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Abstract

Let the orthogonal multiplicity of a monic polynomial g over a field IF be
the number of polynomials f over [F, coprime to g and of degree less than that
of g, such that all the partial quotients of the continued fraction expansion of
f/g are of degree 1. Polynomials with positive orthogonal multiplicity arise
in stream cipher theory, part of cryptography, as the minimal polynomials
of the initial segments of sequences which have perfect linear complexity
profiles. This paper focuses on polynomials which have odd orthogonal
multiplicity; such polynomials are characterized and a lower bound on their
orthogonal multiplicity is given. A special case of a conjecture on rational
functions over the finite field of two elements with partial quotients of degree
1 or 2 in their continued fraction expansion is also proved.



1 Introduction

If f and g are polynomials over an arbitrary field F with ged(f,g) = 1 and
degg > 1, then the rational function f/g has a unique continued fraction
expansion

ap+1/(a; +1/(az + ... +1/ay))

where a; € F[z] for 0 <i <m and dega; > 1 for 1 < i < m. We write the

above continued fraction as [ag;a1,as,...,a, | and define

K (i) = max deg a;.
g 1<i<m

For a monic g € F[z] with degg =n > 1, let m(g) be the cardinality of

the set

My ={f/g € F(z)|deg f <n,ged(f,g) =1, and K(f/g) = 1}.

We call m(g) the orthogonal multiplicity of g, or when there is no possibility
of confusion, simply the multiplicity of g. This appellation is motivated by
the ‘orthogonal sequences of polynomials’ studied in classical analysis [11]:
one may show that a monic polynomial has positive orthogonal multiplicity
if and only if it occurs as a term in some ‘orthogonal sequence of polynomials’
[1].

We will be concerned primarily with polynomials over finite fields which
have positive orthogonal multiplicity; they arise in stream cipher theory, a
sub-discipline of cryptography, as the minimal polynomials of the initial seg-
ments of sequences over finite fields with perfect linear complexity profiles.

(The reader is referred to [8] in which Niederreiter establishes a connection



between the linear complexity profiles of sequences and continued fractions
over function fields.) More recently, Blackburn, and Cattell and Muzio have
applied such polynomials to cellular automata theory [2, 3].

For an arbitrary field IF, it is of interest to ask exactly which polynomials
over I have positive orthogonal multiplicity, and what can be said about
their multiplicities. Some results in this direction (and in related areas [7, 9])
have already been established. In [1] Blackburn shows that if ' has infinite
order then every polynomial in [F[z] has positive multiplicity; and if I,
denotes the finite field with g elements [4] and g € F,[z] with deg g = n, then
g has positive multiplicity provided %n(n + 1) < ¢. Blackburn conjectures
that if ¢ # 2 then every polynomial over F, has positive multiplicity. The
situation over IFy is somewhat different; in particular, there exist polynomials
over Fy with multiplicity zero. However, Mesirov and Sweet [6] prove that all
non-linear irreducible polynomials over IFy have multiplicity 2, and one may
further show [1, 6] that if a polynomial g over Iy has positive multiplicity
then it has multiplicity 2¥, where k is the number of distinct non-linear
irreducible factors of g.

In Section 3 of this paper we characterize polynomials which have odd
orthogonal multiplicity and give a lower bound on the multiplicity of such
polynomials. This bound is used in Section 4 to prove that if the charac-
teristic of ¥, is 2 and ¢ # 2, then a polynomial over F, has multiplicity
g — 1 if and only if it has degree 1; and an alternative characterization to
that in Blackburn’s paper [1] is given in Section 4 of polynomials over Fy of

multiplicity 1. Section 4 also contains a proof of the following result: if g €



[F, [z] splits into linear factors then there exists f € Fy[z] with ged(f,g) =1
such that K(f/g) < 2. This establishes a special case of a conjecture made
by Mesirov and Sweet [6]. All of these results depend upon lemmas which
are contained in Section 2.

