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1 Introduction

An attractive and challenging problem in computational number theory is to count in an efficient
manner the number of solutions to a multivariate polynomial equation over a finite field. One
desires an algorithm whose time complexity is a small polynomial function of some appropriate
measure of the size of the polynomial. A natural measure of size is d" log(q) for a polynomial of
total degree d in n variables over the field of ¢ elements. Despite intensive research over the last
few decades, existing algorithms fall well short of this ideal. The case n = 1, which is related
to univariate polynomial factorisation, was solved essentially by Berlekamp and is comparatively
straightforward, see [19, Chapter 14]. When n = 2 one is counting points on curves, a topic of
some practical importance [2]. Here one can achieve a complexity of log(q)“® where the exponent
Cy depends exponentially on d (this can be improved to Cy a polynomial in d in some special cases,
see [1]). The only algorithm which applies for general n has a complexity which is a polynomial
function of (pdlog(q))™ [26] (see also the strategy in [23, Section 2]). This is polynomial-time in
what one might call the small characteristic input size of pd™ log(q), but only for fixed dimension
(that is, the exponent depends upon the dimension n). The purpose of this paper is to introduce a
systematic new approach to counting solutions to equations over finite fields which aims to remove
the exponential dependence on the dimension for small characteristic. That is, to obtain a single
time complexity which is polynomial in pd™log(q) uniformly over all n. A general method is
sketched, and worked out for a particular quite broad family of polynomials. The new approach
rests on two observations. First, the number of solutions to any equation defined by a diagonal
polynomial can be computed easily within the required time bound. Second, any suitably generic
polynomial can be deformed into a diagonal polynomial; more precisely, lies in a one-parameter
family of polynomials containing a diagonal form. Over a finite field this deformation appears
superficially to be of little use. Remarkably though, one can associate a linear p-adic differential
equation with the deformation, and by solving this one can recover the number of solutions to the
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original finite field equation. Thus, in a sense, one reduces a high-dimensional solution counting
problem to a one-dimensional deformation problem, whence the magical reduction in complexity.
We note that homotopy methods are apparently well-studied in the context of the numerical solution
of systems of equations over the complex numbers [9, Section 4.2]. Our work seems to be the first
explicit algorithmic application of such ideas to the more mysterious setting of equations over finite
fields.

The problem of counting solutions can be reformulated in terms of computing zeta functions,
and we use this language for the remainder of the paper. Precisely, a multivariate equation defines
an affine hypersurface, and the number of solutions to the equation over all finite extensions of the
base field is encoded in the zeta function of the hypersurface. Thus the task of “counting solutions
to equations” is subsumed in “computing zeta functions of hypersurfaces”, which is the problem
we discuss. The notions of input size are carried over to this new setting. We work out all the
details of our new approach for a particular family of Artin-Schreier covers of affine space. The
algorithm we present has a cubic time dependence on log(g) and quartic on p in all dimensions.
We now introduce the definitions and notation necessary to fully explain this result.

Let IF; be the finite field of ¢ elements, where ¢ is a power of a prime p. Let f € F[X,..., X})]
have total degree d (that is, the maximum sum e; + ... + e, of exponents which occurs amongst
non-zero terms aX;' ... Xgm of f is d). Let X; be the affine hypersurface of dimension n defined
by the equation

Z°P — 7 = f(X1,..., Xpn).

The variety X is an Artin-Schreier cover and in this paper we shall restrict our attention mainly
to such hypersurfaces, although in Section 2 we do discuss general projective hypersurfaces. Let
#Xy(F ) be the number of points (z,71,...,7,) € ]Fg,jl with 2 — z = f(z1,...,z,). The zeta
function of X is the formal power series

Z(X;/F,,T) = exp (Z #X(Fqk)?> .
k=1

Dwork’s theorem tells us this is a rational function [12], and [3, Theorem 1] implies the upper
bound (p — 1)(4d + 5)™ + 1 on the sum of the degrees of the numerator and denominator of this
function (see Section 3.1). The polynomial-time computability theorem of the author and Wan
[26] shows the following: There exists a deterministic algorithm and a polynomial P such that on
input the polynomial f, the algorithm outputs the zeta function Z(X¢/F4,T) within a number of
bit operations P((pd™log(q))™). The space complexity of this algorithm is also Q((pd™ log(q))™)
bits, for some polynomial (). This shows polynomial-time computability for fixed dimension, when
the input size is taken as pd"log(q). However, the exponent of the input size in the time/space
complexity grows linearly with the dimension n. The reason for this is that the algorithm does
all computations on the “cochain level” , i.e., with truncated n-variate power series of total degree
around pd™ log(q) over the modular reduction of some suitable p-adic ring. Such power series have
around (pd™ log(q))™ terms.

To get a better algorithm, one tries to use some p-adic cohomological formula. We say that f
is non-degenerate if the polynomials

x, 9fd dfa
1oy 10 1%
0X1 o0X,

have no common zero other than the origin. Here f; is the homogeneous part of f of degree

d. A simple p-adic cohomological formula exists when f is non-degenerate (see [32]), and it may




be used to compute the zeta function more quickly (for example, the case n = 1 is worked out
explicitly in [27]). However, even using this cohomological formula, the complexity dependence on
the input size pd™ log(q) has an exponent growing linearly with the dimension n. The approach [23]
of Kedlaya based on the cohomological formula for smooth affine varieties of Monsky-Washnitzer
would also yield a similar complexity estimate. The reason for this is that to compute the action
of the (absolute) Frobenius map on the cohomology space using either method, one lifts the basis
elements to the cochain level, computes the cochain Frobenius on these elements, and returns back
to the cohomology space using reduction formulae. As mentioned before, even representing elements
on the cochain level is very expensive. To remove the complexity dependence on the dimension,
we present a completely different approach which avoids (almost) all computations on the cochain
level.

We now state our main theorem. We use Soft-Oh notation which hides logarithmic factors, as
defined in [26, Section 6.3]. Note that with our Oh and Soft-Oh notation the estimates hold for
all values of the parameters n, d, p, log(q) (the logarithm to the base 2) and r, subject to the
restrictions on the input type.

Theorem 1 There exists an explicit deterministic algorithm with the following input, output and
complexity. The input is any polynomial of the form

F=YaX{+yh(Xy1,...,Xn),

=1

where ay, ..., a, € Fy are all non-zero, the elementy € Fyr, and h € Fy[ Xy, ..., X,] has total degree
less than d. Here n,d and r are positive integers, the integer q is a power of a prime p with p > 2,
and p does not divide d. The output is the zeta function Z (X, T) of the affine hypersurface defined
by the equation ZP — Z = f. The running time of the algorithm is O(n™a(n+25)@5n+3,4 Jog(4)313)
bit operations, and the space requirement is O(n™t2d*2ptlog(q)3r?) bits.

The factor n™*2 arises from Step 2 in the algorithm (Algorithm 13), which is the only part
which involves any computation on the cochain level. It might be possible to remove this by a more
careful analysis of this part of the algorithm.

Taking r =1 and y = 1 in the theorem we get the next result.

Corollary 2 There exists an explicit deterministic algorithm with the following input, output and
complexity. The input is any polynomial of the form

F=YaX{+nh(Xy,...,Xn),

=1

where ay,...,an, € Fy are all non-zero, and h € Fy[Xy,...,X,] has total degree less than d. Here
n and d are positive integers, the integer q is a power of a prime p with p > 2, and p does not
divide d. The output is the zeta function Z(Xy,T) of the affine hypersurface defined by the equation
ZP — Z = f. The running time of the algorithm is O(nmax(n+2:5)5n+3pd 160(4)3) bit operations,
and the space requirement is O(n"2d*"*2p*log(q)?) bits.

This shows that the method may be applied to any polynomial over I, whose leading form is
diagonal. Similarly, taking g equal to p and relabelling p” by a different g, we get the next corollary.



Corollary 3 There exists an explicit deterministic algorithm with the following input, output and
complexity. The input is any polynomial of the form

n
F=3a X! +yh(Xy,..., Xy),
i=1

where ay,. .., an € I, are all non-zero, the element y € Ky, and h € F,[X1,...,X,] has total degree
less than d. Here n and d are positive integers, the integer q is a power of a prime p with p > 2,
and p does not divide d. The output is the zeta function Z (X, T) of the affine hypersurface defined
by the equation ZP — Z = f. The running time of the algorithm is O(n™ax(n+2:5)g5n+3,4 160(4)3)
bit operations, and the space requirement is O(n™2d*+2p*log(q)?) bits.

This shows that the space complexity can be reduced when the polynomial belongs to a suitable
family over IF,. The significance of this observation is that the method for curves of Kedlaya [23],
and also the related method from [27], based on a direct computation of a p-adic cohomological
formula, requires cubic space/time in log(g) in all cases. However, the algorithm of Satoh for elliptic
curves [29], a one-dimensional family over IF,,, needs only quadratic space [34]. This suggests some
connection between our algorithm and that of Satoh, although we have not fully explored this.

Our main theorem also has the following curious consequence for counting solutions to equations.

Corollary 4 Let f € Z[X1,...,X,] have the form

f = Zaled_’_h(thXn)
=1

where a1...ay, # 0 and h has total degree less than d. There exists an explicit deterministic
algorithm which takes as input a prime p and outputs the number of solutions over ¥, to the
equation f =0, and runs in O(p?) bit operations.

Here the algorithm itself depends upon the polynomial f, and thus the constant factor which
the Soft-Oh notation hides also depends upon f, although the exponent of log(p) which is also
hidden is independent of f. The naive bound for this problem would be O(p™), or better still
O(p™") using a root counting algorithm for univariate polynomials.

Note that the case p = 2 in Theorem 1 can probably be handled by using the modification in [27,
Note 33], although we have not studied this in detail. In fact, an implementation of Vercauteren and
the author suggests that the present algorithm does work correctly for p = 2. One could perhaps
prove this using the argument in [27, Section 7.2]. We have not looked at the case p divides d,
although perhaps the theory from [15, Section 6(e)] may be of use here.

There is a large literature devoted to the problem of computing zeta functions, or point count-
ing as it is familiarly known. This is motivated in part by applications in cryptography (see
the bibliography in [2] for a list of publications). The starting point, leaving aside univariate
factorisation algorithms, was [31]. The paper [17] also contains important improvements for el-
liptic curves, and [23, 26, 29] make significant algorithmic advances. Other recent work includes
[11, 18, 20, 21, 24, 26, 27, 28, 30, 33, 34, 35, 37]. The method of this paper seems quite different
from most existing approaches. However, as previously stated, the author believes one should be
able to describe the algorithm of Satoh for elliptic curves using our deformation methodology (see
also Note 7).



The paper is organised in the following manner. In Section 2 we describe our general strategy
for computing zeta functions, and give a small example. In Section 3 the proof of Theorem 1 starts
in earnest: we describe the theoretical results needed for our algorithm. The results themselves
seem new, at least in the explicit incarnation we need, and are proved in Appendix A. Section 4
contains the algorithm itself. In Section 5 we present subroutines for three key tasks, and in Section
6 we prove the correctness of a formula used in one step of the algorithm and discuss how many
terms in this formula need to be evaluated. Section 7 is the most technical, as it involves detailed
estimates on the p-adic orders of the numbers which arise in the algorithm. The results in Section
7 allow us in Section 8 to analyse the propagation of errors through the algorithm, and thus prove
the output is exactly correct. Finally, the complexity of the algorithm is estimated in Section 9,
and the proofs of the results in the introduction completed in Section 10.

