COMPUTING ZETA FUNCTIONS OF ARTIN-SCHREIER
CURVES OVER FINITE FIELDS

ALAN G.B. LAUDER AND DAQING WAN

ABSTRACT. We present a practical polynomial-time algorithm for com-
puting the zeta function of certain Artin-Schreier curves over finite fields.
This yields a method for computing the order of the Jacobian of an ellip-
tic curve in characteristic 2, and more generally, any hyperelliptic curve
in characteristic 2 whose affine equation is of a particular form.

1. INTRODUCTION

We present a low-degree polynomial-time algorithm for computing the
zeta function of certain Artin-Schreier curves defined over finite fields. One
consequence is a practical method for computing the order of the Jacobian
of an elliptic curve in characteristic 2, and more generally, any hyperelliptic
curve whose affine equation is of a particular form. Hyperelliptic curves
have been proposed for use in public key cryptosystems by Koblitz [2, 14].
Our algorithm provides the first method of finding “random” hyperelliptic
curves of arbitrary genus defined over large finite fields of characteristic 2
whose Jacobians have orders suitable for cryptographic use. Our method
can be extended to more general curves, and we plan to present one such
generalisation in a sequel paper.

We now introduce some notation which will allow us to explain our results.
Let p denote a prime number, and a a positive integer. Define ¢ = p® and
denote by I, the finite field with ¢ elements. Fix an algebraic closure F, of
F, and let ]Fq;c be the unique subfield of order ¢*. We write F; for the set

of non-zero elements in ]Fq. The Artin-Schreier curves over [, we consider
in this paper are defined by an equation of the form

(1) 20— 7 = f(X)
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where f € Fy[X, X~!] is a Laurent polynomial. Specifically, denote by C/
the curve embedded in ]F:; x F, with equation (1) and let C be the unique
smooth projective curve birational to Cy. Let d denote the largest absolute
value of any exponent which occurs in a non-zero term of f. For example,
if f € F,[X] this is just the degree. Our main theorem is

Theorem 1. The zeta function of the smooth projective curve C~'f may be
computed deterministically in O(p*a®d®*?) bit operations. Here § = 0 for
p>2andd=1 forp=2.

Here we use Soft-Oh notation @ which ignores logarithmic factors, as in
[15, Section 6.3]. More details of the complexity using different methods of
arithmetic, and also the space complexity, can be found in Section 8.2.

We now explain how our algorithm may be applied to certain hyperelliptic
curves in characteristic 2. Let C denote the affine curve with equation

Y2 4+ X™MY = h(X)

where h(X) € Faa[X] is of degree 2g+ 1 and m is a non-negative integer not
greater than g. Let C be the unique smooth projective curve birational to
C. Then C is birational to an Artin-Schreier curve, as explained in Note 5,
and thus one may compute the zeta function of C in the complexity bounds
of Theorem 1. From this it follows

Corollary 2. The order of the Jacobian of the curve C may be computed
deterministically in O(a3g®) bit operations.

This algorithm for hyperelliptic curves in characteristic 2 has been imple-
mented by Vercauteren [23]. With regard to the dependence on a, we note
that our method when restricted to elliptic curves has comparable time com-
plexity to [18]. Moreover, it is the first practical algorithm for hyperelliptic
curves in characteristic 2 which has polynomial-time growth in both the
field size and genus. (The problem of polynomial-time computability for
arbitrary varieties in small characteristic was already solved in [15], but the
general algorithm there is not very practical. Also, a practical algorithm for
hyperelliptic curves in odd characteristic is presented in [12] using different,
though related, methods.) We refer to the references in [2] for the large
literature on point counting, including [7, 19], and the more recent work
8,9, 10, 11, 12, 17, 18, 22, 24, 26].

Sections 2, 3, 4 and 5 lay the mathematical foundation of our algorithm: it
is based mainly upon an extension of the work of Dwork [6] due to Adolphson
and Sperber [1]. Section 6 contains a statement of the algorithm for what
we call Type 1 Artin-Schreier curves, and Section 7 describes exactly how
to perform the main steps. The complexity analysis is tied up in Section
8, and Section 9 discusses the remaining type of Artin-Schreier curve in a
more condensed fashion. As in [15] we aim to give a largely self-contained
presentation.
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2. L-FUNCTIONS AND ARTIN-SCHREIER CURVES

2.1. General theory. Let Q denote an algebraic closure of the rationals
Q. Let ¥ : [, — Q be a non-trivial additive character, and Try : F » — F,
the absolute trace map. A specific ¥ will be constructed in Section 4.2 but
for now it may be arbitrary. Define ¥, : Fx — Q to be the non-trivial
additive character ¥ o Try.

For f € F,[X, X~!] define

(2) SiAw) = Y W)

(3) L*(f, 0, T) := exp (ZWT’“)

For simplicity we shall omit the ¥ in this notation. Let C; be the curve
embedded in ]F; x [F, with equation

zP — 7 = f(X).
Let C t denote the unique smooth projective curve birational to C.

Lemma 3. For each z € F;‘k there are exactly ny points of the form (x, z) €

F;k x For on Cf where

. :{p if T (f () = 0
TV 0 if Te(f(x) #0.

Proof. Follows from [16, Theorem 2.25]. O

Denote by Cy(F ) the set of F x-rational points on Cy. From Lemma 3
one deduces

p—1
#(CrFp) =) > klaf(z)) =Y 0(Si(f) +(d" —1),

where G is the Galois group of Q(¢) over Q, with ¢ := ¥(1) a primitive pth
root of unity. Writing Z(Cy,T) for the zeta function [15, Section 1] of Cf
it follows that

Moeq 0L (1, T)H1 = T)
@ 20y, 1) = SO .

Here G acts on power series Q(¢)[[T]] coefficient-wise, fixing monomials T*.
To proceed further it is necessary to split the possible Laurent polynomials
f into three types.
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2.2. Three types of Artin-Schreier curves. Type 1: Assume that f €
F,[X] has degree d not divisible by p. Here we can also define

(5) Se(f) =Y i(f(x)) = Si(f) + T(kTr1(£(0)))

:L‘GFqk

(6)  L(f.T) = exp (Z S’“T”)T’f) = (7)1 = WM (FO)T)

k=1

Hence from (4)

Z(Cy,T) = {[pec O(L(f, T))}(1 = T)

(1= ¢T){Tlpec 0(1 — T (Tro(f(0)))T)}

(The latter term on the denominator is (1 —T)?~'or 1 +7T + ...+ TP7!
depending upon whether Tr;(f(0)) is zero or not, although this does not
concern us.) By Weil, the L-function L(f,T) is a polynomial of degree
d — 1, and all of its reciprocal roots have complex absolute value ,/q under
all complex embeddings of Q. Thus [, 0(L(f,T)) is a polynomial of
degree (p — 1)(d — 1), pure of weight 1 (see [25, Section 3] for definitions).

