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Abstract

Any rational function whose coefficients lie in a finite field may be expanded in a
unique way as a finite continued fraction whose partial quotients are polynomials. The
field of all rational functions may be embedded in a larger field, known as the field of
Laurent series, and an irrational element of this larger field may be written uniquely
as an infinite continued fraction. The significance of these expansions is that they
reveal how easily the Laurent series may be approximated by other simpler rational
functions. If all the partial quotients of the continued fraction have small degree,
then the Laurent series may be considered difficult to approximate. Laurent series
which have partial quotients all of degree one in their continued fraction expansion
are said to be badly approximable. In this thesis we explore questions related to badly
approximable rational functions, and more generally, Laurent series which are difficult
to approximate.

The orthogonal multiplicity of a polynomial is the number of badly approximable
rational functions in reduced form which have that polynomial as their denominator.
We classify those polynomials which have an odd number for their orthogonal multi-
plicity, and put a lower bound on their multiplicity. We also generalise a well-known
theorem on badly approximable irrational Laurent series over the binary field. Algo-
rithmic problems related to badly approximable rational functions are considered, and
in the final chapter, moving beyond the main theme of the thesis, we present some
new results on absolutely irreducible bivariate polynomials.

Any sequence over a finite field may be encoded as a Laurent series. The linear
complexity profile of the sequence, which is of interest from a cryptographic viewpoint,
may then be read off from the continued fraction expansion of the associated Laurent
series. Sequences with desirable profiles correspond to Laurent series which are difficult
to approximate, and the new results in this thesis are interpreted in terms of sequences
whenever appropriate.
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Notation

the integers; rational, real and complex numbers

the greatest integer not greater than the real number r
the least integer not less than the real number r

the absolute value of a complex number ~y

the finite field of ¢ elements, its multiplicative group
the ring of polynomials in = over F,

the field of rational functions in = over F,

the field of Laurent series in z~* over I,

the greatest common divisor of polynomials or integers
the degree of a polynomial f

the exponential valuation of the Laurent series «

the norm of a Laurent series «

the subring of L, whose elements have norm <1

the ideal of O, whose elements have norm < 1

a continued fraction with partial quotients ag, ..., a,,
the degree of the largest partial quotient in the
continued fraction expansion of f/g

the orthogonal multiplicity of polynomial g

the set of all f/g with K(f/g) =1 and deg f < degg
a word over the alphabet of non-constant polynomials in F,[z]
the reversed word a,,04y,_1 ... a1

the continued fraction [0;ay, as,. .., ap ]

the cardinality of a set A

the set of all continued fractions in P, which have
partial quotients in A C I [z]

a sequence {s;};>1

its associated Laurent series Y5, $;27°

the nth linear complexity of §

the Newton Polytope of a multivariate polynomial f
the Minkowski sum of sets ), R C RF



Chapter 1

Introduction

To explain the contents of this thesis with the minimum of technical language it is

easiest to begin by drawing out a relevant analogy. There are some rational numbers

with large denominators which may be approximated very closely by other numbers
11

with much smaller denominators. Consider for example the fraction 3. It is very
1

close to the number z, as a simple subtraction will reveal, but has a much larger
denominator. Similarly, there are irrational real numbers which may be closely ap-
proximated by relatively simple rational numbers. A famous example is “Liouville’s

number” ([39]) which is of the form

where m is an integer at least 2. Liouville showed that there is a bound on how
closely an algebraic real number may be approximated by an infinite sequence of ra-
tional numbers. Observing that the infinite sequence of rational numbers obtained by
truncating the above series after a finite number of terms breaks this bound, Liouville
deduced that the above number was transcendental. Of equal interest are rational
numbers with large denominators which are very difficult to approximate by other ra-
tional numbers with smaller denominators. One may check that the rational number
with smallest denominator which is as least as close to 2; as % is to i, is 2. Similarly,
there are irrational numbers which are difficult to approximate by rational numbers.
The most difficult to approximate irrational number of all, which lies between the
integers 1 and 2, is the “golden ratio” #
All of these ideas may be made more precise using the theory of continued fractions
for real numbers. Any rational number z/y may be written as a fraction of the form
1
ao + 1
R
ay + ——

e+ —
G

where the a; are positive integers for 1 < j < m, and a, is an integer. This expression
is unique if we further insist that a,, is at least 2. It is called the continued fraction
expansion of z/y, and the integers a; are known as the partial quotients of z/y. Any
irrational number may be written in a similar way, only we require an infinite number
of partial quotients. The continued fraction expansion of a rational number may be
computed by applying the Euclidean Algorithm to the integers z and y. For example,



the continued fraction expansion of & has partial quotients 0, 3, 11, while that of 2} has
partial quotients 0,1,1,1,1,1,1,2. The Oth partial quotient simply tells us between
which integers on the number line the fraction lies, but the remaining partial quotients
are of far greater interest. For they reveal how easy or difficult it is to approximate
that rational number with other rational numbers whose denominators are smaller.
If any of these partial quotients is large relative to the denominator of the fraction
then one may conclude that the fraction is easy to approximate. This is the case for
+. However, if all of these partial quotients are small, as with 2, then the rational
number is difficult to approximate. Although continued fractions of real numbers
have been studied by mathematicians for centuries, there are still many fundamental
questions related to them which remain unanswered. For example, investigating a
method for numerical integration Zaremba was led to consider the following problem
([47]). For any positive integer y, does there exist a coprime integer z such that z/y is
difficult to approximate? We review what is known on this conjecture at the start of
Chapter 3. A much older challenge for real numbers is that of exhibiting, or proving a
non-trivial fact about, the continued fraction expansion of an algebraic number. The
only theorem along these lines is the famous result of Roth which asserts that the
partial quotients a; of an algebraic number cannot grow too fast in magnitude as j
tends to infinity ([38]). It is, however, conjectured that the partial quotients of an
algebraic real number are unbounded.

