COMPUTING ZETA FUNCTIONS OF ARTIN-SCHREIER
CURVES OVER FINITE FIELDS II

ALAN G.B. LAUDER AND DAQING WAN

ABSTRACT. We describe a method which may be used to compute the
zeta function of an arbitrary Artin-Schreier cover of the projective line
over a finite field. Specifically, for covers defined by equations of the
form ZP? — Z = f(X) we present, and give the complexity analysis of,
an algorithm for the case in which f(X) is a rational function whose
poles all have order 1. However, we only prove the correctness of this
algorithm when the field characteristic is at least 5. The algorithm is
based upon a cohomological formula for the L-function of an additive
character sum. One consequence is a practical method of finding the
order of the group of rational points on the Jacobian of a hyperelliptic
curve in characteristic 2.

1. INTRODUCTION

Starting with the work of Schoof [21], the computation of zeta functions
for varieties over finite field has been a central strand in algorithmic number
theory. An extensive reference of the papers in this area can be found in [3],
and more recent work includes [9, 10, 20, 22]. Various fast methods have
been developed for elliptic curves, but until recently general curves, let alone
higher dimensional varieties, seemed beyond reach both theoretically and
practically. In [14] the present authors proved polynomial-time computabil-
ity of the zeta function of an arbitrary variety of fixed dimension over a finite
field of small characteristic. This result was based upon Dwork’s proof of
the rationality of the zeta function of a variety [6], but unfortunately does
not lead to practical algorithms. Dwork’s proof does not use cohomology,
but it was the starting point for the development of several partial p-adic
cohomological theories, unified in rigid cohomology [2]. Independently of
the present authors, Kedlaya proposed a fast method for counting points on
a special class of curves based upon part of this theory, namely Monsky-
Washnitzer cohomology for smooth affine varieties [11]. The authors have
also developed fast methods for other classes of curves using the so-called
Dwork cohomology, and more generally “Dwork-Reich cohomology” [13, 15].
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2 LAUDER AND WAN

The two approaches may be explained in a common language: Kedlaya uses
a formula from rigid cohomology for the L-function of the constant sheaf on
the curve, whereas we use one for the L-function of non-constant sheaves
(Artin-Schreier and Kummer) on open subsets of the projective line. Thus in
our approach the complication lies in the sheaf, while with Kedlaya it lies in
the base variety. In this paper we extend the work of [15] to arbitrary Artin-
Schreier covers of the projective line. We only give details for a restricted
class of curves, but these are sufficient to cover a large class of hyperelliptic
curves in characteristic 2, which is the main motivation behind the work.
(Such curves are of interest in cryptography [12], and the fast computation
of their Jacobian orders was a long-standing open problem, first resolved
for arbitrary genus in a special case in [14], and with no restrictions in the
recent work [4, 5].) Unfortunately, we are only able to prove the correctness
of our algorithm for the case p > 5.

We now describe the main theorem. Denote by I, the finite field with ¢
elements, where ¢ = p® and p is prime. Fix IF; an algebraic closure of I, and
for each k£ > 1 denote by F x the unique subfield of order q*. Let f € Fy(X)

be a rational function. Let C’f to be the unique smooth projective curve

birational to the curve with equation ZP—Z = f in {z € F, | f(z) # oo} x[F,.
We prove the following result.

Theorem 1. Assume that p > 5, and that the poles of f include zero and
infinity and all have order one. Let dy be the number of finite poles of

f. The zeta function of the smooth projective curve C7 may be computed
deterministically in @(p4a3d2) bit operations.

Here we use soft-Oh notation which ignores logarithmic factors, as in [14,
Section 6.3]. We believe the algorithm also works when p < 5, although
we do not give a proof of this. In particular, the analysis in the case p =
2 requires further work which we have not undertaken. Also, it should
be possible to improve the complexity dependence on d, to fourth power,
although our analysis at present is not good enough to show this. Regarding
the pole order restrictions, the method extends easily to arbitrary rational
functions whose finite poles all have a common order. One should be able to
tackle the mixed-pole order case using partial fraction decompositions, but
this seems rather complicated and we have not worked out the details.

The case p = 2 is of particular interest. Let C' be the unique smooth
projective curve birational to that with affine equation

(1) Y24 r(X)Y = s(X)

where r, s € Faa[X] with deg(s) = 2y + 1, deg(r) = v, and r(X) squarefree
with r(0) = 0. This curve can be transformed easily into the form Z2+7 = f
for some rational function f with poles of order one. Assuming that the
algorithm we present also works when p = 2, and that one can improve the
complexity dependence on d, as suggested above, this would yield a (’j(a3'y4)
algorithm for determining the order of the group of rational points on the
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Jacobian of C'. It would be of great interest to give a rigorous proof of this,
and implement the algorithm in this case. Note that in [14, Corollary 2], the
complexity given when 7(X) has a single root is sixth power in the genus
(although one might be able to improve this to fifth power). In this case our
approach is a little slower than when r(X) has distinct roots.