2 The Strategy

We first describe an approach for computing zeta functions of smooth projective hypersurfaces.
We will develop this fully in a sequel paper [25] (the present paper contains a technically simpler
algorithm in a related setting). This section contains no proofs or definitions, and does not form
part of the proof of Theorem 1. The results quoted in this section can be found in [15]. Indeed,
our new approach was inspired by Dwork’s proof of the functional equation of the zeta function of
a smooth projective hypersurface in [14, 15]. An outline of the approach is as follows: to compute
the zeta function of a single smooth hypersurface, one embeds it in a one-parameter family, such
that the fibre at the origin is smooth and has an easily computed zeta function. By computing
numerically a basis of solutions to an associated linear differential system around the origin, one
can then recover the zeta function of the original hypersurface. We now give more details.

Let f(X,Y) € F,[Y][Xy,...,X,] be homogeneous of degree d in the variables Xi,..., X,
where ¢ is a power of a prime p, and p does not divide d. The polynomial f defines a family
of hypersurfaces parameterised by the variable Y which we assume are generically smooth and in
general position. (A hypersurface of degree not divisible by the characteristic is smooth and in
general position if the intersection of it with each coordinate subspace is smooth, see [22, Page
75].) If one is interested in a particular smooth hypersurface in general position, assume it is
embedded in this family. (The explicit family which Dwork considers is defined by the polynomial
f(X,Y) = ¥ a;X? + Yh(X) where a1...a, # 0 and h(X) has no diagonal terms, and the
hypersurface of interest can be recovered by setting Y = 1.)

Suppose we wish to count points on the smooth, and in general position, projective hypersurface
defined by f for some specialisation in [F, of the variable Y. The number of points can be obtained
easily from the trace of the Frobenius map acting on some cohomology space. This map factors
as a product of log,(q) semi-linear maps, and to obtain polynomial-time computability in plog(q)
one must exploit this factorisation. However, since this feature is common to all p-adic algorithms
we shall ignore this key step, and in this section just assume ¢ = p is a prime. Let W C F, be the
set of specialisations of Y = ¢ such that f(X,#) does not define a smooth projective hypersurface
in general position. We assume that zero does not lie in W. Let W be the subset of the p-adic
projective line obtained by taking the Teichmiiller lifting of the points in W along with infinity.
For each specialisation Y = ¢ ¢ W, a Frobenius matrix a(7) is defined via Dwork’s cohomology
theory. Our aim is to compute the matrix a(y) efficiently. Write y for the Teichmiiller lifting of
g. Define a(Y') to be the function that associates to each y € W the matrix «(g). Dwork’s theory



tells us that the entries in the matrix «(Y") are analytic functions on the p-adic projective line with
open unit disks around the points of W removed. Dwork’s deformation theory gives the equation

oY) = C(YP)"ta(0)C(Y). (1)

Here C(Y) is some matrix of p-adic analytic functions with “large” disks around the points of W
removed. Finally, the matrix C(Y) satisfies a differential equation

%C(Y) =C(Y)B(Y), C(0) =1, (2)
where B(Y') is a matrix of rational functions on the p-adic projective line with the points of W
removed.

Equation (1) can be used to compute «(Y), and hence a(7), provided C(Y') and «(0) can be
found. The matrix B(Y') can always be computed easily using a simple, explicit method due to
Dwork (see [15, Section 8]). This requires a little computation on the cochain level. One can put
most polynomials in a family f(X,Y) such that a(0) can be computed easily. For example, one
might assume f(X,0) is a diagonal form, as in Dwork’s explicit family, for then the Frobenius
matrix has a Kronecker product decomposition. An expansion of the matrix C(Y) around the
origin may be computed by solving the differential system (2) using the method in Section 5.2.1.
The central difficulty is to determine to what p-adic and Y-adic accuracies this expansion must
be computed in order to recover a(Y) up to the necessary p-adic accuracy, and how to perform
this recovery. We address these problems in general in [25]. For now, we observe that assuming
an explicit overconvergence bound can be found for the matrix a(Y’) (compare with Proposition
17), these computations just involve manipulation of univariate power series and rational functions
of “small degree”. As such, it is at least intuitively plausible that these computations can be
performed within a time bound of the desired form, that is, with an exponent independent of
n. Having found a(Y) up to a suitable p-adic accuracy, for § ¢ W one then simply evaluates
this matrix at the Teichmiiller point y and takes the trace to find the number of points on the
hypersurface f(X,y) = 0. (The precise relation between the trace and the number of points is
given on [22, Page 75].)

In the present paper, we consider a slightly different situation to that described above. Instead
of smooth projective hypersurfaces in general position, we consider non-degenerate exponential
sums and the related Artin-Schreier covers. For these sums, an analogous theory to that described
above exists. The advantage now is that the non-degeneracy condition is more flexible, and one can
explicitly write down interesting families of exponential sums in which each fibre is non-degenerate.
We then find that the set analogous to W above just contains co. As such the matrix B(Y') one
considers has polynomial entries, and we can more easily solve all of the necessary problems.

We now give a simple example.

Example 5 Let f = X2+ Y X with p > 2, so we are interested in the curve Z? — Z = f(X,Y) for
different specialisations of Y. The associated cohomology space is one dimensional, as are all the
matrices. The matrix B(Y) is just (—7Y/2), where 7 is a p-adic number with 77~! = —p. Hence
C(Y) = exp(—n(Y?/4)) € Zy[n][[Y]], where Z, is the p-adic integers. Using Dwork’s theory one
works out that the matrix a(0) is

a(0) = > (=) An(1/2),7 "

m,r>0,2(m—pr)=p—1



The unfamiliar symbols here are defined in Section 3.2. Thus the matrix a(Y") is
exp(n (Y /4))a(0) exp (—7(Y?/4)).

Although exp(—m(Y?2/4)) has integral coefficients, they do not decay quickly. When one computes
the product though, one sees the coefficients of «a(Y) decay quickly. This feature is key, as it
allows one to estimate how many of the terms in the slow decaying series C(Y) one needs to
compute to determine «(Y’) to a suitable degree of accuracy. Note that the number of points on
ZP — 7 = f(X,7) is actually the trace from Z,[r] to Z, of a(y).

Note 6 The results of Dwork were reformulated in terms of the Gauss-Manin connection acting on
the middle dimensional analytic de Rham cohomology group by Katz [22, Pages 75-77]. Here one
studies the Picard-Fuchs differential equation of the family of hypersurfaces. This equation can be
computed using the Griffiths-Dwork method from [8, Section 5.3]. Dwork developed his methods
further in later work, and his techniques have been used by many different authors: for example,
by Candelas et al in [4] to study varieties from a specific family of interest in mathematical physics.
In the context of the work of Dwork and his school, one is interested in finding explicit formulae
for (the p-adic slope decomposition of) the zeta functions in the family in terms of closed form
solutions to the Picard-Fuchs equation. The main insight of the present author is that, assuming
the origin is not a singular point of the Picard-Fuchs equation, one can easily compute numerically
a basis of solutions around the origin. Provided the Frobenius matrix of the fibre at the origin
has been computed, one can then recover exactly the zeta function of any smooth fibre in the
family. Moreover, the complexity of this approach greatly improves upon all previous algorithms
for computing zeta functions of smooth hypersurfaces of high dimension. The idea should extend
to more general varieties, such as complete intersections, although the author has not studied this
at all.

Note 7 In algorithmic applications of Dwork’s theory it is necessary that the “holomorphic func-
tions” one considers have the property of being overconvergent, rather than just convergent. Over-
convergence is a necessary condition, since one requires that the functions under consideration
reduce to small degree rational functions when one reduces coefficients modulo powers of the char-
acteristic. In such cases they can be evaluated modulo a power of the characteristic quickly. The
absolute Frobenius matrices which arise in our work have this property. For example, the precise
radius of convergence of the relevant matrix is established in Proposition 17. However, overcon-
vergence is lost, or at least is not known to hold in general, when one tries to compute a “slope
decomposition” of the absolute Frobenius matrix. Precisely, when one computes the “Hodge-
Newton decomposition” of the corresponding “overconvergent F-crystal”. This is related to the
long-standing meromorphy conjecture of Dwork, which was recently proved by Wan (see [36, Sec-
tion 1] for a discussion of the conjecture). Dwork was able to prove his conjecture for elliptic
curves by finding a so-called excellent lifting of Frobenius, in which the unit root part remains over
convergent, see [16, Section 1]. The algorithm of Satoh presumably exploits this special lifting to
compute the unit root part. However, using the usual lifting of Frobenius the unit root part is not
known to be overconvergent. It was pointed out to the author by Vercauteren that, indeed, the
unit root formula in [14, Section 5] is not useful in practice in computing the zeta function of an
elliptic curve. From an algorithmic viewpoint, it would be very nice to be able to compute the
different p-adic slopes of the zeta function of a variety independently, since then one could work



with much smaller matrices. However, a deeper understanding of when excellent liftings exist and
their construction seems essential.

3 The Theory

Let f =Y, &, X8+Yh(X) € F,[Y][X], where we write X for the list of indeterminates X, ..., X,
and ¢ is a power of the prime p > 2, and p does not divide d. Here d > 1, for the case d = 1 is
trivial. We assume that a; ... a, # 0 and the polynomial h has degree less than d. (The bars will be
removed when we take p-adic liftings. Note that we just dropped the bars in the previous sections

for notational simplicity.) We use the symbol X™ to denote X{"'... X" for m = (mq,...,my)
a vector of non-negative integers, and define |m| = my + ... + m,,. Similarly, we write z € K™ to
denote a point (z1,...,2,) in affine space over some field K.

The aim of the paper is to compute the zeta function of the affine variety Z? — Z = f(X, %)
for different specialisations ¥ = y € Fy» of the variable Y. This is achieved via a deformation
theory for exponential sums of a certain form. This theory is based upon the work of Dwork, and
is developed in full in Appendix A. In this section, we shall just quote the pertinent results when
needed.