One may generalise the theory of continued fraction expansions of real numbers
in many different directions. Arguably the most natural way is to replace the field of
rational numbers by a field of rational functions, and consider analogous questions. In
this context, the role of the real numbers is played by formal power series, known as
Laurent series. In this thesis we study how one may approximate rational functions by
other rational functions whose denominators have smaller degree, and more generally,
how one may approximate irrational Laurent series by rational functions. The rational
functions and Laurent series we consider are defined over finite fields. The main
tool in our investigation is the theory of continued fractions of Laurent series over
finite fields, which we fully develop in Chapter 2. The central two themes which we
follow are the study of rational functions which are difficult to approximate, and the
continued fraction expansions of Laurent series which are algebraic over the subfield of
rational functions. We consider a rational function analogue of Zaremba’s question in
Chapters 3, 4 and 7. In Chapters 5 and 6 we construct algebraic Laurent series which
have partial quotients of bounded degree and may therefore be considered difficult to
approximate.

Questions on the approximation of Laurent series are not only of mathematical in-
terest, but can be motivated by the study of pseudorandom sequences over finite fields.
Any sequence may be encoded as a Laurent series. The linear complexity profile of a
sequence reveals how easy or difficult it is to generate initial segments of the sequence
by short linear recurrences. The profile of a given sequence may be read off from the
continued fraction expansion of the Laurent series which encodes it. Sequences with
desirable linear complexity profiles from a cryptographic point of view correspond to
Laurent series which are difficult to approximate. In this thesis, our primary aim is to
prove original results on the approximation properties of Laurent series, but we shall
interpret our results in terms of sequences whenever it is appropriate.

This thesis also touches upon some important algorithmic problems in the study
of polynomials over finite fields in Chapters 7 and 8. Chapter 7 is closely related to
the preceding work on rational functions, although Chapter 8 is largely independent



of the rest of the thesis.

We now present a breakdown of the contents of the thesis, chapter by chapter.

Chapter 2 lays in place the foundations upon which this thesis is built. The
presentation is distilled from many different sources, and in most cases has been
adapted from the number field setting. The discussion of the construction of the field
of Laurent series is inspired chiefly by the analogous construction of the p-adic field
given in Neal Koblitz’s beautifully written book on that topic ([18]). The description
of the theory of continued fractions is based upon that given for real numbers in the
recently published book of Rockett and Sziisz ([37]), and on the classic text of Khinchin
([17]). Once this background theory has been developed, the application to sequences
in the final section follows easily. As throughout the thesis, illustrative examples have
been interwoven into the text, adding colour to the pattern of definitions, theorems
and proofs. Great care has been taken to make Chapter 2 as comprehensive and
independent as possible, and the author hopes it will serve as an accessible introduction
to this area, as there does not appear to be any other comparable exposition on this
topic in the literature.

Chapter 3 introduces the first main theme of this thesis: the study of rational
functions which are difficult to approximate. A rational function is said to be badly
approximable if all the partial quotients in its continued fraction expansion have degree
1. The orthogonal multiplicity of a polynomial is the number of badly approximable
rational functions in reduced form which have that polynomial as their denominator.
This chapter describes the existing work which has been done on badly approximable
rational functions. Particular attention is paid to Blackburn’s results for rational
functions over the binary field ([6]), and a slightly modified presentation of these
results is given, including some modest generalisations. This new presentation is
needed in Chapter 7, where we consider some algorithmic questions related to badly
approximable rational functions.

Chapter 4 further develops the theme introduced in the preceding one, and is the
first chapter to contain significant new work. The chapter is based upon the author’s
published paper ([19]) and the contents are entirely original. The main result is a
characterisation of polynomials with odd orthogonal multiplicity. A lower bound on
the multiplicity of such polynomials is also obtained, and several other related results
are proved.

Chapter 5 introduces the second main theme of this thesis: the study of the con-
tinued fraction expansions of Laurent series which are algebraic over the subfield of
rational functions, and are difficult to approximate. The contents of two papers of
Baum and Sweet are presented ([4, 5]). The main result of the latter of these two
papers is generalised in the following chapter.

Chapter 6 is the most technically involved of the thesis and the contents are com-
pletely original. It is based upon a paper by the author ([20]) which has been accepted
for publication. The main theorem is a generalisation of a well-known and important
result of Baum and Sweet on badly approximable binary power series. Some applica-
tions to the study of the linear complexity profiles of sequences are also presented.

Chapter 7 is one of the shorter chapters of the thesis. In this chapter some original
but far from profound results on algorithmic problems related to badly approximable
rational functions are gathered. It also serves as a bridge between the preceding
chapters on rational functions, and the final chapter on algorithms for multivariate
polynomials.

Chapter 8 is something of an impostor — a large grey egg in a nest full of small

10



white ones — although a link is forged with the main work of this thesis in the preced-
ing chapter. Nevertheless, it is most appropriately seen as lying outwith the central
themes of the thesis, fitting roughly within the wider theme of polynomials over finite
fields. The chapter contains a new absolute irreducibility testing algorithm for bivari-
ate polynomials, and some original absolute irreducibility criteria. It is elementary in
nature and provides a gentle conclusion to the thesis; perhaps a welcome tonic to the
technical intricacies of Chapter 6.

