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1. Introduction

We describe an algorithm for computing p-adic L-functions of characters of totally real �elds.

Such p-adic L-functions were constructed in the 1970’s independently by Barsky and Cassou-

Noguès [Bar78, CN79] based on the explicit formula for zeta values of Shintani [Shi76] and by Serre

and Deligne–Ribet [Ser73, DR80] using Hilbert modular forms and an idea of Siegel [Sie68] going

back to Hecke [Hec24, Satz 3]. An algorithm for computing via the approach of Cassou-Noguès

was developed by Roblot
1

[Rob15]. Our algorithm follows the approach of Serre and Siegel, and its

computational e�ciency rests upon a method for computing with p-adic spaces of modular forms

developed in previous work by the authors.

The idea of our method is simple. In Serre’s approach, the value of the p-adic L-function of a

totally real �eld of degree d at a non-positive integer 1 − k is interpreted as the constant term

of a classical modular form of weight dk obtained by diagonally restricting a Hilbert Eisenstein

series. For small values of k these constants can be computed easily using an idea of Siegel, which

goes back to Hecke. To compute the p-adic L-function at arbitrary points in its domain, to some

�nite p-adic precision, we use a method for computing p-adically with modular forms in larger

weight developed in [Lau11, Von15]. We compute the required constant term in very large weight

indirectly, by �nding su�ciently many of its higher Fourier coe�cients and using linear algebra

to deduce the unknown constant term. Thus our approach is an algorithmic incarnation of Serre’s

approach to p-adic L-functions of totally real �elds [Ser73], obtaining p-adic congruences between

the constant terms of modular forms by studying their higher Fourier coe�cients.

2010 Mathematics Subject Classi�cation. 11R42,11F41,11Y40.

1
We mention also the unpublished algorithm of Charollois, based on cocycle relations for GLn as in [CD14, CDG15]

which is inspired by the approach via explicit formulae of Shintani which underlies Barsky/Cassou-Noguès.
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Our method is somewhat orthogonal to that of Roblot [Rob15] based on the “explicit formula”

of Shintani [Shi76] that underlies also the related algorithms in [Das07, Sla07]. A notable di�er-

ence is that we obtain such an explicit formula numerically through linear algebra in spaces of

modular forms. In spite of this, similarities arise in certain steps, as will be visible in the selection

of instructive examples we illustrate our method with below. Our algorithmic contribution is as

follows:

• In the general case, we take an approach similar to Cohen [Coh76] for the trivial character.

We replace the calculations in level one in loc. cit. by the methods of [Lau11, Lau14] for

computing p-adically with modular forms in large weights, obtaining the p-adic L-series

by interpolation (see Cartier–Roy [CR73]) of p-adic approximations of classical L-values.

• In the real quadratic case, we present a far superior method that relies on the reduction

theory of binary quadratic forms. When p is inert, the p-adic L-function has an excep-

tional zero, and the derivative is of great interest. We present an algorithm to compute this

quantity directly, using the recent results of [DPV] and the methods of [Lau11, Lau14].

The methods of [Lau11, Von15] were also used in the computation of p-adic L-values attached

to modular forms and their double and triple Rankin products [Lau14]. The arithmetic invariants

obtained in loc. cit. are of a very di�erent nature, but in spite of these apparent di�erences, the

current application follows exactly the same pattern, whereby the p-adic L-function is computed

through its interpretation as a “twisted” triple product, see [DPV] for more details.

1.1. Acknowledgements. The authors would like to thank Pierre Charollois, Henri Darmon,

and Alice Pozzi for many useful comments and suggestions. The second author was supported

by Francis Brown and ERC-COG 724638 ‘GALOP’, the Carolyn and Franco Gianturco Fellowship

at Linacre College (Oxford), the Max-Planck-Institut für Mathematik (Bonn), and NSF Grant No.

DMS-1638352, during various stages of this project. All computations were performed using the

Magma computer algebra system.

1.2. De�nitions. Let us �x some notation for the rest of this paper. We let F denote a totally real

number �eld, with [F : Q] = d, and {σ1, . . . , σd} the set of its d real embeddings. For any element

α ∈ F , we frequently use the abbreviation

(1) αi := σi(α) ∈ R.

The ring of integers of F is denoted by OF , and its di�erent ideal by d. For any ideal aCOF , the

set of totally positive elements contained in a is denoted by a+.

Let mCOF be a modulus, and denote the set of integral ideals of F coprime to m by IF,m. The

quotient of IF,m by the relation

a ∼ b if and only if ab−1 = (α) for some totally positive α ∈ 1 + m

is the narrow ray class group Cl+m . We will consider ray class characters

(2) ψ : Cl+m −→ C×p
which are either totally odd or totally even. This means that for any element α ∈ 1 + m such that

σi(α) < 0 for some i and σj(α) > 0 for all j 6= i, we have ψ(α) = −1, respectively 1.
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The L-series of ψ is de�ned for Re(s) > 1 by the absolutely convergent series

(3) L(ψ, s) =
∑

aCOF

ψ(a)Nm(a)−s

which analytically continues to C when ψ 6= 1. If p is a prime number such that (m, p) = 1, the

p-adic L-function Lp(ψω, s) for s ∈ Zp is de�ned by the interpolation property

(4) Lp(ψω, n) =
∑

(a,p)=1

ψωn(a)Nm(a)−n

for all integers n < 0, where ω is the p-adic Teichmüller character. For non-trivial characters,

the function Lp(ψ, s) de�nes an element of the Iwasawa algebra ΛO , see § 2.2. It is this p-adic

L-function whose explicit computation is the subject of the rest of this article.

2. Hilbert Eisenstein series and p-adic L-functions

In this section, we describe Hilbert Eisenstein series, their p-stabilisations, and their diagonal

restrictions, which are central to our approach. A general algorithm, described in § 2.4, reduces

the computation of Lp(ψω, s) to a computation of the higher Fourier coe�cients of these diagonal

restrictions, which have a much more elementary nature.

2.1. Hilbert Eisenstein series. We begin by recalling some of the basic properties of Hilbert

Eisenstein series attached to a character ψ of modulus m. Proofs are omitted, and may be found

in Katz [Kat78, Section III], see also Darmon–Dasgupta–Pollack [DDP11, Sections 2 and 3].