3.1 Exponential sums

Let ¢, be a primitive pth root of unity in some extension of the rational numbers QQ, and Try :
F,e — F) the trace map. Let § € Fgr. For each k > 1 with r|k define

_ T
L(f(X,y),T) = exp (Ek21,r|k Slc?) :

The Bombieri degree bound states that L(f(X,#),T) is a ratio of polynomials in 1 + TZ[T] whose
degrees sum to at most (4d 4+ 5)" [3, Theorem 1]. Let G be the Galois group of the extension
Q(¢p)/Q. Thus G ={6;|1 <i <p—1} where 6; : {, — C;;. A straightforward argument (compare
with [27, Section 2]) shows that the zeta function of the affine hypersurface X over Fyr defined by
the equation ZP — Z = f(X, ) satisfies

2(x;/F ;1) = eca ST ®)

Here the group G acts on the coefficients of polynomials. Thus Z(X7/Fr,T) has total degree at
most (p—1)(4d+5)"+1 as a rational function. All the statements made up to now in this paragraph
are true for general f/F - of degree d, which gives the degree bound claimed in the introduction.
Since p does not divide d and the leading form of f(X,7) is non-degenerate, we have a stronger
result. From [32, Theorem 2.37] we have that L(f(X,7),T)"Y""" is a polynomial of degree (d—1)"
in 1 +TZ[T]. Equation (3) reduces the computation of the zeta function to this L-function. This
latter function is realised as the characteristic polynomial of a map, called the Frobenius map, on
a space of dimension (d — 1)™ over a suitable p-adic field. Precisely, in the next section we define
a matrix a(Y") of size (d — 1)™ whose entries are power series over the ring of integers of a p-adic
field (the absolute Frobenius matrix). We will compute this matrix modulo appropriate powers of



the uniformizers p and Y. The L-function L(f(X,y),T) can then be obtained by evaluating this
matrix at a certain point, and taking the reverse characteristic polynomial of some “power” of the
evaluated matrix. The matrix «(Y") is found in an indirect manner, using deformation theory and
its value at the specialisation Y = 0. The theory behind all this is explained in the next section.
Note that for s € F,» we have that L(f(X,9)+s,T) = L(f(X,9),(p T(S)T). Thus it is enough to
compute L-functions for f with constant term zero. Given a polynomial f with non-zero constant

s term we need only make the substitution 71" — C,;[YT(S)T in the L-function of f — s.

3.2 p-Adic theory

Prior to stating the propositions which underpin our algorithm, we need to make some more
definitions.

First, we introduce some notation related to p-adic rings: Let Qp be the field of p-adic numbers,
and Z, the ring of p-adic integers. Let C, denote the completion of an algebraic closure of Q,.
We denote by Q, the unique unramified extension of Q,, in C, of degree log,(q), and Z, the ring
of integers of Q,. Let m € C, be an element such that 7P~ = —p. Let ord be the p-adic order
function on C, normalised so that ord(p) = 1, and R, the ring of integers of C,. Observe that
ord(m) = 1/(p — 1). For y € R, in the unique unramified extension of Z, of degree r for some
r > 1, let 7 denote the automorphism of Z,[r][y] which reduces to the pth power map on its residue
class field and fixes . Let h denote the polynomial in Z4[X] whose coefficients are the Teichmiiller
liftings of those of h. Let a; be the Teichmiiller lifting of a;, and f =", aiXZd + Yh.

Next, we need to define the “differential equation of the deformation”. Let

0 oh
2 (2

act on the ring Q,[7][Y][X]. The set
{X"|u € B} where B:={u= (u1,...,up)|0 < ut,...,u, <d}
is a Q,[7][Y]-basis for the quotient Q,[r][Y]-module

n
X1 Xn# /(X1 .. X %N Dy y (%)),
=1

with * = Q,[7][Y][X] (see Proposition 25).

Definition 8 For each v € B, let B, ,(Y') denote the coefficient of X" in the reduction of ThX"
modulo the images of the operators D;y. Let B(Y) = (By,) be the corresponding square matriz of
size (d — 1)" over Q [r][Y].

Each entry in B is a polynomial in Y of degree at most n(d — 1) with coefficients of p-adic order
> —n/(p — 1). We prove these facts in Section 5.1, where we shall also describe how to compute
this matrix.

We can now introduce the deformation matrix itself.

Definition 9 Let C(Y) be the matriz over Q,[n][[Y]] which is the unique solution to the differential
equation and initial condition
oCc

oy = CO)B(Y), C(Y) = I mod (Y). (4)



In Section 5.2.1 we shall see how to compute C(Y) up to any Y-adic accuracy.

The idea is that the matrix C'(Y') controls the change in the “generic” L-function “L(f(X,Y),T)”
as one moves from Y = 0 to a “generic” choice of Y. We give an explicit formula for the L-function
for the specialisation Y = 0. More precisely, for the matrix which represents the action of the
absolute Frobenius map on the cohomology space constructed by Dwork.

Proposition 10 Let «(0) be the matriz for the action of the absolute Frobenius map on the co-

homology space associated to the L-function L(f(X,0),T). (This is defined in Section A.2.) The
entry in the uth row and vth column of a(0) for u,v € B is

ﬁ Z )\m(ui/d)r(_I)TW_TT_I(CLT)G;T. (5)

i=1m,r>0

Here the sum is over all m,r > 0 such that pu; — v; = d(m — pr), where v = (u1,...,u,) and
v=(v1,...,0p).

The p-adic integer \,, is the coefficient of 2™ in the power series exp(mw(z — 2P)). The p-adic
integer (u;/d), is defined to be 1 when r = 0, and for > 0 to be

(ui/d), = (u;/d)((u;/d) + 1) ... ((u;/d) + (r —1)).

This proposition is proved in Section 6.1.
The main result of the deformation theory is as follows.

Proposition 11 Let a(Y') denote the absolute Frobenius matrixz for the “generic” Y. (This matriz
is defined explicitly in Section A.2.) Then we have the following identity of matrices over Q [r][[Y]]

1

a(Y) = C(YP)ta(0)CT (Y.

Here 771 acts entry wise on the matriz, fizing Y.

This proposition is proved in Appendix A. Specifically, see Equation (29) and Section A.3.

We now related the L-function to the zeta function of the affine hypersurface. Let G denote the
Galois group of the extension Z,[r|/Z,. The group #G has order p—1 and one can explicitly write
down the action of each group element on 7 [26, Equation (11)]. The next proposition is proved in
Section A.2.

Proposition 12 Write
P(T)
(1—¢™T)
for the zeta function of the affine hypersurface ZP — 7Z = f(X,§) defined by specialising Y = §
where § € Fyr. Then

Z(Xf(X,g)/]FquT) =

P(T)(fl)n+1 _ H det(I — a(y'r*l)rr1°gp(Q)a(yT*1)—r“ogp(q)—l “.a(y—ﬁl)TT)G.
0eG

Here y is the Teichmaller lifting of the field element y.
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4 The Algorithm

We now put the results in the previous section together in an appropriate manner to give our point
counting algorithm. The proof of Theorem 1 rests upon a demonstration of the correctness of this
algorithm and an estimate of its time and space complexity.

Algorithm 13

Input: A polynomial f(X,3) = 3", @ X + gh(X). Here ai,...,a, € F, are non-zero, where F,
has characteristic p > 2, and p does not divide d. The polynomial h € F,[X7,...,X,] has total
degree less than d(> 1), and the element 3 € Fyr, for some r > 1. (We assume h(0) = 0, as the
case h(0) # 0 can be easily reduced to this case by the comment at the end of Section 3.1.)

Output: The zeta function of the affine variety defined by the equation ZP — Z = f(X, 7).

STEP 0: SET-UP

We use the notation defined in Section 3. All computations below are performed with p-adic
numbers in Q,[7] and Q,[r,y] working “modulo” some power of p (see Section 8.2 for a precise
definition of this phrase). Define

N = [(p—1)(d—1)"((rnlog,(q)) +log,(2))] + 1
Ny = 12pd(N + (d — 1)"rnlog,(q) + n)
N = (60nd+ 1)(N + (d —1)"rn log,(¢)) + 60n2d + n(p + 2).

STEP 1: TEICHMULLER LIFTINGS B
Compute modulo pV the Teichmiiller liftings of the coefficients of h(X).

STEP 2: COMPUTE THE DIFFERENTIAL SYSTEM
Let B(Y)) be the matrix of the differential system, as in Definition 8. Using the method of Section

5.1 compute the matrix B with coefficients modulo p” .

STEP 3: SOLVE THE DIFFERENTIAL SYSTEM AT THE ORIGIN
Let C(Y) be the unique solution matrix to the differential system, as in Definition 9. Working

modulo (pV, YY), compute C(Y) using the method in Section 5.2.1.

STEP 4: MATRIX INVERSION
Working modulo (p",Y™) compute the inverse matrix C(Y?)~! using the Newton iteration
method in Section 5.2.2.

STEP 5: FIND THE ABSOLUTE FROBENIUS MATRIX FOR THE DIAGONAL CASE
Let a(0) be the matrix for the absolute Frobenius map in the case § = 0, as defined in Proposition

10. Compute «(0) modulo pN using the summation bounds in Section 6.2.

STEP 6: DEFORM THE FROBENIUS MATRIX
Working modulo (pV,Y ™) compute the the matrix product

1

aY) = C(Y?)"la(0)OT (V).
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STEP 7: EVALUATE THE DEFORMED MATRIX )
Compute the Teichmiiller lifting y of the element ¢ modulo p”¥. Compute oz(nyl)7 the matrix a(Y)

specialised at Y = 77! (y), modulo p”.

STEP 8: EXPONENTIATE AND TAKE THE CHARACTERISTIC POLYNOMIAL
Let L(f(X,y),T) be the rational function over Zj[r] defined as

n+1

— _ _ 7_7 Trlop(q) —
LF(X,5), 7)Y =det(T —a(y™ )7 " aly™ )

_ logy (¢)—1

Ca(y” ).

Compute L(f(X,4),T) modulo pN using fast exponentiation and the algorithm for characteristic
polynomials from Section 9.

STEP 9: CYCLOTOMIC NORM AND THE ZETA FUNCTION B

Let G be the Galois group of Z,[r| over Z,. Compute the product [[pcq O(L(f(X,7),T)) modulo

p". Let P(T) with P(T)"V""" € 1 + TZ[T] be the unique rational function with coefficients in
-p

the range (—p™ ', pV 1] such that P(T) = [[ye O(L(f(X, ), T)) mod p”. Output the rational
function P(T)
Z(Xf(Xag)’T) - 1— qrnT'

In Section 5 we explain how to perform efficiently the non-trivial tasks in Steps 2-4. The
formulae which are used in the algorithm are stated in the propositions in Section 3. The proofs
of these propositions are located in Section 6 and Appendix A. It follows from these propositions
that the algorithm would give the correct answer if the computations could be performed to infinite
p-adic and Y-adic accuracy. We must justify that the various p and Y-adic accuracies at which
power series are truncated does not compromise the final answer. This is done in Section 8. The
results in that section rely upon lower bounds on the p-adic order of the numbers which occur in
the algorithm. These bounds are obtained in Section 7, the most difficult part being the estimation
of the rate of decay of the coefficients in the matrix «(Y’). This will prove the correctness of the
algorithm. The analysis of the complexity of the algorithm is given in Section 9, and the proof of
Theorem 1 and the various corollaries completed in Section 10.