Let Z(C’f, T') denote the zeta function of the smooth projective curve C’f.
Let g be the genus of C’f. Again, by Weil, we know that

P(Cy,T)
(Cf7 ) / )
(1-=T)(1 —qT)
where the numerator is a polynomial of degree 2g, pure of weight 1. Since
Cy and Cy are birational they differ by a finite number of points, and hence

their zeta functions differ by a factor of weight 0. Comparing the pure weight
1 parts in Z(Cy,T) and Z(Cf,T) we deduce

(7) P(Cy,T) =[] 0(L

e

In particular, the genus g of the curve C ¢ is given by the formula
(8) g=@-1d-1)/2.

Type 2: Assume that f € F,[X '] has negative degree d~ not divisible by
p. That is, d~ is the lowest exponent occurring in f. Then Cf is birational
to Cp« where f*:= f(X~'), and we have reduced to type 1.

Type 3. Assume that f € F,[X, X! but not in F,[X]UF,[X~!]. Let
the negative degree be d~ and the positive degree be d™. Assume p does
not divide d~d*. In this case, by Weil, L*(f,T) is a polynomial of degree
d*—d~, pure of weight 1. By comparing the pure weight 1 parts in Z(C,T')
and Z(éf,T) we find that

(9) P(Cy,T) = [[ 0(L*(f,T

e
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is the numerator of Z(C 7,T). In particular, the genus g of the curve C s
given by the formula

g=—-1d"—d")/2.

Thus in all cases the computation of the zeta function of the smooth
projective curve Cy reduces to the evaluation of the L-function of certain
one variable exponential sums.

Note 4 The degree conditions on f are essential for cohomological argu-
ments; however, given a Laurent polynomial f which does not satisfy them
one may replace it by a new polynomial f which does such that Cy and
C 7 are isomorphic. For each term aijjp, the isomorphism Z — Z + bX7

(X — X) shows that we can replace the term aj, X7P with b; X7 where
b= all?

ip -
nent divisible by p. The resulting polynomial f has no terms with non-zero
exponents divisible by p, and thus it certainly satisfies any necessary degree

restrictions.

€ IF,. Repeat this procedure until no term has a non-zero expo-

Note 5 Let C be the curve in Corollary 2. Then C is birational to the curve
Cy with equation Z2 + Z = f(X) where f := X~?™h. This can be seen
by making the change of variable Y = ZX™. Thus C, as in Corollary 2, is
birational to C’f and the zeta function of CN’f can then be computed using
Note 4, to get f in the correct form, and the algorithm we will present.
By the special value formula for the zeta function at 7' = 1, the order
of the Jacobian is the numerator of the zeta function evaluated at T' =
1 [2, page 175]. Similar comments apply to curves over F, of the form
YP — X™Y = h(X) where ¢ = p* and p — 1 divides m. Also, general
hyperelliptic curves in characteristic 2 are birational to Artin-Schreier curves
of the form Z? + Z = f(X) for f a rational function. As such they may be
tackled using a generalisation of our approach.

2.3. Type 1 Artin-Schreier curves. In Sections 3, 4, 5, 6, 7 and 8 we
shall denote by f a polynomial in F;[X] of degree d not divisible by p.
We write f = ZjeJ anj where a; # 0. In these sections we will explain

how to compute the zeta function of the smooth projective curve C t. That
is, we shall cover classical “type 1”7 Artin-Schreier curves. In Section 9 we
shall discuss the modifications required when f € F,[X, X '] is a Laurent
polynomial with both positive and negative exponents. These are “type 3”
Artin-Schreier curves. As mentioned before, “type 2” may be reduced to
“type 17 and we shall not discuss them again.

3. p-ADIC THEORY

3.1. p-adic rings. Let Q, denote the p-adic numbers with ring of integers
Z,. Fix € the completion of an algebraic closure of Qp. Denote by € a
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primitive (¢ — 1)th root of unity in Q, and = € £ an element which satisfies
7P~ = —p. Define

(10) A = ZLple, 7).

In particular, A has residue field ;. Elements in A may be represented
via m-adic expansions whose coefficients are from some distinct set of rep-
resentatives for the quotient A/(m) of size ¢q. For any primitive pth root of
unity ¢ we have that both Q,(¢) and Q,(w) are the unique totally ramified
extensions of QQ of degree p—1 (since ord(1—¢) = ord(w) =1/(p—1)). Thus
Zy[C¢] = Zp[r] and so A contains the exponential sums defined in the previ-
ous section. Let G denote the group of automorphisms 6; : Q,(w) — Q, ()
for 1 < j <p—1 where each 6; fixes Q, and

(11) 0;(r) := 1.
Here n € Z,, is a primitive (p—1)th root of unity. Then G is the Galois group
of the extension Q,(7)/Q, (its action on ( is 6; : { ¢ medp although we
shall not need this explicitly).

It will be convenient to work in complete rings which contain arbitrary
roots 7" of 7, for r a rational number. To this end, let II = UzeN{T(l/Z} and
A denote the completion of the ring Zy[e, TT]. Here N denotes the positive

integers. ~
Denote by 7 the map on A defined as

(12) 7(€) := €, 7 fixes Z,[II] and is continuous.

Let ord and |.|, denote the p-adic valuation and norm on A normalised so
that ord(p) = 1 and |p|, = 1/p.

Note that the ring A can be constructed and computed in easily; see [15,
Section 3] for more details on p-adic fields. (The larger ring A is only intro-
duced for mathematical convenience; all of our computations are performed
in A.)

3.2. A weight function. Asin [15, Section 4] we define a weight function:
For each non-negative integer u € Zx let

wt(u) == [u/d].
Here [x] is the least integer not less than x and d the degree of the polynomial
f € F4[X]. Define wt(u) := u/d and so [wt(u)] = wt(u). Notice that
() € A and 7)) € A for every r € Li>y.

