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1 Introduction

We prove a simple upper bound on the number of regions into which the
torus over an arbitrary field may be paritioned by a finite collection of al-
gebraic hypersurfaces. This is a polytope-refinement to an existing result,
after the fashion of many other recent improvements to classical bounds.
Let f = (f1,...,fm) be a sequence of polynomials in F[Xy,...,X,]
where F' is a field and X3,..., X, commuting indeterminates. Given any
point u in affine space F™ of dimension n over F' the zero-pattern o(f,u)

is the vector (d1,...,d), where each §; € {0,+} with §; = 0 if and only
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if fi(u) = 0. Let Zp(f) denote the number of distinct zero-patterns as u
ranges over F". Let F* denote the set of non-zero elements, and Z7,(f) the
number of distinct zero patterns as u ranges over the torus (F™*)™.

In [9] upper bounds are proved for Zr(f) in terms of the degrees of the
polynomials in the sequence, and a number of combinatorial applications
of these bounds are presented. The essence of these results is that if all
the polynomials have degree bound by d, say, then there exists a polynomial
function E4(m) of degree n which bounds the number of zero-patterns. Note
that this improves the trivial exponential bound of 2. We present some
refinements of these bounds, and also new bounds for Zj(f), which take
into account the non-zero terms which actually occur in the polynomials,
rather than just their degrees. More precisely, we replace E;(m) by a more
refined polynomial function Fa(m) related to the Newton polytopes of the
polynomials. Our refinement is of the same spirit as many other results in
which a quantity related to a single polynomial or family of polynomials
is bound in terms of their Newton polytopes, rather than their degrees.
The most famous example is perhaps Bernstein’s theorem, the polytope
version of Bezout’s theorem which gives a bound on the number of common
zeros in the torus of n polynomials in 7 unknowns (see [4, 10]). Similar
polytope-bounds also occur in polynomial factorisation [6]. At a deeper
level, Adolphson and Sperber’s [1] total degree bound on the zeta function
of a hypersurface in terms of the volume of the Newton polytope of the
defining polynomial improves earlier work of Bombieri. Indeed, this latter
bound is used to refine the complexity estimates in the author and Wan’s
proof of the polynomial-time computability of these zeta functions in small

characteristic [8].



Over the real field, one may also obtain bounds on the number of “sign-
patterns”, see [9]. Both zero-patterns and sign-patterns have been con-
sidered by a number of authors, and the bounds obtained have variety of
combinatorial applications [2, 9]. We would be very interested in learning of
any new combinatorial applications of our bounds. In [9] explicit construc-
tions are given to show that their bounds are optimal to within a factor
(7.25)™, assuming m and the field F' are suitably large. An easy modifica-
tion of their approach shows that our bounds are optimal within a factor of

2™ for suitably large m and field F.

2 Theorems

We introduce further notation necessary to explain our results. Let R"
denote real n-dimensional affine space, and A any bounded subset of R". A
lattice point in R™ is simply a point whose coordinates lie in Z. We denote by
#(A) the number of lattice points which lie in A. For any f € F[X1,..., X},]
the support set is the set of all integer vectors (eq,...,e,) € R" which occur
as exponents of non-zero terms aX7' ... X% in f. The Newton polytope of
f, written N*(f), is defined as the convex hull of the support set. It is a
convex polytope in R". We also introduce one further polytope associated
to the polynomial. Let R<y and R denote the set of non-positive and

non-negative real numbers, respectively. Define N(f) as
N(f) = (N*(f) + (R<o)™) N (R>0)".

Here the summation is the Minkowski sum, defined for A, B C R" by A +
B:={a+bla € Abe B}. Notice that N*(0), N(0) = (. For this reason



it is convenient in Theorem 1 to assume that none of the polynomials f; in

the sequence are zero; of course, this is no real restriction.

Theorem 1 Let f = (f1,..., fm) be a sequence of non-zero polynomials in
FXy1,...,Xy] and Zp(£), Z}(f) the number of zero-patterns of f over affine

and toric space, respectively. Write f = fifo... fm, so f #£0. Then

A
Bi
=
=

Zr(f)
Zp(f) < #(N*(f))

where the righthand sides are the number of lattice points in certain polytopes

associated to f, as defined above.

Note that Theorem 1.1 in [9] can be recovered by taking the bound
#(N(f)) < (n:d) where d(= Y1, d;, d; = deg f;) is the degree of f. A
similar refinement to Theorem 4.1 in [9] can also be obtained.