5 Required Subroutines

5.1 Computing the differential system

In this section we describe how to compute the matrix B(Y') which defines the linear differential
system. Write B, ,(Y") for the entry in the uth row and vth column of the matrix B. By definition,
this is the coefficient of X% in the reduction of 7hX" modulo the operators

0 of
Diy = Xi—— + nX;—L.
W= Aigy TR,
Here f = 3% a; X% + Yh(X). We describe how to reduce an arbitrary polynomial g(X,Y) €

Zy[T][X,Y] to a linear combination over Q,[7][Y] of the basis set {X"|u € B}. Let the total
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degree of g be s, and let g5 be the leading form of s (with respect to the variables X). Assume

s > d for otherwise g is already reduced. Let gg ) be the sum of all terms in gs divisible by X,

g§2) ( ) (1)

the sum of all terms in gs — divisible by X¢, and more generally for 2 < i < n, gs” the sum

of all terms in g5 — > % gg 2 d1v151ble by X¢. We have that
n . n .
Yoo =3 radx{ (gl ) (raidX{)). (6)
i=1 i=1

Now the terms in ggo) = gs — Yoy ggi) are not divisible by any X{i for 1 <7 <n. Thus g§°) is

already a sum of monomials in the basis set {X"|u € B}. We need only reduce the difference

gs — ggo). From Equation (6) we have that

~ ; - 0 oh ;
> Diy (9 /(raidX)) = (95— ¢{") + 3 (X 5% TN g ) (69 /(ra;dX2)).
j i=1
Thus modulo the differential operators we have
“ 0 oh ;
_ g0 = (4) dxd
0. =9 = = Y (Xig + w0 ) (o (rad X)) (7)

=1

The righthand side is a polynomial in 7' Z4[7][X, Y] of degree in X at most s—1. (Recalld ! € Z,
and deg(h) < d —1.) Thus we have reduced the leading term g, in g, and can proceed recursively.

In our application we need to reduce the polynomial 7hX". This has degree at most n(d—1) +
(d—1) = (n+1)(d—1) in X. Moreover, the degree in Y is zero, and this is increased by one on each
reduction step. At most (n +1)(d — 1) — (d — 1) = n(d — 1) steps are required. Thus the reduced
polynomial is a sum of basis elements {X"|u € B} with coefficients polynomials over Q[n] of
degree in Y at most n(d — 1). With regard to p-adic orders, each time a factor 7~! is introduced
in the reduction the degree drops by d. Thus we can introduce at most (n + 1)(d — 1)/d < n +1
powers of 77!, The polynomial 7h X" has order 1/(p — 1). So each coefficient polynomial in the

reduced expression has p-adic order
n

p—1
Here as usual the p-adic order of a polynomial is defined to be the minimum order among its
coefficients.

5.2 Solving linear differential systems and matrix inversion

In this section we describe routines for two of the key steps of the algorithm: Solving the linear
differential system, and inverting the matrix of power series. Throughout this section R will denote
a ring of characteristic zero, and Y an indeterminate. In our application, R will be the ring Qq [7].
Also, the matrix size m below will be (d — 1)™.

5.2.1 Linear differential systems

Denote by S the non-commutative ring of m x m matrices over the ring R. Let S[Y] and S[[Y]]
denote the ring of polynomial and power series, respectively, over S. Here the variable Y commutes

13



with matrices. We identify m x m matrices with entries in R[Y] or R[[Y]], respectively, with
elements in the ring S[Y] or S[[Y]], respectively. These identifications define ring isomorphisms.
Let B(Y') be an m X m matrix over the polynomial ring R[Y], i.e., B is an element in the ring S[Y].
We wish to find an m x m matrix C(Y) over R[[Y]] (an element in S[[Y]]) such that

dC/(Y)

—y— =C()B(Y), C(Y) =T mod (Y). (8)

Here I is the m x m identity matrix. Also, the differential operator d/dY acts entry wise on the
matrix C(Y) of power series in the usual way. Expanding C' € S[[Y]] and B € S[Y] in powers of
Y, we need to solve

d o] : o] ) S :
Ve <._ CY ) = (2_: cyw) (Z BiY> , Co = 1.
=0 7=0 1=0

Here s is the degree of the matrix polynomial B. Thus we just need to solve
00 . 00 min(s,k)
Yyt =" Y CpuBi | YF Co=1.
i=1 k=0 \ =0

Equating coefficients of powers of Y1, for £ > 1, on both sides we get

1C7 = CyBy
20y C1By + CoBy

(L>s8)0Cy = Cyp1Bg+Cyp 9By +...+ Cé—(s-}-l)Bs

Starting from Cy = I we can compute C; for i < £ using these recurrences. This requires less
than (s 4+ 1)¢ matrix ring additions and multiplications, plus ¢ divisions by non-zero elements in R.
That is, a total of O(m®“(s + 1)¢) operations in R, where 2 < w < 3 is the time exponent in the
multiplication algorithm used for m x m matrices (later we shall just take w = 3).

Note 14 In the above we have computed a basis of solutions to the linear differential system
which converge on some small disk around the origin. When B(Y') has finite poles but is regular
at the origin, as in the general case which arises in [25], the same method works provided one first
expands B(Y) itself around the origin giving a matrix of power series in Q,[7][[Y]]. However, in
this general case the necessary matrix a(Y’) no longer overconverges around the origin, and one
final step is needed which does not arise in the present context.

5.2.2 Inverting matrices

In this section we consider the problem of inverting a matrix C(Y’) with entries which are power
series in the ring R[[Y]] subject to the condition C(Y) = I mod (Y). To invert the matrix C(Y)
modulo some power (Y*) we use Newton iteration with quadratic convergence in the ring S[[Y]].
(This works even over non-commutative rings.) Recall that C(Y) = I mod (Y). Thus defining
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Dy = I we have CDy, DoC = I mod (YQO). Now assume that we have constructed a matrix Dy,
with CDy, DxC = I mod (Y2"). Define

Dys1 = 2Dy, — DyC Dy mod (YZ),

Then one has that C Dy, 1, Dy 1C = I mod (YQkH). The computation of Dy requires two mul-
tiplications of matrices over R[[Y]]/ (Y2k+1), plus two additions. This requires O(m“M(2k+1))
operations in R, where M(.) is the complexity of polynomial arithmetic over S, and w the exponent
of matrix multiplication over R. Thus to find D = Dy, (¢ so that CD = I mod (V%) requires
O(m“M(£) log(¥)) ring operations.

6 The Frobenius matrix for the diagonal form

6.1 Proof of the proposition

In this section we prove Proposition 10 which gives an explicit formula for the absolute Frobenius
matrix of a diagonal form. This matrix is defined to have (u,v)th entry the coefficient of X* in the
reduction modulo the differential operators D; (1 <i < n) of

¥y o F(X,0)(X").

(See Section A.2.) Here F(X,0) = [1"; 8(a; X¢) where 0(z) = exp(m(z — 2P)) = 2°_, Apz™. Also
1), acts on power series as

Pp(Q_AXT) =D 7 (Ap) X

where the sum here is over n-tuples of non-negative integers. Writing all this out, we need to reduce
the power series

s et
13 (3 :
=1 m>0, p|dm+v;
Here we use the fact v, (IT7; Bi(X;)) = [Iie; ¥p(Bi(X;)) for Bi(X;) € Q,[7][[X;]]. Now the
operators

0
Dig = Xiﬁ + wda; X8
1

have the property D;(a(X;))D;(b(X;)) = D;(a(X;)D;(b(X;))) for a and b power series in X; and
X respectively. It follows that it is enough to determine the coefficient of X;" in the reduction
modulo D; o of each summation

> AmT (@)X (Hmtvi)/p
i i
m>0, p|dm+uv;

and take the product for s = 1,...,n. One checks directly that
XU = 7 (1) (ug/d)pa; "X mod D .
Hence for (dm + v;)/p = u; + dr we have that

X = 3 @) (<1)" (ui/d)ra;” X2 mod Dig.

AT (") X; i
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Thus the coefficient of X“¢ in the reduction of the sth univariate power series modulo D,y is

> An 7 H@)m T (=1)" (ui/d)ra; "
m,r>0, dm+v;=p(u;+dr)

Equation (5) now follows.

Note 15 Conceptually, we have a tensor product decomposition of the cohomology space which
is respected by the absolute Frobenius map. Concretely, this just means the absolute Frobenius
matrix can be expressed as the Kronecker product of n matrices obtained from the one-dimensional
case.

6.2 Computing the undeformed matrix

The matrix «(0) is computed directly from Equation (5). We need to understand the decay of the
terms in these sums so that we can determine upper limits on the indices m and r when computing
a(0) to some finite p-adic accuracy.

We have to compute all entries oy, ,(0) in the matrix, as u and v ranges over a set of size (d—1)".

We examine the complexity of computing a single entry modulo p~. From [13, Pages 55-57] we

have
(p—1)

ord(\,) > o m. 9)

Thus

p

ord( A " (ui/d),) > mp%l - S, (10)

where S, is the sum of the digits in the p-adic representation of r. (Here we use the fact
ord((u;/d);) > ord(u;!), from Clark [6, Page 265, Case 3].) So for each 1 < i < n, it is enough to
compute the inner sum

> Am(ui/d)r (=177 (af)a;"

m,r>0

over all m,r > 0 with pu; — v; = d(m — pr) such that

-1 .
P—2 s >N.

m

Now S, < (p—1)(log,(r)+1), and 7 < m/p (see the proof of Lemma 20). Hence S, < (p—1) log,(m).
Thus it suffices to sum over m for m < p>z where

-1 =——+2
r — log, () p—1+

Thus taking m < 2p>N/(p — 1) will do. For m in this range, there are O(N) possible pairs (m,r)
with the required property. This gives O(N) entries in the sum. We shall return to this in the
complexity analysis of this step in Section 9.
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7 p-Adic estimates on the decay of power series

When working with power series in Y we truncate modulo YN}” for some suitably chosen Ny-.
Also, the coefficients are p-adic numbers truncated “modulo” pY. We need to justify that these
truncations do not comprise the correctness of our final answer. To this end, in this section we
obtained lower bounds on the p-adic orders of elements which occur in Algorithm 13. These bounds
will be used in the error analysis in Section 8.

7.1 Overconvergence of the generic absolute Frobenius matrix

We first need to understand the decay of the power series which occur in the matrix a(Y"). To do this,
we examine the effect of applying the reduction formulae to a monomial. Let m = (mq,...,my) €
Z~,. We have that X mXZ»d is congruent modulo D; y» to

Xm

. _ Oh
—(wda;) tm; X™ — YP(da;) X X,
=r X" 4Y? Y kX

i, Im|<[|i|<|m|+d
Here the * indicate p-adic numbers with ord(*) > 0. So reducing a monomial X" to a linear
combination of the basis set can introduce at most ||u|/d| powers of 77!, and at most |u| — (d — 1)
powers of YP. Thus for a,(Y) € Q,[7][Y] the coefficients of the basis elements in the reduction of
a term a, (Y)X" have p-adic order

1
> ord(au(Y)) ~ Jul/d) = (11)
and degree in Y
< degy (au (V) + (Jul — d + 1)p. (12)

Here by the p-adic order of a,(Y) we mean the minimum order among the coefficients of non-zero
terms. In the proof of the next proposition we shall use the following simple lemma.

Lemma 16 Let € > 0 be a rational number. Consider power series of the form Y, am(Y)X™
where the sum is over non-negative integer vectors and a,,(Y') € Q,[n][Y]. The subset of all such
power series with degy (am (Y)) < €lm| is a ring. Similarly, the subset of all such power series with
ord(an,(Y)) > €lm| is a ring. In particular, both sets are closed under multiplication.