The author would like to thank Simon Blackburn for his help and en-

couragement during the preparation of this paper.
2 Preliminaries

If f/g = [0;a1,a9,...,a,] where f and g are polynomials over F and
degg > 1,thenkf/g =[0;k 'ay, kay,..., kD" a,, ] for any k € F*. Hence
if f/g € My then kf/g € M, for any k € F*, and so the orthogonal multi-
plicity of a polynomial over a field I is a multiple of |[F*| = |F| — 1. Since
we are interested solely in polynomials with odd multiplicity, we shall only
be concerned with finite fields of characteristic 2. Throughout this section

I, will be a finite field of characteristic 2 (or more succinctly, char ', = 2).
2.1 Continued Fractions

Let f/g be a rational function over the field F, with ged(f,g) = 1 and
f/g =1laop;a1,aq,...,an]. Define the polynomials f; and g; for —1 < i <m

by

fri=1,fo=a0, fi=aifi1+fio,forl<i<m, (1)
g-1=0,90=1, g =ajgi—1+gi—2,for 1 <i<m.

For 0 < i < m, the polynomials a; are called the partial quotients of f/g,
and the rational function f;/g; is called the it convergent of f/g. It is easily

shown that f;/g; = [a¢;a1,...,a;]. One may write the above recurrences



conveniently for 1 <i <m as

ficv fic2\ (@ 1\ _ (fi fiz
gi-1 9i-2 1 0 g gi—1)’
a 1) (a1 ai 1Y\ _(fi fi-
(o) o) (Fa)-(raz) e

Following [10], we write

i fi
< [ag;ar,a, ..., 0],
<9i gi—1 [0 102 Z]

and so

to indicate the correspondence between continued fractions and matrices of
a particular form.

The above approach allows one to prove simple continued fraction iden-
tities with great ease. For example, taking the determinant of both sides
of (2) gives us the well-known identity f;gi_1 — ¢ifi_1 = (—1)**!, or, as
we are working in characteristic 2, f;g; 1 + g;fi—1 = 1. This implies that
ged(fi,9i) = 1 and so the convergents are in reduced form.

The following lemma, is central to the methods in this paper.

Lemma 1 Let charF, = 2 and a € Fylz]. For 0 < i < m, let fi/g;

denote the i convergent of the continued fraction [0:a1,as9,...,a,]. So

fm/gm =[0;a1,a9,...,am]. Then
1. gmfl/gm:[O;G’myamfly"'val]-
2. (fmgm+1)/g72n = [0;(]’170’27"' 7am717am+]—7am+]—7am717"' ,(12,(11].

3. (a’fmgm + 1)/ag72n = [0;0,1,0,2,... sy OGm—1,0m, @y Qmy Gm—1,y - - - 7a2aa'1]-



The lemma may be deduced from results proved by Niederreiter in [7];
however, we give a simple proof which follows the approach taken by van

der Poorten and Shallit in [10].

Proof: To prove Part 1, take the transpose of each side of (2). Putting

ap = 0 and post-multiplying each side of the resulting identity by <0 1)

10
gives us
ai 1)\ (ai-1 1 ap 1\ _ (g [i 3)
10 1 0)77°\1 0 gi-1 fi-1 )’
Setting ¢ = m we get gm/gm-1 = [@m;0m—1,am-2,...,a1], and so
gmfl/gm:[O;vaamfly"wal]'

We prove Part 2 by considering the matrix product

0 1 aj 1 Ay —1 1 am+1 1 am—i-l 1 al 1

10 1 0/ 1 0 1 0 1 o/)"""\1 0
<—>[0;al,a2,...,am,1,am—i—l,am—i—l,am,l,...,aQ,al].

Multiplying the first m and the last m — 1 matrices together using identities

(2) and (3), with ¢ = m — 1, gives us

fm-1 fm-2 am+1 1 ’ Im—1  fm-1
dm—1 9Gm—-2 1 0 Im-2 fm—2 '

We multiply these matrices using the fact that fi, 1gm-2 + gm-1fm-2=1

to get
Jmgm +1 f%
97277, fmGm +1)°
and so (fmgm+1)/g72n = [0 ; 01,02, ... 7am717am+]—7am+]—7 m—1y-..,02,01 ]



The steps in the proof of Part 3 are outlined below; in this case the

identity fingm—1 + 9mfm—1 = 1 is used.