We conclude this opening chapter with a discussion of the rather idiosyncratic way
in which results are labelled in this thesis. The most significant results are dignified
with the title “Theorem”. Such results are substantial and entirely original in nature.
Next in importance are the “Propositions”. Propositions are usually original results,
the only exception being Proposition 2.25 which apparently has not appeared in its full
form in the literature before and is of such importance that it has been elevated to this
rank, but their proofs are less involved. Of slightly lower rank are the “Lemmas” and
“Corollaries”, which are also mainly original. Finally, the great mass of background
results which are presented in Chapters 2, 3 and 5 are referred to simply as “Results”,
and are usually not original, although the proofs given are in many cases the author’s
own.

11



Chapter 2

The Key Concepts

2.1 Introduction

This chapter falls into three parts. In Section 2.2 the field of Laurent series is intro-
duced and its fundamental properties are outlined. Section 2.3 contains a detailed
description of the theory of continued fractions for this field, and finally, in Section
2.4 we explain how this theory is intimately connected with the study of the linear
complexity profiles of sequences.

2.2 Rational Functions and Laurent Series

Let p be a prime number, and g = p® where e € N. Let [, denote the unique finite field
of order g ([23]). So IF, has characteristic p. The polynomial ring in the indeterminate
z over [P is written IF [x]. This ring is an integral domain and we denote its quotient
field by F,(x). This field is known as the field of rational functions, or sometimes just
the rational field, and it is the smallest field in which F,[z] lies. One may extend the
field F,(x) using an analytical method which mimics the construction of the field of
real numbers from the field of rational numbers. The field constructed in this way is
called the field of Laurent series in ! over IF,. This remarkable field has many nice
analytic and algebraic properties, and is the appropriate backdrop for our work on
continued fractions and sequences.

Section 2.2 of this chapter is laid out in the following manner. In Section 2.2.1 we
present the necessary background from algebra and analysis. Section 2.2.2 introduces
a notion of size on the rational field which we use in Section 2.2.3 to define the field
of Laurent series. Finally, in Section 2.2.4 we discuss some algebraic properties of this
field which shall be of interest to us.

2.2.1 Norms, Exponential Valuations, and Completions

Let R be a commutative ring with an identity. A norm (or valuation) on R is a
mapping || from R to the non-negative real numbers such that

|r| = 0ifandonlyifr =20 (2.1)
|rs| = |r||s| forallT,s € R
r+s| < |r|+]s|forallr,s e R (2.3)

12



The final condition is known as the triangle inequality. We call a norm non-trivial if
|r] # 0,1 for some r € R. If a norm also satisfies the stronger conditions

Ir+s| < max{|r|,|s|} forall r,s € R (2.4)
|r+s| = max{|r],|s|} for all r,s € R with |r| # |s| (2.5)

then we say that it is non-Archimedean. Property (2.4) is called the ultrametric
triangle inequality, and one may show in fact that Property (2.5) is a consequence of
Properties (2.2) and (2.4). However, it is convenient for us to explicitly state this final
property, as we shall frequently make use of it.

Example 2.1 (Norms on the field of rational numbers Q.) The most familiar example
of a norm on Q is the absolute value norm, which we denote ||,,. This norm does not
satisfy the ultrametric triangle inequality, as is seen from

1+ Lo = 2l =2 > max{|L]oc, [1]c}-

This is an example of an Archimedean norm. It is not, however, the only norm which
may be defined on QQ, as we now explain. For each prime p in Z, define the map ||,
from Q to the non-negative real numbers in the following way: Let z € Z with z # 0.
Define ord,(z) to be the highest power of p which divides z and let ||, = (1/p)°"%(*).
Now extend this mapping to all rational numbers by letting |z/y| = |z|/|y| where
z,y € Z with z,y # 0, and |0|, = 0. One may verify that ||, is a non-Archimedean
norm on Q. A theorem of Ostrowski ([18, page 3]) tells us that ||, and ||,, p a prime,
are the only non-trivial norms on Q.

Let | | be a non-Archimedean norm on a ring R. Choose ¢ € R with 0 < ¢ < 1. For
each non-zero r € R, define v(r) = log, |r|. Let v(0) = —oo. Then v is a mapping from
R to the extended real numbers RU{—oo}. It is called the exponential valuation
associated with | |. It possesses similar properties to ||, namely

v(r) € R if and only if r is non-zero (2.6)
v(rs) = wv(r)+wv(s) forall r,s € R (2.7)
v(r+s) > min{v(r),v(s)} forallr,s € R (2.8)
v(r+s) = min{v(r),v(s)} for all r,s € R with v(r) # v(s) (2.9)

Conversely, given any map v on R which satisfies the above four conditions, we may
construct a non-Archimedean norm || on R: Choose some ¢ € R with 0 < ¢ < 1 and
let |r| = ¢*™ for r # 0, and |0| = 0. For example, the exponential valuation associated
with ||, on Q in Example 2.1 is the map ord,.

