COMPUTING ZETA FUNCTIONS OF KUMMER CURVES
VIA MULTIPLICATIVE CHARACTERS

ALAN G.B. LAUDER

ABSTRACT. We present a practical polynomial-time algorithm for com-
puting the zeta function of a Kummer curve over a finite field of small
characteristic. Such algorithms have recently been obtained using a
method of Kedlaya based upon Monsky-Washnitzer cohomology, and
are of interest in cryptography. We take a different approach. The
problem is reduced to that of computing the L-function of a multiplica-
tive character sum. This latter task is achieved via a cohomological
formula based upon the work of Dwork and Reich. We show, however,
that our method and that of Kedlaya are very closely related.

1. INTRODUCTION

Computing zeta functions of varieties over finite fields is one of the ba-
sic problems in algorithmic number theory. Over the last few decades this
has attracted considerable attention, motivated mainly by applications in
cryptography. In [19] Wan and the author showed that the problem al-
ways has a polynomial-time solution provided the characteristic of the field
is small and the dimension is fixed. Our result was based on the p-adic
methods in Dwork’s proof of the rationality of these zeta functions. Un-
fortunately our algorithm is not really practical. Independently, Kedlaya
presented a fast algorithm based upon Monsky-Washnitzer cohomology for
hyperelliptic curves over finite fields of small odd characteristic [16]. This
was of particular interest since such curves are useful in cryptography [18].
Gaudry and Gurel showed that Kedlaya’s algorithm extends naturally to the
so-called superelliptic curves [13]. In this article we shall call these Kum-
mer curves. Neither of these algorithms were able to tackle hyperelliptic
curves in characteristic 2, the case of greatest practical interest, the rea-
son perhaps being that such curves are examples of Artin-Schreier curves,
rather than Kummer curves. Wan and the author devised a fast method
for a restricted class of Artin-Schreier curves, including elliptic and certain
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hyperelliptic curves in characteristic 2, based upon Dwork’s ad hoc cohomol-
ogy theory for one variable exponential sums [20]. (This method extends to
all Artin-Schreier curves [21].) Subsequently, Denef and Vercauteren found
a method for Artin-Schreier curves in characteristic 2, and were able to ex-
tend this to all hyperelliptic curves, using Monsky-Washnitzer cohomology
[5, 29]. The purpose of the present article is to present a fast method for
Kummer curves in small characteristic, based upon an ad hoc cohomology
theory of Dwork-Reich for multiplicative character sums. The algorithm
has the same complexity as those in [13, 16], and in fact in the final sec-
tion we explain precisely how the two are related. As such, this article also
gives a self-contained derivation of the algorithm of Kedlaya, which does not
depend upon the machinery of Monsky-Washnitzer cohomology. Since our
approach proceeds via character sums, we actually obtain a fast method for
computing L-functions of multiplicative character sums.

Let p denote a prime number, and a a positive integer. Define ¢ = p® and
denote by I, the finite field with ¢ elements. Fix an algebraic closure F, of
[, and let F « be the unique subfield of order q*. We write ]F:; for the set

of non-zero elements in Fq. The Kummer curves over I, we consider in this
paper are defined by an equation of the form

(1) Y™ = F(X)

where f € F,[X] is a polynomial of degree d. We shall assume throughout
that f is squarefree with f(0) # 0, m > 1 and is coprime to d, and m
divides p — 1. (This final restriction is not needed in [13], and as such our
result is actually slightly less general, although the complexity dependence
on m is a little better.) Specifically, denote by Cy the curve embedded in
{z eF,|f(z) #0}x ]FZ with equation (1) and let éf be the unique smooth
projective curve birational to C 7-

Theorem 1. The zeta function of the smooth projective curve C’f may be

computed deterministically in @(pa3d4m3) bit operations. Hence the order
of the Jacobian of C'r may be found deterministically within this time bound.

Here we use Soft-Oh notation @ which ignores logarithmic factors, as in
[19, Section 6.3].

Our approach yields as an intermediate result a method for computing the
L-function of a multiplicative character sum defined in terms of f. Specifi-
cally, let x be a multiplicative character of order m defined on ]F;. Let xx
denote the character on ]sz comprising the Norm map followed by x. Then
the L-function L(f,x,T) is defined (as in Section 2) and we show that a
p-adic embedding of it may be computed quickly.

We refer to the references in [2] for the large literature on point counting,
including [9, 27], and the more recent work [5, 10, 11, 13, 14, 16, 22, 26, 29,
30, 31, 33].
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Sections 2, 3, 4 and 5 lay the mathematical foundation of our algorithm:
it is based mainly on a cohomological version of the Reich Trace Formula
for one-variable character sums. To the author’s knowledge, this version has
previously only been worked out explicitly in [8, 25], and does not appear in
the work of Reich [23, 24]. Since this formula is central to the algorithm we
develop it in full detail. Our formula is very similar to the ones [8, 25], and
in Note 17 we explain the precise relation. Section 6 contains a statement
of the algorithm for Kummer curves and Section 7 describes exactly how
to perform the main steps. Specifically, we present a reduction method and
obtain bounds on the denominators introduced, allowing us to determine
the required p-adic accuracy — this is the main original mathematical con-
tribution of the article. The complexity analysis is tied up in Section 8, and
the relation to Kedlaya’s algorithm is explained in Section 9.

2. L-FUNCTIONS AND KUMMER CURVES

Let Q denote an algebraic closure of the rationals Q. Let y : IF; - Q
be a multiplicative character of order m, and Nm;, : ]F;k — ]F;‘, the absolute
Norm map. Notice that we have m|p — 1. Let g be some generator of IF;
and 4 := x(g), a primitive mth root of unity. Define x : sz — Q to be
the multiplicative character y o Nmy. For 1 < j < m — 1 we have that Xi is
a character of order m/ ged(j,m).