Suppose k ≥ 1 is an integer, and assume that the character ψ is totally odd if k is odd, and

totally even if k is even. Shimura [Shi78] de�nes the space

(5) Mk(m, ψ)

of Hilbert modular forms of (parallel) weight k, level m and character ψ. It consists of tuples of

holomorphic functions on the d-fold product of upper half-planesHd, indexed by the narrow class

group of F , satisfying various conditions. We content ourselves by mentioning that the data for

each element includes a holomorphic function f : Hd → C associated to the class of d−1
, which

satis�es

(6) (c1z1 + d1)−k · · · (cdzd + dd)
−kf

(
a1z1 + b1

c1z1 + d1
, . . . ,

adzd + bd
cdzd + dd

)
= ψ(a)f(z),

for all matrices

(7) γ =

(
a b
c d

)
∈ SL2(OF ) such that c ∈ m,

where z = (z1, . . . , zd) is the variable in Hd. The transformation law (6) implies that every form

has a q-expansion, indexed by the totally positive elements d−1
+ of the inverse di�erent.

In this paper, we are only concerned with Hilbert Eisenstein series, whose basic properties are

discussed in Katz [Kat78]. More precisely, there exists a Hilbert modular form

(8) Gk,ψ ∈Mk(m, ψ)
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whose q-expansion is given by

(9) Gk,ψ(z) = L(ψ, 1− k) + 2d
∑
ν∈d−1

+

∑
a|(ν)d

ψ(a)Nm(a)k−1

 qν

where we use the notation

(10) qν = exp (2πi(ν1z1 + ν2z2 + . . .+ νdzd))

with νi the image of ν under the i-th embedding σi : F ↪→ R. In the case where k = 1 and

m = (1), the constant term of (9) must be modi�ed, but since we will not need this case, we refer

the interested reader to Darmon–Dasgupta–Pollack [DDP11, Proposition 2.11].

2.2. p-Adic Hilbert Eisenstein series. In the approach to p-adic L-series pioneered by Serre,

the necessary p-adic congruences between special values of the constant coe�cients of Eisenstein

series are inherited from congruences between the higher coe�cients, which are of a more ele-

mentary nature. Just as the L-series needs to be modi�ed by taking out its Euler factors at p, we

will need to modify all the higher coe�cients of the Eisenstein series.

First, let us �x some notation. Denote ∆ for the torsion subgroup of Z×p , which is cyclic of order

φ(q), where q = 4 if p = 2, and q = p otherwise. Let Λ = ZpJZ×p K be the Iwasawa algebra, and ω
the p-adic Teichmüller character. Then we have isomorphisms

(11)

Z×p
∼−→ ∆× (1 + pZp), a 7−→ (ω(a), 〈a〉),

Λ
∼−→ Zp[∆]JT K, 1 + q 7−→ 1 + T.

We de�ne a Λ-adic Hilbert modular form of level m and character ψ to be an element of the ring

Frac(ΛO)⊗ΛO ΛOJqK, such that its specialisation at the ideal

(12) Ik =
(

1 + T − (1 + q)1−k
)

is the q-expansion at in�nity of a form in Mk(m(p), ψω1−k), for k ∈ Z su�ciently large. Here,

O is the ring of integers in a �nite extension of Qp containing the values of the character ψ, and

ΛO ' OJT K. The prototypical example of a Λ-adic Hilbert modular form is the family of Eisenstein

series Gψ , see [DDP11, Proposition 3.2]. Its specialisation at Ik,ψ is the Eisenstein series

(13) G
(p)
k,ψ(z) = Lp(ψ, 1− k) + 2d

∑
ν∈d−1

+

 ∑
a|(ν)d

(a,p)=1

ψ(a)〈Nm(a)〉k−1

 qν

which is called the ordinary p-stabilisation of the Eisenstein series Gk,ψ from § 2.1.

2.3. Diagonal restrictions. The diagonal restriction of a Hilbert modular form f : Hd → C
is the restriction of f to the diagonally embedded copy of the upper half plane in Hd. By the

transformation property (6), this procedure yields a one-variable (i.e. elliptic) modular form of
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weight dk. Its level M is the positive generator of Z ∩ m, and its character Ψ is obtained by

restriction of the character ψω1−k
:

(14) Ψ : (Z/MZ)× ↪→ (IF,m/m)× −→ C×p .

The diagonal restriction ∆
(p)
k,ψ of the Eisenstein seriesG

(p)
k,ψ introduced in § 2.2 is a modular form

of level Mp, nebentypus Ψ, and weight dk. Its q-expansion is given by

(15) ∆
(p)
k,ψ(q) = Lp(ψ, 1− k) + 2d

∑
n≥1

 ∑
ν∈d−1

+

Tr(ν)=n

∑
a|(ν)d

(a,m(p))=1

ψ(a)〈Nm(a)〉k−1

 qn.

The n-th Fourier coe�cient an of the diagonal restriction (15) may be written as

(16) an = 2d
∑
C∈Cl+m

ψ(C)
∑

(a,ν) ∈ I(n,C)m(p)

〈Nm(a)〉k−1

where we de�ne the index set by

(17) I(n, C)b :=

{
(a, ν) ∈ IF,m × d−1

+ :
Tr(ν) = n, a | (ν)d
(a, b) = 1, [a] = C

}
.

An important feature of an is that the index set I(n, C) = I(n, C)m(p) in the sum (16) is independent

of k, and the dependence on k of the terms in the sum is of a very elementary nature. In explicit

computations, this makes it easy to e�ciently compute the higher Fourier coe�cients an for a

multitude of di�erent weights k, once the sets I(n, C) have been computed.

2.4. An algorithm to compute p-adic L-functions. Following an idea of Hecke [Hec24, Satz 3],

Klingen–Siegel [Kli62, Sie68] use the diagonal restrictions discussed above to show the rationality

of special values L(ψ, 1− k), and to give explicit closed formulae for some small values of k. For

instance, they showed that

(18) ζF (−1) =
1

60

∑
b<
√
D

b≡D (mod 2)

σ1

(
D − b2

4

)

when F = Q(
√
D) is real quadratic. The key idea is to use the fact that the diagonal restrictions

of Hilbert Eisenstein series are elliptic modular forms. Computing a Q-basis of q-expansions for

the space of elliptic modular forms of the appropriate weight and level, we can determine the

diagonal restriction as a linear combination, with rational coe�cients, of the basis elements using

only the higher coe�cients. The constant coe�cient, necessarily a rational number, is then also

determined. This idea is perhaps best illustrated with an explicit example:

Example 2.1. Suppose F = Q(
√

89), then (5) = pp′ splits. We have that

(19) Cl+p ' Z/4Z
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so there is a unique quadratic character ψ of conductor p, which is totally even. Then 5Z = Z∩ p,

and the restriction of ψ to (Z/5Z)× is the character

(
5
·
)
. We compute that the space

(20) M4

(
Γ1(5),

(
5

·

))
is 2-dimensional, and has a basis of the form

(21)

{
f1 = 1 − 14q2 − 52q3 + . . .
f2 = q + 7q2 + 26q3 + . . .