(o) (v a) (o) () (o) (30

_ fm  fma a 1 dm fm _ afmgm +1 afr2n
9m Gm-1 10 Im—1 fm—1 a972n afmgm +1

& [0;61,02,. .., Qme1,0m, Gy )y Gp—1y - - -, 02,01 |.

|

Now, to facilitate the exposition, we introduce some new definitions

and notation. Let w = ajag...ay, be a word over the alphabet {a €
F,lz]|dega > 1}. We let W = w and W = GmGm-1-..01 and write
[w] to mean [0;a1,a2,...,am]. If w=1w then we call [w] a symmet-

ric continued fraction. Define the mapping ¢ on the set of all words by
$raiaz...am = a16z...am—1(am +1). Since char F, = 2, the map ¢ is an
involution.

Let g be a monic polynomial and suppose that [w] € M,, so each letter
in the word w is a polynomial of degree 1. It is easily seen, by considering
the recurrence relations (1) that generate the convergents of [w ], that m =
deg g. The following observation will be of use in the proof of Theorem 4.
Observation: If [w] € M, is a symmetric continued fraction and deg g is
even then w =v v for some word v, and if deg g is odd then w =v a v for
some word v and polynomial ¢ of degree 1.

We restate the results in Lemma 1 which are of greatest relevance to us

in the following way.



Lemma 2 Let I, be a finite field of characteristic 2.

1. If g is a monic polynomial and [1_5] € My, then [E] € M,.

2. (i) If g is a monic polynomial and [BE] € My, then g = h* for
e
some monic polynomial h and [ p(w)] € Mj,.
N —
(ii) If h is a monic polynomial, [w] € My, and g = h?, then [p(w)
—
Pp(w)] € M.

3. (i) If g is a monic polynomial and [t_t; a E] € My with a = kb, b a
monic polynomial of degree 1 and k € F;, then g = bh? for some

monic polynomial h and [B] € M.

(1) If h is a monic polynomial, [B] € My, and g = bh? where b is
a monic polynomial of degree 1, then [1_1)) a E] € M, for any

a = kb where k € ]FZ.

Proof: The lemma is essentially a rewording of the special case of
Lemma 1 in which all the partial quotients a; (1 < ¢ < m) of f/g and
the polynomial a are of degree 1. We prove Part 3; the other parts are
proved in a similar way.

3(i) Let [B a E] € M, where a = kb with b a monic polynomial of
degree 1 and k € ;. Then there exists f € IF,[z] with f/g = (W a w].
If we write w = ajaz...a, where dega; = 1(1 < i < m), and let r,/sm,

h

denote the m'™ convergent of the continued fraction [w], then by Lemma 1

Part 3, (ar;, sy, +1)/as?, = [t_t; a E] Hence (arm,sm, +1)/as?, = f/g. Let

m

asy, = Ibh? where h is monic and | € F,. Then I"!(arm s, +1)/bh* = f/g



with ged(I7! (a7, 8+ 1), bh?) = ged(arm,sm+1,as2,) = 1. Since ged(f,g) =
1 and both bh? and ¢ are monic, we have that ¢ = bh?. Finally, [1_1))] € My
since VEI=1r,/h = [B] and each letter in the word w is a polynomial of
degree 1.

3(ii) Let [1_1))] € M), where h is monic, and let g = bh? where b is
monic of degree 1. Let a = kb for some k € ]FZ. If we write w =
ajasy...ay, where dega; = 1(1 < i < m), and let r,,/s,, denote the
mt convergent of the continued fraction [’L_U>], then by Lemma 1 Part 3,
(armsm + 1)/as2, = [w a w]. Now s, = [h for some | € [y, and so
as?, = kI*bh?. Thus k=1=2(ary, s, +1)/bh? = (armsm +1)/as?, and, more-
over, ged(k~H =2 (ary, 5, +1),bh?) = ged(arm,sm+1,as?,) = 1. Since g = bh?
and all the letters in the word w a w are polynomials of degree 1, we have

that [w a w] € M,

2.2 Folded Polynomials
We define the set of all folded polynomials in Fy[z] recursively as follows.

1. If r is a monic polynomial of degree 1 then r is folded.

2. If r is folded then 72 and ar? are folded, where a is a monic polynomial

of degree 1.