Let f € F,[X] be the polynomial from Section 1. For 1 < j < m —1
define

(2) Sifod) = Y x(f@)

:Z‘GF;k

*(F 7 = I)ck(f Xj) k
3 L T) = —R T
(3) (f:x/,T) exp | )~
k=1
where we use the convention that x(0) = 0. Let Sp(f,x?) and L(f,x?,T)
denote the corresponding character sum and L-function over the affine line.
When j = 1 we shall omit the x in this notation. Let Cf be the curve
embedded in {z € F, | f(z) # 0} x IF'; with equation
Y™ = f(X).
Let C 7 denote the unique smooth projective curve birational to C7.

Lemma 2. For each z € F v with f(z) # 0 there are ezactly nz points of
the form (z,9) € Fge x v on Cf where

o { X —1

0 if x(Nmy(f(z))) # 1

Proof. We have nz; = m when f(Z) is an mth power in F, and nz = 0

otherwise. This first condition is equivalent to Nmy(f(z)) an mth power in
I, and the result follows. O
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Denote by C¢(Fgx) the set of Fyi-rational points on Cr. From Lemma 2
one deduces

(m — Ny

X (F(@) = (~1)(Be — %) +

Ry :=#{Z € Fpu | f(z) #0} =: ¢* —
and we use the fact that ZT;II(M)J = —1for 1 <i<m—1. It follows that
m—1 o
B(OFF ) = 3 SelFod) + (d — ).
j=1

Letting Z(Cp,T) denote the zeta function of Cy we find

175 L(f, %7, T)
2(Cp,T) = = H»—qT

R(T)

where R(T) is the reciprocal of the zeta function of the zero dimensional
variety defined by the vanishing of f i.e. a polynomial with unit root factors.
By Weil we know that

P
“0r 1) = Ty 1 —qn)

where P(T) is a polynomial of degree twice the genus g of C 7 with reciprocal
roots of complex absolute value ¢'/2. Again by Weil [15, Section 1] we know
that L(f,x?,T) is a polynomial of degree d — 1 with reciprocal roots of
complex absolute value ¢/2. (Here we use the fact that since ged(m,d) = 1
and m > 1, the order of the character x/ does not divide d.) Since C 7 and
CN’f differ in only finitely many points their zeta functions differ by a unit
root factor. It follows that

m—1

(4) P(T) = [ L(f.x',T)

J=1

and thus g = (m —1)(d —1)/2. Note that for m prime this is the product of
the Galois conjugates of L(f,T) over the mth cyclotomic field. In general it
equals T 4m [Toec. O(L(f,x™¢,T)) where G, is the Galois group of the
eth cyclotomic field, although we shall not use this formulation. In Sections
3, 4 and 5 we focus on computing L(f,T), indicating the minor changes
required for the other factors in (4) in Section 7.4.



L-FUNCTIONS, MULTIPLICATIVE CHARACTERS 5

3. ANALYTIC REPRESENTATION OF MULTIPLICATIVE CHARACTERS

3.1. p-Adic rings. Let Q, denote the p-adic numbers with ring of integers
Zy,. Fix © the completion of an algebraic closure of Qp. Let K denote the
unramified extension of Q, of degree a, where ¢ = p®, and A the ring of
integers of K. Let ord(.) denote the p-adic valuation on € normalised so
that ord(p) = 1, |.| the corresponding p-adic norm, and 7 the Frobenius
automorphism of K [19, Section 3.

Let f € A[X] be the following lifting of the polynomial f € F,[X]: Write
f= H?;ol (X —r;) and define f(X) = H?;ol (X — r;) where r; is the Teich-
muller lifting of ;. This special lifting is not essential for the theory, but we
do have the nice property that 7(r;) = r¥, which is of help in Section 7.3.

Let K[X,1/f] be the ring of polynomials in X and 1/f over K and
K[[X,1/f]] (respectively A[[X,1/f]]) be the space of formal power series
in X and 1/f over K (over A). Explicitly, K[[X,1/f]] is the K-space of
formal sums Zi,j ainifj where the summation is over 0 < ¢ < d and
j € Z and each a;; € K. For each rational number A,e > 0 denote by
Lfa, C K[[X,1/f]] the p-adic Banach space [28, Section 1] consisting of all

elements

> aX'f?

2%
where the summation is over 0 < i < d, and j € Z, and we have a;; € K
with (compare [24, pages 843-844])

(5) ord(a;j) + €j — o0 as j — —o0,

(6) ord(ai;) — jdA — o0 as j — +o0.

Note that each L A . has the structure of a ring, via the usual multiplication
and addition rules for power series. Define

Dpe:={xr€Qord(z) > —A,ord(f(z)) < €}.

Lemma 3. The space Ly is precisely the ring of all power series in
K[[X,1/f]] which converge on the disk Dy .

Proof. Let g € K[[X,1/f]] with g = > a;;X'f’. For & € Dy, we have
that g converges at ¢ if and only if for every real number § > 0 there exists
only finitely many pairs (i, §) such that |a;;€* f(€)7] > 6. This is true if and
only if |a;;&°f(€)7] — 0 as j — oo and as j — —oo. When A > 0, picking
¢ € Q with ord(§) = —A, and thus ord(f(£)) = —dA, shows that a;; must
satisfy (6). When A = 0, choosing ¢ with ord(¢) = 0 and ord(f(£)) = 0
again shows that a;; must satisfy (6). Picking & €  with ord(f(£)) = € and
ord(¢) = 0 shows that a;; must satisfy (5). Thus g € Ly .. Conversely,
for g € Ly, write g = g~ + g* where the former contains the negative
powers of f and the latter the non-negative. Then (6) ensures gt converges
for any x with ord(z) > —A, and (5) ensures g~ converges for any z with
ord(f(x)) <e. Thus g converges on Dy A . as required. O
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3.2. The multiplicative character. Recall that m|p—1 and so in partic-
ular m is coprime to p.