Proof: The first claim follows from the properties degy (am(Y)bn(Y)) = degy(am(Y)) +
degy (b (Y')) and degy (am (Y)+bm (Y)) < max{degy (am(Y)), degy (b (Y))} for am, by € Qq[m][Y].
The second claim follows by similar properties of the p-adic order map on polynomials. O

Proposition 17 Let a(Y) = (uu(Y)) where (V) € Q [7][[Y]] for u,v € B. Write cvyn(Y) =
=0 aq(f,l,Yi. Then
, 1 2n
Py > L m
ordloss) 2 500
Thus the entries in a(Y') have p-adic order at least —2n/9 > —n. Let M > 1 be an integer (we shall
choose a specific value in Section 8.2). Then “modulo” pM the matriz a(Y) contains polynomials

in'Y of p-adic order greater than —n and of degree less than 12pd(M + n).
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Proof: The map a(Y) is defined in Section A.2 and we use some of the notation from that
section. Write F'(X,Y) = 3,, Gm(Y)X™ where the sum is over non-negative integer vectors. We
wish to understand the degrees and p-adic orders of the polynomials G, (Y). By definition we have

n

F=][0@xhH [[ 6px7).
i=1 0<|jl<d

Here h = > (_)ij, and h =3, ijj with b; the Teichmiiller lifting of l_)j. (Recall that we assume
h has no constant term, i.e., “b; = 0” for j the all zero vector. Without this assumption, the factor
0(YboX") actually causes no harm since it can be “moved through” all the operators.) Recall also
that 0(z) = exp(m(z — 2P)). Writing (Yb;X7) = 3, ajm(Y)X™ with the sum over non-negative
integer vectors, we have that

degy (ajm) < [Iml/|jl] < [m.

Hence writing []o<|;j<q O(YbjX7) =3, cm(Y)X™ by Lemma 16 we have
degy-(cm) < [ml.
Certainly writing [T, 0(a; X?) = 3, dm(Y)X™ we have degy (d,,) = 0. Thus by Lemma 16
degy (Gm) < [m]. (13)
Writing 0(z) = Y72, Ar2" we have the estimate [13, Pages 55-57]

p—1
p?

T.

ord(A,) >

Thus the p-adic order of each a;,,(Y) is at least

Similarly, the coefficients in []"; 0(a; X¢) satisfy the bound

w=1) ]
By Lemma 16 this gives a lower bound of
(p — 1)|m|

The vth column of the matrix a(Y') has uth entry the coefficient of X in the reduction modulo
S Diye of Pp(FX"). Now FX" = Y Gp_yX™ Hence ¢p(FX") = X, 7 HGpm—v)X™
We need to understand the reduction of each term Gp,,—,X™ in this series (the action of 7~1is
inconsequential since it fixes Y and does not change p-adic estimates). With regard to the degree,
by estimates (12) and (13) the coefficient of each basis element X in the reduction of this term
has degree in Y at most

degy (Gpm—v) + (Im| —d + 1)p < [pm — v[ + (Im| —d + L)p.
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By estimates (11) and (14) the p-adic order of the coefficient of each basis element in the reduction
is at least

m| _ (p=Dlpm —of _ |m|
p 2 .

d(p —1) dp d(p—1)

Now since v € B we have n < |v| < n(d—1) with all the entries in v positive. Thus p|m|—n(d—1) <
|pm — v| < p|m| — n. For the degree upper bound we can therefore take the estimate 2p|m/|. For
the p-adic order lower bound we have

-1 1 d—1)(p—1
d P p—1 dp?

We take the lower bound of —2n/9 for the second term, and 1/6 for the coefficient of |m|/d in the
first (recall that p > 3). Thus (15) is

ord(Gpm—v) —

> - 1
— 6d 9 (16)

The coefficient of X in the reduction of G;,—, X™ is a polynomial in Y. By the degree estimate
< 2p|m| and the lower bound (16) its p-adic Newton polygon lies on or above the graph

1 2n
=—3— —.

12pd 9

Thus the coefficient of X* in the reduction of ), Gpy,—y X™ is a power series in ¥ with Newton
polygon lying on or above this graph. This proves the first claim and the second follows immediately.
We also now see that “modulo” p™ the matrix a(Y) contains polynomials in Y of degree at most

12pd(M + (21/9)) < 12pd(M + n).

Y

Here by “modulo” p™ we mean that we truncate the p-adic expansions of the entries in a(Y) after
the power pM 1 (see the start of Section 8.2). The proof is complete. O

7.2 Lower bounds on p-adic order of intermediate results

We also need lower bounds on the p-adic order of the entries in the matrices B(Y), C(Y) mod Y Vv
a(0), and the log,(g)th “power” of a(y™ ") which occurs in the equation in Step 8. (We do not
believe that these bounds are optimal. In particular, Dwork’s work in [15, Section 5(d)] suggests
that it may be possible to get a logarithmic bound on the growth of the coefficients of the matrix
power series C(Y').)

Lemma 18 The polynomial entries in B(Y) have p-adic order at least —(n —1)/(p — 1).

Proof: This was proved at the end of Section 5.1 O

Lemma 19 The polynomial entries in C(Y') mod YNV have p-adic order at least —nNy /(p — 1).

Proof: Let £ > 0. The matrix ¢!Cy is equal to a sum of elements each one of which is a product
of at most £ — 1 coefficients of polynomials in B(Y). Since by Lemma 18 these coefficients have
order > —(n—1)/(p—1), the matrix ¢!Cy contains entries of order at least —(n—1)(¢—1)/(p—1).
Now ord(#!) < £/(p — 1), and so Cj itself has entries of order at least —(n — 1)¢/(p — 1). Since
C(Y) mod YN =" ¢! the lemma follows. O
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Lemma 20 The entries in the matriz «(0) have p-adic order at least —n(p + 1).

Proof: We first need a lower bound on

(p—1)
p

m -5, (17)
where m,r > 0 are integers, with S, the sum of the p-adic digits in r, and d(m — pr) = pu; — v;.
Now pu; —v; > p.l—(d—1) =p—d+1and som—pr > (p/d) — 1+ (1/d) > (p/d) — 1. Therefore
r < (m/p) — (1/d) + (1/p) and so since r is an integer we must have r < (m/p). So we find (17) is
at least

(p—1)

=52 (-1 (5 - logyn) + 1))

For r > 3p this is non-negative. For r < 3p the minimum —S, can take is —(p + 1). The lemma
now follows from Equation (5) and inequality (10). O

r

Lemma 21 The entries in the matrizc a(yTﬁl) have p-adic order at least —n. Those in the product

aly™ )Tty

") at least —nr log,(q)-
Proof: The first claim follows from Proposition 17 and the second from the first, using the fact
ord(y) = 0 and that the map 7 does not change p-adic orders. O

8 Error analysis

In this section we use the bounds from Section 7 to show that the final output is correct.

8.1 Choice of final p-adic accuracy

We first justify the final p-adic accuracy modulo p" to which the zeta function is computed. Write

. n > T* >
L(f(Xv g)vT)(il) = exp (Z(_l)nsk?> = stTs~

k=1 s=0
Fix an embedding Q(¢,) — C, and let ||.|| denote the complex absolute value. Since ||(—1)"Sk|| <
¢, and exp(352, ¢""FTF k) = Y200, ¢ T?, we see that ||ms|| < ¢"™. (Recall that g € Fr.)
Thus L(f(X,7),T)D" converges in the complex plane for all specialisations T' = ¢ with ||t|| <
¢~"™. In particular, the poles of the L(f(X,7),T)(""" must have complex absolute value > ¢~"".
Thus the reciprocal zeros of L(f(X,7))"D""" itself must have complex absolute value < ¢"". Let
6 be in the Galois group of Q({,)/Q. Then the reciprocal zeros of O(L(f(X,5), T)D"") must
also have complex absolute value < ¢"”. Hence the polynomial P(T)(*l)nH has reciprocal zeros of
complex absolute value < ¢"". (In fact, by Deligne’s theorem [10] the reciprocal zeros of P(T)(=1"""
in the zeta function of the smooth affine hypersurface Z? — Z = f(X,4) over Fyr have complex
absolute value equal to ¢"™2. However, we prefer to avoid the use of this deep result, as it only
improves the performance of the algorithm by a factor four.) Moreover, this polynomial has degree
exactly (p—1)(d—1)". Thus its coefficients, which we must determine, have absolute value at most

=1 (d=1)" g (p=1)(d=1)"
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Thus taking
N = [(p = 1)(d=1)"((rnlog,(q)) + log,(2))] + 1

is sufficient. More precisely, the unknown integer polynomial which occurs in the zeta function can
be recovered uniquely given its residue class modulo p”. (This is the polynomial P(T) described
in Step 9 of the Algorithm 13.) Here the extra 1 accounts for the possibility that the coefficients
may be negative integers.

8.2 Reverse analysis of error propagation

Even though the final answer is a polynomial with integer coefficients, the calculations followed in
finding this involve matrices with possibly p-adically non-integral entries. We showed in Section
8.1 that a final “absolute error” of order p', in the p-adic sense, was sufficient to recover the zeta
function exactly. At each step of the algorithm, the absolute error can increase by an amount
depending upon the p-adic order of the matrices with which we are computing. In this section
we analyse the “propagation of errors” through the algorithm. We determine an overall “p-adic
accuracy” p" to which one can compute throughout the algorithm and be sure that the final error
is of the correct magnitude. We first need a simple lemma.
Let ¢ = Y32, cip' € Q,[n] where m € Z and each

for some ¢;; € {0,1,...,p —1}. Let M > 1 be an integer. We shall say that we know ¢ modulo
pM (or that ¢ has been computed modulo p) provided all the coefficients ¢; for m < i < M have
been explicitly determined. The phrase “working modulo p™” means that we do not compute the
coefficients ¢; for ¢+ > M. We use the same language in an obvious way for matrices over QQ[TF],

Q[ y] or Qy[x][[Y]] mod (YY),

Lemma 22 Let R be either Q,[n] or Q,[m,y]. Let A, B be matrices over R with entries of p-adic
order at least —o4 < 0 and —op < 0 respectively. To compute the matriz AB modulo p™ for some
M > 1, it is sufficient to know the matriz A modulo pM*°8 and B modulo pM*°4. To compute the

matriz A + B modulo p™ for some M > 1 it is sufficient to know the matrices A and B modulo
M

p

Proof: Each entry in AB is a sum of elements of the form ab where ¢ and b are entries in A
and B respectively. It is sufficient to know all such products modulo p™. Write a = >"%°__ L, @ip’
and b = Z‘;’;_OB bjp’. Then we need to know a;b; for all 4,5 with ¢ +35 < M. Since ¢ > —o04 and

j > —op, for i + j < M we must have j < M + 04 and ¢ < M 4+ op. The first part now follows,
and the claim on addition is straightforward. O

The above lemma says that absolute errors magnify when multiplying non-integral matrices,
but addition does not increase the absolute error. Our approach will be to work backwards through
the algorithm calculating the error magnification at each step.