On the other hand, we compute that the diagonal restriction of Gk,ψ for k = 2 is

(22) ∆2,ψ = L(ψ,−1) + 24q − 168q2 − 624q3 + . . .

which, by inspection of the coe�cients of q and q2
, must be equal to the linear combination 24f1 +

24f2 of the basis elements above. It follows that L(ψ,−1) = 24.

To compute the p-adic L-series Lp(ψ, T ) we use the above idea of Siegel to �nd its value at

su�ciently many weights k and then use interpolation. We now outline the main algorithm, and

in the next section we discuss some economical methods for carrying out the various steps.

Remark 2.2. For simplicity, we will not include the special case ψω2−k = 1 in this discussion,

when, due to the presence of a simple pole, one needs to modify the statements below. Since

this modi�cation is straightforward, and would only cloud the explanation of the algorithm, we

thought it appropriate to omit this case from the discussion, see Example 3.6.

We use �nite di�erences to interpolate values at integer weights, to compute the p-adic L-series

Lp(ψ, s) as a power series in OJsK/(pm) for some required p-adic precision m, with respect to

the variable s = 1 − k in Zp. For a discussion of this interpolation step in the same context,

see Cartier–Roy [CR73]. Note that we obtain a di�erent power series for each residue class in

Z/(p − 1)Z, and interpolation should be done over weights in this residue class. Since Lp(ψ, T )
belongs to OJT K and T = (1 + q)s − 1, the series Lp(ψ, s) mod pm is in fact a polynomial of

degree at most δm, where δm is the smallest integer such that

(23)

(p 6= 2) i− vp(i!) ≥ m for all i ≥ δm + 1,

(p = 2) 2i− vp(i!) ≥ m for all i ≥ δm + 1,

see Serre [Ser73, Théorème 13]. (Note that δm ≤ p−1
p−2m when p 6= 2, and δm ≤ m when p = 2.)

Thus it will be su�cient to evaluate this polynomial at δm + 1 points and use interpolation. For

each �xed 2 ≤ k0 ≤ p, we shall choose interpolation points

(24)

(p 6= 2) kj := k0 + j(p− 1) for 0 ≤ j ≤ δm,

(p = 2) kj := k0 + 2j for 0 ≤ j ≤ δm,
as this will give us smallest possible interpolating weights d(k0+j(p−1)) (respectively d(k0+2j)).

Algorithm 2.3. Our input is:

• k0 - an integer in [2, p],
• ψ - a character of F of modulus m, with the same parity as k0,
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• p - an odd prime number,
• m - a natural number.

The following algorithm computes the power series Lp(ψ, s) as an element of the ring OJsK/(pm).

(1) Let M,Ψ be as in (14), and de�ne kj as in (24) for all 0 ≤ j ≤ δm with δm as in (23). Let
S be the Sturm bound for the space of classical modular forms of weight dkδm , level Γ0(M),
and nebentypus Ψ. Compute a basis for each of the classical spaces

Mdkj (Γ0(M),Ψ) (mod pδm+1, qS), 0 ≤ j ≤ δm.

(2) For all 1 ≤ n ≤ S − 1, compute the index sets

Xn =
⋃
C∈Cl+m

I(n, C)m

where I(n, C)m was de�ned in (17).
(3) For every kj compute to precision pδm+1 the q-series

∆≥1
j (q) := 2d

S−1∑
n=1

 ∑
(a,ν)∈Xn

ψ(a)〈Nm(a)〉kj−1

 qn.

(4) For every kj �nd the unique Lj ∈ Zp/(pm) such that Lj + ∆≥1
j (q) is a linear combination

of the basis elements ofMdkj (Γ0(M),Ψ) modulo (pδm+1, qS). Then compute

L
(p)
j = Lj ×

∏
p|(p)

(1− ψ(p)Nm(p)kj−1).

(5) Interpolate the δm + 1 values L(p)
j , and output the resulting polynomial

Lp(ψ, s) ∈ O[s] mod pm.

Remark 2.4. There will be a precision loss of ordp(δm!) during the interpolation in Step (5), and

one observes by the minimality of δm that δm + 1 = m + ordp((δm + 1)!) and so it is su�cient

to taking working precision m + ordp(δm!) ≤ m + ordp((δm + 1)!) = δm + 1 in the earlier

steps. Furthermore, it is possible there may be some precision loss during the linear algebra in

Step (4), but this seems di�cult to quantify in a useful way a priori and did not occur in examples

we computed. Such additional loss would be detected during the computation by any computer

algebra system which can work with p-adic numbers.

For p = 2 the algorithm works as stated, except that there is a more dramatic precision loss in

the interpolation step. In the examples for p = 2 that appear below, we used the steps above, using

exact arithmetic instead, for simplicity.

As an illustration, we now run this algorithm for a totally real cubic �eld F .

Example 2.5. Letting a ∈ R satisfy the equation

(25) a3 − 3a− 1 = 0,
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we �nd F = Q(a) is a totally real cubic extension of Q. We compute that its ring of integers is

OF = Z[a], and its di�erent ideal is d = (3a2 − 3), so that every element of d−1
is of the form

(26) ν =
x+ ya+ za2

3a2 − 3
,

for some triple of integers x, y, z. We compute that Tr(ν) = z, and by calculating all the real

embeddings to su�cient accuracy, of which we only include a few digits here for the purpose

of readability, it follows that the elements of d−1
+ of trace n ≥ 1 are those with z = n and x, y

satisfying the conditions

(27)


(0.1316 . . .)x + (0.2474 . . .)y > −n(0.4650 . . .)

(−0.3791 . . .)x + (0.1316 . . .)y > −n(0.0457 . . .)

(0.2474 . . .)x + (−0.3791 . . .)y > n(0.5807 . . .).

For any �xed n ≥ 1, there are a �nite number of solutions in x, y ∈ Z which may easily be com-

puted by a box search for the smallest box containing the triangle in the (x, y)-plane determined

by the inequalities displayed in the system (27).

Since Cl(5) ' Z/2Z, there is a unique non-trivial totally even character ψ of modulus m = (5).