Definition 4. Let Teich be the Teichmuller map from ]F; to A and write
(p—1) = mm/. Let x := Teich™ . So x is a multiplicative character of
order m on ]F;. Denote by xr := x o Nmy, the corresponding character on

sz obtained by composing with the norm map.

The next step is to construct an analytic representation of the map

xx(f(z)) on the set {7 € I | f(z) # 0}.
Definition 5. Define the power series F, F(®) € A[[X,1/f]] as follows:

’

o= (T s ¢ +pﬁ((§>)p>é

!

@y . (X9 = m!(g—1)/(p—1) WX) \ "
o= (S ) = e (i)

Here 7(f(XP)) = f(X)P +pg(X) and f(X?) = f(X)?+ ph(X) where g,h €
A[X]. Also, we choose the mth root of the rational function so that F), Flo) =
1 mod p.

Lemma 6. We have F' € Ly, for any €, A >0 with e < 1/p.

Proof. Expanding (7) using the binomial series we have that

PX) = 0" Yot (L)

where a; = (l/jm) € Zy (since 1/m € Z,). Writing F = F~ + F* we see

that F'* is simply a polynomial and so satisfies condition (6) for any choice
of A > 0. The power series '~ satisfies condition (5) for any e < 1/p. O

J=0

By Lemma 3, F(X) converges at the Teichmuller lifting = of a point Z
with f(z) # 0 (for then ord(z) > 0 and ord(f(z)) = 0 < 1/p). One may
check that F(®) = H?;OI 7 (F(X?")), and thus F(® also converges at these
points.

Lemma 7. For 7 € F« with f(z) # 0 we have that

1

Xk(F(7)) = FO @) F@ (@) FO (21,

Here x. = x o Nmy where x is the character of order m defined in terms of
the Teichmuller map, and x := Teich(Z).

Proof. Since F(® = (f(X7)/f(X))'/™ it follows that
)" = X/ F(X).

k—1

9) (F(“) (X)F@ (x9)... Fl@)(x1
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Let z € Fx with f(z) # 0 and put X = z where z := Teich(z). The
bracketted product on the lefthand side of (9) is then an mth root of unity,
since 77" = 7. Moreover, this bracketted product is equivalent modulo p to

f(m)m,(q_l)(l"'q"'"""qF1)/(”_1) = Teich™ (Nmg(f(Z))) mod p

and the result follows. O
Corollary 8. With F\®) as given in Definition 5 and xj, as in Definition J
we have

Sooxwlf@) =Y, FO@FD ). FO @)

@eF;k zaf-1-1

where both summations are over points with f(Z) # 0.

4. THE REICH TRACE FORMULA

Definition 9. Let A > 0 and 0 < e < 1. Define L) a e and D5y a,c to

be usual sets, but with f replaced by 7(f). For G € L ape/p let 1/31,(G) be
the function on the set D () A defined by

Jp(G)() = % S Gly).

yP:;n

Here 1,[;:,, is a linear map. Define v, = 1o z,l;p, a 7 -linear map from
Linpep t0 Lgne and let g := 1y a linear map from Ly Ajqe/q 10 L

We first prove that the properties claimed in the definition actually hold.
Lemma 10. First, for G € Ly ajp.e/p and © € Dr(py A the function @/;p(G)

converges at . Thus 1, has image in L;(f) A .. Second, 1y is a linear map,
Py 18 7~ Llinear and g 15 linear, with range as claimed in the definition.

Proof. Let y € Q with y?» = z. Then ord(y) > —A/p. First assume that
ord(y) > 0. Then f7(z) = f7(y?) = (f(y))? mod p where the superscript
notation emphasises that 7 acts only on coefficients of f(X). Since e <1
we see that ord(f7(z)) < 1 and thus ord(f(y)) = ord(f"(z))/p < €/p. For
ord(y) < 0 we always have that ord(f(y)) = dord(y) < 0 < ¢/p. Thus G
converges at y, and the mapping z,l;p(G) is therefore defined at z i.e. z/;p(G) is
a mapping on D) A .. By the explicit method for computing 1,[;:,, in Section
7.3 (see also [21, Lemma 6] and [1, Lemma 1]), the function 4,(G) may be
identified with a power series in K[[X,1/7(f)]]. Therefore by Lemma 3 the
map 1/31, has image in L;(f) A The linearity for 1/~;p claim follows directly
from the definition, and the similar claims for 1, and 1), are immediate
(recall 77 is the identity on K). O

We shall also need the following properties.
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Lemma 11. First, for any H,G € Ly, where A > 0,0 < e <1, we have
dp(H(XP)G(X)) = H(X)ihy(G (X))
and thus

be(H(X)G (X)) = H(X)thg(H(X)).

Second, the map z/;p acts on monomials in LA . as follows:

T ooxuy [ XUP ifplu
p(XT) = { 0 otherwise.
Proof. Follows directly from the definitions. O

Theorem 12 (Reich Trace Formula). For G € Ly let 94 0 G denote the
map composed of multiplication by G followed by the map g on the p-adic
Banach space Ly o. For k > 1 let Tr((1g 0 G)*) denote the trace of the map
(14 0 G)F with respect to the orthonormal basis {X'f7} where 0 <i < d and
j €Z. Then

(¢" — 1)Tr((¢py 0 GYF) ZG x .G(quil)
where the sum is over those © € A with 7 1 =1 and ord(f(z)) = 0.