Now let K be a field on which is defined a norm ||. A Cauchy sequence is a
sequence {c;};>1 of elements of K with the property that for any real number ¢ > 0,
there exists N € N, such that |¢; — ¢;| < e for all ¢,j > N. We say that an arbitrary
sequence {d;};>1 of elements of K has a limit in K if there exists d € K such that
lim; .., |d — d;| = 0. Finally, we say that K is complete with respect to || if any
Cauchy sequence in K has a limit in K. Given a norm || on a field K one may
construct a field L which is complete with respect to || and contains K. The field
L is called the completion of K with respect to ||, and it is the smallest complete
field in which K lies. We do not give the details of this construction, but essentially
one considers the ring of all Cauchy sequences of K with respect to the norm ||, and

13



factors out the ideal of all null sequences (Cauchy sequences which have 0 as a limit).
A fuller description of the number field case can be found in [18, Page 10-11].

Example 2.2 (Completions of Q.) The completion of Q with respect to || is the
field of real numbers R. If one completes Q with respect to ||, for some prime p, one
obtains the p-adic field Q, ([18, Chapter 1]).

2.2.2 A Norm on the Field of Rational Functions

In this section, we define an exponential valuation on F,(z) which in a sense extends
the degree map on [F [z], and study the norm associated with it.

Definition 2.3 Let a,b € F [z] with b # 0. The exponential valuation v on F,(z)
maps a/b to degb — dega, and 0 to —oo.

It is easily verified that v is a well defined map on F,(z), and is indeed an expo-
nential valuation.

Definition 2.4 For r € F (x) with r # 0, define |r| = (1/q)*™. Let |0] = 0. So || is
the non-Archimedean norm on F,(z) associated with the exponential valuation v.

Thus for a nonzero rational function f/g where f and g are polynomials, |f/g| =
(1/q)des9-dee/ = gdes f=degs  The choice of 1/q as the base for converting from the
norm to the exponential valuation is somewhat arbitrary, although it does yield a nice
“product formula” in a certain context, as we explain in Example 2.6.

Note 2.5 It may appear rather topsy-turvy that for a polynomial f we define v(f)
to be the negative of the degree of f, rather than deg f itself. We do this because, in
the parlance of algebraic geometry, we are looking at “the localisation of IF,(z) at the
prime z~'”, and consequently we are interested in the “degree of f relative to z7'7,
which is — deg f. We shall work with the norm || associated with v in most cases, and

so the reader may think of |f| as ¢9®8/, and often forget about v altogether.

We observe in the next example that although this is the only norm on the field
F,(z) which will be of serious interest to us, one can define other norms.

Example 2.6 (Norms on the field F,(z).) Associated with every irreducible poly-
nomial d(z) in F,[z] there is an exponential valuation ordy,) from which one may
construct a non-Archimedean norm | |4,): Let f be a non-zero polynomial and define
ordg(,)(f) to be the highest power of d(x) which divides f. For f,g € F,[z] with
f,g9 # 0 define

\f/9law) = (1/q"°® d)ordd(m)(f)fordd(z)(g),

and let 0|4,y = 0. One may show that the only non-trivial norms on IF () are
norms of the form ||4,) and the “degree” norm || ([3, page 13-14]). This latter norm
is sometimes denoted ||, because of a connection with the point of infinity on the
projective line. Observe that we have the product formula

lalo IT lala) = 1.

d(z)el,

Here a € F,(z) with a # 0, and I, denotes the set of all irreducible polynomials in
F,[z].

14



2.2.3 The Construction of the Field of Laurent Series

Having completed our preliminary discussion on the field F,(z), we now turn our
attention to the field of Laurent series. At this juncture, there are two paths which
may be taken. One may formally construct the completion of I (z) with respect to
the norm ||, and then show that every element in this new field has a Laurent series
expansion. This longer path is followed in [18]. However, we choose the shorter path,
and instead explicitly define a ring of Laurent series, and show that this ring is a
complete field, and that one may embed [ (x) in this field.

Definition 2.7 Let g be a prime power. The ring L, is given by

Lq = {ZSZ(L‘Z|81 EFq,TLEZ}

The addition and multiplication laws in L, are straightforward and we do not
describe them. It is easily seen that L, is a commutative ring with an identity,
although it is not immediately obvious that every non-zero element in the ring L, has
an inverse. This and other basic properties of L, are proved in Result 2.8.

Before we can state and prove this result, however, we must define a valuation vy,
and non-Archimedean norm ||, on L,. If s € L, with s = }_,5, s;z~* where s, # 0
then we let v, (s) = n and |s|, = (1/q)" = ¢~". Let v,(0) = —occ and |0, = 0. So
v can be thought of as telling you the negative of the “degree” of a Laurent series.
Once again, it is easy to verify that v; and ||, satisfy the appropriate properties. In
fact, the maps vz, and ||, extend the exponential valuation v and norm || defined on
F,(z), as we now show.

Result 2.8 The ring L, is a field, with F,[z] C F,(z) C L,. The exponential val-
uation vy, when restricted to the subfield F, (z) of L, is the map v. Similarly, by
restricting | |1 to F,(z) we obtain the norm ||. The field L, is complete with respect
to the non-Archimedean norm ||r. In fact, L, is the completion of F,(x) with respect
to|].

Proof: We first show that L, is a field. It is easily seen that L, is a commutative
ring with an additive identity 0 and multiplicative identity 1. It therefore only remains
to show that every non-zero element in L, has a multiplicative inverse. Let s =
>isn Szt with s, # 0. Then s = s,z "a where a has leading term z°. We show
that « is invertible in L,. Write a = 3,5, @;z~" where oy = 1. Define the sequence

B; (i > 0) by

Bo = 1
/Bi = —(Z;Zla]ﬂi_j) fOI'ZZl

Letting 8 = _,5, Biz~" we see that af = 1. Hence s(s,'z"3) = 1 as required.