The article is organised in the following manner. In Sections 2 and 3 we
derive a p-adic cohomological formula for the zeta function of an arbitrary
Artin-Schreier curve. In these sections essentially no restrictions are placed
upon the rational function f, and the formula itself is not original. In Section
4 we state the simplifying assumptions we shall make. Note that at this stage
the assumption p > 5 is still not used, only that on the pole orders. Section
5 contains the algorithm, and Section 6 our method for reduction in the
cohomology space. This method is original. Up until this stage we have not
at any point used the assumption p > 5; however, it is required in Section
7 where we justify the choice of p-adic accuracy in the algorithm. Section 8
contains comments on some non-trivial subroutines that much be performed
in the algorithm, and the complexity analysis is given in Section 9. Thus
the only aspect of the algorithm which we do not justify for p < 5 is that
the choice of p-adic accuracy is sufficient to recover the zeta function.

2. ZETA FUNCTIONS AND L-FUNCTIONS

We begin by recalling a classical relationship between the zeta function
of an Artin-Schreier curve, and the L-function of an associated additive
character (see for example [16, Section 4.6.2]).

Let f € F,(X) have a pole at infinity. Let C 7 denote the curve embedded

in {x € F| f(zx) # oo} x F, with equation
7P — 7 = f(X).

Denote by C 7 the unique smooth projective curve birational to C 7. By Weil
the zeta function of C 7 has the form

P
200 =T —q1)

where P(T') is a polynomial of degree twice the genus whose roots have
complex absolute value ¢'/2.

Let ¢ be a primitive pth root of unity in Q. For z € F, define ¥(z) = (7,
where the exponent is thought of as an integer. Let ¥y, : [F r — Q be defined
as ¥ o Tr where Try, : ]Fqk- — [F,, is the absolute trace map.

Define the exponential sum

Se(f0) = Y. (f(x)

CEquk,f(CE);ﬁOO
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Associate to this the L-function

_ © _ Tk
L(f,T) := exp (Z Sk(faql)?> :
k=1

Let L*(f,T) denote the L-function for the sums S; (f, ¥) over {z € Fox | f(z) #
oo}. Using the same approach as [15, Section 2] one may show that

p—1
P(T) = [[ 6:(L(f,T))
i=1

where 6; : ( — (' are the automorphisms of the cyclotomic field Q(¢)
(compare with [16, Equation (4.9)]). Thus the computation of the zeta
function of the smooth projective curve Cr reduces to that of the L-function

L(f,T).

3. A p-ADIC COHOMOLOGICAL FORMULA

In this section we present a p-adic cohomological formula for the L-
function L*(f,T) which is the basis of our algorithm. The formula in the
incarnation we give is due to Robba [19], but it owes greatly to the work of
Dwork [7] and Reich [17, 18].

Let f € F (X) be a rational function. The only assumption we shall
make in this section is that infinity is a pole of f, and that all the poles of
f have order not divisible by the characteristic p. Note that by applying a
suitable isomorphism over [, one may always find an equation for the curve
7P — 7 = f such that f takes this form. (Namely, extend the method of [15,
Note 4] by considering the finite poles as well as the pole at infinity, using a
partial fraction decomposition.)

Let Q, be the field of p-adic numbers with ring of integers Z,. Fix § the
completion of an algebraic closure of Q. Let Ky be the unique unramified
extension of Q, of degree a in Q (recall that ¢ = p®). Denote by Ry the
ring of integers of Kj. Fix a choice of 7 € Q with 77~! = —p and define
K, = Q,(r), which has ring of integers Ry = Zy(r). Let K denote the
compositum field of Ky and K7, and R the compositum ring of Ry and R;.
Let 7 be the lifting of the Frobenius pth power map from F, to K with
7(m) = w. For a power series or polynomial H(X), the notation H”(X) will
mean 7 acting on coefficients and fixing the indeterminate X.

Let f € Ko(X) be any lifting of f. In Section 4 we take a specific
lifting which makes computations and analysis easier, but for now it may
be arbitrary. Let the pole set of f be {fg = oo, 7, ... ,7d, }, and denote by
{ri} the corresponding pole set of f. Define

A:={z e Qlord(z) >0, ord(z —r;) <1 for 1 <i<d,}.

This is just the projective line over 2 with unit disks around the poles of
f removed. Denote by H(A) the “ring of overconvergent analytic elements
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on A” [19, Section 5.1]. This space may be identified with the ring of formal
power series

dy oo _
(2) ap + Z Z ai;T?

i=0 j=1

Here for 1 < i < dy we take T; = 1/(X —r;), and Ty = X. Also, the
coefficients ag, a;; lie in € and for each such power series (2) there exists
e > 0 such that ord(a;;) —ej > 0 for all 7 and sufficiently large j.