3.3. Banach modules. Let B denote a complete subring of 2. A Banach
module over B is an ultrametrically normed complete module E over B,
such that ||re|| = |r|,||e]| for r € B and e € E, where ||.|| is the module
norm. An orthonormal basis for F is a set {e; |7 € N} such that every
element in F can be written uniquely in the form ), b;e; where b; € B with
|bilp = 0 as i — oco. (See [20] and [4, Section A].) In the case that B is a
field we call it a Banach space.
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Definition 6. For each rational number § > 0, let L(0) be the Banach

module over A whose orthonormal basis consists of all terms Vo X for
r € Lso. Let A{X} (A{X} respectively) denote the Banach module over A
(A resp.) whose orthonormal basis consists of all terms X" for r € Z>y.

Note that L(6') € L(d) for &' > ¢ and all the above spaces lie in A{X}.
One may check that all the above spaces are closed under multiplication,
and are in fact rings. Extend 7 to act on each power series in the ring A{ X}
by taking

(13) 7(X) := X, 7 is A-linear and continuous.
4. ANALYTIC REPRESENTATION OF ADDITIVE CHARACTERS

4.1. Dwork’s splitting functions. Let 6(¢) denote the splitting function
[15, Section 4.1]

(14) 0(t) := 0, (t) = exp(n(t — t*)).
Write
(15) f=> a;x’

JjeJ

for the polynomial over A obtained by taking the Teichmuller lifting of each
coefficient of f.

Lemma 7. For each term a;X7 in f, we have 0(a;X7) € L(9) for any

—1\2
5 < (p—>
p
Proof. Writing 0(t) =: > 72 A" we see from [15, Equation (3)] that ord(};) >
(p—1)r/p®. Terms in 6(a;X7) are of the form Ar@7X7" for r a non-negative
integer. Now ord(A,a}) > (p— 1)r/p? since ord(a;) = 0. Also 0 < j < d and
so wt(jr) = jr/d < r. Thus
-1 -1 -
p p
Also for 6 < ((p—1)/p)? we have

ord (™0 < pp; Lt
and the result follows. O
Definition 8. Let F' and F(®) be defined as
(16) F o= []oa;x%)
JjeJ

a—1
(17) FO = [[7@Fx)).
=0
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Recall here that ¢ = p® Both F and F(@ are one-way infinite power
series in A{X}. By Lemma 7 and the fact that each L() is a ring we have

Lemma 9. The power series F € L(0) for any

—1\2
5 < (p—>
b
4.2. Dwork’s additive character. For k > 1 define

ak—1

ox(t) == [ 00" € Zy[x]l1H]
1=0
and let
a—1 ]
o(t) := [[ 0(t) € Z,[x][[1].
=0

Denote by Teich the Teichmiiller lifting map from F, to Z,™™™, where
Z;nram is the unramified integral closure of Z, in Q. Then
Uy := & o Teich, ¥ := ® o Teich

are non-trivial characters from F . and I}, respectively, to Zp[r]. We have
that Wi(z) = U(Trg(z)) where Try, is the trace map from F « to F,. (See
[15, Lemma 6].)

The following lemma is proved exactly as [15, Proposition 9]. It gives an
analytic expression for the exponential sum S} (f) := Si(f, V)

Lemma 10. Let S;;(f) be the exponential sum defined in (2) using Dwork’s
additive character ¥, and F(*)(X) the power series from Definition 8. Then
Si(f)= Y FO(@)F@(g9).. F@@@@ ).

zaP-1-1

of the points on the

Here the sum is over the Teichmuller liftings in Zznmm

torus sz )

4.3. Completely continuous maps. The next step is to introduce oper-
ators on the module L so that the righthand side of the above expression
can be interpreted as the “trace” of a map on a Banach module.

Definition 11. Let ¢, be the map on A{X} which acts on monomials as

| XTIP if p divides r
Pp(XT) := { 0 otherwise

and extends to all of fl{X} by 7 '-linearity and continuity. Specifically,
Yoo, ArXT) = 300 i T YA XT/P. Write 4 := Yy, a linear map since
779 is the identity on A. Let o := Ypo F and oy 1= 1y 0 F(@) | Precisely, o
is multiplication by F followed by the map 1y, and likewise for o, (see [15,
Definitions 20, 21]).
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Lemma 12. The maps satisfy ag = a®.
Proof. Proved exactly as in [15, Lemma 22]. O

Lemma 13. The map o is stable on L(8) for

(p— 1)
p

Proof. We first claim that t,(L(5)) C L(pd) for any rational § > 0: For
this it is enough to observe that z,l)p(ﬂ“;t(r)‘sX”) = qWir/PP XT/P for any r
divisible by p. Now let G € L(§) where § satisfies the necessary inequality,
depending on p. Then by Lemma 9 F' € L(§/p) and so since also G € L(d/p)
by closure under multiplication we find that FG € L(§/p). Hence 4,(FG) €
L(6), that is a(G) € L(9) as required. O

)<

Definition 14. Let L be defined as

:{ L(1) N A{X} ifp>2
(LMNA{X}H®Q ifp=2.

Here v may be taken to be any rational number in the range 1/(2 +
(1/2d)) < v < 1/2. The key point is that « is stable on L(~), since v < 1/2,
and the space INI(W) is small enough such that an ad hoc argument we present
later (Lemma 28) works. Thus for p > 2 we have that L is just the Banach
module over A with orthonormal basis the terms 7%¢(*) X% for non-negative
integers u. For p = 2 it is the Banach space over A ® Q with orthonormal
basis the terms #[""{®] X% for non-negative u.

Lemma 15. The maps « and «q are stable on L.

Proof. First suppose p > 2. Then « is stable on L(1) by Lemma 13.
Certainly « is stable on the ring of convergent power series A{X}, since
F € A{X}. Thus « is stable on L(1) N A{X} = L. That «, is stable on
L now follows from Lemma 12. Second, consider the case p = 2. Putting
p =2 in Lemma 13 we find « is stable on L(y) N A{X} since v < 1/2. Given
G € L we have that mG € L(y) N A{X} for some p-adic integer m. The
result now follows easily. O

Note 16 The rings A and L(6) and the function wt were introduced to
prove the above result in as simple a manner as possible; we shall have little
further need for them, working from now on mainly with A and L.

For certain classes of linear maps on Banach modules the trace and de-
terminant are defined. This is done in the usual way, via matrices for the
maps with respect to an orthonormal basis. We refer to [20] and [4, Section
A2] for definitions. The key result is the chain level Dwork Trace Formula.
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Theorem 17. With S;;(f) and L*(f,T) the exponential sum and L-function
defined as in (2) and (3) using Dwork’s additive character U (Section 4.2),

and ag the map on L given in Definition 11 we have
Si(f) = (¢" = )Tr (g |L).