We shall compute the p-adic L-series Lp(ψ, s) for p = 7 in the residue disk s ≡ −1 (mod p− 1).

Here the prime 7 is inert in K . We take m := 22 which gives δm = 24.

First we compute, for all kj = 2 + j(p− 1) and 0 ≤ j ≤ 24, bases for all the classical spaces

M3kj (Γ0(5),Ψ)

consisting of q-expansions modulo (725, q221). Here Ψ is the quadratic character of conductor 5.

We used methods developed originally in [Lau11, Lau14]. It takes 9 seconds (computing these

bases with exact coe�cients using in-built Magma functions would take far longer).

Next, using the description of the set d−1
+ above, we �nd the diagonal restrictions in weights kj

for 0 ≤ j ≤ 24, respectively. We compute each series modulo q221
with exact rational coe�cients

(in time around 20 hours) and �nd

(28)

∆0 = L0 + 8q + 184q2 − 3472q3 + 8664q4 + 2312q5 + . . .

∆1 = L1 − 17464q + 48344125048q2 + 77708960940464q3 + . . .

∆2 = L2 − 12754552q + 7783511850531843064q2 + . . .

∆3 = L3 − 9298091704q + 1381740600368360259550697848q2 + . . .

∆4 = L4 − 6778308875512q + 258172610009896962270950108546602744q2 + . . .

.

.

.

.

.

.
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Now with some linear algebra and in around 3 seconds we determine the unknown constant terms

Lj modulo 725
.

(29)

L0 = −584/5 mod725

L1 = 644239567957910044930 mod725

L2 = 225053170195735060254 mod725

L3 = 1230313269957772629193 mod725

L4 = 645623798735766423256 mod725

.

.

.

.

.

.

Interpolating via �nite di�erences, we recover the p-adic L-series, in 0.01 seconds. The (small)

loss of precision is kept track of by Magma, and is di�erent for di�erent coe�cients. One obtains

a polynomial Lp(ψ, s) in s correct modulo 722
and of degree 24, or alternatively

P (ψ, T ) = a0 + a1T + a2T
2 + . . .

in the variable T = (1 + p)s − 1, where we �nd that the coe�cients are

n an n an n an

0 640518113818292324494 +O(725) 8 577517728950 +O(715) 16 −6305 · 7 +O(76)

1 3887031393600245265 +O(723) 9 11864601963 +O(713) 17 −6919 +O(75)

2 50242117330833221 +O(721) 10 3960164051 +O(712) 18 −901 +O(74)

3 −5393000767479996 +O(719) 11 726383669 +O(711) 19 108 +O(73)

4 (27444039407382 +O(718) 12 94492019 +O(710) 20 −73 +O(73)

5 12031218045488 +O(717) 13 −1830411 · 7 +O(79) 21 1 +O(7)

6 −10194883759927 +O(716) 14 1262600 +O(79)

7 −2363998044292 +O(715) 15 −385206 +O(77)

Note that this shows in particular that the λ-invariant and the µ-invariant are both zero.

It is evident that all the time in this computation is taken up in computing the higher Fourier co-

e�cients of the modular forms, for which in our cubic example we are using the crudest approach.

We solve this algorithmic problem though for quadratic �elds in the next section.

Remark 2.6. We note the striking similarity between the system of inequalities (27), and the Shin-

tani cones appearing in the approach of Barsky and Cassou-Noguès [Bar78, CN79]. It is likely that

the above computations can be made more e�cient in cases where one can compute appropriate

explicit Shintani cone decompositions, similar to those in Roblot [Rob15]. For the case of quadratic

�elds, which we turn to next, such cone considerations are made obsolete using results from [DPV]

and computationally e�cient routines for reduced cycles of inde�nite quadratic forms.

2.5. Comments on implementation. We now take a more detailed look at some of the steps of

the algorithm of the previous section.

First we need to compute bases for the classical spaces

(30) Mj := Md(k0+j(p−1))(M,Ψ) mod (pδm+1, qs).

A more direct computation of the quantities L
(p)
j would take place in level Mp, but it is more

e�cient to work in level M and compute instead Lj . This way, the classical spaces of forms that
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need computing have dimensions which are smaller by a factor of roughly (p+ 1). The practical

problem of computing bases for the classical spaces Mj in step (1) has already been addressed by

the �rst author; a very similar problem arises when one computes with overconvergent modular

forms. In level 1 it is very easy and extremely fast in practice (this corresponds to the case of trivial

conductor), and in higher level an elaborate but fast method has been developed and improved over

several years. (We shall not discuss it here except to say it involves computing bases in low weight

via modular symbols and multiplication of forms.)

As seen from the cubic example, �nding the higher Fourier coe�cients takes the bulk of the

running time in practice. A much more e�cient approach in the case where F is real quadratic is

given in the next section. In that case, reduction theory for binary quadratic forms can be used to

perform step (2) very e�ciently. One additional advantage in the setting of real quadratic �elds F
is provided by the fact that we can compute directly the sets I(n, C) for every class C separately,

and not just their union Xn as in the algorithm. This then further eliminates the need to evaluate

the character ψ on every element of Xn separately, causing additional savings in running time.

In the general case, step (2) requires us to �nd an explicit description of the elements ν ∈ d−1
+ of

trace n, for 1 ≤ n ≤ s−1. In practice, one can compute generators for the principal ideal d−1
, and

compute numerically the �nite set of elements determined by the condition Tr(ν) = n and the

system of inequalities obtained from the total positivity conditions. Then we compute Nm(I) and

ψ(I) for the ideal divisors of all the ideals (ν)d thus obtained. Once this set is computed, simple

linear algebra determines the constants Lj for all required j.

Regarding the complexity, it is di�cult to give an overall estimate on this because our algorithm

relies in part on methods for computing bases of spaces of modular forms (in low weight) using

modular symbols. The complexity of such algorithms does not appear to have been documented

in the literature, though they are polynomial-time in input parameters such as the level and q-

adic precision required. Our algorithm is certainly though polynomial-time in both the prime p
and precision m, as well as the absolute value of the discriminant of the �eld and norm of the

conductor, and exponential in the �eld degree.

3. Real qadratic fields: Ideals and RM points

We now suppose that F is a real quadratic �eld, and show how we can improve the e�ciency

of the computations in steps (2) and (3) of the algorithm in § 2.4. Its higher Fourier coe�cients

will be computed in terms of a certain set of ‘RM points’, which may be computed more e�ciently

via reduction theory of binary quadratic forms. We use some results that are contained in the

forthcoming paper of the second author with Henri Darmon and Alice Pozzi [DPV].