The motivation for this definition comes from [10] in which a class of
continued fractions dubbed ‘folded continued fractions’ is studied by van der
Poorten and Shallit; the denominators of certain types of ‘folded continued

fractions’ are folded polynomials, as we define them.
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It is easily seen that folded polynomials are monic and split into linear
factors. In fact, it is a simple matter to classify which polynomials of this
form are folded. (We write n = (apaaz .. .)2 to indicate that n = 37, ;2!

where a; =0 or 1 for i > 0.)

mi  msa My

Proposition 3 Let g € Fy[z], charFy = 2, with g = ay""ay” ... a,* where

a; is monic of degree 1 and m; = (04604]104%...)2 for 1 < j < k. Then g is

folded if and only if a‘gla‘gz =0 forall1 <j; #jo <k andi>0.

Proof: For the sake of clarity we only consider the case ¢ = 2; the
general case is proved in an analogous fashion.

Let g be a folded polynomial over Fy. Then g splits into linear factors
and we may write ¢ = ™! (x + 1)™2 where m; = (apayay...)2 and mg =
(BofrP2-..)2. If degg = 1 then a;5; = 0 for i > 0. Let degg > 1. Observe
that since g is folded at most one of m; and ms can be odd. Firstly, suppose
that m; and mg are even, so ag = By = 0. Then g = h? where h = zh (:L“—i—l)l2
is a folded polynomial with [ = (ajay...)2 and Iy = (B102...)2. We may
assume by induction that «;8; = 0 for ¢ > 1. Hence «;3; = 0 for ¢ > 0.
Suppose now that m; is odd and ms is even, so ap = 1 and Gy = 0. Then
g = xh? where h = ! (z + 1) is a folded polynomial with I} = (ajaz...)s
and ly = (4102 ...)2. Once again, we may assume by induction that «;3; = 0
for 1 > 1. So o;f3; = 0 for + > 0, as required. The remaining case, mg even
and my odd, follows in the same way.

Conversely, let a;6; = 0 for 1 > 0. If degg = 1 then g is folded. Let
deg g > 1. We have that gy = 0 and so there are three possibilities for the

pair «p, fBp: either g = Bp = 0; g = 1 and By = 0; or ap = 0 and [y = 1.

11



If g = By = 0 then g = A2 for some polynomial h. Now h = z't(z + 1)2
where [} = (v1ag...)2 and ls = (8102 .. .)2. Since o;3; = 0 for i > 1 we may
assume by induction that h is folded. Hence g is folded. The remaining two

cases are proved in a similar way.

3 Theorems

Our main theorem reveals the intimate connection between polynomials with
certain orthogonal multiplicities and the folded polynomials we have de-

scribed.

Theorem 4 Let F, be a finite field of characteristic 2 and let g be a monic

polynomial over F,. Then g has odd orthogonal multiplicity if and only if g
is folded.

Proof: Let g be a monic polynomial. We first prove that if g has odd
multiplicity then g is folded. To be more precise, we show that if g has odd
multiplicity and deg g > 1 then g = ah? where a = 1 or a is monic of degree
1, and where h is monic and has odd multiplicity. The result then follows by
induction from the fact that all monic polynomials of degree 1 are folded.

Let ¢ have odd multiplicity with degg > 1. Let € denote the map that
acts on the set {r/s € Fy(z) |degr < deg s} and sends the continued fraction
[B | to the continued fraction [E] Then the set M, is invariant under 6 by
Lemma 2 Part 1, and 6 is an involution. Since |M,]| is odd, there must exist

an element of M, which is fixed by 6. The involution 6 fixes a continued

12



fraction if and only if it is symmetric. So there exists a symmetric continued
fraction [v] in M,. There are two cases to consider.

Firstly, suppose that deg g is odd. Then by the observation preceding
Lemma 2, v = a w for some word w and polynomial a of degree 1, and
we have that [w a w] € M. Let a = kb where k € Fy and b is monic. Then
by Lemma 2 Part 3(i), g = bh? where h is monic and [B] € M. We need
to show that h has odd multiplicity. Suppose then that m(h) is even. Let
U={[wcw]|[w] €My, c=1Ib1le [F,}. Since every continued fraction
in U is symmetric, U is invariant under the involution #, and by Lemma 2
Part 3(ii), we have that U C M,. Hence M, — U is invariant under 6. Now
|U| = (¢—1)|Mp| = (¢—1)m(h), an even number. Therefore |M,—U]| is odd,
and so there must be a symmetric continued fraction [H d Z] in My —U
where u is a word and d is a polynomial of degree 1. Now [17] € M, for
some unique monic r, and d = [e where e is monic and [ € ]F;. By Lemma
2 Part 3(i), g = er?, and so er? = bh?. If e # b then e would occur as a
factor an odd number of times on the left-hand side of this equation and an
even number of times on the right-hand side. Therefore e = b and so r = h,
since char 'y, = 2. But then [Z] € My, and so [Z d Z] € U. This is a
contradiction and so m(h) must be odd.