Thus we have

. det(1 — T'ay|L)
L T) = .
(£, ) det(1 — Tqay|L)

Here the trace and determinant are defined via matrices for the maps with
respect to the orthonormal basis of L.

Proof. This is in essence a case of [15, Theorem 25] (with “n = 0”). Note
that the matrix “M,” in [15, Theorem 25| is that for the map «, with
respect to a “formal basis” [15, Section 5.2] of the form {X®|i € Zx(}. For
the above formulae we require a matrix with respect to the orthonormal
basis {7V X?|i € Zso} (when p > 2, with a slightly different basis for
p = 2). One may verify, using for example [15, Equation (12)], that the
trace of powers of these two matrices are the same. O

These formulae may be used to compute the zeta function in a similar
fashion to [15]. Namely, a finite matrix may be computed which represents
the map « acting on some appropriate modular reduction of L. This matrix
is then used to compute the characteristic polynomial of ¢, itself up to a
necessary p-adic accuracy. (This algorithm has been implemented by Ver-
cauteren [23].) However, this “chain level” method results, for example, in a
time complexity of O(a*?3®) with space O(a?) bits using the fastest methods
for matrix multiplication and ring arithmetic. Using some homological alge-
bra one can derive a better “cohomological” formula leading to an improved
algorithm. This is what we do in this paper.

At this stage since f is an ordinary polynomial rather than a Laurent
polynomial with negative and positive terms, we can do a little more work
to derive a better chain level formula: Let L~ denote the Banach module
comprising of those power series in L with zero constant term. For p > 2
the module L+ is defined over A, and for p = 2 over A®Q. Tt follows easily
from Lemma 15 that

Lemma 18. The maps a and «q are stable on L.

Now one may check via a matrix for the map «, with respect to the
orthonormal basis {7"*(") X7},5¢ for p > 2, and {#["™t("1 X7}, 54 for p = 2,
that

det(1 — To|L) = (1 — F@(0)T) det(1 — Targ|Lso).
Here

F(9(0) = ¥(Try (ag))
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is a root of unity, where ¥ is Dwork’s additive character from [, to Z,[r].
Let Si(f) and L(f,T) be as in (5) and (6). Then one has Si(f) = Si(f) +
U (kTr(a)) and so L(f,T) = L*(f,T)(1 — F((0)T)~'. Hence we have

Theorem 19. Let L(f,T) be the L-function for the exponential sum over
the affine line from (6). Then

L(f,T)

. det(l — TO{a|L>0)
~ det(1 — qTagu|L)

5. DWORK COHOMOLOGY
Let H be the polynomial in L defined as
(18) H=nf

(In fact H € L(1)NA{X} in all cases, and this latter ring equals L for p > 2,
and lies strictly within L for p = 2.)
Let D be the operator on L defined as
d
D=X Ix + Hx
where
Hy:=X X
Here d/dX is the usual differential operator on polynomials extended to
power series by continuity, with X and Hy just acting by multiplication.
Now X(d/dX) is stable on L, and L is a ring. From this it follows that D
is stable on L, and in fact maps L to L.

Note 20 We pause to explain the motivation behind the above definitions:
Define 0(t) := [[;2,0(t”"). One may check that 6(¢) = exp(nt). Now F =
[Les 0(a;X7). Defining F(X) := [Tes 0(a; X7) we find that this equals

exp(nf) which is just exp(H), with H as in (18). Since &g = aj and 7'(a;) =

d?l for each j € J it follows from Definition 8 that F(*)(X) = F(X)/F(X1).
From this we see a, = 1, 0 F(%) = exp(—H) o 1, o exp(H). Define the
operator E := X (d/dX), and so E o (qi4) = 140 E. Then with D as above
one may check D = E+ E(H) = exp(—H) o Eoexp(H). Thus D and «,
are obtained from E and 1), by some kind of twisting; also, it now follows
that D o (qag) = a4 o D, which is the crucial relation. (See [6, pages 55-60)]
and [21, pages 267-270] for more details.)

Let £ be the complex

0—>L£>L>0—>0.

This is a complex of A-modules when p > 2 and A ® Q-spaces for p = 2.
Denote by Hy and Hg the kernel and co-kernel of the map D. In particular,
Hy = Lo/ D(L).
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Proposition 21. The map D is injective and so Hy = 0. Moreover, forp >
2 (p = 2 respectively) Hy is a finite free A-module (A® Q-space respectively)
of rank d — 1. A basis for Hy may be taken as the set of terms

{7 OX1 0 <i < d} = {nX,7X?,... , 7 X"}

Proof. Over the formal power series ring Q[[X]], the formal solutions of the
first order linear differential equation D = 0 is the one-dimensional subspace
generated by exp(—H). But the power series exp(—H) ¢ L (the decay rate
of coefficients is too slow). This shows that the restriction of the operator
D to L is injective. The second part of the proposition follows from the
normal form computations in section 7. U

By Note 20 we have
Doqga, =a,0D.

Thus the map «, defines a chain map on L:

D

0 — L — Lsg — O
1 qag Lag
0 — L N Lyg — 0.

Denote by Hy(a,) and Hq(ga) the maps induced on the homology Hj and
H; by this chain map, and det(1 — Hy(a,)T), det(1 — Hy(qa,)T') the corre-
sponding determinants.

Theorem 22. The L-function from Theorem 19 satisfies
L(f,T) = det(1 — Ho(a)T).
Proof. We have

det(l —Toy|L>o)  det(l — Ho(o)T)
det(1 — Tqou|L)  det(1 — Hy(qao)T)’

This identity is proved in the same way that [20, Proposition 9] is derived
from [20, Lemma 2]. Now H; = 0 and so the denominator on the righthand
side is 1. The expression for the L-function now follows from Theorem
19. ]

Corollary 23. The zeta function Z(éf,T) of the smooth projective curve
Cy birational to the affine curve with equation ZP — Z = f(X) satisfies

s T°Z1 0;(det(1 — Ho(ag)T))
AT = ==

Here 0; are the automorphisms (11) of Zy[r] extended to act on polynomials
by fizing T. The numerator is a polynomial of degree (p — 1)(d —1).

Proof. Follows from Theorem 22 and equation (7). O
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Thus the strategy of the algorithm is to compute the determinant of the
map Hy(a,) on the zeroth homology Hj, up to a suitable modular precision.
This may be done efficiently via the following lemma, which is an immediate
consequence of Lemma 12.

