complex multivariate polynomial equations [1, Section 4.2], whence
the title of this paper. In these methods, one begins with an approximate zero
of a perturbed system, and then one gradually homes in on a zero of the original
system by following a path in some appropriate space. In Dwork’s theory, from
knowledge of the number of solutions of some perturbed polynomial equation,
one can recover the number of solutions of the original polynomial equation by
studying the path taken from the original to the perturbed polynomial.

A considerable body of work has appear in the last few years on the problem
of counting solutions to equations over finite fields, see for example the references
in [7]. To my knowledge, the paper [6] describes the first explicit algorithmic
application of a “homotopy method” to this problem. I would be very interested
in learning of any other applications of “homotopy methods” to algorithmic, or
theoretical, problems on equations over finite fields.

2 The Method

Let I, denote the finite field with ¢ elements, where ¢ is a power of a prime
p. Let f € F,[X1,...,X,] be a homogeneous polynomial of degree d in the
variables X7, ..., X,,. Assume that p does not divide d, so that Dwork’s theory
can be applied below. Our aim will be to compute N (f), the number of rational
projective solutions to the equation f = 0. Specifically, the number N(f) is
defined via the equation

(=N +1=#{(x1,...,2n) €Fy[f(21,...,2n) =0}

To compute N(f) in a naive fashion, by substituting in f all rational projective
points, would require ¢"~! +...+¢+1 evaluations of f. This is certainly 2(¢g" 1)
bit operations (ignoring the dependence on d which is not such a concern when
just counting rational solutions). However, the dense input size to this problem
is about (”:d) log(g) bits, i.e., ©(log(q)) bits. One needs to reduce the depen-
dence on log(q) from 2(g"~") to log(q)°") to get a more practical algorithm.
Some progress towards this can be made using p-adic cohomology, as I will now
describe.

Under the assumption that the zero set of f is “smooth and in general posi-
tion” (see [4, Page 75]), there is a cohomological formula
Trace(a)

& +(—)n (1)

N(f) =T ;



Here o is a matrix whose entries lie in the p-adic field obtained by lifting F, to
characteristic zero and adjoining a primitive pth root of unity. (The primitive
pth root is required since Dwork reduces everything to additive character sums,
and these are only defined in fields with pth roots.) The matrix a has dimension

-1+ (-1 -} e

It is the matrix of Frobenius on the primitive middle-dimensional p-adic cohomol-
ogy space, which we will just call the Frobenius matriz. One wishes to construct
this Frobenius matrix, or at least find its trace. Dwork’s theory is constructive,
and using a fairly direct approach the Frobenius matrix can be explicitly com-
puted. This direct approach was first used by Kedlaya [5], and is extremely good
for curves where n = 3. However, the computational complexity of this direct
approach for an equation in n variables appears to be (pdlog(q))®™ bit oper-
ations, at least using the most straightforward generalisation. This is just the
same complexity as in the theorem of the author and Wan [7, Theorem 1], but
using Kedlaya’s method the exponent can be roughly halved. The reason for this
complexity is that the computations required involve n-variate polynomials of
total degree around pdlog(q), and such polynomials have roughly (pdlog(q))™
terms. (Note that the factor p in the complexity is undesirable, but it is dif-
ficult to see how it could be replaced by log(p) using only p-adic cohomology.
Grothendieck’s [-adic cohomology theory might achieve this if it could be made
constructive in general. This can be done for curves, using methods going back
to Weil, but even in this case it only gives good algorithms at present for small
genus.) The aim of the homotopy method is to remove the dependence in n from
the exponent of plog(q). Specifically, I believe a complexity of ¢, (pd" log(q))°™)
bit operations, where ¢,, depends only on n, should be possible. I have worked
out this approach for a special family of equations — the precise results obtained
are described in the next section. In the remainder of this section I will sketch
the homotopy method and explain why it should be useful.
We write our polynomial f in the form

F=YaX{+n(X1,..., X,)

i=1

where h is a homogeneous polynomial of degree d with no diagonal terms. Generi-
cally ay .. .an # 0, and we shall assume that this is the case. We wish to “deform”
f to a diagonal form > " | a; X{ by making the remainder term h tend to zero.
To this end, we introduce an extra variable Y which controls the deformation.
Define

n
fr =Y a X+ Vh(X1,...,X,) €F[V][X1,..., Xy].
i=1
Setting Y = 1 gives our original polynomial f = f;. Setting ¥ = 0 gives the
diagonal form fo. Intuitively, as ¥ moves from 1 to 0 our original polynomial
is deformed into a diagonal form. Let N(f,) denote the number of rational



projective zeros of the specialised polynomial f,, where we take Y = y € F,.
For all but finitely many y in the algebraic closure of Iy, the zero set of f, will
be “smooth and in general position”. We will say that such a y defines a smooth
fibre. If y defines a smooth fibre, a Frobenius matrix o, is defined, and we have
the formula L
gt -1 . (_DnTrace(ay).