If all of the polynomials f; in the sequence have the same Newton poly-
tope A then we can get a simple bound in terms of the Erhart polynomial

of A [7, page 780].

Corollary 2 Let f = (f1,..., fm) be a sequence of non-zero polynomials in
F[Xy,...,X,] and Z3,(f) be the number of zero-patterns of £ in the torus.
Suppose that each f; has Newton polytope A. Then Zj(f) < Ea(m), where
EA is the Erhart polynomial of A.

An alternative bound for Zg(f) in terms of N*(f) can be obtained by
using the bound for Zj(f) from Theorem 1 and a torus decomposition of
affine space. For T' C {1,2,...,n} and any g € F[X3,...,X,] define g|r to

be the polynomial obtained by setting to zero all X; for 4 € T' which occur



in g. Let

fr="11 filr
filp#0

We use the convention fr =1 when {i| f;|7 # 0} = 0.

Nr := #(N"(fr))-

(Note that N7 = 1 in the case that {i]| f;|7 # 0} = 0; also, when this is not
the case N7 is just the number of lattice points in the intersection of N*(f)

with the appropriate coordinate axes.)

Theorem 3 Letf = (f1,..., fm) be a sequence of polynomials in F[X1,...,X,]
and Zp(f) the number of zero-patterns in affine space. Then Zp(f) <
Y7 N, where the sum is over all sets T C {1,2,...,n} and Np is as

defined above.

The above result suggests a natural generalisation: suppose each of the
polynomials f; has a common Newton polytope A. As in [3, Sections 2.1,3.1]
one may associate a toric variety “I'a” with the integral polytope A, and
a hypersurface “7fi,A” with each of the polynomials f;. The number of
distinct zero-patterns over all points “u € TA” for the sequence of hyper-
surfaces may then be defined, and a bound on this proved in terms of the
lattice points in A; however, we do not pursue this.

We finish with two examples to illustrate Theorems 1 and 3.

Example 4 Take the case n = 2 with polynomials in F[X,Y]. Consider
the sequence f = (X,Y, X +Y) so f = XY (X +Y). The original bound
from Theorem 1.1 in [9] is 10. We have #(N(f)) = 8, #(N*(f)) = 2, with
Zp(f) = 5 and Zj(f) = 2. Hence only one of the bounds in Theorem 1 is



sharp in this case. However, using the bound from Theorem 3, we find that
Ny =2, Nyiy =1, Nygy = 1 and Ny 5 = 1. Thus the bound from Theorem

3 is tight in this example.

Example 5 (This example is based upon [9, Sections 6,7].) Assume
that r := m/n is an integer, and let dy,...,d, be positive integers each at
most m. Assume #(F) > 1+ [r(max;(d;) + 1)/2|. Let d be one of the
integers di, ...,d,. Let A(r,d) be a collection of subsets {S1,..., Sy (ra)}
of {1,...,r} such that each element occurs in at most d subsets. By the
comment following [9, Proposition 6.2], we may take M(r,d) = 1 + |r(d +
1)/2]. Construct a sequence of polynomials f1,..., f, € F[X] each of de-
gree bounded by d as follows: Choose a set of M(r,d) distinct elements
Ui, .. Unrg) € F, and define f; = []; jeq (X — ug). By construc-
tion {u1,...,up(rq)} is a complete set of witnesses to the zero patterns
of f = (f1,..., fr). Hence Zj(f) = M(r,d) =1+ [r(d+ 1)/2]. Repeating
this construction n times, we can find a sequence f of nr = m polynomi-
als, the first r univariate in X; of degree at most d;, and so on, such that
Zy(f) = [Ii=,(1 + [r(d; + 1)/2]). The upper bound from Theorem 1 in
this case is [}~ (rd; + 1). Hence we are within a factor of 2". (Also here
Zp(f) = Z3(f) and the bounds from Theorem 1 for affine space are the
same as for the torus.) In [9] the upper bound is within a factor of (7.25)",

and so we have a slight improvement.



3 Proofs

Proof of Theorem 1 : We follow the proof of Theorem 1.1 in [9], mak-
ing appropriate modifications. Assume M = Zp(f) and let uy,...,up be
witnesses to the distinct zero-patterns. (That is, the set of zero patterns

is precisely {0(f,u;)}i<i<am.) The support set of a zero-pattern §(f,u;) is

just the set of indices S; C {1,2,...,m} which mark «’s in the zero-pattern.
Define
gi=[[ /
kES;
and so
gi(u;) # 0 if and only if S; C Sj;. (1)
Now the polynomials g1, ..., gy are linearly independent over F', exactly as

proved in [9, page 721]. Moreover, each is a factor of f = fif2... fn, a non-
zero polynomial. It follows from Lemma 6 below that each N*(g;) lies in the
polytope N(f). The dimension over F' of the space of all polynomials whose
Newton polytopes lie in N(f) is exactly #(N(f)), and the first inequality
follows.