Proof. (We follow the proof of the related theorem given in [3, Section 5].)
Using the identity
(Yg0 G)F =9l 0 G(X)G(X)...G(X1

k—1
)

we can reduce to the case & = 1 (by changing ¢ to ¢* and G to the product on
the righthand side). By linearity of the trace map we can reduce to the case
G = X'flfor0 <i<dandj € Z. Let r be a non-negative integer such that
p"(g—1)+7 > 0. Then fP"@DG € A[[X]]. Define B, := tp,0 f7" ("G and
let 3. denote this map restricted to A[[X]]. By the Dwork Trace Formula
[6, Lemma 2]

(10) (q—DTe(B) = > fl= G(x)
ra—1=1

where the trace is with respect to the basis X*f7 (0 <i < d, 0 < j < oo) for
A[[X]]. Now

(11) F(X)®" = f(X9P" mod p™tL.
Define

o (DN Py 1
1) emwee (B) =i s

where 8 := 1), o G. The second equality follows from Lemma 11. Define
bjj =X ‘fi for 0 <i < dand j € Z. In what follows below all summations
are for 0 < k,7 < d and [, j € Z (except when we further insist 7 > 0). Write

Br(bij) = >k, A ,]kl
Blbi)) = YpiAigi lbkl
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Then from (12)

Ve (bij) = ZAi,jpr;k,lfprbkl-
k,l

From (11) we see that
ord{(8r — v)(bij)} > r+1

and so
(13) Ord(Az(jnj);k,l — Ai,j—pr;k),l—p") >r+ 1.

Now {b; ;}o<i<d,j>0 is a basis for A[[X]] and

Te(B) = Y A

$,j >0
By (13)
ord(Tr(B) = > Aijopriijpr) 27+ 1.
$,j >0
Now
(14) lim Y Aijprigopr = ) Aigiig = Tr(B)-
$,j>0 i

To compute the limit of Tr(g.) use the righthand side of (10) and the fact
that

. p"(g—1) _ 1 if ord(f(x)) =0

rlggof@) - { 0 iford(f(z)) > 0.
The result now follows from (13) and (14). O
Theorem 13. Let A > 0 and 0 < € < 1. Then o := 1, o F@) gnd

a =1, o I are linear and 7~ -linear maps on the ring L. Moreover,
a, = &% and we have

> x(f(@) = (¢" — )Tx(ak),
:EEF;k
and thus

_ det(l — Ta, | Lf,A,e)
det(l — quza | Lf,A,e) ’

L(f,T)

Here the trace and determinant are defined via matrices for the maps with
respect to an orthonormal basis of Ly .. (More simply, one can use the
“formal basis” X' f7 for j € 7,0 < i < d, see [32, Section 2] for the defini-
tion.)
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Proof. Certainly « and o, are 77 '-linear and linear respectively, the key
point being to show that for A > 0 and 0 < € < 1 they are stable on
the required space. Since Lja p is a ring containing F' (Lemma 6) and
Ly A, we see that the map multiplication by F' sends L a e t0 Ly A ¢/p- The
map 9, sends Ly c/p t0 Lypa,e C Lya, (Lemma 10). Thus the compos-
ite map v, o F sends Lya . to Lya. as required. The claim on «, now
follows from the identity a, = a®. The proof that o, = o itself follows
from the relation F(®) = [[¢=) 7%(F(X?")) and the fact ¢, (H(X?)G(X)) =
T Y H(X))p(G(X)) for any H,G € L, (Lemma 11). The final state-
ment follows from Theorem 12 and Corollary 8. U

Define
XLjne={Xglg € Ly}

This is precisely the ideal of functions which vanish at X = 0. In particular,
for G in this space we have that F(®G vanishes at X = 0. From the
definition of 4, it is immediate that ,(F(®)G) vanishes at 0. Hence a, is
stable on XLy A .. Certainly 1 ¢ XLfa . and any function G € X Ljfa
can be written uniquely as G = G(0).1 + H where H vanishes at X = 0.
Thus we have the direct sum decomposition of vector spaces

Line=(1)® XLgae
With respect to this decomposition, the matrix for «, has a lower (say)
triangular block decomposition. From this it follows that
det(1 — Ty |Lyae) = (1 — FO(0)T)det(1 — Ty | XLsa)
and we have from Lemma 7 that F(®)(0) = x(Nm,(f(0))), since f(0) # 0.

Now with L(f,T) as in Section 2 we find that L(f,T) = L*(f,T)(1
x(Nmy (f(0)))T)~! and thus

Theorem 14. Let L(f, T) be the character sum over the affine line from
Section 2. Then for any A >0 and 0 < e <1 we have

det(l — Toza | XLf’A,E)

det(l — quza | Lf,A,e) )

This theorem should be compared with [20, Theorem 19].

L(f,T) =

5. REICH COHOMOLOGY

Unfortunately to derive cohomological formulae the spaces Ly A . are not
quite large enough. Instead we shall work in the “overconvergent” ring

L];f = UA>0,6>OLf,A,e-
By Theorem 13 the maps « and «, are stable on this space. Define
XL} :={Xgl|ge L}

Note that these are no longer p-adic Banach spaces, but the determinants
and traces of certain maps may still be defined in terms of the formal bases
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and the chain level determinantal formula in Theorem 14 still holds with
L¢ A replaced by LJ}.
Define the operator D on K[[X,1/f]] as

_d 1) ym, 4 /m)
dX  m f(X) (_fl dX )

The motivation for the introduction of this operator is similar to [20, Note
20], and explained in [8, Appendix, Eqns (24),(25)]. Notice that d/dX is
stable on L}, and —f'/mf € L} and so the operator D is stable on L}.
Thus XD := X o D maps LJ} to the ideal X L} of functions which vanish at
X =0.

Let L be the complex of K-vector spaces

0—>L}£)>XL}—>0.

Denote by Hi and Hj the kernel and co-kernel of the map X D.

Proposition 15. The map XD is injective and so Hy = 0. Moreover, Hy
is a finite K-vector space of dimension d — 1. A basis for Hy may be taken
as the set

{(X/f,..., XUt/ fL

Proof. Over the algebraic closure of K[X,1/f] the formal solutions of the
first order linear differential equation X D = 0 is the one-dimensional sub-
space generated by f(X)/™. But f(X)V/™ ¢ L]} since f(X) is not the
mth power of a polynomial over F, (it is squarefree). This shows that the
restriction of the operator XD to Ly is injective. The second part of the
proposition follows from the normal form computations in section 7. U

As in [8, Appendix, Eqn (26)] we have
(XD)oqag =aq0 (XD).