We now show that L, contains copies of both F,[z] and F, (). Identify F,[z] with
the subring of L, consisting of those elements of the form Y, .., s;z™*, where s; € F,
and n < 0. This gives an embedding of F,[z] in L,, as is readily verified. Since
F,[z] C L, and L, is a field, we know that L, must contain the field of fractions [F,(z)
of F,[x]. We may describe this embedding explicitly: Let f,g € F¥,[z] with g # 0 and
consider the rational function f/g. We may assume by cancelling leading coefficients
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that g is monic. Write f =35, fiz™" and g = 3,5, gi ™" where f,,, # 0 and g, = 1.
Observe that f;,g; = 0 for ¢ > 0. Define the sequence s; for ¢ > m — n by

Sm—n = fm
k
Sm—n+k = fm+k - Ej:l 9n+jiSm—n+(k—j) for k> 0.
Let s =35m0 s;z~%. Then one may verify that f = sg in L,. Thus we may identify

f/g with s. This gives an embedding of F,(z) in L,.

The next two sentences in the statement of the result are easily seen to be true by
considering the definitions of v, ||,v;, and ||z, and the embedding of F,(z) in L, that
we have just described.

It is not difficult to prove that L, is complete: Let {c;};>1 be a Cauchy sequence
in L, with respect to ||,. We define a Laurent series | = .., l;z~" which we claim
is the limit of the sequence {¢;};>1. For each natural number k > n, there is an N, €
N such that |¢; — ey |p < ¢=* for i,7' > N,. Define [, to the coefficient of z=* in the
Laurent series expansion of ¢; for any ¢ > Nj. This is well-defined by the preceding
sentence, and it is easily verified that the [ thus constructed is the limit of {c;};>;.

Finally, to prove that L, is the completion of ¥ (x) with respect to ||, we must
show that it is the smallest complete field in which F,(z) lies. This is easily seen.
For any Laurent series Y., s;z~" is the limit as m — oo of the sequence of rational
Laurent series {3, c;c,im SiT " Fm>0-

O
We call L, the field of Laurent series in =" over F,(z). The element s con-
structed in the second paragraph of the above proof is called the Laurent series
expansion of the rational function f/g. Observe that its sequence of coefficients sat-
isfies a linear recurrence and is therefore eventually periodic. Conversely, it is easily
proved (Result 2.31) that any Laurent series whose sequence of coefficients is eventu-
ally periodic can be written as a rational function. Identifying F,(z) with its image
under the embedding, we call Laurent series which lie in [F/(z) rational, and those
which do not irrational.
From now on, we shall use || and v to denote the exponential valuation ||, and
norm vy, on the field L,.

1

Example 2.9 We present a simple example of a rational Laurent series over the finite
field F;. The expansion s of the rational function f/g can be verified by checking that
f=gsin Ls.

P+t +2

=14z 4+ 24+ 3427+ 225+ 2075 + ...

x3 41
The expansion has period six and the remaining terms can be obtained by repeating
the coefficients of the terms 7', ..., 275 We shall compute the initial few terms of

the Laurent series expansion of a square root of this rational function in Example
2.12, thus giving our first example of an irrational Laurent series.

We conclude this section by defining the Frobenius map ¢, on the field L,. Let
¢p : Ly — L, be given by
a— af,

where o € L, and char L, = p. It is easily verified that ¢, is a monomorphism on the
field L,. One useful fact we shall use in Chapter 6 is that

(Z sz P = Z sPx =, (2.10)
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This may be proved in the following manner. For all m > n we have that

(f: siw )P = Zs" s (2.11)

This is proved by induction on m > n + 1, the first case following easily from the fact
that p divides (¥) for all 1 <4 < p — 1. Taking limits as m — oo on both sides of
(2.11), and using the easily verified fact that the limit of a product is the product of
the limits, now establishes equality (2.10).

2.2.4 The Algebraic Properties of the Field of Laurent Series

The field of Laurent series can be thought of as a positive characteristic analogue
of the field of real numbers, and like the field of real numbers, it is privileged with
many nice properties not shared by other fields. The next result will be of interest in
Chapter 6. It is a generalisation to arbitrary positive characteristic, of a result which
is proved for fields of characteristic 2 in [4, Proof of Theorem 8].

We must first of all recall a few basic ideas from field theory. An element of L, is
algebraic over [F,(z) if it is the root of a polynomial which has coefficients in F,(z).
If a Laurent series « is algebraic over I, (x), we call it an algebraic Laurent series.
In this case, there is a unique monic irreducible polynomial over [, (z) of which « is
a root, and this is known as the minimal polynomial of «. If the minimal polynomial
of « has distinct roots in some suitably large extension field, then we say that « is
a separable element. Now let K be a field extension of F, (z). If every element of
K is algebraic (separable respectively), then we say that K is algebraic (separable
respectively).

Result 2.10 Any algebraic extension of the field F,(x) which lies in L, is separable.

Proof: Let K be a field such that F,(z) C K C L, and let o € K. Denote by
h(T) € F,(x)[T] the minimal polynomial of @ over F,(z). Since « is an arbitrary
element of K, we need to show that h has distinct roots. Let u denote the common
denominator of all of the coefficients of h. Then f := uh € F [z, T]. Certainly f has
distinct roots if and only if A does, and so it is enough to prove that f has distinct
roots.