Lemma 24. Let Hy(a) denote the map induced on Hy by . Then Hy(ay,) =
H[)(O[)a.

It will be enough to compute the coefficients of the characteristic polyno-
mial of Frobenius modulo p?¥ for

N=|(p-1(d-1)(1+a/2)+1].
This follows since the L-function of the exponential sum L(f,T) has recip-
rocal roots whose complex absolute values are ,/q. Thus the coefficient of
T* in the polynomial HajeG 0;(L(f,T)) are integers of absolute value at
most (%,f)p‘”'“/2 < 229p°k/2 Since the polynomial HajeG 0;(L(f,T)) has de-
gree 2g = (p —1)(d — 1), it follows that determining the coefficients modulo
pY for N > (p —1)(d — 1)(1 + a/2) is sufficient. (Due to a certain loss of
accuracy when one performs the homological reduction, it is necessary to

initially compute the coefficients of F modulo p*(¥*+1 . for a small positive
integer ¢.)

6. THE ALGORITHM

We now present our point counting algorithm for Type 1 Artin-Schreier
curves (see Section 2 for our classification of Artin-Schreier curves).

Algorithm 25 [Artin-Schreier - Type 1]

Input: An equation ZP — Z = f(X) over Iy, where f € F,[X] and g = p®.
Output: The zeta function Z(éf,T) of the unique smooth projective curve
birational to the affine curve defined by this equation.

Step 0: Replace f by a polynomial all of whose terms have exponents
not divisible by p, in the manner explained in Note 4. Denote this new
polynomial also by f. This will not change the zeta function. Set N :=
l(p—1)(d—1)(1 + a/2) + 1], where d is the degree of f. Let ¢ := 4 when
p > 2 and € := (4d + 1) when p = 2. We shall compute the coefficients of
the numerator of the zeta function modulo p.

Step 1: Compute the power series F' given in Definition 8 with coefficients
determined modulo p*™¥ 1. Let a be the map on the ring L (Definition 6)
defined as o = b, o F' (Definition 11). Let Hy(«) be the map induced on
the zeroth homology Hy of the complex L by a.

Step 2: Let 7X,7X2,... ,mX% ! be the basis for the zeroth homology H,.
For each basis element e, compute the image Hy(«)(e) € Hy with coefficients



14 LAUDER AND WAN

determined modulo p". Construct M, defined as the matrix representing the
map Hy(«) with respect to the basis, with coefficients determined modulo
pV. Specifically, M = (m;;) where i is the row index, and j the column

index, and Ho(a)(7X7) = Zg:_ll mi; (7 X") mod p" for 1 <j <d—1.

Step 3: Compute
M, = M7 Y (M)T2(M)...7 " D(M)

modulo p", where the map 7 is the lifting of Frobenius to A as given in
(12). Thus M, is a matrix for the map Hy(c).

Step 4: Output the rational function

. P16 (det(I — M,T

261y o L= 1ot = MoT)
(1-T)(1 —qT)

where 6; is the automorphism from (11) extended to act on Z,[x][T] by
fixing monomials.

The correctness of the algorithm follows from Corollary 23 and Lemma
24, along with the discussion of the choice of N at the end of Section 5,
and the choice of € from Lemmas 27 and 31. The matrix M is called the
absolute Frobenius matrix, and det(I — M,T') the characteristic polynomial
of Frobenius. In Section 7 we will describe exactly how this first matrix
is computed, allowing us to give a complexity analysis of the algorithm in
Section 8. This will complete the proof of Theorem 1 for Type 1 and 2 Artin-
Schreier curves. We present the algorithm for Type 3 curves in Section 9.

Note 26 The above algorithm can be practically improved by using the
functional equation

~ 1 N
29 .9 Y =
T P(cf,qT) P(Cy,T).

This functional equation shows that it is enough to determine the coefficients
modulo p"¥' where N’ := |(p — 1)(d — 1)(1 4+ a/4) + 1], computing only the
first half of the coefficients directly in P(C’f,T), and then recovering the
second half by the functional equation. Moreover, our choice of ¢ is perhaps
rather large, especially in the case p = 2. It may be enough in practice, as
observed in [23], to work initially to p-adic accuracy N’ + € where € is some
small variable which can be determined “experimentally” (see also Note 32).

7. PERFORMING THE MAIN STEPS

We shall work with elements in L with coefficients determined modulo

peVHL), (In the case p = 2 by this we mean that given G € L we have
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that G = G/ + p* N+t @" where G’ is a known polynomial over A ® Q and
G" is a power series with coefficients in A.) If an element is given to this
accuracy we say it lies in L mod p*(*1 . Similarly, Hy is the free module
over A when p > 2, and A®Q when p = 2, spanned by the basis monomials

(19) {rX,7X?%,... X1}

We write s € Hy mod p if an element s is given in Hy with coefficients
modulo p”. In the next two sections we shall explain how given an element
G € L+ mod p?™*1) we can compute s € Hy mod pV such that

G = D(r) + s mod p

for some r € L. We call this process finding a “normal form” in L~y mod
p*N+1) and say that s is “cohomologous” to G. (For an arbitrary G € Lwg
the choice of € would in fact depend upon the decay rate of the coefficients of
G. As such, in what follows € should be thought of as a variable; in Lemmas
27 and 31 we determine which values for ¢ suffice in the cases of interest.)

7.1. Normal forms in L-(,/D(L) - Case p > 2. In the case p > 2 because
of the decay rate of power series in L working in L~o/D(L) is particularly
simple. From (15) and (18)

d
H=r) ;X
§=0
and thus
d
Hy =7 a;jX’
j=1

where ord(agd) = 0 since d # 0 in IF,. Consider the basis monomial 7%*(*) X
for the Banach module L where u > d. We have the trivial identity
d
(20)  mOXY = (x> aiX7) + X
j=1

d —1_wt(u)— u—
) (aad)~ = xud)

d—
Za]jX] +X i()((add) Lt =1 xu=dy —. D(r) + ¢/

where 7 € L and 7’ € Lvy. Moreover, 7’ is a sum of monomials of degree
less than u and greater or equal to u —d+ 1. Now let G € L+ mod p*(V+1)
and assume that br™* (%) X is the highest term which occurs in G for some
b € A. (Note that by the decay rate on the coefficients of elements in L
we see that u = O(eNpd).) We may suppose for our purposes that u > d.
We can write this term as D(br) + br’ where br' is a sum of monomials of
degree less than w but not less than u — d + 1. Write G = G’ + bVt X,
Then in Lso/D(L) we find that G is “cohomologous” to G := G' + br'.