Notation. Henceforth, F is a real quadratic �eld, and

(31) ψ : Cl+D −→ C×p

is a ring class character of discriminant D > 0. The conductor f > 0 is de�ned by writing

D = f2D0 where D0 is a fundamental discriminant.
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3.1. Thehigher coe�cients of diagonal restrictions. We begin by putting the index set I(n, C)
appearing in the expression (16) in bijection with a certain set of ‘RM points’ endowed with addi-

tional data. We say τ ∈ C is a RM point if it satis�es a primitive quadratic equation

(32) aτ2 + bτ + c = 0, a, b, c ∈ Z, b2 − 4ac = D

with positive non-square discriminant D > 0. An RM point τ of discriminant D determines the

integers a, b, c uniquely if we demand in addition that

(33) τ =
−b+

√
D

2a

i.e. τ is the stable root of the quadratic equation. We write a(τ) for the uniquely determined

integer a. Every RM point τ has a unique algebraic conjugate, which we denote by τ ′. Finally,

suppose that C ∈ Cl+D is an ideal class, then it is represented by the fractional ideal (1, τ) coprime

to the conductor f , for some RM point τ . In this case, we write [τ ] = C.

Choose two sets of representatives Mn ⊇ Nn such that

{A ∈ Mat2×2(Z) : det(A) = n} =
⊔

γn∈Mn

SL2(Z) · γn(34)

=
⊔

δn∈Nn

SL2(Z) · δn · StabSL2(Z)(τ).(35)

For instance, it is classical that we may choose the following set Mn

(36) Mn =

{(
n/d j

0 d

)
: d|n, (d, n/d) = 1, 0 ≤ j ≤ d− 1

}
.

Now de�ne the set of ‘augmented’ RM points of discriminant n2D by

(37) RM(n, τ)f :=

{
(w, δn) :

δn ∈ Nn, w ∈ SL2(Z)δnτ
w > 0 > w′, (a(w), f) = 1

}
.

The following lemma appears in [DPV] in the case f = 1, but is easily extended to general, not

necessarily fundamental, discriminants D by the same argument.

Lemma 3.1. Suppose that [τ ] = C, then there exists a bijection

I(n, C)f −→ RM(n, τ)f

such that if (a, ν) corresponds to (w, δn), then Nm(a) = a(w).

Proof. Let A,B and C = (B2 −D)/4A be integers with no common divisor such that

(38) τ =
−B +

√
D

2A

and de�ne the integral ideal I = (A,Aτ), whose class is equal to C. Suppose that (a, ν) ∈ I(n, C)f ,

then ab = (ν)d for some integral ideal bCOF . De�ne the RM point w by

(39) w =
−b+ n

√
D

2a
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where the integers a, b, c are de�ned by

(40)


a = Nm(a)

ν = (−b+ n
√
D)/2

√
D

c = −Nm(b).

Then we see that w > 0 > w′ and a = a(w) is coprime to f . Note also that b2 − 4ac = n2D.

Consider the ideal Nm(a)a−1I which represents the trivial class in Cl+D , and is hence generated

by an element λ in Z + fOF which is totally positive. Now de�ne the lattice

(41) Λ = Zλ+ Zwλ

which is well de�ned up to multiplication by a totally positive unit inO×F ∩ (Z + fOF ), i.e. a unit

which is congruent to an integer modulo f . We claim that Λ is a lattice in I of index n. Clearly,

λ ∈ I . We also have wλ ∈ I since

(wλ) = (ν
√
D/Nm(a))(Nm(a)/a)I

= bI.

The quadratic form Nm(λx−λwy)/Nm(I) is equal to ax2+bxy+cy2
, and hence the containment

Λ ⊆ I must be of index n. Therefore

(42)

(
λw
λ

)
= N

(
Aτ
A

)
, detN = n,

and hence there is a unique δn ∈ Nn such that

(43) N ∈ SL2(Z) · δn · StabSL2(Z)(τ).

Note that δn is well-de�ned: If we multiply λ by a unit inO×F ∩(Z + fOF ) which is totally positive,

then N gets multiplied on the right by an element of StabSL2(Z)(τ). The coset representative δn
is hence independent of this choice. It is clear that (w, δn) ∈ RM(n, τ).

We now construct an inverse for the map (a, ν) 7→ (w, δn). Let ax2 + bxy + cy2
be the unique

quadratic form of discriminant n2D whose stable root is w, and de�ne the element ν = (−b +

n
√
D)/2

√
D ∈ d−1

+ . Write w = γδnτ , and de�ne λ by

(44)

(
λw
λ

)
= γδn

(
Aτ
A

)
.

Note that γδn is only well-de�ned up to left multiplication by elements in StabSL2(Z)(w), and up

to right multiplication by elements in StabSL2(Z)(τ), which makes λ well-de�ned up to totally

positive units congruent to an integer modulo f . This makes the integral ideals

(45) a = Nm(λI−1)/(λI−1), b = (λw)I−1

well-de�ned, and we check easily that ab = (ν)d and a is coprime to the conductor f . It is easily

checked that this de�nes an inverse to the map de�ned above. �
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3.2. Reduction theory of binary quadratic forms. Now that we have established in Lemma 3.1

a bijection between the index set I(n, C)f appearing in the expression for the diagonal restrictions

of Hilbert Eisenstein series, and an explicit set of ‘augmented’ RM points RM(n, C)f , it remains to

compute the latter. This will be done using classical reduction theory of binary quadratic forms,

as we now describe.

Following Gauß, we say that the inde�nite binary quadratic form F = 〈a, b, c〉 of discriminant

∆ > 0 is reduced if

(46) 0 <
√

∆− b < 2|a| <
√

∆ + b.

This condition is equivalent to the following condition on the roots λ− < λ+
:

(47)

{
λ+ ∈ (0, 1) λ− ∈ (−∞,−1) if a > 0
λ+ ∈ (1,∞) λ− ∈ (−1, 0) if a < 0.

In general, there are multiple reduced forms in an SL2(Z)-orbit, though there is clearly a �nite

number of them. For instance, the two forms of discriminant ∆ = 2021 given by

(48) 〈5, 41,−17〉 and 〈19, 11,−25〉

are SL2(Z)-equivalent, and are both reduced. There are very e�cient algorithms to enumerate all

reduced forms in an SL2(Z)-orbit, see for instance Buchmann–Vollmer [BV07].