Suppose that f has a repeated root, 4 say. Then h is also the minimal polynomial
of 8. For any polynomial g(T') € F [z, T] write deg, g to denote the highest power
of T which occurs in g. The derivative df /dT of f with respect to 7" must then be
identically zero, for otherwise [ is a root of df /dT which is a non-zero polynomial
with degy (df /dT) < degy f, which contradicts the minimality of deg, f = degy h.
Thus f(T) € F,[z,T?], where p = char[F,. Now a typical summand of f is of the
form z"TP™ = z®(z*T™)P where 0 < b < p. Gathering together all the terms whose
“remainders” z° are the same, we may write f(T) = P 0 x*(M;(T))? where M;(T) €
F,[z,T]. Observe that M;(c) # 0 since deg, M; < deg, f = deg; h. Substituting
T = a we have that

~ (My(a))? = 3 (Mi(@)" 2.2

Since a € L,, both sides of this equation lie in L, and we may take exponential
valuations. Now for 0 <i<p—1

v(@'(Mi(a))”) = —i+po(M;(a))
—1 mod p.
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Here we use Property (2.7) of v, and the fact that M;(a) # 0 for 0 <i < p—1 and so
v(M;()) lies in Z. Hence v(z'(M;(a))?) # v(z? (M;(a))?) for 0 <i # j <p—1. So
using Property (2.9) of v

v(X) 2 (M(e))?) = min{v(z'(M;(a))?)}
= mincicp 1 {—i +po(M;(a))}
Z 0 mod p.

But v(—My(a)?) = v(My(a)?) = 0 mod p. This contradicts (2.12), and so f, and
hence the minimal polynomial of «, must have distinct roots, as we wished to show.
O
The second result of this section is known as Hensel’s Lemma, and can be thought
of as an analogue of Newton’s Method for computing roots of equations over R. Before
we can describe this result, we need to introduce two important subrings of L,.
Define
O, = {sel,|ls| <1},
P, = {seL,||s| <1}

It is easily shown that O, is a ring and P, an ideal of O,. We have the natural
homomorphism of rings

o, - 0,/P,=F,

s = 8

where 5 denotes the coefficient of z° in s.

Result 2.11 (Hensel’s Lemma) Let f(T) € O,[T] and denote by f its image in
(0,/P,)[T] = F,[T] under the natural homomorphism. If f(T') has a root a in O,/ P, =
F, with df /dT(a) # 0, then f(T') has a root o in O, with & = a.

Observe that given a polynomial f(T) € L,[T], one may multiply it by a suitable
power n of  to obtain a polynomial ¢(7") = 2" f(T') € O,[T]. Any roots of f(T) are
also roots of g(T') and vice-versa, and so Hensel’s Lemma in fact allows one to attempt
to solve arbitrary algebraic equations over L.

A proof of Result 2.11 can be modelled on that given for the number field case in
[18, page 16-17]. We content ourselves with illustrating the methods used in the proof
in Example 2.12.

Example 2.12 In this example, we consider the Laurent series expansions of the
square roots of the rational function over F; considered in Example 2.9. Consider the
polynomial

2+ r+2
B 23+ 1 '
This polynomial is defined over F;(z) and one may show that, since 2% + 2> + x + 2
is irreducible in F3[z], f(T") does not factor in Fs(z). However, Hensel’s Lemma tells
us that f(7) has two roots in L3 and so factors over Ljz, as we now explain. Using
Example 2.9 we can expand the constant term in f(7') as a Laurent series to obtain

f(r) =17

fT) =T —(1+a7 422+ + 2074 + 2075 + 20754 ...
Reducing f(T') modulo z~" we have that f(TY=T%—-1= (T —1)(T —2) mod z .

So f(T') has two roots, @ = 1 and b = 2 say, in O3/P; = F3;. Now df/dT = 2T and
so df/dT(1) = 2 # 0 and df/dT(2) = 1 # 0. Thus f(T) satisfies the conditions
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of Hensel’s Lemma for both ¢ and b, and so there exist elements a and § such that
fla)=f(B)=0,anda=a=1modz !, B=b=2mod z .

We can say more. For the proof of Hensel’s Lemma is constructive and allows us
to compute as many of the initial terms in the Laurent series expansions of the roots
of f(T) as we please. We demonstrate this for a.

Let @ =Y ,5pa;x". Then ap = 1 and we have
a? mod 2
(ap + ayz™")? mod z~2

a2 + 2apa,z " mod 2.

1+z!t

Putting af = 1 we get the equation

-1 -2
2apa;z” mod ™ *,

_1:

T

which is the same as

1 = 2a9a; mod z .

Since df /dT (ay) = 2a, Z 0 mod ™', we can solve this equation to get a; = 2.
To uncover the values of the coefficients as, as, ... we look at the equation f(7T) =0
modulo successively higher powers 23, z7%,.... At each stage, we are presented with
a linear equation modz~!, which we can solve since df/dT (ay) Z 0 mod z~*. Thus
solving the above quadratic equation in L3 reduces to solving an initial quadratic
equation in I3, and then solving a succession of linear ones in ;. Following this

method we find that

a=142z' 42024+ +22 " +20 8+ 20 +2x7 0 4 2 2712 4 .

The next example of this section is the first of a series of examples on a single
theme which illustrate an important point discussed in Chapter 5.