Thus the map «a, defines a chain map on Lj:

0 — L} X XL} — 0
1 qag b ag
0 — L X XL — 0.

Denote by Hy(a,) and Hi(qa,) the maps induced on the homology H
and H; by this chain map, and det(1 — Hy(a,)T), det(1 — Hy(qag)T) the
corresponding determinants.

Theorem 16. The L-function from Theorem 1/ satisfies
L(f,T) = det(1 — Hy(o)T).
Proof. Exactly as in [20, Theorem 22] using Theorem 14. O
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Note 17 Theorem 16 is essentially [8, Eqn (28)] with two minor changes:
First, the second module in the complex [8, Eqn (27)] is our L]} rather than

X L}. The extra X just ensures we obtain the L-function over the affine line,
rather than over the torus. Second, the polynomial “f” in [8] is actually our
f (¢=1)/m_gince Adolphson considers a character of order ¢ — 1. The relation
to the equation on [25, Line 10] is similar: in [25] take “g” our f, “h” to
be our f0=D/™ and “f” equals 0. Robba actually assumes “g(0) = 07
[25, page 230], but again this is a minor change which just ensures, in our
notation, L(f,T) = L*(f,T), and so Robba does not need the extra factor
X to account for the origin. (Note that we assume f(0) # 0, so that we can
handle the origin in a uniform, if different, way.) One final observation is that
in the original work of Reich, slightly smaller spaces were used: essentially
power series with “overconvergent” growth at least A,e > 1/(p — 1). This
makes the proof of finite dimensionality for Hj easier, as one can use naive
bounds on the denominators introduced in the reduction process (based on
[4, Eqn (14)]). Unfortunately, with this approach the factor e from Section

7.2 must be taken to be ord(l_[iti/omJ (¢ — (d/m))), and this impacts on the
complexity analysis. As such, we use a more involved approach to bound
the denominators (Lemmas 20,21), and may as well then just use the full
overconvergent space.

The strategy of the algorithm is to compute the determinant of the map
Hy(ayg) on the zeroth homology Hj, up to a suitable modular precision.
(This yields the first factor in (4) and the others may be found using a
similar approach with minor modifications.) This may be done efficiently
via the following lemma, which is an immediate consequence of the identity
oy = a® from Theorem 13.

Lemma 18. Let Hy(«) denote the map induced on Hy by . Then Hy(ay,) =
H[)(O[)a.

It will be enough to compute the p-adic integer coefficients of det(1 —
Hy(c,)T) modulo p for

N =|(m—1)(d— 1)1 +a/2) +1].

This follows since the L-function of the exponential sum L(f,x?,T) has

reciprocal roots whose complex absolute values are ,/q. Thus the coefficient
m

of T* in the polynomial Hj;ll L(f,x?,T) are integers of absolute value
at most (?,f)p‘”'“/2 < 229p°k/2_ Since the polynomial H;n:_ll L(f,x?,T) has
degree 2g = (m — 1)(d — 1), it follows that determining the coefficients
modulo p for N > (m — 1)(d — 1)(1 + a/2) is sufficient. (This choice can
be about halved using the functional equation, as in [20, Note 26].)
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6. THE ALGORITHM

9

(For k € K by “computing k with coeflicients determined modulo p*” we
mean finding the coefficients of p* in its p-adic expansion for i < x.)

Algorithm 19 [Kummer Curves]

Input: An equation Y™ = f(X) over F, where ¢ = p®. We assume that
f(0) # 0, f is squarefree, m is coprime to d := deg(f), and m does divide
p — 1. (In particular this implies m > 1 and thus p # 2.)

Output: The zeta function Z(C’f, T') of the unique smooth projective curve
birational to the affine curve with this equation.

Step 0: Set N := [(m —1)(d — 1)(1 + a/2) + 1], where d is the degree of f,
and define N := 2(N + ead) where € := [log,(d)].

Step 1: Compute the power series 7'_1(~F ), where F'is given in Definition 5,
with coefficients determined modulo p”. Let a be the map from on the ring
L} (Section 3) defined as o = 1p, o F = ¢, o 77(F) o 7=! (Theorem 13).
Let Hy(«) be the map induced on the zeroth homology Hj of the complex
Ly by a (Section 5).

Step 2: Let X/f,X2/f,..., X%/ be the basis for the zeroth homology
Hj. For each basis element e, compute the image Hy(a)(e) € Hy with coef-
ficients determined modulo p™V*+€*(@=1)  Construct M, defined as the matrix
representing the map Hy(a) with respect to the basis, with coefficients deter-
mined modulo pNT¢(@=1) Specifically, M = (m;;) where i is the row index,
and j the column index, and Hy(a)(X7/f) = Z?;ll mi; (X*/f) mod p" for
1<j<d—1.

Step 3: Compute
M, == M7t~ (M)772(M)... 7~ (M)

modulo pNt€a(d=1) where the map 7 is the lifting of Frobenius to K. Thus
M, is a matrix for the map Hy(ag,). Compute L(f,x,T) := det(1 — M,T)
modulo pV.

Step 4: Repeat steps 1-3 replacing F' by FJ and modifying the reduc-
tion formulae as explained in Section 7.4 to computed L(f,x”,T) for j =
2,...,m — 1. Output the rational function

- 175 L(f, X7, T)
2@ =y =gy
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The correctness of the algorithm follows from Equation (4), Theorem 16
and Lemma 18. In Section 7 we will describe exactly how the cohomological
reduction in Step 2 is computed, and shall justify the choice of N, allowing
us to give a complexity analysis of the algorithm in Section 8. This will
complete the proof of Theorem 1.

7. REQUIRED SUBROUTINES

7.1. Normal Form Computations. We first consider the space L; :=
K[X,1/f] and the operator D. We shall find a basis for the “algebraic
cohomology” L;/D(Ly) and show that it in fact forms a basis for the

“analytic cohomology” L} / D(LJ}). Finally, the isomorphism L} / D(LJ}) =

XL /XD(L}) is applied.