As is clear from the description (47), any element w ∈ SL2(Z)δnτ which satis�es w > 0 > w′

is the stable root of an inde�nite quadratic form that is a simple translate of a reduced form. Using

algorithms for the reduction theory of inde�nite binary quadratic forms, we obtain the following

algorithm to compute the sets RM(n, τ):

(1) Compute the set Mn, de�ned in (36), and for each γn ∈Mn do the following steps.

(2) For any of the previously considered γ′n, test whether

γ′n · StabSL2(Z)(τ) · γ−1
n ⊂ SL2(Z).

If it is for some γ′n, do nothing. If it is not for any γ′n, let F be the form of discriminant

n2D whose stable root is γnτ , and do the following steps.

(3) Run the reduction algorithm outlined in Buchmann–Vollmer [BV07, § 6.4] on the quadratic

form F . Speci�cally, compute the integer s de�ned in loc. cit. and enumerate for 1 ≤ i ≤ s
the quadratic forms

〈a+ ib+ i2c, b+ 2ic, c〉 if a > 0
〈c, −b+ 2ic, a− ib+ i2c〉 if a < 0.

Rede�ne F to be the (necessarily reduced) last quadratic form in this sequence, and repeat

this step until the same reduced form is obtained a second time. Remove the quadratic

forms in this list whose �rst coe�cient is not coprime with f .

The set RM(n, τ)f is given by the pairs (w, γn) where γn ∈Mn, and

w = (−b+
√
D)/2a

is the stable root of a binary quadratic form 〈a, b, c〉 obtained from γn in the last step.
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To increase e�ciency, the sets RM(n, τ)f may be constructed inductively, by letting n0 be

the largest divisor of n, and computing it starting from RM(n0, τ), using the appropriate coset

representatives of level (n/n0). This variant causes a signi�cant speed-up in practice.

3.3. Examples. We now illustrate the above methods with some instructive examples.

Example 3.2. As a warm-up, let us �rst use the above results to compute classical L-values, omitting

for now their p-adic interpolation (see Examples 3.5 and 3.6). Let D = 192, then we have f = 4
and the associated fundamental discriminant is D0 = 12. Set F = Q(

√
12). We have

(49) Cl+192 ' Z/2Z× Z/2Z,

and the space of totally even functions on the class group is spanned by the two functions

(50)

ψ1 = 1[OF ] + 1[d]

ψ2 = 1[a] + 1[ad] where a = (−3, (12 +
√

192)/2)

which take values in Q. Using the above algorithm, we compute the �rst 200 higher Fourier coef-

�cients of the seriesG2,ψi
restricted to the diagonal. This took under 4 seconds for each series. As

in the previous section, we compute a basis for the space of forms of level 4 and weight 4, whence

we get after a trivial computation the exact special L-values

(51)

L(ψ1,−1) = 35/12
L(ψ2,−1) = −37/12.

Example 3.3. For a more interesting example, let us take D = 112 · 13, then we have f = 11 and

the ring class group of this conductor is isomorphic to

(52) Cl+1573 ' Z/6Z.

The space of totally even functions on this ring class group is spanned by:

(53)

ψ1 = 1[OF ] + 1[d]

ψ2 = 1[a] + 1[ad] where a = (17, (−31 + 11
√

13)/2).

ψ3 = 1[a−1] + 1[a−1d]

Using the above algorithm, we compute enough higher Fourier coe�cients of the series G4,ψi

restricted to the diagonal to determine that

(54)

L(ψ1,−3) = 17291314/3
L(ψ2,−3) = −9930038/3
L(ψ3,−3) = −9930038/3.

From this computation, we can deduce the special values of any totally even character. For

instance, there is a unique such cubic character ψ whose value on a is ζ3. We �nd that

L(ψ,−3) = 17291314/3 + ζ3(−9930038/3) + ζ2
3 (−9930038/3)

= 9073784.

This entire computation took less than a second, gives the exact L-value, and is provably correct.
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Example 3.4. We now combine the above ideas with the algorithms for e�ciently computing p-

adic bases for classical spaces of modular forms to present a �rst example of a p-adic L-series.

Consider F = Q(
√

2) and let ψ be the (rami�ed) character associated to the quadratic extension

Q(ζ8)/F . Then we compute

L5(ψ, s) ≡ − 2 · 59 s11 − 8 · 58 s10 + 4 · 58 s9 + 9 · 58 s8
− 18 · 56 s7 − 694 · 55 s6 − 844 · 54 s5 + 1387 · 55 s4

− 7624 · 53 s3 + 136147 · 52 s2 + 232969 · 5 s

L7(ψ, s) ≡ 2 · 79 s10 − 17 · 78 s9 + 114 · 77 s8
+ 618 · 76 s7 + 75 · 76 s6 − 256 · 76 s5 + 5365 · 74 s4

+ 161750 · 73 s3 − 1083083 · 72 s2 − 12676806 · 7 s − 2

The computations were done modulo 510
and 710

respectively, and took less than a second. Note

that the valuations of the coe�cients are very close to the predicted estimates in (23). Finally,

we note that L5(ψ, 0) = 0 up to the computed precision, as should be the case since 5 is inert

in Q(
√

2) and therefore the L-function has an exceptional zero at s = 0. On the other hand, 7
splits into two ideals p1, p2 which are not in the kernel of ψ (since 7 does not split completely in

Q(ζ8)/Q), and the value at s = 0 is equal (up to the computed precision) to

−(1− ψ(p1))(1− ψ(p2))L(ψ, 0) = −2.