Our starting point is the observation that the polynomial L(f(X, y),T)(*l)nJrl from Step 8

contains p-adic integral entries. In fact, L(f(X,y),T) is the L-function of the exponential sum,
which is a polynomial (or reciprocal polynomial) over the cyclotomic ring Z[(,] (embedded in Zj,[x]).
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We need to compute L(f(X,7),T) modulo p". Write L(f(X,7),T)"V""" = det(1 — «T') where x
is as shown in Step 8. By the second part of Lemma 21, the entries in * have order > —nrlog,(q).
By the simple argument in the proof of Lemma 22, the determinant expansion of characteristic
polynomials, and Lemma 21, it is enough to compute * modulo p™ where

Ny =N+ ((d—-1)" = 1)rnlog,(q).

Now * is obtained by essentially raising a(y” ') to the “power” rlog,(g). Thus to determine *

N it is enough by Lemma 22 and the first part of Lemma 21 to know a(yTﬁl) modulo

modulo p
p™? where

Nz = Ny +nrlog,(q)(= N + (d — 1)"rnlog,(q))-

The matrix a(y™ ) is obtained by evaluating (Y at an integral point, and so we need to find
a(Y) modulo p™2. Putting M = N in Proposition 17 we see that a(Y") modulo p'*? is a polynomial
of degree less than

NY = 12pd(N2 + n)

Thus in Steps 3, 4, 6, and 7, it suffices to work modulo (Y), as coefficients of any higher powers
of Y cannot contribute to a(Y') modulo p*2.
We wish to compute a(Y') modulo p™2. Write C(Y) = 222, C,Y*. We know (see the proof of

Lemma 19) that
nt

p—1
The set of all matrices Y52, MY over Q,[7][[Y]] which satisfy the bound ord(M;) > —nt/(p—1)

is a ring. Moreover, the inverse matrix C(Y) ! is obtained from C'(Y') by performing addition and
multiplication in this ring. Hence writing C(YP?)~! = .22, C,Y* we have that

ord(Cy) > — (18)

~ nd
ord(Cy) > T (19)
Also -
a(0)C(Y) =3 a(0)0f Y
=0

and ord(a(O)CZil) > ord(a(0)) +ord(Cy). From this inequality, along with Lemma 20 and inequal-
ities (18), (19) we get

nNy

nNy
- (p—1p

ord(a(O)CT_l(Y) mod (YNY)) > _Zﬁ —n(p+ 1), ord(C'(Ypf1 mod (YNY)) > —

Thus by Lemma 22 we see that it is enough to know C(Y) and C(YP?)~! modulo p™* where
N3 := Nz + [nNy/(p—1)] +n(p+1).

Also, we need «(0) modulo p to the power No + [nNy /(p—1)| + [nNy /p(p —1)|. By the proof of
Lemma 20, the elements A, 7 " (u;/d), have order at least —(p + 1). (See the entry for Step 5 in
Section 9 for how we compute «(0).) We need a(0) modulo p to the power Ny + [nNy/(p —1)]| +
|nNy /p(p — 1)]. Thus it suffices in Step 5 to compute the elements a; ' and 7~*(a;) modulo p to
the power

No+ [nNy/(p— )] + [nNy /p(p — )] + (p+ 1) < Ny < No
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where N4 and Ng are defined below.

Next, we examine the loss of accuracy during the computation of C(Y?)~! from C(Y). We
work backwards through the Newton iteration relations when finding C'(Y)~!. We need to know
C(Y)~! modulo (p™3, YINr/Pl) Now C(Y)~! modulo these powers is by definition D,, where
m = [logy(Ny /p)]. For k > 0, the matrix D, is computed as

Dis1 = 2Dy, — DyCDg mod Y2

with the coefficients taken modulo some power of p. Also Dy = I. By inequality (18) and the
comments following it, one sees Dy mod (YZkH) has p-adic order at least —n2%/(p— 1), and C mod
(YZkH) has p-adic order at least —n2%+1/(p—1). Thus to know Dy, modulo p, for some M > 1,
by Lemma 22 it is enough to know Dy and C modulo pMHQ(”Zk/(”*I))J. We require D,,, modulo
p™V3, and so by induction one sees we need Dy = I and C modulo p™ for M the floor of

Ny+2n2™ 4+ ... +2+1)/(p—1) = N3+ (n(2™ = 2)/(p — 1)).
Thus computing C(Y) mod (Y) with coefficients modulo p™* where
N4 = N3 + L4’nNy/p(p — 1)J

is sufficient to find C(Y) ! mod (p™3, Y INv/Pl), and therefore C(Y?)~! mod (p™3, Y Nv).

Next, we need to determine the p-adic accuracy required for the matrix B(Y) to compute
C(Y) mod (YNv) with coefficients modulo p™¥*. We need to find Cy for 0 < £ < Ny with coefficients
modulo pN4. By Lemmas 18 and 22, we require B(Y) modulo p’3 where

N5 := Ny + LnNy/(p — 1)J

Finally, we determine the p-adic accuracy required in Step 1. Computing B(Y) from the
coefficients of h(X) requires division by a power of m at most 7. Thus we need to compute the
coefficients of h(X) modulo p™é where

Ng := N5+ [n/(p—1)].

For simplicity we shall work to a common accuracy modulo pN throughout Steps 1-9 of the
algorithm, for some N > Ng. Specifically, define

N = (60nd +1)(N + (d — 1)"rn log,(q)) + 60n2d + n(p + 2).
Observe also that
Ny = 12pd(N3 + n) = 12pd(N + (d — 1)"rnlog,(q) + n).

We have shown that working to these accuracies is enough to determine the coefficients of the zeta
function modulo p”, and hence recover the zeta function exactly.

Note 23 The error analysis in this section was presented in a somewhat intuitive fashion. In
the context of real and complex analysis, the analysis of the propagation of errors in a numerical
algorithm is a well-studied and essential topic. In the p-adic setting, provided one is working solely
with p-adic integral elements in C,, one can simply perform all computations in an appropriate
subring of R,/(pM) for some suitable positive integer M. Thus the analysis of errors becomes
trivial, as there is no error magnification. When working over C, itself, error magnification can
occur, although the non-Archimedean nature of C, surely makes it easier to handle. However, the
author does not know of any systematic development of this topic.
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9 Complexity analysis

We count the number of bit operations required in each of the steps of the algorithm. Recall w
is the exponent of deterministic matrix multiplication over arbitrary rings, see [19, Section 12.1].
We use fast polynomial multiplication over matrix rings to get a time of M(£) = O(f) [5]. The
calculations involve addition and multiplication in the p-adic rings Q,[] and Q,[r,y] “modulo”
p™V during Steps 2-9 of the algorithm. The numbers we manipulate have explicitly lower bounds
on their p-adic orders, as given in Proposition 17 and Lemmas 18, 19, 20 and 21. In particular,
the p-adic order is certainly always > —N. Addition and multiplication of such numbers in Q7]
and Q,[r,y] “modulo” p" have the same complexity as in the rings Z[r]/(p") and Z,[r,y]/ ("),
respectively, up to a constant factor. We take a Soft-Oh linear time bound for multiplication,
division by units and addition in p-adic rings, see [19, Theorem 8.23]. Thus computing in Q,[x]

and Q,[7,y] “modulo” pN requires O(Nplog(q)) and O(Nplog(q)r) bits of time/space, respectively.

STEP 1: The Teichmiiller liftings lie in the ring Z, and they must be computed modulo pN .
The lifting of each coefficient requires O(log(q)) operations in the ring Z,/(p"). Thus Step 1 needs
O(d"™ log(q)) operations in Z,/(p").

STEP 2: Reducing each polynomial 7h X" requires n(d—1) applications of the reduction formula
(7). Computation of the formula itself is dominated by the multiplication of X;0h/0X; by a
homogeneous polynomial of total degree at most (n + 1)(d — 1) — d with coefficients in Zy[7][Y] of
degree in Y at most n(d—1). The former polynomial has O(d™) terms, and the latter homogeneous
one O((nd)"!) terms. Thus this multiplication can be done in

O(d" x (nd)"~ x nd) = O(n"d*")

operations in Q,[n] “modulo” pN , using the naive multiplication algorithm for polynomials. We
require (d—1)" = O(d") reductions, giving a total estimate of O(n"d*") operations in Q,[x] “mod-

ulo” p" for this step.

STEP 3: The degree in Y of the matrix polynomial B(Y') is at most n(d — 1). The complexity
estimates in Section 5.2.1 show we require

O(d“™ x dn x Ny) = O(nd“" "' Ny,)
operations in Q,[r] “modulo” pN to compute Cy for £ < Ny.

STEP 4: The estimates in Section 5.2.2 give a complexity of

O(d“" Ny /p) = O(d“" Ny)

operations in Q,[r] “modulo” pv.

STEP 5: We return to the discussion in Section 6.2 on computing o, ,(0) modulo pN. The
values 7 "(u;/d); and A, for the necessary pairs (m,r) can be found in O(N) operations in

Q,[7] “modulo” pV. Observe that 7='(af")a;” = 7 a;)™(a; 1)

; ; The elements 77'(a;) and
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a;lforlgig

can be precomputed in O(nlog(q)) operations in Z,/ (p]\7 ). Notice that
(Here we use the method from [23, Section 5], to compute 7' on an el-

O(nlog(q)) = O(N).
g(q)) =

in O(log(m) + log( )) operations in Z,/(p"). Thus 7=!(a™)a; " for all required pairs (m,r) can

ement in O(lo O(N) operations in Lq/(p N).) The product 7 1(a?)a;" can now be found

)

7
be found in O(N (log(rn) + log(r))) = O(N) operations in Z,/(p"). Summing the elements takes
O(N) operations in Q,[7] “modulo” p". Thus we get O(N) operations in Q,[x] “modulo” p" for
each inner sum. This gives O(nN) ring operations for each v, ,(0) modulo p"V. This gives a total

complexity for computing a(0) of O(d**n.N) operations in Q,[x] “modulo” p".

STEP 6: One must compute C(Y)™  from C(Y) “modulo” (p¥,YNv). Computing 7' on
a single element of Q,[] “modulo” p" requires O(log(q)) ring operations. Thus one sees that
doing this directly would increase the dependence of the algorithm on log(g) from third to fourth
power. As such, we compute C(Y)™ ' by first computing B(Y)™ ', and then recovering C(Y)™
by directly solving the differential equation “7~! of Equation (4)”. One checks all this is absorbed

in the previous estimates. Computing a(Y) from C(Y?)1, a(0) and C(Y)™ ' requires

O(d“™ Ny)
operations in Q,[x] “modulo” V.
STEP 7: The element y is in the ring Zg,[y|, and it can be found modulo PV in O(rlog(q))

operations in Z,[y]/(p"V) by taking the Teichmiiller lifting of 3. The specialisation requires O(d*")

evaluations at Y = y of polynomials of degree Ny over Z,[n]. Thus the evaluation of the matrix

requires O(d?" Ny) operations in Qq[m,y] “modulo” p.