To compute G requires d multiplications in A mod p*™+1), and the same



16 LAUDER AND WAN

number of additions (plus a little precomputation which can be ignored).
Now continue in this way until the highest term in some G, has degree less
than d. Precisely, we need m at most u —d + 1 = O(eNpd).

In this way we may find a “normal form” for any element in L~g. That
is, given G € Lsg mod p*V Y we can write it as

G=D(r)+s

where r € L, and s € Hy mod p” is a linear combination with coefficients
in A mod p"V of the basis monomials

{nX,nX2,... ©X%1}

The process above has time complexity

(21) O((eNpd)d(Npa)®)

bit operations where c is the exponent for multiplication as defined in Section
8.1. (Strictly speaking using the method that we describe the final factor in
the bracket should be (e Npa)¢. However, a simple analysis based upon the
proof of the next lemma shows that for each coefficient ¢, X% in G where c,
is given modulo p¥*1) one must only keep track of the first N terms in
the p-adic expansion of ¢,, not including the leading zero terms.)

The next lemma justifies the choice for ¢ in the case p > 2.

Lemma 27. Lete € {7X,... , 7 X% 1} with a(e) cohomologous to s, a lin-
ear combination of the basis elements. To determine s mod p” it is enough
to compute the coefficients of a(e) modulo p*™V+1).

Proof. Let e = nX7. By Lemma 9 terms in F(e) are of the form ¢, X"/
where ord(c,) > ((p — 1)/p)%(v/d). By the action of 1, terms in a(e) are
of the form ¢/, X% where ord(c,) > ((p — 1)/p)*((pu — j)/d). Equality (20)
shows that for u such that

(5 (=) -
——>N
p d d —

the normal form of the term ¢/, X* vanishes modulo p". Thus for

N +1
((p=1)2/p) 1
the term ¢/, X* does not contribute to s mod p?. Tt is easy to now check

that computing the coefficients ¢}, X" for u/d less than this bound with
coefficients determined modulo p? where

> 3(N +1) >

ISHES

b=3(N+1)+ (N +1)=4(N +1)

is enough to determine the normal form of a(e) modulo p™. O
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7.2. Normal forms in L.,/D(L) - Case p = 2. The reduction process
for p = 2 is in essence the same; namely, one uses a trivial identity to reduce
the degree at each step. However, the justification that it works is somewhat
more involved, since the power series in L decay rather more slowly.

We shall assume that dagy = 1; the more general situation just involves
some notational complications, the essential point being that we always have
ord(dag) = 0. Let Jy := J — {d} be the support set J of f excluding the
element d, and b; := ja,;. We may assume that all non-constant terms in
f have odd degree (Note 4), so each integer in J; is odd. (The argument
below in fact works provided only that d is odd, the key point being that in
any case ord(b;) = ord(j) for all j € Ji, and this is at least 1 for j even.) In
a similar manner to before we have the identity

(22) X% —p (1Xud> . (U - d) xu—d + Z ij’u.fd+j

™ ™ :
VISP

This is used to reduce a power series given in finite precision in Ls( to its
normal form, that is, a polynomial over A ® QQ of degree less than d with no
constant term. As before the complexity is (21).

We must also address one theoretical problem. Let G := ) ¢, X" € L,
and suppose that ¢, X" = D(ry)+s, with s, a polynomial of degree less than
dover AQ Q. Then G = D(}_,ru) + Y, Su provided that |ry|,|sy| — 0
as u — oo. To show that these sequences indeed converge, and to get a
bound on their p-adic orders, requires a more careful analysis which we now
perform in a rather ad hoc fashion.

Lemma 28. We may write any monomial X" in the form X" = D(r) + s
where r is a polynomial of degree at most u—d, and s is a linear combination
of the monomials X, X?,... , X%, with coefficients in A ® Q. Moreover,
the coefficients of s have p-adic order at least —mu — 1 and for any v the
coefficient of X"~V in r has order at least —muv — 2. Here

. 1
m = m

Proof. Our approach will be to show that X* = D(r') + s’ where 7' satis-
fies the conditions in the statement of the lemma, and s’ has the following
property: it is a sum of terms of the form ¢, X"~ where v > 1 and either
ord(cy) > —mw, or ord(cy) > —mwv — 1 with 4 — v < d. (In particular if
v > 2d + 1 with ord(c,) > —1, or v > 4d + 1 with ord(c,) > —2, then the
term ¢, X"~V is of the required form.) The result then follows by induction.
For simplicity we shall only consider the remainder term “s’”; one may ver-
ify that the other term “r’”, which we abbreviate as “x”, has the required
properties in all cases.

If u < d there is nothing to prove, so we assume u > d. By (22) if u —d

is even we are done, since then (u — d)/7 is integral.
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Assume then that u — d is odd. Applying (22) we are reduced to consid-
ering the term ((u — d)/7) X%~ If u < 2d then u — d < d and once again
we are done. Thus assume u > 2d. Applying (22) to this new term we get
that ((u —d)/7) X%~ equals D(x) plus

(u—d)(u—2d) , oy u—d u—d—(d—j)
(23) — - X ——— ; b; X 2
J 1

We first examine the terms in the final summation of (23). f u—d—(d—j) <
d we are done. Otherwise, applying (22) we find that ((u—d)/mx) X% 4 (d=3)
equals D(x) plus

(24) - (u —d)(u - 3d+J) yu-3d+j _ U —d S by X umd= (i)~
T T 1€J1

For the first term, (u—3d+7) is divisible by 2 and also u—3d+j < u—(2d+1).
Thus this term is of the required form “c, X"~"” where ord(c,) > —1 and
v > 2d + 1. For the terms in the summation in (24) one repeatedly applies
(22). The first time one uses the middle term on the righthand side of
(22) one gets the term ¢, X"~", say. Here the order of the coefficient ¢,
is —1, since (u —2d — (d —j) — (d — i) — ...) is even. Moreover, we have
v=2d+(d—j)+ (d—1i)+... >2d +1, and once again this term is of the
required form. If one never uses the middle term then the resulting term
c, X4V, say, has coefficient ¢, of order at least —1 and v — v < d, and once
again we are done.