Suppose now that degg is even. Then by our previous observation,
v =ww for some word w, and so [sz] € M,. Let h be the unique monic
polynomial such that [¢(—’L>U)] € M},. Then by Lemma 2 Part 2(i), we have
that g = h2. We argue by contradiction to prove that m(h) is odd. Suppose
m(h) is even. Let U = {[q§(71)) ¢Tw)] | [B] € My}. Then by Lemma 2 Part

13



2(ii), U € M, and we further have that My, — U is invariant under the
involution 8. Now |U| = |M},| is even and so |[M, —U]| is odd, and there must
be a symmetric continued fraction, [Z Z] say, in My — U. Letting r be the
unique monic polynomial such that [qb@))] € M,, we find by Lemma 2 Part
2(ii) that r> = g = h%, and so r = h, as char F, = 2. Hence [qb@)] € Mj, and
S0, since ¢ is an involution, [Z Z] € U, which is a contradiction. Therefore

m(h) is odd.

We now show by induction on deg g that if g is a folded polynomial then
the multiplicity of ¢g is odd. Let g be a folded polynomial. If deg g = 1 then
K(k/g) = 1 for all k € F, and so g has multiplicity ¢ — 1. Let degg > 1.
We must consider two cases.

Firstly, suppose degg is odd. Then g = bh?> where h is folded and b
is monic of degree 1. We may assume by induction that m(h) is odd. We
argue by contradiction to prove that m(g) is odd. Suppose that m(g) is
even. Let U = {[w ¢ w]|[w] € My, ¢ = Ib,l € F}}. Then U C M, by
Lemma 2 Part 3(ii), and My, — U is invariant under the involution 6. Now
|U| = (¢ — 1)|M}p| = (¢ — 1)m(h), an odd number, and so |[M, — U] is also
odd. Therefore M, — U contains a symmetric continued fraction [17 d Z]
where v is a word and d is a polynomial of degree 1. If we let r be the unique
monic polynomial such that [U] € M,, and let d = le where e is monic and
[ e ]FZ, we have that er? = bh2. As before, we conclude that » = h and so
[ﬁ d Z] € U, which is a contradiction. Therefore m(g) is odd.

Suppose now that deg g is even. Then g = h? where h is folded. We

may assume by induction that m(h) is odd. Suppose that m(g) is even.

14



— N
Let U = {[¢(w) p(w)]|[w] € My}. Once again, U C M, by Lemma 2
Part 2(ii), and |U| = |M}] is odd. So |M, — U] is odd and M, — U must
wu

contain a symmetric continued fraction | ]. If we let r be the unique

monic polynomial such that [¢E)] € M,, then r> = g = h? and so r = h.
We then have that [ZZ] € U, which is a contradiction. So m(g) is odd.
This completes the proof.
O
It is observed by Niederreiter in [7] that the expected value for the or-
thogonal multiplicity of a polynomial of degree n over F, is (¢ —1)", and it
is easily shown that the orthogonal multiplicity of such a polynomial is no
greater than (q — 1)["/21¢l"/2] There are, however, no known non-trivial

lower bounds on the multiplicity of an arbitrary polynomial. Theorem 5

gives us a lower bound on the multiplicity of a folded polynomial.

Theorem 5 Let g € Fy[z], charF; = 2, be a folded polynomial of degree
n. Let wt(n)s denote the weight of the binary representation of n. Then

m(g) > (g — 1)wHm2,

Proof: We prove by induction on deg g that if g is folded then m(g) >
(¢ — 1)¥"™)2  where n = deg g and wt(n), denotes the weight of the binary
representation of n. Let g € F,[z], charF, = 2, be a folded polynomial.
If degg = 1 then K(k/g) = 1 for all k € F, and so m(g) = (¢ — 1) =
(g —1)¥*M2. So let deg g > 1.