STEP 8: Write L(f(X,y), T)"V""" = det(1—T). To compute = we use the fast exponentiation
method for semi-linear maps from [26, Lemma 32]. This takes O(d“") operations in Q,[m,y]

“modulo” p~. The fastest algorithm for computing characteristic polynomials seems to be that
based on Hessenberg form [7, Algorithm 2.2.9]. However, it requires divisions by p-adic numbers
which are generated during the algorithm. To circumvent questions of numerical stability, we wish to
use an algorithm for computing characteristic polynomials which avoids division by unquantifiably
small p-adic numbers. We will compute the polynomial via the identity

0T 2T (DT e
det(1 — T) —exp< ZTr ) 11 > g mod T (20
k=1 0<¢<(d—1)"/k
By Lemma 21, each factor in this finite product is of the form ZESI)” mgT" where
1
ord(my) > —£{log,((d — 1)") + | +nrlog,(q)}- (21)

We truncate p-adic numbers modulo p to the power NV + ¢, where

= (d= 1" log, ((d = 1)+ 1+ logy @),
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during the computation of det(1 — #7T") from * using identity (20). Inequality (21) shows that this
does not compromise the final answer modulo p”. (Note that we know * correctly to the accuracy
of p™2 and Ny < N+€(< N ). Using the usual determinant expansion for characteristic polynomials
and Lemma 21, one sees that this actually determines det(1 — *T") modulo p"V. However, during
the computation of det(1 — *7T') using the above method we need to increase the accuracy a little
more. Essentially, the higher p-adic coefficients in * do not contribute to the final answer, although
the computation itself may apparently introduce some higher coefficients of which we must keep
track.) The above method takes O(d“t1)") operations in Q,[m,y] “modulo” p".

STEP 9: Finally, each coefficient in the conjugate (L(f(X,4),T)) can be found using [26, Eqn
(11)] in p — 1 operations in Zy[r]/(p"™), and the product found in O(pd™) operations in Z,[x]/(p").
Note that the polynomial P(T)(_l)nJrl with integer coefficients in the restricted range exists by the
coefficient bounds in Section 8.1.

Now N = O(rnpd"log(q)), N = O(rn?pd™ ' log(q)) and Ny = O(rnp2d"+'log(q)). Substitut-
ing these values, and using our estimates for computations in the rings Q,[7] and Q,[r,y] “modulo”
powers of p, we get a total time complexity for Algorithm 13 of

@(d(w+2)n+3nmax(5,n+2)p4 log(q)?),r?)) (22)
bit operations. The space complexity in bits of the algorithm is
O(d*™ 2" 2ptlog(q)*r?). (23)

This is estimated in a straightforward manner, the only subtlety being that the dependence on r
is quadratic: the both parts of Step 7 take cubic time in r but require less space.

10 Completion of the proofs

We now complete the proofs of the results in the introduction. Propositions 10, 11 and 12 show
that Algorithm 13 would output correctly if it were performed on p-adic numbers with infinite
precision. The error analysis in Section 8 shows that the finite accuracy chosen is enough to ensure
the answer is exactly correct. This proves the correctness of Algorithm 13. Theorem 1 now follows
from the complexity estimates (22) and (23), taking w = 3 (one could take w = 2.4 [19, Page 330]).

Corollaries 2 and 3 are immediate. The proof of Corollary 4 is as follows. First note that the
finite number of primes p with p = 2 or p divides some a; can be dealt with in constant time. Thus
we assume p > 2 and a; # 0 mod p for 1 <4 < n. We run Algorithm 13 with N = n + 2, and so
pV = p"*2 > p"*+1. Thus we find modulo p" the number M, say, of points on Z?—Z = f(X) mod p.
Now if (z,z) is a point on this hypersurface modulo p, then since 2P — z = 0 we have f(z) = 0.
Conversely, if f(z) = 0 then (z,z) is a point on ZP — Z = f(X) for each z =0,1,...,p — 1. Thus
the number of solutions to f(X) = 0 mod p is exactly M/p. Since M < p"*! and we know it
modulo p"*2, we can recover M/p exactly. Checking the complexity bounds one sees that the time
required is just O(p?) bit operations. (We lose a factor p from both N and Ny in the estimates
above, which reduces the dependence on p from quartic to quadratic.)
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A Appendix

In this appendix we develop a generic theory for families of exponential sums of the type considered
in the paper, and the corresponding deformation theory. We do not believe that this has explicitly
appeared in the literature before. However, in [15, Sections 5(a),(b),(c)] Dwork develops such
theories in his “dual spaces” for smooth projective hypersurfaces. At the start of [15, Section 5(f)]
he writes down the necessary deformation equation (the first commutative diagram) in the more
familiar Dwork space. He states that this can be arrived at “by duality” from the equation in the
dual space, but does not give a direct proof. Similarly, Sperber states such a theory for families of
exponential sums defined by homogeneous equations on [32, Pages 291-292]. This is very similar
to Dwork’s theory, and Sperber derives his results from those of Dwork. The difference in our
work is that we consider non-homogeneous equations, and give an explicit proof of our deformation
equation and the differential equation satisfied by the deformation matrix without appealing to the
more complicated dual theory.

A.1 Generic spaces

Let p > 2 and g be a power of p. Let R denote the ring of power series in Y over the unramified
extension Q,[r] of Q,[x] of degree log,(¢q) which converge on some closed disk containing the
origin. Precisely, elements in R have an expansion of the form 7%, a;Y" where a; € Q/[7] with
ord(a;) — €1 — oo for some real number € (not necessarily positive). For b > 0 and ¢ real numbers,
let L(b, c) denote the Q,[n]-module of power series over Q,[n] of the form

Z amX™, ord(an,) > blm| + c.
meZgo

Let L(b) = U.L(b,c), a ring. Define L°(b) = L(b) N X1 ... X, Q,[x][[X]], the set of power series
in L(b) in which every term is divisible by X;...X,. For 1 < i < n define L (b) = L(b) N
Xy X1 Xig1 - X Qy[][[X]], the set of power series in L(b) in which every term is divisible by
all X for k # 1.

Let Ly denote the ring of power series in the variable Y of the form

Y aj(X)Y?
5=0

with a;(X) € L((p—1)/pd, c;), for some real number c¢; such that there exists a real number € with
cj—€j = 00 (24)

as j — o0o. As before, we do not assume there is a uniform lower bound on e over all elements
in Ly. Let Ly C Ly be the submodule of power series 3-72,a;(X)Y/ such that each a;(X) €

X1... X, Q,[n][[X]]. For 1 < i < n let Lgﬁ) C Ly be those power series with each a;(X) €
X1 N Xi—lXi—l—l N Xan[T(][[X]]
The condition on the ¢; just ensures that any series a(X,Y’) € Ly will converge to an element
of L((p — 1)/pd) on substitution of Y = y for sufficiently small y, i.e., ord(y) > —e. This is useful
(4)

in the proof of Proposition 25. We view Ly, L{- and Ly as modules over R. It is also sometimes
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helpful to write elements in Ly in the form 3, c7n ap (Y)X™ where am (Y') € R. Note that not all

such formal power series lie in Ly, only those satisfying certain decay conditions on the coefficients.
Recall that

f(X,Y) = an a; X? + Yh(X).

i=1
Let
- d 9 S d 0 d
D;o = exp(—7 ; a; X{) o X; e o exp(m ; a; X)) = X; X, + wda; X;
and 5 oh
D,y =exp(—nYh)o D;goexp(nYh) =X;—— + ﬂ(daiXZd +YX; ) (25)

act on Q, [7][[X,Y]], for 1 <i < n. Let D;y» be as D;y with Y replaced by Y.

Lemma 24 FEach of the three operators D; o, D;y and D;y» maps the space Lg) to the space LS.

Proof: We first claim that Ly is stable under these three maps. We have wda; X, Zd 7X;0h/0X; €
L((p—1)/pd,1/(p—1)—(p—1)/p). Hence Ly is stable under multiplication by nda; X?, 7Y X;0h/0X;
and 7YPX,;0h/0X;. Certainly Ly is stable under X;0/0X;. Since Ly is also closed under addition
the claim follows. That each map sends elements in Lgf) to those in L§- is now easily seen. O

Proposition 25 The quotient R-modules
- 0 - 0 3 0
13 3 3
%/> Diy(Ly'), L3/ > Diyr(Ly’), L3/ > Dio(Ly’)
i=1 i=1 i=1
are free R-modules spanned by the set

{X"u=(ug,...,up), 0 <u; <d}.

We define &, to be the basis element X*. We will use the shorthand notation LS,/ i, D;y for
LY/, Di,y(Lgﬁ)), and likewise for the other two modules.

Proof: That this set spans the quotient spaces may be seen by considering simple reduction
relations. For example, consider the operators D;y. Applying this operator to a monomial X
where m = (my,...,m,) € Z%, we find

XX = —(da;) N7 'mi X™ 4 X;(0h/0X;)Y X™) mod D;y (Ly).

(Note that when reducing monomials X™X¢ in L{ we have m; > 0 for j # 4. Therefore X™ € Lgf)
and D;y (X™) € LY.) Iterating relations of this kind, and using Q,[7][Y]-linearity of the operators
D; y, we find that any term Y X™ with m € ZZ can be written as a linear combination of the basis
set with coefficients which are polynomials (of degree at most |m|—d+1+r and lowest term degree
r) in Y. Also, the polynomials have p-adic order at least —|m|/(p — 1)d. The decay conditions on
the coefficients of the monomials X ensure that this process “converges” as |m/| tend to infinity,
i.e., the sum Y" ZmeZZO amX™, where a,, € Q/[7], can be reduced to a linear combination of
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the basis elements with coefficients power series in Y divisible by Y”. (These coefficient power
series themselves are convergent on the disk ord(Y) > 1/(p — 1)d — (p — 1)/pd.) Summing over r
we find that any element in L{- can be reduced to a R-linear combination of the basis elements
modulo Y1, Di,y(Lgﬁ)). Here we use condition (24) to ensure the coefficients, a priori in Q,[#][[Y]],
converge on some closed disk around the origin. The argument for D; y» is exactly the same with
Y? replacing Y, and that for D; ¢ similar but simpler.