It remains to consider the first term of (23). We may assume that v > 3d
(for otherwise it is already of the correct form). Applying (22) to this term
we get D(x) plus

(25)
(0= )= 2= 30) g 0= = 2= 3) S

w3 2

VISP
The terms in the last summation are of the required form since (u — 2d) is
even and 2d + (d — j) > 2d + 1. For the first term of (25) applying (22) we
get D(x) minus
(26)
() o) g 0 = 200 30) a0,

i w3

VISP

The first term is of the required form since (u —2d)(u — 4d) is divisible by 23
and also 4d > 2d+1. For the terms in the summation of (26) one repeatedly
applies (22). The first time one uses the middle term on the righthand side
of (22) one gets ¢, X* ¥, say. Here the order of the coefficient ¢, is —2, since
both (u —2d) and (u —4d — (d — j) — (d — i) — ...) are divisible by 2. Also
v=4d+ (d—j)+ (d—1i)+... > 4d + 1 which shows that this term is of the
required form. If one never uses the middle term then the resulting term
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cp X"7Y, say, has coefficient ¢, of order at least —1, since (u — 2d) is even,
and v — v < d, and once again we are done. O

Corollary 29. Forp =2 the set {nX,... ,mX% '} is a basis for L~o/D(L).

Proof. Since v > 1/(2+ (1/2d)), by Lemma 28 and a straightforward conti-
nuity argument we know that this set spans L~o/D(L). Any basis cannot
have fewer than d — 1 elements by consideration of the degree of the L-
function L(f,T") (using (8)), and so it must be a basis. O

The above result is primarily of theoretical interest. The next lemma
shows that in the case in which we are interested, denominators do not in
fact occur.

Lemma 30. Let p = 2 and e € {7X,nX?%, ..., 7X%1}. Then afe) is
cohomologous to an element Z?;% mj(rX7) where mj € A.

Proof. Dividing through by 7, we show that (7 'e) is cohomologous to an
element Z?;% ijj with m; € A. Let e = X7 where 1 < j <d—1. Then
the terms in F'(e) are of the form ¢, X"*/ where ord(c,) > v/4d (from Lemma
9). By the action of 1, the terms in a(X7) are of the form ¢, X* where
ord(c),) > [(u/2d) — (j/4d)]. We claim that such terms are cohomologous
to polynomials of degree at most d — 1 over A: If u < 2d the result is true
by one application of (22) and induction. For u > 2d one proves the result
using at most two applications of (22) and induction. O

The next lemma justifies the choice of ¢ in the case p = 2.

Lemma 31. To compute the normal form of a(e) € L modulo p~ it is

sufficient to determine the coefficients of a(e) modulo plAd+(N+1)

Proof. Lemma 28 shows that for u such that

ord(cy) —1>N

u

2d + (1/2)
the normal form of the term ¢, X" vanishes modulo p"V. Since a(e) € L
terms in this power series are of the form ¢, X*, say, where ord(c,) > u/2d.
For w/2d := (4d + 1)(N + 1) we have u/(2d + (1/2)) = 4d(N + 1) and
(u/2d) — (u/(2d + (1/2)) — 1 = N, and for u' > u we get a strict inequality
in the latter. Thus, it is enough to work modulo p? where

b=4d(N +1) + (N +1) = (4d + 1)(N +1).
O

7.3. Computing the absolute Frobenius matrix. We now describe how
to perform the main step of the algorithm, that is, constructing the matrix
for the absolute Frobenius map with respect to the basis {7 X,... , 7 X4 1}.
First, one may compute F with the coefficients determined modulo p(™+1)
directly from the formula in Definition 8 and the expression for 6(¢) in (14).
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Working with coefficients modulo p° (N+1) for each basis element e the poly-
nomial ¢, o F'(e) mod p*V+D) may be constructed. The reduction method
of Sections 7.1 and 7.2 is then used to write this as a linear combination of
the basis elements 7X,... ,7X% 1. In this way the matrix M is found with
coefficients determined modulo p?¥. (Note that the entries in M are p-adic
integers for all p, by Lemma 30.)

7.4. Finding the characteristic polynomial of Frobenius. One may
compute the matrix M, via the formula

a—1
(27) M, =[]+ (M)
=0

This is proved from Lemma 24 in the same way as [15, Lemma 26] (see
also the sentence following this lemma for an alternative approach). The
characteristic polynomial may then be found deterministically by computing
Tr(MPF) for 1 < k < d and using the Newton identity

det(T — M,T) = exp(— i %Mf)m.
k=1

(Alternatively, one could use an interpolation method.) The numerator of
the zeta function may now be found by computing the conjugates (11) and
taking a product to get a polynomial in Z,[T].

8. COMPLEXITY ANALYSIS

8.1. Exponents for ring multiplication. Let B be some modular reduc-
tion of A and P the ring of polynomials in one variable over B. Denote by
¢ the (deterministic) exponent for multiplication in both rings: Precisely,
polynomials of degree § in P can be multiplied in (’5(50) operations in B,
and elements in B multiplied in O((log | B|)¢) bit operations. Using classical
methods we take ¢ = 2, Karatsuba’s algorithm gives ¢ = log,(3) < 1.59,
and ¢ = 1 using Fast Fourier Transform (FFT) methods. (Note that we
ignore logarithmic factors, and the space complexity is O(8), O(log|B|) in
all cases. For polynomial multiplication using FFT methods we refer to [3];
we assume as in [12, Section 5] and [10, Section 4.3] that FFT methods may
be applied to B, although we do not know a convenient reference for this.)
Similarly, let w denote the exponent for deterministic multiplication of ma-
trices over B; thus two d x § matrices can be multiplied in @ (§*) operations
in B. It will transpire that the choice of w(< 3) does not affect the overall
complexity.

8.2. Complexity of point counting algorithm. First we must com-
pute F with coefficients determined modulo p*(¥*+1). This may be done by
multiplying together the O(d) polynomials #(a;X7) in the ring “L(5) mod
p*N+D” for § as in Lemma 9. (Note that each (t) can itself be constructed
via multiplication of truncated power series of the form exp(*t”j), as in [15,
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Lemma 29]. This part is dominated by the computation of F' itself.) From
the decay rate of coefficients of power series in L(8), we see that polynomials
0(a; X7) mod p¥+1) are linear combinations of the monomials 7r[Wt()91 X
for wt(:) bounded so that

[wt(i)§] < e(N +1)(p —1).