Suppose that degg = n is even. Then g = h? where h is folded of

degree n/2. We may assume by induction that m(h) > (g — 1)¥"/2)z,

15



From the proof of the even case of the second part of Theorem 4, it is
clear that m(g) > m(h). Now wt(n)e = wit(n/2); and so we have that
m(g) > m(h) > (¢ = 1)/ = (g — 1)z,

Suppose now that degg = n is odd. Then g = bh? where h is folded
of degree (n — 1)/2 and b is a monic polynomial of degree 1. We may
assume by induction that m(h) > (¢ — 1)¥H=1/2)2 — (4 — 1)win)2—1
Define the set U as in the odd case of the second part of Theorem 4. Then
m(g) = |My| > |[U| = (g—1)|My| = (q—1)m(h). Since m(h) > (g—1)*! M2~

we have m(g) > (¢ — 1)m(h) > (g — 1)) a5 required.

4 Further Results

As we have mentioned before, the orthogonal multiplicity of a polynomial
over a finite field I, is a multiple of ¢ — 1 and so a polynomial over I, with
positive multiplicity must have multiplicity at least ¢ — 1. If a polynomial
g over [, has multiplicity exactly ¢ — 1 then this means that there exists a
unique monic f, of degree less than that of g and coprime to g, such that
K(f/g) = 1. Theorem 5 has as a corollary a classification of all polynomials

with multiplicity ¢ — 1 over finite fields of even order ¢ # 2.

Corollary 6 Let g be a monic polynomial in Iy [], char Fy = 2, with q # 2.

Then m(g) = q — 1 if and only if g has degree 1.

Proof: 1If g is a monic polynomial of degree 1 then K(k/g) = 1 for all

k € F, and so m(g) = q — 1. Conversely, let g € Fy[z], char F, = 2, have

16



multiplicity ¢ — 1. By Theorem 4, g is a folded polynomial. If degg = n
then we must have by Theorem 5 that wt(n)s = 1, that is to say, n = 2™
for some m. We claim that the only folded polynomials of degree 2™ for
some m > 0 are those of the form a®>”, where a is a monic polynomial of
degree 1. This is easily proved by observing that if s is folded of degree 2
then s = t? for some folded polynomial of degree 2™~ 1. We may assume by
induction that ¢+ = a2™~" for some monic polynomial a of degree 1. Thus
s = a®". Therefore we must have that ¢ = a®" for some monic polynomial
a of degree 1. We now prove by induction on m > 1 that m(a®") > m(a?).
Certainly m(a® ) > m(a?). Assume now that m(a®"" ) > m(a?) for some
m > 2. It is clear from the proof of the even case of the second part of
Theorem 4 that m(a®") = m((@®" )% > m(a®" ). So m(a®") > m(a?)
as required. Finally, observe that if degb = 1 and b # la, [l € ]F;, then
ged(b,a?) = 1 and K(b/a?) = 1. So m(a®) = (¢ — 1) > ¢ — 1, since q # 2.
Hence m(a?™) > ¢ —1 for m > 1. We must therefore have that g = a where
a is a monic polynomial of degree 1.
O
In [1] Blackburn shows that a polynomial g over F, has orthogonal mul-
tiplicity 1 if and only if it is of the form 2™ (z 4+ 1)™ where (™.'7"?) =
1 mod 2. It is of interest that Theorem 4 can also be used to obtain an
alternative, but of course equivalent, classification of polynomials of mul-

tiplicity 1 over Fy. (This equivalence can be seen directly from the Lucas

congruence for binomial coefficients [5].)
Corollary 7 Let g € Fy[z]. Then g has orthogonal multiplicity 1 if and
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only if g = ™ (x + 1)™2 where m; = (o .. .)2, me = (G152 - ..)2 and

a;B; =0 fori>0.

Proof:  Let g € Fo[z]. We claim that ¢ has multiplicity 1 if and only if g
is folded. By Theorem 4, if g has multiplicity 1 then g is folded. Conversely,
if g is folded then it must have odd multiplicity. Blackburn proves in [1]
that if a polynomial g over [, has positive multiplicity then it must have
multiplicity 2¥, where k is the number of distinct non-linear irreducible
factors of g. Therefore a polynomial over F; which has odd multiplicity
must have multiplicity 1. This proves the claim. The result now follows
from the characterization of folded polynomials given in Proposition 3.