Define the map 1, : H(A) — HT(A) as follows. For ¢ € HT(A), the
function v, () is defined for z € A as

This is a 7~ !-linear map under which #f(A) is stable. Define ¢, := Py a

77%linear map on H'(A). The following properties of ), will be used on
several occasions. They may be proved directly from the definition.

Lemma 2. For o(X) and 3(X) power series of the form (2) in H'(A) we
have

Pp(a” (XP)B(X)) = a(X)hp (B(X)).
The action of 1, on monomials is given by

wy _ [ XU if plu,
¢p(X )= { 0 otherwise.

The first property may be used to compute the action of ¢, on rational
functions (see Section 8.1 and also [1, Lemma 1]).

Let 0(X) denote the formal power series with coefficients in R; obtained
by expansion from the relation

0(X) :=exp(n(X — XP)).

From, for example, [14, Section 4] we have that

3) 0(X) = i AXT ord() > 21,
r=0

p

Let F and F(® be the functions in 7f(A) defined for z € A via composition
of functions as

F(z) = exp(n(f(z)’ — f7(2")))0(f (z)) -
FW(z) = exp(n(f(2)? — f(@))0(f(2)0(f(@))...0(f ()" ).

We have the easily checked relation

a—1 ] ]
(4) FO() = [[ F™ ().
i=0
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for any € A. Viewing elements in H'(A) as formal power series, the
functions F and F(® can be written formally as

(5) F(X) = exp(n(f(X) = [T(X?)))
FI9(X) = exp(n(f(X) = f(X7))).

However, the functions cannot be evaluated at a point x € A using these
equations, since exp(m(X)) does not have a large enough radius of conver-
gence.

Let a :=4p o F and o := 140 F(@) be 7~ !linear and 7 %-linear maps,
respectively, on the space Hf(A). For example, for H € H'(A), the function
a(H) maps z € A to 1,(FH)(z). From Equation (4) and the second part
of Lemma 2, one sees that o, = a®. We have the “chain level” formula [19,
Equation (6.3.11)]

. _ det(l — Ty | HT(A))
L (faT) - det(l — quza | /HT(A)).

Here the determinant is in the sense of Monsky, viewing ¢, as a “nuclear”
operator on Hf(A). (More simply one may just use a matrix for the map
with respect to the “basis” used in (2).) This formula may be used to
compute the zeta function efficiently, but it is not very fast. By introducing
a “differential operator” one can derive a much more useful cohomological
formula. Writing F' := exp(n(f(X))) we see that formally (viewing H'(A)
as a power series ring)

aa:ﬁ’floz/)qof?.

Observing that the operators X diX and 1), commute up to a factor of g, this
suggests defining

. d - d df
(6) T °rux ° dX T dX’

We find that a, 0 D = gD o o, and thus the map «, defines a chain map on
the complex:

0 — H@ 2 HUE — o

1 qa, lag
0 — HA) 2 U1 — o
The kernel of D on HT(A) is trivial, since exp(—n(f)) does not define a

function in H'(A). Thus moving to homology one deduces (see [19, Page
235])

(7) L*(f,T) = det(1 — Tag | H(A)/D(H(4))).

Under the further assumption that zero is also a pole of f, say 7, = 0, the
space H1(A)/D(H(A)) has basis (see [19, Equation (8.1.1)])

(XM x—mtl XL X, X
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U{L/(X =) |2<i<dy, 1<j<m+1}.

Here as before r; are the finite poles of f, and for each 0 <7 < d, we denote
by n; the order of the pole of f at r;. (Recall that ro = oo and we assume
p does not divide n;.) Formula (7) along with the relation o, = a® may be
used to compute the L-function L(f,T) for any rational function f € F,(T).

4. SIMPLIFYING ASSUMPTIONS

For the remainder of the paper we shall make the following assumptions.
First, the poles of f include zero and infinity. Second, all the poles of f have
order 1. Third, we assume p > 5. All of the pole order assumptions may
be dropped, and the only one that significantly simplifies the algorithm is
the uniformity of the finite pole orders. As mentioned before, we believe the
algorithm still works when p < 5, although the arguments we give are not
refined enough to prove this.