There are O(eNpd) such terms. Since the coefficients of the power series
6(a;X7) lie in A it follows that the construction of F' may be done in

(28) O((eNpd)(eNpalogp)°) = O((e* N?p?ad)*)

bit operations. (Here O(eNpalogp) is the bit-size of elements in the ring
A mod p*W+1)) Second, finding 1, o F(e) for all d — 1 basis monomials
requires

(29) O(d(eNpd)(sNpa)) = O(2N?p*ad?)

bit operations. Here we use the quasi-linear time method to compute the
map 7~ on A mod p*(Nt1) suggested in [12, Section 5] and [10, Step 2]
(namely, precomputation of the map on each basis element ¢ by Newton
iteration). Third, we must compute a normal form for each such expression
to find the coefficients in the matrix M. By the time estimate (21), we see
that each column of M can be computed in

(30) @(ENC+1pC+1d2aC)

bit operations. We require d — 1 = O(d) such computations. Fourth, com-
puting the matrix for M, may be done using Equation (27) and the fast
exponentiation method of [15, Lemma 31] in

(31) O(d*(Npa)°)
bit operations. Finally, the computation of the characteristic polynomial
takes

(32) O(d*! (Npa)®)

bit operations. (Computation of the products of the conjugates using (11)
is absorbed in the other estimates.) Adding (28), (29), d x (30), (31) and
(32) together and putting N = O(pad) with e = O(1), O(d) we get

(?(p4ca3cd4+c) for p > 2
O(p4ca3cdmax(50,c+5)) for p =2

where c is the exponent for ring multiplication as discussed in Section 8.1.
(Here we have assumed w < 3.) Using FFT methods we may take ¢ = 1,
giving the time complexity claimed in Theorem 1.

The space complexity is in all cases determined by the size of the ring
L mod p?™+1 and also the polynomial F mod p¥+1). These are both

~ ) 4@ or
O((eNpd)(eNpa)) = { gg%;;lg) iorﬁi ;
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This completes the proof of Theorem 1 in the case of Type 1 Artin-Schreier
curves, and also Type 2 since they are easily reduced to Type 1.

Note 32 It is possible to reduce the factors d° and d° in the time and
space complexities, respectively, for p = 2 to d*¢ and d* using a more careful
analysis: we have not taken into account that only part (N terms) of the
p-adic expansion of each coefficient in F mod p*+1) needs to be computed.
A much more detailed analysis of the action of D could perhaps reduce the
value required for € when p = 2, giving a uniform time estimate of O(p*a3d®)
with space O(p*a3d?) for all p.

Note 33 We briefly describe one alternative approach for p = 2 which
has also been implemented by Vercauteren [23]: The idea is to use a more
complicated splitting function to improve the decay rate of the coefficients
in F. The result is that one may use L := L(1) N A{X} for the case p = 2,
and the proof that L-o/D(L) becomes easier. Specifically, setting p = 2
take 0 := 03 where 63 is the splitting function defined in Lemma 6 of [15].
One may compute the required element y3 € Z, in the following manner:
let % satisfy the relation

vy =1+ 47 — 894"+ 845°.

Then 3 := 274. Let « be defined as before, but with the new €. This time
it is stable on L := L(1) N A{X}. Define H to be

2 .
H:=> ;7 (f(X7))
i=0

where

i
. 3

Vg =Y
1=0 p

Then one must compute the action of @ on the homology Lso/D(L) where
D := X(d/dX) + Hx. To do this, for j > 0 define 7/ L+ to be the Banach
module over A with orthonormal basis #V**)*J X*(y > 0). Then

af
HX = T‘-Xd—X mod 7TL>0.

Now one performs the reduction process from Section 7.1 coupled with a
hensel lifting argument to reveal “r” and “s” with “G = D(r) + s” working
modulo 7L~ for increasing powers of j. Note that one may take any
N > (d—-1)(1+ (a/2)) +1 and € = 11/3, and all computations are done
with p-adic integers. The algorithm has complexity O(a™?*(¢4)¢6) where
¢ is the exponent for multiplication and space complexity O(a3d®). This is
slightly slower in terms of a due to a step in the hensel lifting for which we
were unable to find a fast method.
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9. ARTIN-SCHREIER COVERS OF THE TORUS

In this section we present in a much more condensed fashion the algorithm
for computing the zeta function of the Type 3 Artin-Schreier curves.

Let f € F,[X,X~!] have negative degree d~ < 0 and positive degree
d™ > 0. We shall explain how to compute the L-function L*(f,T). From
this one may easily compute the zeta functions of Type 3 Artin-Schreier
curves using (9).

Define a weight function wt on Z by

f Ju/ld7]] fu<0
wh(u) ._{ L

where |.| is the usual (not p-adic) absolute value. For p > 2 let L be the
Banach module over A with orthonormal basis #%¢(") X" for r € Z. For p = 2
let L denote the Banach space over A®Q with orthonormal basis 7/ YW1 X7
for r € Z. (Here «y is any rational number with 1/2 > v > 1/(2 + 1/(2d"))
where d' := max(|d |,d").) Note that L contains two-way infinite power
series, and in fact still forms a ring because of the decay conditions on
coefficients. Now define the power series F and F(*) in exactly the same
manner as before. In this case they are two-way infinite power series. With
« and «g defined exactly as before, we find that both maps are stable on L.
We have the formula

. det(1 — T'a|L)

L1 = det(1 — Tqa|L)’

In this case one cannot remove any unit root factors. Let £ be the (slightly
“larger”) complex of modules

0 — L 2 1 — o

These are A-modules for p > 2 and A ® Q-spaces for p = 2. Here D is
defined in exactly the same manner as before (in Section 5). In this case
Hy = L/D(L) and H; = 0, and one recovers the cohomological trace formula

L*(f,T) = det(1 — Ho(c)T).

Once again we have the crucial relation Hy(a,) = Ho()®. A basis for Hy
can be taken as

(X 72X e X L aX, . o X

with d* — d~ the dimension of this space. Computation of normal forms in
L/D(L) is done in a similar manner to before. Precisely, one first uses the
method in Section 7.1 and 7.2 to find an element cohomologous to a given
element whose leading term has degree less than d*. One then performs a
similar process to increase the degree of the lowest term so that it is not less
than d~—. Note that we need a final p-adic accuracy of any N greater than
(p—1)(d"—d " )(a/2+1). For p > 2 the factor e can be taken to be 4, and for
p =2 it is 4d’ + 1. The complexity of the above algorithm may be checked
to be identical to that in the case when f is just an ordinary polynomial.
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Precisely, if we write “d := d* — d~” then all the bounds in Section 8 are
still true. This completes the proof of Theorem 1, and Corollary 2 follows
from Note 5.
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