We first explain how to reduce the function B(X)/f* where B(X) is a
polynomial of degree less than d, and k£ > 1. (In the following paragraph, we
mimic the notation in [16, Section 3] to emphasise the parallel.) Since f is
squarefree we may write B(X) = R(X)f(X) + S(X)f'(X). Here deg(R) <
deg(B) +d—2 < 2d—3 and deg(S) < deg(B)+d—1<2d—2. Since k > 1
we have

B(X) R Sf

(15) N + TE

Now for any [ > 0

0=l =2 (a-n-1) T

and so
lel . X1
FE k Fh1
where ¢ := ((k — 1) + (1/m)) # 0 (since m > 1). Using (15) and (16) we
find that for k > 1
B(X) R(X)+c¢'S'(X) _ _

(17) G = e = D SO0/ 1),
We have reduced B/f* to a linear combination of X*/f/ for 0 <4 < d and
j=k—1,and 0 <i < d—2 with j = k—2. Applying this reduction repeat-
edly we can reduce all elements "1, By (X)/f*, where deg(By) < d to a lin-
ear combination of the terms X493 Xd4=4 . X 1,1/f, X/f,..., X9 1/f.

Rational functions B/f with deg(B) > d — 1 can be reduced to a linear
combination of 1/f, X/f,... ,X%2/f as follows: For n > 1 the relation
D(X™) =0 and the fact n — (d/m) # 0 (since gcd(m,d) =1 and m > 1) is
used to reduce X (=1 /f From the relation D(1) = 0 we deduce f'/f =0
allowing one to reduce X% 1/f.

We now examine the denominators which occur in this reduction process,
using a similar method to [16, Lemma 2]

(16) — D(c, ' X'/ )
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Lemma 20. Let B(X) be a polynomial over A of degree at most d—1. Then

for k > 2 the reduction of B(X)/f* becomes integral upon multiplication by
n— p\_logp(k)-l-lj ]

Proof. First note that n(—k +14 — (1/m)) € A for any 1 < i < k — 1, since
m < p. Let C(X)/f be the reduction of B(X)/f* and g the function such
that D(g) = B/f* — C/f with deg(C) < d — 1. We have

D = (d/dX) = (f'/mf) = f'/™ o (d/dX) o f~/™.

It is evident from the first expression for D that g = Zi:ll gi(X)/f* for
some polynomials ¢;(X) with deg(g;) < deg(f). Let a be any root of the
polynomial f. We shall take local expansions at the prime T := (X — a).
Assuming that b(# a mod p) is a unit we have (X — b)~1/™ = S70° T
where each * indicates a p-adic integer, and the coefficient of T is a p-adic
unit. Thus (f/(X —a))~/™ = 373°, *T" where each * is a p-adic integer,
and the coefficient of T°, u say, is a unit. Since d/dX = d/dT from the
equation D(g) = B/f*¥ — C/f we deduce

N o0 -1 d 0 o0 o0
= § : i - § : i —(k—1 § : Resl
Tm ( *T1'> o d_T ol ™ m *T? (T ( ) 2. ga,zTZ>

o0 oo
=T FY By, T =T ') CoiT".
i=0 i=0
Here B, ; are p-adic integers since they are just the coefficients in the local
expansion of B/f* at T. Also, the operand on the lefthand side is the local
expansion of g, and the final summand on the righthand side that of C/f.

Multiplying both sides by an obvious factor we find

d INRENIR = i - i
(18) ﬁ (T k+1 m Z *T Zga,iT ) =
=0 =0

o0 o o o0
(19) T m ST B T - T w Y 4TS €T
i=0 =0 i=0 =0

Since no power on the righthand side equals —1, we can integrate this
side termwise. We compare the coefficient of T=k+1=% on both sides of
the integrated equation “[(18)dT = [(19)dT”. We find that ug,o equals
uBgp/(—k + 1 — (1/m)). Since By is a p-adic integer ng,o is a p-adic
integer for n as in the statement of the lemma. Now g, is just the
function gr_1/(f/(X — a))¥~! evaluated at a, and thus ng; (a) is inte-
gral. Since this is true for all d roots a of f, by the degree bound on
gr—1 we must have ngr_1(X) a polynomial over A. Now move the contri-
bution from the term gy 1/f* ! to the righthand side of the integrated
equation and compare coefficients of T=*+2=% on both sides. We find
ugr—2(a) =uBg1/(—k+2—(1/m)) 4+ *Bao/(—k +1— (1/m)) + */n where
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the final * is a p-adic integer coming from the new term —gp_;/f*~" on
the righthand side. Once again we see ngg_o(X) is a polynomial over A.
Continuing in this way we find ng;(X) € A[X] for i =k -3,k —4,... ,—1.
Note that since —k + (K — 1) — (1/m) < —1/m the possibly non-integral
coefficients €, ; never come into play. Thus ng(X) has coefficients in A, as
therefore does nD(g(X)) = B/f¥ — C/f, which completes the proof. O

Lemma 21. For B(X) € A[X] of degree | the reduction of B(X) becomes
integral upon multiplication by p" where r := max(|[log,(d)], [log, (I +1)]).

Proof. As in [16, Lemma 3] we use local expansions at the prime X .
Specifically, letting C'/f be the reduced function and D(g) = B — (C/f) we
find using similar notation to before

I+1

d d o0 d o0 o0 o0
_d —i vi) . y—4 —3 Cyl—i y—i

Integrating we once again find that all coefficients g; are integral upon mul-
tiplication by n. Therefore so are g(X) and C/f. O

Thus we have shown that LJ} / D(L}) is isomorphic to the K-vector space
spanned by 1/f, X/f,... ,X%2/f. Tt follows that XLJ}/XD(L}) is isomor-
phic to the K-vector space spanned by X/f, X2/f,... , X 1/f.