Recall that d, denotes the number of finite poles. We may write

where h,k,g € F,[X] with deg(h) = 1, ged(k,g) = 1 and 0 < deg(k) <
dg, and deg(g) = d4 with g(0) = 0 and g squarefree. Let h,k,g be the
following liftings of h, k,g: let h and k be obtained by taking Teichmiiller
liftings of coefficients, and g by taking Teichmiiller liftings of roots (thus
g = H?il(X — 7)) and g = H?il(X — r;) where r; = Teich(7;)). The
assumptions on h and k are used to analyse the decay rate of coefficients of
f, and that on g seems helpful when computing 1),.
The basis for HT(A)/D(HT(A)) can now be taken as

{X X X2d9}
e

Since zero is a pole of f, we have that L(f,T) = L*(f,T) and thus (7) gives
an expression for the whole L-function.
Note that all computations take place with power series of the form

oo — 00

S Hxi+ S mxy

j=0 j=—1
where H; € K for j > 0, and for j < 0 each H;(X) € K[X] has degree less
than d,. This is because each basis element has this form, as does F, the
ring of all such power series is stable under the map 1), and our reduction
formulae “keep” series in this form.

5. THE ALGORITHM

We now present our point counting algorithm. The remainder of the
paper will be taken up explaining how to perform the required subroutines,
proving the correctness, and estimating the complexity.
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Algorithm 3

Input: An equation Z? — Z = f(X) over F,, where f € F,(X) and ¢ = p®.
We assume that f satisfies the conditions of Section 4 and p > 5.

Output: The zeta function Z(C’f, T') of the unique smooth projective curve
birational to the affine curve defined by this equation.

Step 0: Let d, be the number of finite poles of f. Let Ny := [2(p—1)d,(1 +
a/2) + 1], N1 = Ny + 6ad} and Ny = 2Ny + dg (these choices are not
optimal). We shall compute the coefficients of the numerator of the zeta
function modulo p™o.

Step 1: Compute the power series F' given in (5) with coefficients determined
modulo p™? (see Section 8.2). Let o be the map on the ring #f(A) defined
as o =1poF.

Step 2: Let

29ttt 9

e {X X2 X2dg}
ey

be the basis for the homology space H(A)/D(H'(A)). For each basis ele-
ment e, compute a(e) in HT(A)/D(H!(A)) as a K-linear combination of
elements in & with coefficients determined modulo p™ (see Section 6).
Construct M, defined as the matrix representing the map « acting on
HT(A)/D(HT(A)) with respect to the basis, with coefficients determined
modulo p™Vt.

Step 3: Compute

(a=2) , ——(a-1)

M, := MM™ ' ..M M

modulo p™', where the map 7 is the lifting of Frobenius to R and acts on the
matrix coefficients. Thus M, is a matrix for the map cg on HT(A)/D(H(A)).
Compute det(1 — M,T) with coefficients determined modulo p™*°.

Step 4: Output the rational function

o LT 05(det(T — M,T))
S 0-D)-qT)

where 6; is the cyclotomic field automorphism from [15, Equation (11)]
extended to act on Zjy[n][T] by fixing monomials.

Note that in Steps 2 and 3 the p-adic numbers might have small nega-
tive p-adic order. Determining their coefficients modulo p™* should just be
understood in the obvious, though slightly non-mathematical, sense.
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6. COHOMOLOGICAL REDUCTION

In this section we present explicit reduction formulae which may be used
to perform computations in the factor space H'(A)/D(H'(A)). The method
is similar to Hermite reduction for the integration of rational functions [8,
Section 22.2]. We shall also estimate the complexity of this process in terms
of field operations, although of course all actual computations take place
with “truncated” p-adic numbers.

At this stage we shall use the assumption that zero is a pole of f, and
so g(0) = 0, to simplify the reduction method. Under this assumption, the
element X is invertible in H(A) and so we have that

HI(A)/D(H'(4)) = HI(4)/ X' D(H(A)).
For any H € H'(A) we see that
(8) Hmod D = X(X 'H mod X" 'D).
Thus it suffices to find a reduction method for the space H(A4)/X ' D(H'(A))
where X~'D = (d/dX)—n(df /dX). (When g(0) # 0 one can derive slightly

different reduction formulae working directly with D.)
Recall that

k
f =h + B
g
where h, k € Ry[X] with deg(h) = 1,deg(g) = dy > 1, and deg(k) < d, with
ged(k,g) = 1 and g squarefree. Thus

We consider the action of X ~'D on a rational function X™g’ for some 0 <
n < d, and j € Z. We see zero is equivalent modulo X "' D(H(A)) to

(9)
X'D(X"g7) =nX"" g +jg? g X" 4+ 7h' X"g) + 7k X"g T — whg g T2X™),

Recall that ged(k, g) = ged(g,¢') = 1. Given any polynomial T(X) € K[X]
with deg(T') < dy we may write T = Ukg' + Vg for U,V € K[X] with
deg(U) < deg(g) +deg(T) < 2d, and deg(V') < deg(kg') +deg(T) < 3d,—2.
Replacing j by —j and X™ by U(X) in (9) we see that

U jU§ WU KU kgU

-1 iy— 2
X D(U(X)/g)_gj gt T T T T

Hence
T Ukg' Vg U WU U4 KU +V
g g tgn =gt g T agn t g
U’ WU —43Uq KU \%4
(10) _ +7r' n JUg +m +m .