O

By the result from [1] mentioned in the proof of the above corollary, if a
polynomial over [Fy which splits into linear factors has positive orthogonal
multiplicity then it must have multiplicity 2° = 1. Therefore by the above
corollary, there exist polynomials over Fy which split into linear factors
which have multiplicity zero. We show, however, that if g is a polynomial
over [Fy, which splits into linear factors then there exists a polynomial f over
F, with ged(f,g) = 1 such that K(f/g) < 2. This proves a special case of
the following conjecture made by Mesirov and Sweet in [6]: if g € Fo[z] then

there exists f € Fo[z] with ged(f, g) = 1 such that K(f/g) < 2.

Proposition 8 If g € Fy[z] splits into linear factors then there exists f €
Fy [x] with ged(f,g) =1 such that K(f/g) < 2.

18



Proof: Let g € Fo[z] with g = 2™t (x + 1)™2. We prove by induction on
deg g that there exists f € Fy[z] with ged(f,g) = 1 such that K(f/g) < 2.

If degg = 1 then we have that K(1/g) = 1. Let degg > 1. If m; and
mey are even then we may write g = s? where s splits into linear factors.
We may assume by induction that there exists r € Fy[z] with ged(r,s) =1
and K(r/s) < 2. Without loss of generality, we may further assume that
degr < deg s, and so r/s = [w] for some w = ajay...a, with dega; <
2 (1 <i<m). Let ,,,/, denote the m!™ convergent of [w]. Then r,,/s,, =
[w] = r/sand ged (7, Sm) = 1. Hence, since we are working over o, r = r;,
and s = s,,,. By Lemma 1 Part 2, (rs +1)/g = (rs +1)/s? = [gb(_z)u) ¢<(Tu)],
and we also have that ged(rs + 1,9) = ged(rs + 1,52) = 1. Finally, since
dega; <2 for 1 < i <m, we have that K((rs+1)/g) <2.

If at least one of m; and mg is odd then we may write g = as? where 1 <
deg a < 2 and s splits into linear factors. We may assume by induction that
there exists r € Fy[z] with ged(r,s) = 1 and K(r/s) < 2. We may further
assume that degr < deg s, and so r/s = [w] for some w = ajasz ... an, with
dega; < 2(1 <i < m). Let r,/s,, denote the m!* convergent of r/s. We
have that r = r,, and s = s;,, and so by Lemma 1 Part 3, (ars + 1)/g =
(ars+1)/as? = [B a E] Certainly, ged(ars+1,g) = ged(ars+1,as?) = 1.
By assumption deg a; < 2 for 1 < i < m, and we further have that dega < 2.

Hence K ((ars+1)/g) < 2, which completes the proof.
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5 Comments

One may define folded polynomials over finite fields IF, of odd characteristic
in an obvious way; however, few of the results which hold for folded poly-
nomials in characteristic 2 are still true. A plausible analogue of Theorem
4, that a polynomial has orthogonal multiplicity k(¢ — 1) where k is odd if
and only if it is folded, is, in general, false. For example, over F5 the folded
polynomial z® has multiplicity 8, and the polynomial z3 + z = z(z? + 1)
has multiplicity 6. One may show, however, that if ¢ is a folded polynomial
over F, with degg = n then m(g) > (¢ — 1)"*(™2, and, of course, an odd
characteristic analogue of Proposition 3 is still true. It also seems reasonable
to conjecture that over a finite field IF, of odd characteristic a polynomial
has multiplicity ¢ — 1 if and only if it is linear.

Niederreiter asks the following question in [9]: does there exist a constant
Cy such that if g € F,[z] then there exists f € IF,[z] with ged(f,g) =
1 such that K(f/g) < C,7 As we have mentioned before, Blackburn [1]
conjectures that C;, = 1 for ¢ # 2 and Mesirov and Sweet [6] believe that
Co = 2. It is of some interest that this question is essentially a rational
function analogue of a long-standing conjecture in number theory known
as ‘Zaremba’s conjecture’ [12]: for any integer n there exists an integer m
coprime to m such that all the partial quotients of the (simple) continued

fraction expansion of m/n are no greater than 5.
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