For the second inequality, now let M = Zj;(f) and uy,...,up be wit-
nesses for the distinct zero patterns in the torus (F*)". Define the g; exactly
as before. Each g; is a factor of f(# 0). Thus by Lemma 6 we can find a
monomial r; such that N*(r;g;) C N*(f). We claim that r1g1,...,7m9m
are linearly independent as polynomials over F'. To prove this, assume that
a nontrivial linear relation M, \;(r;ig;) = 0 exists (\; € F). Let j be a
subscript such that |S;| is minimal among the S; with A; # 0. Substitute
uj(€ (F*)") in the relation. Now \;rj(u;)g;(u;) # 0, since g;(u;) # 0 from

(1) and r; is a monomial with u; having no zero coordinates. However,



Airi(uj)gi(uj) = 0 for all ¢ # j since g;(u;) = 0, from (1) and the mini-
mality of S;. This is a contradiction, establishing the linear independence
of rig1,...,7amrgrm- Now each polynomial in this sequence lies in the space
of all polynomials over F' spanned by the monomials whose exponents are

lattice points in N*(f). Hence M < #(N*(f)), as required.

In the proof we used the following lemma.

Lemma 6 Let f,g € F[X1,...,X,] with f # 0 and g a factor of f. Then
N*(g) € N(f). Moreover, there exists a monomial r such that N*(rg) C

N*(f).

Proof: Let f = gh and so N*(f) = N*(g)+N*(h). (See, for example, [5,
Lemma 2.1].) We first show N*(g) C N(f)(= (N*(£) + (Reo)") N (Rs0)").
Let w € N*(g) be any point. Then there exists some u € N*(h) with
v:i=w+u € N*(f). Now u € (R>p)" and so —u € (R<g)". So w =
v—u € N*(f)+ (R<o)” and certainly w € (R>¢)". Hence w € N(f) and so
N*(g) € N(f), as required.

For the second part, select a vertex v, say, of N*(f) with supporting
hyperplane [, say. Let w be the vertex of N*(g) which is supported by [,
with the same inner normal. Define z = v — w, a vertex of N*(h). Then
N*(g) + 2 € N*(g) + N*(h) = N*(f). Write r = X' ... X" where z =
(z1,...,2n). It follows that N*(rg)(= N*(g) + z) C N*(f), as we wished to
show.

d

Proof of Corollary 2 : In this case N*(f) = >_i%y N*(fi) = mA. Hence,
from the properties [7, page 780] of the Erhart polynomial, #(N*(f)) =



#(mA) = Ea(m), and the corollary now follows from the second estimate

in Theorem 1.

Proof of Theorem 3 : For each T C {1,2,...,n} let
Gr:={reF"|zi(r)=01ifand only if i € T}

where x; are coordinate functions on F". Then the torus decomposition
expresses F™ as the disjoint union of these sets over all 7. The number
of zero-patterns over F" is certainly bounded by the sum ) M7 of the

number of zero-patterns, Mp say, over each Gp. Thus it suffices to show

that MT S NT.
Now on the torus G each polynomial in the sequence fi,..., f;, takes
the same value as the corresponding polynomial in the sequence fi|r,. .., fm|7.

Thus we need to show that the number of zero-patterns of this latter se-
quence on Gp is bounded by Np. If this is the zero sequence, then by
definition Ny = 1, which is exactly the number of zero-patterns. Otherwise,
fr # 0 is a polynomial, and the Newton polytope N*(fr) is defined.

Now let z1,...,z, be coordinate functions for R" and for each T C
{1,2,...,n} denote Ry = {r € R" | z;(r) =0 for i € T}. (Note that we do
not assume that z;(r) # 0 for r € Ry and i ¢ T.) Thus N*(fr) is a polytope
in Ry. We may then apply the second bound in Theorem 1 with f, N*(f)(C
R™) and (F*)" replaced by fr, N*(fr)(C Ry) and Gp. We deduce that the
number of zero-patterns of this sequence in G is bounded by #(N*(fr)).
But this last quantity is just N7 by definition, which completes the proof.

|
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