7'(9] 7-(—gj+1
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This equation may be used to reduce any rational function T'/¢g’*? for
4 > 0 where T(X) € R[X] with deg(T) < deg(dy) to the form S/g* where
S € n/R[X] with deg(S) < 3d,. Each reduction step requires the com-
putation of one gecd plus a fixed number of additions and multiplications of
polynomials of degree O(d,). Thus it can be done in @(dg) operations in K.
The total time to reduce 7//g’+2 to this form is therefore O(d,5) operations
in K.

The term with highest degree, jd, + n, in (9) is 7h'X"g’. Thus all
polynomials of degree m > deg(h') = 0 can be reduced using the relation
(11) WX"g) = —r InX"1gd —aljgd g X" —K'X"g' ' + k¢'g? 2 X"
where 0 < n < d4 and j > 0 are chosen so that m = jd, + n. Specifically,
the lefthand side in (11) has degree m. Given the g-adic expansion of a
polynomial T'(X) of degree m, equation (11) allows one to compute the g-
adic expansion of a rational function W (X)/g? such that deg(W)—2d, < m.
This takes O(d,) operations in the field K. Notice that if T(X) € R[X] then
the coefficients of W(X)/g? lie in 7~ R. Repeating this we can reduce any
polynomial T'(X) € R[X] to a rational function W (X)/g? where deg(W) <
2d, has coefficients in n=4e9(T)R. The complexity of this reduction process
is O(d, deg(T)) operations in K.

Thus one may reduce all rational functions in #f(A) modulo X~!'D to a
linear combination of the set

{1 X X2dgl}
92,92,..., 92 .

Hence by (8) one may reduce all rational functions in Hf(A) modulo D to
a linear combination of the basis set

g;:{X X X%}.

g g g

To prove that H(A)/D(#HT(A)) is also isomorphic to the space spanned by £
one must show that the denominators introduced in the above process have
p-adic order bounded by a function with “sub-linear” growth (presumably
the logarithm function). This is apparently shown in [19], as the result is
stated on [19, Equation (8.1.1)]. However, for the purposes of our algorithm
we do not need to prove this. Rather we just give a linear bound on the
growth of denominators which is enough to determine the p-adic accuracy
“lost” during the reduction process. Note that the bound we give is actually
enough to establish (for p > 5) an alternative version of the cohomological
formula (7), in which the space ’HT(A) is replaced by a p-adic Banach space
of functions which converge on the projective line over € with disks around
the poles of f of radius A removed, for any A < 1/(p — 1). Such a formula
is more in the spirit of the original work of Dwork, involving p-adic Banach
spaces rather than dagger spaces. (Indeed, in [15] we derive such a formula
in the special case in which f has only a pole at infinity.)
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7. ANALYSIS OF THE REDUCTION METHOD

This section is devoted solely to a justification of the various accuracies
to which one must work at different stages of the computation. The reader
mainly interested in the practical details of the algorithm may move directly
to Section 8. Note that we shall also use some of the estimates in this section
in the determination of the complexity of the algorithm in Section 9.

7.1. Choice of final p-adic accuracy. The justification for the choice of
Ny is similar to that given in the paragraph following Lemma 24 in [15], and
we do not comment further on this (see also [15, Note 26]). The necessity
to initially work to different higher p-adic accuracies is more subtle, and is
a consequence of a loss of accuracy and introduction of small denominators
during the reduction process. We address the choice of N; and Nz in Section
7.5.

7.2. The decay rate of coefficients. We first determine the decay rate
of the coefficients of the power series F'.

Definition 4. Let A, e be positive real numbers or infinity, and 6 a real
number. Define the A-module L(A;€,0) to be

(S HXT+ Y Hi(X)g | Hy € A H;(X) € A[X], deg(H;(X)) < d,,
r=0 j=—1

ord(Hy) > Ar,ord(H;(X)) = €|j| 4 6}.
Here the order of a polynomial is the minimum order of its coefficients.
This is a subspace of #'(A).
Lemma 5. Write

o0 —0o0
F=Y FX"+ )Y FX)yg
r=0 j=—1

where F, € R and F;(X) € R[X] with deg(F};) < deg(g). Then

ord(F,) >

=
DN
hS]

That is, F € L((p — 1)/p*; 1/2p,0).