Example 2.13 Let z. = c+ Y oy A= L,, where char F, = p and ¢ € F,. Then it
is easily seen from our discussions on the Frobenius map that ¢,(z.) = 2 = z. —z™'
and hence 2P — z, + 27! = 0. Thus z. is algebraic over L, of degree not greater than
p. In fact we can say more. For the equation

T° —T +z7" (2.13)

over () factors as []°—, (T — z.) in L,. This tells us that the equation is irreducible
over F,(z), as we now explain. If f € F, (z)[T] is monic and divides T? — T + z~*
then f = [[.,(T — z.) where J C {0,1,...,p — 1}. The coefficient of T#(/)~! in f
is Y .cs2e = (Xoesc) + #(J)z. Since f is defined over F,(z), this coefficient must
lie in F,(z), which implies that #(J)zy € Fy(z). Now 2z, € I (x) since its Laurent
series expansion is not eventually periodic. Hence we must have that #(J) = 0 mod p.
Thus either j =@ and f =1, 0or J ={0,1,...,p—1} and f =T? — T + z~'. So each
irrational Laurent series z, has T? —T +xz ! for its minimal polynomial, and therefore
has exact degree p as an algebraic element over ().

We will return to this example in Example 2.13 of Section 2.3.4 in which we will
consider the continued fraction expansion of z := z, = ;o  7F". Following Mahler,
we will then see in Chapter 5 that the properties of z imply that a version of Liouville’s
theorem in positive characteristic is sharp.
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2.3 Continued Fractions

The theory of continued fractions of rational functions and Laurent series proceeds
in parallel with that for rational numbers and real numbers, and is simpler in many
places. To give a completely rigorous presentation, one must first discuss the rational
function case, before proceeding to general Laurent series. We begin by defining
a general continued fraction, and describing how one may associate a unique such
continued fraction with each rational function.

Section 2.3 is arranged in the following way. In Section 2.3.1 we give the most
general definition of a finite continued fraction which we shall need, and outline the
fundamental properties of such continued fractions. Section 2.3.2 describes the connec-
tion between simple continued fractions and rational functions, and we widen the net
in Section 2.3.3 to encompass irrational Laurent series and infinite continued fractions.
With the basic ideas in place, we then present the central idea of a best approxima-
tion in Section 2.3.4, and cement the whole structure together with Proposition 2.25,
which is arguably the most important result in the theory of continued fractions.

2.3.1 General Continued Fractions

The most general definition of a “continued fraction” which we give is not a standard
definition, but rather is tailored to our purposes. (Note that our general “continued
fractions” only play an auxiliary role in defining and manipulating simple and infi-
nite continued fractions, and our definitions of these latter more important continued
fractions are standard.)

Definition 2.14 A continued fraction in the field L, is an expression of the form
ap+ 1/(ay + 1/(az + 1/(... + 1/ay))),

where a; € Fy[z] for 0 < j <m —1 with dega; > 1 for 1 <j <m —1. Also, a,, € L,
with |ay,| > 1.

The freedom to choose the final entry «,, in the continued fraction to be any
Laurent series such that |a,,| > 1 will allow use to manipulate both simple continued
fractions in Section 2.3.2 and infinite ones in Section 2.3.3.

We denote such an expression by

[a’O ;a17a27"'7am]'
For —1 < j < m, define Laurent series f; and g; recursively by

fa=1 fo=ao, fi=ajfj1+fj2 for1<7<m,

. 2.14
g-1=0, go=1, g;=a;g9;-1+gj—2, for 1 <j<m. (2.14)

Then

Result 2.15 For any 0 <j<m

1. fi/g; =[ao;a1,as,...,a;].
2. figj—1 — fi—19; = (1)1
5. lgs] = Ty la] (here § > 1),
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4 \(Fe/gr) = (i1 95)] = 1/195llgj 411 for j <k <m.

Proof: 'We shall prove that f;/g; = [ao; @1, a2, ...,a;] by induction on j. Observe
that if 7 = 0 or 1 the result is true. So suppose j > 1. We may write

[ao;al,aQ,... ,Clj] = [0,0;0,1,... ,aj_Q,Cj_l],

where (;_1 = aj_1 + (1/a;). Observe that |(;_;| > 1 since 1/|a;| < 1 and |a;_| > 1.
By induction, we may assume that this latter continued fraction equals

Ci—1fj—2 + fi=s
Cj—19j—2 + gj—3

Substituting {;_1 = a;—1 + (1/a;) we see that this reduces to f;/g;.
We now prove that f;g;—1 — fj_19; = (—1)77'. This is easily verified for j = 0. For
0 < j < m we have

fi9i-1 = fig; = (ajfj-1r + fi-2)gj-1 — fi-1(ajgj-1 + gj—2)
= fj—2gj—1 — fi—19j—2
— (G
Part 3 follows easily from the recurrences (2.14) which defines g;.

To prove the Part 4, observe that fi/gr = [ao;a1,...,a;,(j+1] where (j11 =
[Gj41}@js2,--.,0a;]. Therefore

e _ Gnfit+fia

9 G195 + gj—1
Hence

\fe/gx — filg;l = /(195 + 95-1)9;]
1/aj1llg;1?
= 1/lg;llgjs1]-

Here we use the identity f; 19; — g;—1f; = (—1)7, and the fact that |g;| > |g;_1],
|Gi1| = laja] and |ajl|g;| = |gj41]-

a

2.3.2 Simple Continued Fractions and Rational Functions

We shall mainly be interested in a particular type of continued fraction known as
a simple continued fraction, although it is extremely useful to be able to work
with continued fractions of a more general form when proving results on simple con-
tinued fractions. In a simple continued fraction [ag;a1,as,...,a,] we have that
a; € F[z] (0 < j < m), with dega; > 1 for 1 < 7 < m. Thus simple continued
fractions lie in F,(z). In this case, both f; and g; for —1 < j < m as defined above
are polynomials. For 0 < 5 < m, the polynomial a; is called the jth partial quotient
of [ag;ai,...,an,] and the rational function f;/g; is called the jth convergent.