Example 3.5. This setting will be revisited in Example 4.4 below. Let us take D = 321, and F =
Q(
√

321). We have

(55) Cl+321 ' Z/6Z,

and the space of odd functions on the class group is spanned by the three functions

(56)

ψ1 = 1[OF ] − 1[d]

ψ2 = 1[a] − 1[ad] where a = (4, (−15 +
√

321)/2)

ψ3 = 1[b] − 1[bd] where b = (2, (−15 +
√

321)/2)

which take values in Q. Let p = 7, which is inert in F . Using the method of this section we can

compute that

(57)

L7(ψ1, T ) ≡ (3 +O(72))T 3 −(10 +O(73))T 2 +(913 +O(74))T

L7(ψ2, T ) ≡ (1 +O(72))T 3 +(211 +O(73))T 2 +(340 · 7 +O(74))T

L7(ψ3, T ) ≡ −(1 +O(72))T 3 −(211 +O(73))T 2 −(340 · 7 +O(74))T

Which took a fraction of a second. In fact, with working precision 760
one computes each of

the series L7(ψj , s) mod p51
in around 32 seconds (the precision loss during interpolation here

is 9, as expected). The resulting series would be too long to reproduce here, but we note that it

exhibits L7(ψ1, 0) = 0 as it should due to the presence of an exceptional zero corresponding to

k = 1, and it allows us to recover the derivative L′7(ψ1, 0) modulo 751
(the derivative here is with

respect to s). As we explain in the next section, and will see in Example 4.4, this derivative may

also be computed directly in about 4 seconds, and is the logarithm of a p-unit in the Hilbert class

�eld of F . Note though this approach to computing the derivative is inferior to that based upon

overconvergent forms below: it is slower and su�ers from a precision loss during interpolation.
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Finally, we note that the method is also practicable for larger primes, e.g. taking p = 101 and

m = 15 the computation of L101(ψ1, T ) runs in 411 seconds, with all but 3 seconds taken up

computing higher Fourier coe�cients.

Example 3.6. We now compute some Iwasawa invariants for D = 141 = 3 · 47 and a variety of

small primes p. Let ψ be the genus character of F = Q(
√

141) corresponding to the biquadratic

extension L = Q(
√
−3,
√
−47). Then we compute the series

Lp(ψ, T ) = pµP (T )U(T )

for all primes p ≤ 229, where U(T ) ∈ ZpJT K is a unit, and P (T ) is a distinguished polynomial in

the sense that

P (T ) ≡ T deg(P ) (mod p).

We call λ = deg(P ). We observe that µ = 0 in each case
2
, which, since L/Q is abelian, is

predicted by the main result of Ferrero–Washington [FW79]. The λ-invariants on the other hand

exhibit more interesting behaviour, tabulated here:

p
(

D
p

)
λ p

(
D
p

)
λ p

(
D
p

)
λ p

(
D
p

)
λ p

(
D
p

)
λ

2 −1 3 31 −1 1 73 −1 1 127 −1 1 179 1 0

3 0 2 37 1 2 79 1 2 131 −1 1 181 −1 2

5 1 1 41 1 0 83 −1 1 137 1 0 191 −1 1

7 1 2 43 −1 1 89 −1 1 139 −1 1 193 −1 1

11 1 0 47 0 0 97 1 2 149 −1 1 197 −1 1

13 −1 2 53 −1 1 101 −1 1 151 −1 1 199 −1 1

17 −1 2 59 −1 1 103 1 2 157 1 3 211 −1 1

19 −1 1 61 1 2 107 1 0 163 −1 1 223 −1 1

23 1 0 67 −1 1 109 −1 1 167 1 0 227 1 0

29 1 0 71 −1 1 113 1 0 173 −1 1 229 −1 1

At �rst sight, the amount of non-zero values of λ may seem striking, but the bulk of them is ex-

plained by exceptional zeroes. More precisely, we have the following possibilities for the splitting

behaviour of p in F :

• p is inert in F : In this case, the Euler factor

(1− ψ(p)Nm(p)k−1)

vanishes to order one at k = 1, and therefore the p-adic L-functionLp(ψω, T ) must vanish

to order at least one at T = 0, forcing λ ≥ 1. In the above table, this accounts for all the

zeroes, except when p = 2, 13, 17, 181.

• p is split in F : Suppose that (p) = pp′, then p is necessarily principal. If it is generated by a

totally positive element, thenψ(p) = ψ(p′) = 1, so that the p-adic L-functionLp(ψ, T ) has

an exceptional zero of order at least two at T = 0. In the above table, this again accounts

for all the zeroes of the p-adic L-function, except when p = 5, 157.

In those cases, we investigate the zeroes of Lp(ψ, T ):

2
Note that when p = 2, the L-series always belongs to 4Z2JT K and is hence of valuation at least 2 = d. In this case,

the statement µ = 0 means that we observed coe�cients whose valuation was exactly 2.
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– p = 5: We �nd that the p-adic L-function has a simple root at

T ≡ 1992099 · 5 (mod 510)

Note that this is consistent with the fact that Cl(L) ' Z/5Z, since the 5-divisibility

of the class number is equivalent to the existence of a zero in this case.

– p = 157: In this case the distinguished polynomial is P (T ) = T 2(T − a) where we

computed the value of a to be

a = 71 · 157 + 99 · 1572 + 8 · 1573 + 115 · 1574 + . . .

so that the p-adic L-function has unique root besides its double exceptional zero at

T = 0, causing the p-part of the class group to grow linearly with slope 3 in the

cyclotomic tower over L. Note that unlike the previous case, this does not imply the

divisibility of the class number of L by 157 due to the exceptional zero.

• p is rami�ed inF : This is only true for p = 3, 47. The 47-adic L-series has no zeroes. When

p = 3, the character ψ cuts out the extension F (
√
−3) so that in fact ψω is trivial. We

omitted this case in the above description of the algorithm for simplicity, and now show

how to treat it. The series L3(1, s) has a simple pole at s = 1, so that we may write

L3(1, T ) = F (T )/(T − 3)

where F (T ) is an element of the Iwasawa algebra which we compute to be

F (T ) = −539 · 32T + 3929T 2 − 4910T 3 + . . . (mod 310).

and which is a power series with (λ, µ) = (2, 0). We note that L3(1, T ) has a simple zero

at T = 0, which is an exceptional zero caused by the fact that the unique prime above 3 is

generated by a totally positive element.

Remark 3.7. If we reverse the above example by �xing a prime and varying ψ over (say) all odd

quadratic characters of F , the statistics of the λ-invariant are expected to resemble those of p-adic

random matrices. For more on this theme, see Ellenberg–Jain–Venkatesh [EJV11].

4. Real qadratic fields: Overconvergence and derivatives

The algorithm in § 2.4 can also be recast in terms of overconvergent modular forms. Since the

underlying computations which need to be performed are nearly identical to those outlined above

in the language of classical modular forms, there seems little advantage in doing so.

However, when the p-adic L-function has an exceptional zero at k = 1, its �rst derivative at

k = 1 may be computed directly in a way which uses in an essential manner overconvergent

modular forms, following recent results of the second author with Henri Darmon and Alice Pozzi

[DPV]. The value of this �rst derivative in the presence of an exceptional zero is of great interest,

and equals the p-adic logarithm of the norm of a Gross–Stark unit, see for instance [DDP11].