Proof. The set of all power series in the R-module R[[X,Y]]/(gY —1) which
satisfy the decay estimates claimed for F' is a complete ring. Thus it suffices
to find a suitable factorisation for F' and to show that each factor satisfies

the estimates. _
Write k(X) = 3% " k; XP. We have

F =exp(n(f(X) = fT(XP)))
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dg—1
(12) = exp(r(h —h7(X?)) [] exp{n((kiX'/g) — (K] X"*/g"(X)))}.
1=0

Since the coefficients of h are Teichmiiller points, the first factor in (12) is

1

[16(h;x7), 6(T) := exp(x(T — T7)) € Ry[[T]
j=0

where h = Z;:o hjX7. By the decay rate of the coefficients of 6 from (3)
we have that the first factor is an expansion Y 5°,u; X’ where ord(u;) >
(p — 1)i/p?®. We shall deal with each of the factors in the product in (12)
separately.

Write the ith factor in the product in (12) as

(13) exp(n((ki X' /g)P — (K] XP' /g7 (XP)))8 (ki X" /g).

Here the second factor is of the form 377°, v;(X)/g’ where v; € R[X] with
deg(vj) < dy and ord(v;) > (p — 1)j/p* > j/2p. To handle the first factor
in (13) observe that

1 1 ( r(X) )‘1
= -Dp
gT(XP)  g(X)P g9(X)P
where g7 (XP) = g(X)? —pr(X) with 7(X) € Ro[X] and deg(r) < pd,. Since
the coefficients of k are Teichmiiller points, we have kT = k”. The first factor
n (13) is exp(7) where * is

D xpi P xpi -1 X iLP i
(14) kP X _kZX (l—pi> JrkZX

— ——

gP gP = gp(ﬂ"‘ )

This sum has the form 372, ¢; /g’ where t; € Ry[X| with deg(t;) < d, and
ord(t;) = max([j/p] —1,1) = j/2p.

The first factor in (13) therefore has the form
(15) HeXp (ti/g"))

Since the power series exp(m(T')) € R;[T] the result now follows. O

(An easy modification of the above proof gives decay estimates in the
case that all the finite poles of f have common order d, say, and the pole
at infinity takes any order dj, say. Specifically, one gets the lower bounds

(p —1)/p*dy, and |4|/2pd.)
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7.3. The action of 1), o ' on the basis set. We now examine the decay
rate of the coefficients of the power series obtained when 1), o F' acts on an
element in the basis £.

Lemma 6. Let L(Aj;e, d) be the A-module in Definition 4. The space L(Aje, §)
can also be viewed as module over L(A;¢€,0). In particular
L(A;e,0)L(Aje,6) € L(A;€,0).
Moreover, if pe < 1 then
Pp(L(As€,0)) C L(pA;pe,d —e(p — 1)?).

Proof. The first part is straightforward. For the second, the factor p im-
provement of A follows from the explicit formulae for the action of 1, on
monomials in Lemma 2. To understand the change in € and J, we con-
sider the action of ¢, on a element Xi/gl for j > 1. Write j = pk + £
where 0 < £ < p, and ¢ = ¢"(XP) + pr(X) for some r(X) € A[X] with
deg(r) < pdy. Using the property of 1, from the first part of Lemma 2 we

find
X 1 X [~k 1 Xipm
—_— _— — m_ —_—
vr (9”’““) - gkmzo(m>p gm¢p( g* >

(Note that (;f) € Zyp.) We have that

w(5) = ({55 )

By the choice of the lifting of g, the operand of 9, is a polynomial of degree
<i+mpdy+(p—1)dsl. Using again the explicit action of 1), on polynomials
we find that

X! 1 = [(—k\ ,Rm
o () =7 2 ()

where R, € A[X] has degree

i—dyt
P

Now assume that ¢ € A is such that ¢X?/gP*+¢ € L(oose, d); so ord(c) >
e(pk+£)+ 6. We show its image lies in the appropriate space, and the result
then follows by continuity. From (16) we see

<dg(m+£) +

¥, (QTXH) = S (GX) + HX)

where G(X) € A[X] has degree < dgl(1 — (1/p)) + (i/p), and H(X) €
L(00;1,0). Since pe < 1 the space L(pA;pe,d — e(p — 1)?) is closed under
multiplication by elements of L(oo;1,0). Now cT_l/ng € L(pA;pe,§ —
e(p — 1)?) since ord(¢™ ') > pe(k +£) + (5 — el(p — 1)) and £ < (p — 1). By
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the previous comment, multiplication by H(X) does not remove it from this
space, and certainly neither does that by G(X). The proof is complete. [

Lemma 7. For each e € £ we have ¢,(Fe) € L(1/2;1/2,—p).

Proof. By Lemma 5, F € L((p — 1)/p?;1/2p,0) and one may check that
e € L(oo;1/2p, —1/p). Thus by Lemma 6, Fe € L((p — 1)/p?;1/2p, —1/p)
and y(Fe) € L((p—1)/p; 1/2,(=1/p) — (p—1)*/2p) C L(1/2;1/2,—p). O

7.4. Loss of accuracy during reduction. During the reduction process
powers of 7 are introduced in the denominators of rational functions. The
next lemma quantifies this loss of accuracy.