7.2. Loss of p-adic accuracy. Write

(thp o FYX'/f) = thp(X F™ (1 + (pg/ )™ = p(G(X)) + by (H (X))

where G(X) € A[X] and H(X) = >, a;ij X'/ f7 with 0 < j < oo and
0 <i < d. We have ord(a;;) > [(j +m' —1)/p]. Using [1, Lemma 1] we
see that 1,(H (X)) = 3" b;j X"/ f7 with ord(b;;) > j. (The key estimate one
must use is [(j +m' —1)/p] > [(j — 1)/p] + 1.) It follows from Lemma
20 that the reduction of 1, (H (X)) has integral coefficients. Now G(X) has
degree i + (((p — 1)/m) — 1)d and so 1, (G(X)) has degree bound by d/m.
From Lemma 21 the reduction of 1, (G (X)) has coefficients of order at worst
—e where € := |log,(d)]. Because of this small denominator, to compute the
coefficients of the L-function modulo p", we need to know the entries in M
modulo pVtee(d=1) Ty determine these coefficients it is enough by Lemma
20 to compute F with coefficients determined modulo N where

N — logp(N) > N +ea(d—1).
Taking N := 2(N + ead) is sufficient.

7.3. Computation of the map 1,. Recall that ¢, = 7'_101/31, where 2/~)p is a
linear map from Ly to L. ;). We will see that it is a little time consuming to
compute 7! on large degree rational functions. For this reason, we rewrite

p = 1P, o 7! where the former map 1/;:,, is from L,-1(y) to Ly. We explain
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how to compute this former map on rational functions in K[X,1/771(f)],
based upon a suggestion of Daqging Wan. Let

o o X' hX)
’ _Z Ty T A 0)E

where in the latter we have put everything over a common denominator,
and so h(X) is a polynomial of degree 2dL — 1. We write this as
h(X)  f&P)F
I VICO) LN e L
Using the property of 1,[;:,, from the first part of Lemma 11 we see that

S 1 Fxn) \*
&) = gt {h(X) (=) } ‘

Factoring f(X) = H;i:_ll (X —r;) we find

d—1 d—1

f(Xp) o XP — T o p—1 7_71 r p—2 7-71 . p1
(X)) g X -7 1(r) g(X +r )X R )P

which is a polynomial, k(X) say, of degree (p—1)d with coefficients in A itself.
Here we use the fact that the lifting of f was chosen so that 77!(r;)? = r;
ie. 7(r;) = r?. Thus we have

G =

- 1 -
Up(G) = ————1p, (R(X)k(X)F).
(@) = Sy o (OR)")
Now we can expand h(X)k(X)* into a polynomial of degree 2dL — 1+ L(p—
1)d and compute ¢, on this polynomial using the second part of Lemma 11.

7.4. Performing the main steps. We now describe how to perform the
main steps of the algorithms. First, one computes 7~ !(F) with the coeffi-
cients determined modulo p? directly from the formula in Definition 5 using
the binomial expansion and an iterative formula similar to [16, Section 4].
Specifically, we have the formula

P S 10 9 AR
TTH(F(X)) =71 (f(X)) (1+p7—1(f(X))p> '

Let s'/™ be the second factor. We use [12, Algorithm 9.22] to expand
this. In their notation we take “R” equal to L -1(y), 1/, (the choice of
A is not important), the prime “p” equal to our p, “¢” the polynomial
Y™ — s, and initial value “go” equals 1. Working with coefficients modulo
p!V, for each basis element e the rational function G := Yy o F(e) mod pv
may be constructed. Precisely, we compute it as 4, (7~ (F)7~"(e)) where
77'(e) = e. The reduction method of Section 7.1 is then used to write
G as a linear combination of the basis elements X/f,..., X9 1/f. Pre-

cisely, compute X ~'G modulo pN as follows: write G = G1 + G5 where
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G1 € XA[X] and G, = * + Ei,jxpj * X'/ f7 with the #’s p-adic inte-

gers. Then Gy = a(X)/fN~! + pVx where here * indicates a power se-
ries with p-adic integer coefficients and a(X) € A[X]. Since G(0) = 0,

evaluating G, G, and Go at zero we find that a(0) = 0 mod p”. Thus
X71G = X7'Gy + (X ta(X))/fN + pVx. Now reduce X 'G modulo D
and multiply the answer by X. In this way the matrix M is found with coef-
ficients determined modulo p™¥t€e(d=1) Next, M, may be computed and the
characteristic polynomial found modulo pV in exactly the same way as in, for
example, [20, Section 7.4]. We compute the remaining L(f, x?,T) as follows:
Modify Steps 0-3, replacing F' by F7 and the operator D = d/dX — f'/mf by
d/dX —jf'/mf. In Equation (16) one must use ¢ := ((k—1)+(j/m)), with
a similar minor change for reducing polynomials. (When reducing polynomi-
als the coefficients n— (jd/m) are non-zero by our assumption ged(m,d) = 1
and m > 1.) Since ord(j) = 0 these changes do not affect any of the esti-
mates. (For m prime direct computation of the conjugates would seem more
sensible, but I do not know how to do this.)