q—1 q
A generic Frobenius matrix «(Y) for the polynomial fy is also defined. Its
entries are p-adic analytic functions in the variable Y which will converge on
the Teichmdiller lifting of any point y € F, which defines a smooth fibre. For
those y at which a(Y") is defined, the generic Frobenius matrix a(Y") converges
to the specialised Frobenius matrix a,. Dwork’s deformation theory yields the
following factorisation

N(fy) =

a(Y) = C(Y9)~'a(0)C(Y). 2)

Here C(Y') is a matrix of p-adic analytic functions which need not converge on
the Teichmiiller lifting of any non-zero point in F,. One may compute «(0) easily,
as it is the Frobenius matrix ag of a diagonal form and has a nice Kronecker
product decomposition. The matrix C'(Y) is the solution matrix of a system of
linear differential equations: dC(Y)/dY = C(Y)B(Y) and C(0) = I. Here the
matrix B(Y") contains entries which are rational functions in Y over the integers,
and it can be computed using a method due to Dwork. (The matrix B(Y") for
the elliptic curve case is calculated in Dwork’s original paper [2, Section 8].) All
the theory is now in place to describe the deformation approach for computing
the number of projective zeros of the original polynomial f: First, compute the
rational matrix B(Y") using Dwork’s method. Second, compute an expansion of
C(Y) around the origin by solving the differential system numerically. Third,
compute a(0) = aq directly from its Kronecker product decomposition. Fourth,
recover an expansion of «(Y") around the origin from Equation (2). Fifth, use
this expansion to compute a = a3 = «(l). Finally, the trace of the matrix «
yields the number of projective solutions, as in Equation (1).

One subtlety in this approach should be pointed out: because some y in the
algebraic closure of F,; do not define smooth fibres, the expansion of a(Y") about
the origin will not converge on the Teichmidiller lifting of non-zero points of Fj.
Thus for the final step one needs some method of “continuing” «(Y) to the
Teichmiiller liftings of the points y € F; which define smooth fibres. In the next
section I describe an easier, though non-generic, situation in which the singular
fibres do not cause such a complication. I have implemented the algorithm in this
simpler situation for some small examples with the help of Frederik Vercauteren.

The reason that the complexity is improved using the above method is that
the deformation is always one-dimensional regardless of the number of variables
n in the original problem. In practice, this means that one computes with uni-
variate, rather than n-variate, polynomials. Even in the case of curves, in certain
special cases the deformation method requires less space than that of Kedlaya
although the time complexity is the same.



Note that throughout this section I have glossed over one important point:
in all algorithms which exploit p-adic cohomology in some way, it is essential
to first compute the “semi-linear Frobenius matrix” rather than the Frobenius
matrix itself. This turns the “¢” into a “plog,(q)” in the complexity estimates,
but it does make the formulae a bit more involved.

3 Results

I will finish now by stating the results that have been obtained in my paper
[6] based upon these ideas. They pertain to certain special equations, namely
Artin-Schreier equations with a diagonal leading form. Let f € F,[X,..., X,)]
be of degree d where p does not divide d (f is not necessarily homogeneous).
We will say that f has a diagonal leading form if it can be written as f =
Yo aiXd + h(X1,...,X,) where a1 ...a, # 0 and h has degree strictly less
than d. Let N(f) be the number of affine solutions in IF‘;‘“ to the equation
Z°P -7 = f(Xh,...,X,).

Theorem 1. There exists an explicit deterministic algorithm with the following
input, output and complezity. The input is a polynomial f € Fy[X1,..., X, ] with
a diagonal leading form of degree d not divisible by the characteristic p, where
p > 2. The output is the number N (f) of rational solutions to the affine equation
ZP — Z = f. The running time is

@(cndmin(4n+1,3n+3) log(q)3p2)
bit operations, where ¢, depends only on n.

Here the soft-Oh O notation suppresses logarithmic factors in the parameters
d", log(q) and p. The restriction to diagonal leading form is useful as it allows
us to avoid the difficulty of “crossing” over singular fibres in the family, i.e., in
the fifth step the expansion of a(Y’) will converge at the correct points in this
case.

A curious corollary of the above is the following result.

Corollary 1. Let f € Z[X1,..., X,] have the form

F=YaX!+n(X1,..., X,)

i=1

where ay ...a, # 0 and h has total degree less than d. There exists an explicit
deterministic algorithm which takes as input a prime p and outputs the number
of solutions to the equation f =0 mod p, and runs in O(p?) bit operations.

Here the algorithm itself depends upon f, and the hidden constant also de-
pends upon f. The naive bound here would be O(p"~!) using Berlekamp’s root-
counting algorithm, as alluded to in the introduction.
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