Remark 4.1. We note here that a computational approach to the computation of the Gross–Stark

unit was developed for real quadratic �elds by Dasgupta [Das07] and for cubic �elds by Slavov

[Sla07] based on the Shintani cone re�nements of [Das08]. They are closely related to the de�nition

of the p-adic L-functions by Barsky and Cassou-Noguès, but yield a re�nement of it that recovers
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the Gross–Stark unit (without the norm). It is also possible to obtain a similar re�nement in the

spirit of Serre and Deligne–Ribet by replacing the p-adic family of Eisenstein series in weight

(1 + ε, 1 + ε)

below by a cuspidal family of Hilbert modular forms of anti-parallel weight

(1 + ε, 1− ε)

and restricting it to the diagonal. This is the subject of the forthcoming paper [DPV2].

Terminology. As before, F is a real quadratic �eld, and

(58) ψ : Cl+D −→ C×p
is an odd ring class character of discriminant D (not necessarily fundamental), which means that

ψ(d) = −1, where d is the di�erent of F . If p - D is a prime which is inert in F , then the vanishing

of the Euler factor implies that we have an exceptional zero, i.e.

(59) Lp(ψ, 0) = 0.

In this section, we describe a direct way to compute the quantity L′p(ψ, 0) in this situation.

4.1. Overconvergent p-adic modular forms. We now brie�y recall the salient points of the

algorithms for computing with overconvergent modular forms, as developed in [Lau11].

LetN ≥ 5 and p - N be a prime. We letX/Zp be the moduli space of generalised elliptic curves

with Γ1(N)-level structure, and ω the modular line bundle on X . The Hasse invariant A is the

unique global section of ω⊗p−1
with q-expansion 1. There is a reduction map

(60) red : X (Cp)−→Xs(Fp),

such that the inverse image red−1(x) of a closed point is isomorphic to a rigid analytic open

disk. The vanishing locus of the Hasse invariant is precisely the supersingular locus of Xs, which

consists of a �nite set of closed points. Therefore, any lift of the Hasse invariant is invertible on

the ordinary locus Xord
, which is the a�noid whose set of Cp-points correspond to elliptic curves

with ordinary reduction. It is the complement of a �nite number of rigid analytic open disks.

Let r ∈ Cp such that 0 ≤ vp(r) ≤ 1, and de�ne Xord ⊂ Xr ⊂ Xrig
by

(61) Xr(Cp) := {x ∈ X(Cp) : vp(Ãx) ≤ vp(r)},

where Ãx is a local lift of the Hasse invariant A at x. Note we do not require a global lift of the

Hasse invariant to exist, which may fail in general when p ≤ 3. Katz [Kat73] de�nes the space of

r-overconvergent modular forms of integer weight k on Γ1(N) to be

(62) M †k(r) := H0(Xr, ω
⊗k).

Now let n be the smallest power of p such that the n-th power of the Hasse invariant An lifts

to a level 1 Eisenstein series E of weight kE = n(p − 1). Throughout this section, we assume

nvp(r) ≤ 1. Our notation is summarised in the following table:
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p 2 3 ≥ 5

E E4 E6 Ep−1
n 4 3 1

The p-adic Banach space M †k(r) has a basis of Katz expansions of the form

(63)

{
rni

ai,j
Ei

}
i,j

where the ai,j are classical modular forms, see [Kat73]. This allows for an e�cient explicit com-

putation of spaces of overconvergent modular forms, as described in [Lau11, Von15].

4.2. Derivatives of families of overconvergent modular forms. In the situation considered

above, we know that for trivial reasons, we must have Lp(ψ, 0) = 0 when p is inert in F . In light

of the techniques in this paper, this may be interpreted as saying that the diagonal restriction of

the Eisenstein series G1,ψ vanishes at the cusp ∞. The following theorem, proved in Darmon–

Pozzi–Vonk [DPV], states that also its higher Fourier coe�cients vanish.

Theorem 4.2. Suppose that p - D is inert in the real quadratic �eld F , then the diagonal restriction
of the Hilbert Eisenstein series G1,ψ vanishes identically.

The result in loc. cit. is stated only for unrami�ed characters, corresponding to the case where

D is a fundamental discriminant, but the proof remains valid for rami�ed characters.

When the p-adic family of Hilbert Eisenstein series Gk,ψ restricted to the diagonal vanishes

identically at k = 1, it becomes natural to consider its �rst derivative with respect to the weight

variable k. The q-expansion of this �rst derivative is given by

(64) H(q) = L′p(ψ, 0) + 4
∑
n≥1

 ∑
C∈Cl+m

ψ(C)
∑

(a,ν) ∈ I(n,C)

ψ(a) logp (Nm(a))

 qn.

Note that we are now in a situation very similar to that of the main algorithm above: The constant

term L′p(ψ, 0) is the quantity we wish to compute, and the higher coe�cients may be computed

very e�ciently using the methods from § 3. The crucial di�erence is that the form H(q) is not a

classical modular form. The following lemma can be found in [DPV]:

Lemma 4.3. The series H(q) is the q-expansion of an element inM †2(r), for every r < p/(p+ 1).

The above observations now lead to an algorithm very similar to the one in § 2.4, which com-

putes the value L′p(ψ, p) directly. Indeed, having an explicit orthonormal basis (63) for the spaces

M †2(r), which may be computed very e�ciently using the algorithms in [Lau11], we can determine

the constant term of H(q) from the higher coe�cients as before.

Example 4.4. Let us consider the setting of Example 3.5, and resume the notation introduced there.

Let us take p = 7, which is inert in F . In this case, there is an exceptional zero, and the diagonal

restriction of the Eisenstein family vanishes at k = 1 for any odd character. We compute G′1,ψi
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for i = 1, 2, 3 and �nd that

L′7(ψ1, 0) = 6477196952606172569528507807016822842117113120451 · 7 (mod 760)

L′7(ψ2, 0) = 2400060771017313457866042007390913798673505846408 · 72 (mod 760)

L′7(ψ3, 0) = −2400060771017313457866042007390913798673505846408 · 72 (mod 760).

The �rst quantity is equal, up to the computed precision, to log7(u), where u satis�es the equation

(65) 716u6 − 20976 · 78u5 − 270624 · 74u4 + 526859689u3 − 270624u2 − 20976u+ 74 = 0

and is therefore a 7-unit in the narrow Hilbert class �eld of Q(
√

321), as predicted by the main

result of Darmon–Dasgupta–Pollack [DDP11]. The computations took 13 seconds in total.
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