To show these quotient modules are free is more subtle. For D it follows from the fact that
Lo((p—1)/pd)/ S, Dio(LY9 ((p—1)/pd)) is free c.f. [32, Lemma 2.28]. The operators involving Y’
are dealt with by a specialisation argument, and an application of the results in [32, Section 2(a)].
Suppose for example that >, a,(Y)X" =0 mod (3°;-, Di,y(Lgﬁ))). That is

Z a,(Y)X" = Z D;y(bi(X,Y))
u i=1

where X* runs over a subset of the spanning set, and a,(Y) € R — {0} with b; € Lg;). Choose
y € Q, with ord(y) > (p—1)/p — 1/(p — 1) small enough that each a,(Y") converges at Y =y to a
non-zero element of Q,[n], and each b; converges at Y = y to an element of LW ((p—1)/pd). Then
Y au(y) X" = Y0y Dig (bi(X,y)) with ay(y) € Qq[x] — {0} and b;(X,y) € LO((p — 1)/pd). The
approach of [32, Section 2(a)] shows that no such linear relation can exist. (Precisely, modify [32,
Lemma 2.28] by setting as usual (see [32, Eqn (2.11)]) “E; = X;(0/0X;)” and “H; = da; X?” but
now taking “A = yh(X)”. Then A is small enough p-adically that it does not affect any of the
proofs. Note also that in [32] Sperber uses a faster decaying “splitting function”, and so works in
L(p/(p — 1)d) rather than L((p — 1)/pd). This allows one to include the prime p = 2, which we
exclude.) O

A.2 Frobenius maps and deformations

Recall that 7 is the map on Qq [w] which reduces to the pth power map on its residue field and fixes
7. Extend 7 to act on Q,[x][[Y]] by fixing Y (and being linear and continuous under the Y-adic
norm). Let the operator 1, act on the space of formal power series Q,[][[X, Y]] in the following

way. For a monomial X™ where m = (my,...,m,), the image 1,(X™) is X{m/p . X™/P when D
divides each m;, and zero otherwise. Also 1, is 7 '-linear over Q,[7][[Y]] (and continuous under
the X-adic norm); in particular, ¢, fixes Y. Explicitly,

oo

Py Z( Z apX™Y" — Z( Z T_l(apm)Xm)Y’", am € Qg [r].

r=0 mEZgo r=0 mGZEO
Define ay : Q[7][[X, Y]] = Q,[][[X, Y]] by
oy = exp(—af (X, V7)) 0y 0 exp(n f(X, V) =y 0 F(X, ) (26)

where
n

F(X,Y) =exp(r(f(X,Y) = fT(X?,YP))) = [[ 0(a:X{) [ 0(Vb;X7).
i=1 0<lj|<d

Here 7 fixes the variable Y, and in f” acts only on the coefficients of f.
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Lemma 26 The space LY. is stable under the map ay .

Proof: By the decay on the coefficients of 0(z) = exp(w(z — 2P)) from Equation (9), each
0(a; X¢) € L((p — 1)/p?d,0). For each j with 0 < |j| < d write (Yb; X7) = 302 (b; X)" A\, Y.
Here 0(z) = 322 A\p2". Now A (b;X7)" € L((p — 1)/p?|5],0) C L((p — 1)/pd,0). Since the latter
space is a ring we find F = 3% ) F,.Y" where F, € L((p—1)/p*d,0). It follows easily that multipli-
cation by F' maps elements in L§- to elements 3°7% a;(X)Y7 where each a;(X) € L°((p—1)/p?d, c;)
for some c; satisfying condition (24). We also have that 1, : L°((p — 1)/p*d,c) — L°((p — 1) /pd, c)
for any real c. The result now follows. O

Lemma 27 The action oy : Ly — LS, induces a map
n n
ay Lg’/ZDi,Y — LOY/ZDi’yp.
i=1 i=1

Proof: This follows from the factorisations of the operators ay and D;y, D;y»r. Specifically,
from the first equality in (26), along with the factorisations

D;y =exp(—nf(X,Y))o Xlain oexp(mf(X,Y))

Diy» = exp(—mf (X, 7)) 0 Xy o exp(rf (X, V7)),

2
which follow from (25), we see that oy o D;y = D;y» o pay. (Here we use the equality 1), o
Xi(0/0X;) = X;(0/0X;) opipy.) Therefore ooy maps an element in Di,y(Lgﬁ)) to one in Di,yp(Lgf)),

and so maps Y1 Dyy (L) to Ty Diys(LY). O
Define
ap = exp(—7f(X,0)) opp oexp(nf(X,0)) =1, o F(X,0), (27)

a map on Q,[7][[X,Y]]. Then L{, is stable under ap, and ap induces a map
n n
Qo - L%/ ZDi,O — L%/ ZDi,O-
i=1 i=1

(These facts are proved in the same manner as Lemmas 26 and 27.) Let Ty,y denote the bijective
map “multiplication by exp(nYh)” from Q[r][[X,Y]] to itself (the inverse is multiplication by
exp(—7nYh)).

Lemma 28 The space LY. is stable under the map Ty,g. Moreover, Ty, is a bijection on LY.

Proof: We have exp(nY h) € Ly, and L§- is stable under multiplication by elements of Ly-. This
proves the first claim. For the second claim, the inverse is again multiplication by exp(—nYh). O

The map Ty,p induces a bijection
n n
TY,O : %/ZDLY — LOY/ZDZ',O-
i=1 i=1
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On sees this by considering the factorisations of the operators D;y and D;o. Define Ty» to be
the map “multiplication by exp(nYPh)” on L§,. Then Ty»( also induces a bijection, as in the
righthand vertical arrow in the next diagram.

Proposition 29 The following diagram commutes

LY/ Y0 Diy =% L$/ i Diy»
LTy L Tyryp
Lg’,/ E?:l Di,O =% Lg’,/ E?:l Dz‘,0~

Thus we have
ay = Tgpl’o oo o Typ. (28)

Proof: The diagram certainly commutes when oy, ag, Ty,p and Ty» o are viewed as acting
on LY, rather than the factor spaces, i.e., Ty» oo ay = ag o Ty,g on Ly-. This relation descends
to the induced maps. The equation now follows since Ty» o is bijective on L, and hence also on
the factor spaces. (Specifically, the inverse is the map induced by multiplication by exp(—nY?h).) O

Now let C'(Y') denote the matrix for the map multiplication by exp(7Y h) from L./ >i Dy
to LY/ Y1 Dio with respect to the basis of monomials of the two spaces. Write a(Y') and a(0)
for the matrices of the maps ay and «g, respectively. (Our matrix convention is that the entry in
the uth row and vth column, the (u,v)th entry, of the matrix for a map gives the coefficient of X
in the image of X" under the map.)

Lemma 30 The matriz of the map T;pl,o t LS ) S Dig— LY/ Y Diyr is C(YP)™L

Proof: We show that the matrix for Ty» o itselfis C(Y?), and the lemma follows. The (u,v)th en-
try Cy (YY) in C(Y') is the coefficient of X" in the reduction of exp(7Y h) X" modulo }~;"; Di,g(Lgﬁ)).
Let ¢, (Y") be the coefficient of X" in the reduction of exp(7rYPh) X" modulo >, Di,o(Lgf)). We

need to show ¢,y (Y) = Cuyp(YP). Write exp(rYh) XY = 3272, a;j(X)Y7, and let ag-u) € Qln]
be the coefficient of X* in the reduction of a;(X) modulo ", D;o(L®((p — 1)/pd)). Then
Cun(Y) =370 ag-u)Yj, and ¢y, (Y) = 2272 ag-u)ij, as required. 0

From (28) and Lemma 30 we get

-1

aY) =CY?) ta(0)C(Y) . (29)

Here the 7! arises since aq is 7! linear.

The significance of the matrix a(Y') from the point of view of L-functions is that evaluating this
matrix at 7! (y) for some Teichmiiller point y gives the semi-linear Frobenius matrix. Specifically,
let y € R, with ¢ =y and y in an unramified extension of Z,. The quotient Qq [, y]-module

L°((p = 1)/pd) ® Qy[m,y]/ zn: Dy (LY ((p — 1) /pd) © Qq [, y)) (30)
i=1

is free on the set {£,} c.f. [32, Theorem 2.17]. Here D;, is just D;y with the variable Y replaced
by the Teichmiiller point y. Let oy, = 1, o F'(X,y) with F(X,Y") exactly as above. As before o,
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induces a map on the quotient space (30). Let (cy) be the matrix for this map with respect to
the basis of monomials. (Note that we now have two maps ap: one as in (27) and that defined
immediately above. The former acts on the R-module spanned by the basis set, and the latter on
the Q,[7]-module. However, the matrices for these two maps are the same.) We have that (ay)

is equal to a(Y) evaluated at 7 1(y), as can be seen by examining the action of o, and ey and

rlo .
the operators D;, and “D;y» evaluated at Y = 77!(y)”. Now ay () is the Frobenius map on

Dwork’s cohomology space, and writing L( f(X,5),T) for the L-function of the exponential sum
associated with f(X,y) (see [32, Page 277]) we have [32, Eqn (2.35)] that

L(f(X,g)) det(]_ —Ta rlogp( ))(71)n+1'
logp(q)

Because of 77 !-linearity, the matrix for the linear map a; is equal to

-1 7 logp(a)+1

(ay) (o)™ oo ()

(Note that 77¢ = 7" log, (0) =i oy Qq[m,y], which gives the precise formulation in Proposition 12.)
Finally, a standard argument on Artin-Schreier equations (see for example [27, Section 3]) shows
that the zeta function of the curve ZP — Z = f(X, %) is the product of the Galois conjugates of the
L-function L(f(X,7)) times 1/(1 — ¢""T). These results together prove Proposition 12.

A.3 The differential equation satisfied by the deformation matrix

In this section we prove that the matrix C(Y') is the unique solution of a certain differential equation,
with an initial condition.
We choose a basis element &, and look at the action of Ty,p on this element. Write

exp(?TYh)fU = Z Cu,vgu + Z Di,O (ni,v)- (31)
u =1

Here C,, € R, ;v € Lgf) and the final sum lies in L§,. Since

0 0
gy @ D= Pioe gy

applying 0/0Y to both sides of (31) we get

8Cu v - a”?i v
whexp(rY b, = 30 e, + 30 Dip () (32)
gy T & oY
Now write "
7Th£v = Z Bu,vgu + Z Di,Y(Ei,v)- (33)
u i=1

Here By, € Q[n][Y], € € Lgﬁ) and the final sum lies in L{,. Substituting (33) in (32) we have

exp(nYh) {ZBUU£U+ZD1Y i } Zacuv£u+z ZO(&"?M}).
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Hence

8Cuv azv
exp(rYh) ZBuU£u+ZDloexp7th6w -5 £u+z Zo< n )

=1

where we have used the fact D,y = exp(—nYh) o D; ¢ o exp(nY h). Putting exp(nY'h) in the first
term inside the summation and substituting (31) with &, replacing &, on the lefthand side we get

ZBuv{chufw"i‘ZD "7211.}"‘21) (exp 7TYh)€“,)
OCy O
Z £u+2 zO( 7 )

Since B, is a polynomial in Y, with no variables X occuring, we can rewrite this as

n n
Z By Z Cwuw + Z Di,U(Z By i) + Z Dip(exp(rY h)ei)
u w i=1 u =1

C,. n o,
= Eu: —a;Ufu +> Dig ( a;v) .

Now switch u for w in the summed variable on the first term on the righthand side and tidy up.
We then have that for each basis element &, the following equality holds

8Cw ,U 8 1,V
Z §w (Z Cw,uBu,v> = Z §w + Z < i Z Buwniu eXp(ﬂ'Yh)ei,v> .

Note that the ith operand in the final summand lies in Lgi), and the sum itself lies in L§-. Writing

B = (By,) and C = (C},;) we find, equating coefficients of the basis elements on each side,

oc
oy’
Also, certainly C(Y') evaluated at Y = 0 is just the identity, for then exp(nY'h) = 1. Thus the
matrix C(Y') satisfies the differential equation (4), and by the explicit method in Section 5.2.1 we

see that it is the unique solution of this equation. This fact, combined with Equation (29), proves
Proposition 11.

CB =
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