Lemma 8. Let 7 > 0 and 0 < i < dy = deg(g). Denote by W,(X) and
W, i(X) the unique expressions for X" and X'/g", respectively, as a K -linear
combination of elements in the basis set £. Then W,(X) becomes integral
on multiplication by ="', and W,i(X) becomes integral on multiplication
by 7"t —2,

Proof. The first result follows from the penultimate sentence of the para-
graph after Equation (11) and Equation (8). For the second, dividing by
X we are reduced to considering either X*~1/g" or (g/X)/g"*!'. From the
comment following Equation (10) either of these may be reduced modulo
X~!D to a rational function S/g? with deg(S) < 3d, and S integral upon
multiplication by #"~!. Writing S/g? = Si + (S2/¢*) where deg(S2) < 2d,,
we need only now reduce the polynomial S; € 7 "' R[X]. The reduction
of Sy modulo X~'D will be integral upon multiplication by pf—1+deg(S1)
which completes the proof since deg(S;) < d,. O

7.5. Choice of intermediate accuracies. We now put together the esti-
mates in Sections 7.3 and 7.4.

Lemma 9. Assume that p > 5. For each basis element e € £, to determine
the coefficients of (1, o F(e) mod D) modulo p™! it is enough to compute F
modulo p™? where

“ )N, +2p+d, —2
N2:2N1+dg(>(p JNi +2p + dy >

(p—3)
Proof. The value for N> is obtained by finding a neat integral solution of
2( V- dy —2
p—1
Precisely, this choice of Ny ensures that, given the decay rate of the coeffi-
cients of 1, (Fe) from Lemma 7 and the denominators which are introduced

in the reduction process in Lemma 8, computing 1, (Fe) mod pV? is enough
to recover the (possibly non-integral) coefficients in 1, (Fe) mod D to the

accuracy p1. ]
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From Lemmas 7 and 8 one sees that each coefficient of 4, (Fe) mod D has
p-adic order at least

(dg — 2+ 2p)
p—1

We know that the coefficients of det(I — M,T') are integral. Each coefficient
of this polynomial is obtained by summing certain products of exactly 2ad,
elements in the matrix M (and its conjugates under 7). Thus to compute
the polynomial modulo p™° it is sufficient to find the entries in M modulo
p™"1 for any integral N; with

2adg(dg — 2 + 2p)

p—1

For example, N1 = Ny + 6ad3. This motivates the choice of Ni. Note that
the authors do not believe that the increase from Ny to Ny in accuracy should
be necessary, but it precisely this which alters the complexity dependence
on d, from fourth to sixth power.

Ny

> Np.

8. AUXILIARY ROUTINES

In this section we explain to how perform within the desired complexity
estimates two essential but non-trivial tasks.

8.1. Computation of the map v,. A method of computing the map 1,
on rational functions is given in [13, Section 7.3]. Precisely, one should
replace the notation “f” and “d” in this section by our “g” and “d,”. The
method there computes the linear map 7(¢,) in soft-Oh linear time in the
input size for any rational function with denominator a power of g. (See the
final paragraph of Section 9 for why it is better to compute 7(,) rather
than ,.)

8.2. Expanding F. By the decay estimates in Lemma 5, the power series
F reduces to a rational function F' mod p™"? of “degree in g” at most 2pNy =
O(pN3), with polynomial part of degree at most p>?Ny/(p—1) = O(pN2). By
“degree in g” we mean the power of g which occurs in the denominator when
it is written as a quotient of two coprime polynomials. In this section we
explain one method of computing the power series quickly. More precisely,
in time @(dgpNz) operations in the ring R/(p™V?).

First note that 6(¢) mod p™? is a polynomial of degree O(pNs) which can
be easily computed (see [14, Lemma 29]). Thus both the first factor in (12),
and the second factor in (13) (there are d, such factors), may be computed by
first explicitly finding 6(#) mod p™? and making an appropriate substitution
in each case. This requires @(dszg) operations in R/(p™?). The difficultly
lies in the first factor in (13), which must also be computed dy times. We
compute it via the product in (15). By the estimate ord(t;/g7) > j/2p we see
that we need only compute #;/ g’ for 1 < j < 2pNy, and these may be found
directly from (14) in O(d,pNs) operations in Ry/p™2. Since exp(nT) €
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R, [T] it follows that exp(r(t;/g’)) mod p™? is a rational function of “degree
in g” [2pNy /4] — 1. It may be computed by direct substitution of T' = t;/g’
in the first O(pN2/j) terms of exp(nT'). This takes O(dypN2/j) operations
in R/p™2. Thus the time taken to compute all factors exp(m(t;/g’)) for
1 <5 < 2pNs is
2pNy—1
O( Z 2dgpN>/j) = O(dgpNa).
j=1
Multiplying these truncated power series together starting with the one of
smallest degree, we can compute the product in time
2pNo—1
O( Y (2dypNy/j)log(2dypNa/j)) = O(dgpNs).
i=1
Here we use the fact that for i < j the product exp(r(t;/g”)) exp(w(t;/g")) mod
p™¥2 has “degree in g” of O(pNy/i). Thus the truncated power series F
modulo p™? can be computed in C’)(dgpNg) operations in R/p™?. Note that
throughout this argument we have used soft-Oh linear algorithms for poly-
nomial multiplication. Also, one needs to use a soft-Oh linear method for
converting between different basis representations of polynomials to express