8. COMPLEXITY ANALYSIS

We assume that all arithmetic operations on rational functions over “trun-
cated” p-adic fields can be performed in soft-Oh linear time in the input size.
(By truncated p-adic fields we mean that we disregard the coefficients of suit-
ably large powers of p in the p-adic expansions of elements in K.) First we

compute 7~ (F) with coefficients determined modulo p" using a quadratic
Newton iteration, reducing the numerator at each step so the rational func-
tion is expressed with respect to the basis X*7~'(f)7, in O((pdN)(aN)) bit
operations. Second, finding ¢, o F(e) for one basis monomial requires one
multiplication, followed by the map 1/~)p. This latter step may be done in soft-
Oh linear time, using the approach of Section 7.3 along with a soft-Oh linear
time algorithm for converting between X-adic and f-adic representations
(also 7~ 1(f)-adic representations) of polynomials. (One may do this using a
straightforward divide-and-conquer approach, using a fast method for multi-
plication and division by powers of f [12, Section 9.2].) Thus the complexity
of computing 1, o F(e) for all d — 1 basis elements is O((pd>N)(aN)) bit
operations. Each application of a reduction formula (17) requires O(da.N)
bit operations (as in [16, Section 5]), and it must be applied O(N) times for
each rational function ), o F(e). Since there are d — 1 such functions, the
total cost for this is O(ad>N?) bit operations. Finally, to compute M, from
M we can just use ordinary matrix multiplication, combined with a fast “ex-
ponentiation” routine, and complete this in O(d*a(N + ead)) bit operations.
The determinant may be computed as in [5, Section 4] using a deterministic
algorithm based upon the Hessenberg form in O(d®(NN 4 ead)) bit operations.
Putting N = O(mda), N = O(mda) we get O(pa’d*m?) bit operations to
compute the L-function L(f,T). The whole algorithm is repeated m — 2
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times, with minor changes, to find the other L-functions L(f,x’,T)). This
gives a total time of @(pa3d4m3) bit operations with space complexity in
bits O(pa®d*m?). (For m prime the dependence on m could be reduced to
m? by computing conjugates directly.)

In the above estimate we have ignored the contributions from the com-
putation of the map 7 !. By the method in [16, Section 5], this may be
done on A/(p*) in O(a(ax)) bit operations, for any positive integer *. In
the computation of M, from M, we require O(log(a)) applications of 7!
to a matrix of side O(d) whose entries are in K “modulo” pN*tee(d—1) with
p-adic order at least —ea. One may check that this is absorbed in the final
bit estimate above. To compute 1, o F(e) for each basis element e, we just
need 7-'(F) and 77! (e). The latter is just e. The only application of 77!
in the former comes from finding 7= (f) and 77! (g) in the Newton iteration
formula. These operations are again absorbed in the above estimate. (No-
tice that computing 7! directly on 1,[;:,, o F'(e) would increase the complexity
dependence on a to fourth power.)

9. RELATION TO MONSKY-WASHNITZER COHOMOLOGY

In this section we describe the relation between our approach based upon
the Reich Trace Formula and a multiplicative character x(f(X)), and the
method of Kedlaya based upon the Monsky-Washnitzer cohomology of the
affine curve Y™ = f(X) with the divisor of Y removed. We restrict to the
case m = 2; for m > 2 the algorithm in [13] is related in a similar way using
our assumption p = 1 mod m.

The essence of Kedlaya’s algorithm is to compute the action of the pth
power Frobenius map “p~'o” on the “negative eigenspace” of the first Monsky-
Washnitzer cohomology group “H'(A; K)”. Concretely, this group is the
spanned by differential forms w; := X*dX/Y for i = 0,... ,d — 2. The pth

power map “p_lto” acts on such a form as

i pi+(p—1) —1/2
XtdX X (1 g(X)) ixX.

Y T y» Py

Here pg(X) = 7(f(XP)) — f(X)P. This is then reduced to an element in the
negative eigenspace using the reduction relations for k£ > 2
B(X)dX _ R(X) + (S'(X)/(k —(3/2)))
YZ2k-1 Y 2k—3
where B(X) = R(X)f(X) 4+ S(X)f'(X). The relation d(X*Y) = 0 is used
to reduce forms G(X)dX/Y with deg(G) > d— 1. Let M denote the matrix
for the map “p~'o” with respect to the basis w;. (Kedlaya computes o
itself, and so an extra factor of p arises. In fact, in the trace formula of
Monsky-Washnitzer it is the inverse map po ! which appears [16, Theorem
1].)
Returning to our own approach, let inv denote the map on the roots of
unity in © which sends an element to its inverse. Then the power series

dX

(20)
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F~! gives an analytic representation of the character x~' := inv o x of

order m, and the theory developed in this paper holds with F' replaced by
F~!. The map a := p o F~' has a one-sided inverse 8 := F o ¢p, where
¢p : G(X) — 7(G(XP)). Precisely, (¢, 0 F~1) o (F o ¢y) is the identity map
on L. This induces a one-sided inverse Hy(/3) to Ho(cr) on the cohomology
space Hy. Since this is finite dimensional we must also have Hy(3)oHy () the
identity, that is, we have an inverse. Thus det(/—H(«)T) = det(Hy(8)—T),
and so we may compute the numerator of the zeta function of Y™ = f(X)
using [ instead of . Taking m = 2 we find that 8 maps a basis monomial
X/f(X)fori=1,...,d—1to

_xT g(X)\/?  x.xp(-Dte-1) g(X) \ 2
T(f(XP)) f(X)p) - f(X)(p+1)/2 ( +pf(X)P> .

Writing @; := X¢/f for 0 < i < d — 2 we see that 3(X&;) = b; + XD(c;)
where X D is the operator X (d/dX + f'/mf), and b; is a sum of the X&;.
Thus X toBoX(@;) = X 1b;+ D(c;) where X 'b; is a sum of the @;. By a
trivial adaptation of Section 7.1, reduction via the operator D is performed
using the relations for k£ > 2

B(X) _ R(X) + (S"(X)/(k — (3/2)))

e oL fX)k-t

(Here the change from F to F~! switches the sign of 1/m in the relations in
Section 7.1.) This is just Equation (20), only with the denominator terms
Y2*~! replaced by f(X)*. Also, the relation D(X?) = 0 can be used to
reduce all forms G(X)/f(X) with deg(G(X)) > d — 1. Letting M denote
the matrix for the map [ with respect to the basis X@; one can now see
that M = M. Thus our algorithm and Kedlaya’s only really differ in that
we essentially compute the inverse map to Kedlaya’s twisted in some sense
by the operator multiplication by X.

F(x)®=1/2 (1 +p
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