all rational functions as linear combinations of the set {X/g/ Yo<i<dy, j>0
(see [8, Section 9.2]).

9. PROOF OF THEOREM

The correctness of the algorithm follows from our justification of the
choice of Ny, N1 and Nz in Section 7, and the results of Robba quoted in Sec-
tion 3. It remains to estimate the complexity of the algorithm. From Section
8.2 the rational function F' mod p™? may be computed in @(dgpNg) opera-
tions in the ring R/(p™?). By Section 8.1 computation of 4, o F(e) for any
basis element e € £ may be achieved in @(dgpNz) operations in R/(p™?). By
Lemma 7, 1,(Fe) mod p™? is a rational function with polynomial part of de-
gree O(N2) and “degree in ¢” O(N3). By the complexity estimates in Section
6, it can be reduced in @(dgNg) operations in the field K “modulo p™?”, with
elements of p-adic order at least —(dy —2+2p)/(p—1). That is, equivalently
O(d,N») operations in R/(p™2+*), where here ¥ = [(d,—2+2p)/(p—1)]. Re-
peating this 2d, times allows one to construct the matrix M, with coefficients
determined modulo p™¥*. This matrix can therefore be found in @(Ngdg)
operations in R/(p™27*), with * as immediately above. To compute M,
from M we can use the “fast exponentiation” method in [14, Lemma 31] in
O(log(a)d3) operations in R/(p™*+*), where now x = [a(dy—2+2p)/(p—1)].
The extra exponent accounts for any growth in denominators. The algorithm
from, for example, [4, Section 4] can be used to compute the characteris-
tic polynomial of M, in (’j(dg) operations in R/(pMT*), where this time
* = [2adg(dg — 2+ 2p)/(p — 1)]. Finally, the “norm” of this p-adic integral
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polynomial can be found in O(pd,) further operations in R/(p™°) (see [15,
Equation (11)]).

By “operations in R/(p™V)” for some N in the above paragraph we mean
arithmetic, which may be done in Soft-Oh linear time i.e. in O(paN) bit op-
erations. Putting Ng = O(pad,), N1, Ny = C’)(padﬁ) in the above paragraph
gives a total complexity of

@((dﬁpNz)(paNz)) = @(P403d2)

bit operations.

We have above ignored the contributions from the computation of the
map 7~ !. By the method in [11, Section 5], this may be done on R/(p") in
O(a(paN)) bit operations. In the computation of M, from M, we require
O(log(a)) applications of 7! to a matrix of side O(d,) with entries in K
“modulo” p™ and p-adic order at least —2ad,(d, —2+2p)/(p—1). One may
check that this is absorbed in the final bit estimate above. One also needs
to compute 7! when constructing 1, 0 F'(e) mod p™? for each basis element
(in the application of the map 1, to F'e). Doing this directly would increase
the complexity estimate above by a factor a. As such, we make the following
minor modification to the algorithm: instead of reducing ¢, 0F(e) modulo D,
reduce 7(1p, o F)(e) modulo 7(D), and apply 7! to the answer. Reduction
modulo 7(D) just involves replacing f by f7 in the formulae in Section 6, and
the linear map 701, can be computed in soft-Oh linear time. (An alternative

approach is to compute F™ ' rather than F by replacing f by f7  in the
equations in the proof of Lemma 5 and using the method of Section 8.2.
This requires soft-Oh linear time. Then ), o F(e) = 7o 1/)p(F7716771) and
here the map 7 o1, can be computed in soft-Oh linear time.) Using either
approach, the total bit complexity from the computation of the map 77! is
absorbed in the estimate above. The proof of Theorem 1 is complete. (Note
that in [15, Section 8.2] we made the incorrect claim that the method of [11,
Section 5] gives a soft-Oh linear time algorithm for computing 7. This
minor error in the complexity estimate in [15, Section 8.2] can be rectified
by applying either of the tricks above i.e. reducing 7(1, o F)(e) modulo

7(D) and applying 7! to the reduced form, or initial computing FTﬁl.)
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