Part 3 of Result 2.15 tells us that degg; = >, 4<; degay for 1 < j < m. We also
have

Result 2.16 If f;/g; is the jth convergent to f/g = [ag;a1,Ga, ...,y ] then for 0 <

j <m— ]-7
\(f/9) = (fi/g))l = 1/lgillgj+1]
1/|aj+1||9j|2
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This result is just a restatement of Part 4 of Result 2.15, using Part 3 to obtain
the second equality.

We have seen that a simple continued fraction is just a rational function presented
in a rather curious way. In fact, any rational function f/g may be written as a simple
continued fraction by applying the Euclidean Algorithm for polynomials to f and g, as
we now explain. First observe that we may assume f and g are coprime, for otherwise
we can cancel factors. Applying the Euclidean Algorithm we obtain

[ = ag+ro

g = mro+n

o = G271+ T

T = agry+7r3
Tm—3 = Gm_1Tm—2 1t Tm-1
'm—2 = OmTm-1-

In anticipation of what follows, we call the polynomials a; the partial quotients
of f/g, and the polynomials r; are known as the partial remainders. Observe that
degr; < degr;_; for 1 <j <m — 1 and so, by comparing the degrees of the lefthand
side and the righthand side in the (j + 1)th equation in the list, we see that dega; > 1
for 1 < j < m. Also, since f and g are coprime, we have that r,, ; € F,".

We may now recover a continued fraction which is equal to f/g from the above
list of polynomials. Dividing the first equation through by g we see

fl9 = a0+ 1/(g/r0)-

The rational function g/ry may be written as a; +1/(r¢/r1) from the second equation
in the list. Continuing in this way we find that

fl9=ao0+1/(ar +1/(az + 1/(... +1/am))).

Thus we have written f/g as a continued fraction.
We now present a formal proof that we can write any rational function as a con-
tinued fraction, and further observe that it may be done in a unique way.

Result 2.17 For every rational function f /g there is a unique simple continued frac-
tion to which it is equal.

Proof: Let f/g be a rational function. We may assume that it is in reduced form
i.e. f and g are coprime. We argue by induction on the degree of the denominator that
any rational function in reduced form may be written in a unique way as a simple
continued fraction. Any rational function whose denominator has degree zero can
certainly be written as a simple continued fraction in a unique way. Suppose then
that degg > 1. We may write f = agg + 1o where 0 < degry < degg. Observe that
g and ry have no common factors. Therefore, by induction we may assume that g/rg
can be written uniquely as a simple continued fraction. Now f/g = ag+1/(g/ro), and
so f/g can certainly be written as a simple continued fraction. That it can be done
so in a unique way follows easily.
O
We may now make the following definition.
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Definition 2.18 The continued fraction expansion or just continued fraction
of a rational function is the unique simple continued fraction to which it is equal.

Example 2.19 The continued fraction expansion of the rational function of which
we computed the square roots in Example 2.12 is
P+t +2
3 +1

=[1;z + 2,22° + 2z + 2].

This may be verified using the Euclidean Algorithm.

2.3.3 Infinite Continued Fractions

We wish to extend our notion of a simple continued fraction so that irrational as well as
rational elements in the field L, may be written in this form. We begin by defining an
infinite continued fraction as a limit of finite simple ones, and then present a general
method for constructing, given any irrational Laurent series, an infinite continued
fraction to which it is equal.

Let {a;};>o be an infinite sequence of polynomials with dega; > 1 for j > 1.
We define the infinite continued fraction | = [ag;a;,a,...] to be the limit of the
sequence of finite simple continued fractions I, = [ag; a1, as,...,a;] as k — co. Here
we take the “limit” to mean the limit with respect to the norm || on the field L,. We
must first verify that this limit exists.

It follows easily from Result 2.15 Part 4 that

L — el = 1/19k]|gk+1],
for j > k. Here fi/gi (0 < k < j) denotes the kth convergent to [;, which is equal to
l;,. Hence

I =1l < 1/|gkllgr+l,
for all j,5' > k. From Result 2.15 Part 2, we know that {|gx||gx+1|}x>0 is an increasing

unbounded sequence. It therefore follows that {l;};>o is a Cauchy sequence, and so
has a limit in the complete field L,.

As before, we call the polynomials a; the partial quotients of [ = [ag; a1, a2,...]
and the rational functions f;/g; = [ao;a1,...,a;] the convergents of I. Here f; and
g; are the polynomials given by

faa=1 fo=ao, [fi=a;fj-1+ [fj—, forj>1, (2.15)

g-1=0, go=1, gj = a;jgj—1 + gj-2, for j =1

We now wish to show how one may associate with each irrational Laurent series
a € L, a unique infinite continued fraction [ag;ai,as,...]. This is done by means
of an algorithm which is a generalisation of the one used to compute the continued
fraction expansion of a rational function.

Let « € L, with a ¢ F,(z). For any f € L,, let Poly(8) and Frac(3) de-
note the polynomial part and fractional part of 8. So if 3 = Y .., bz~ then
Poly(B) = X, cico biz~™" and Frac(f) = 3,5, biz~". We recursively define a sequence
of polynomials_a; which we shall see are the partial quotients of «.

Let (o = a and ag = Poly(«). For j > 1 let

G o= (G- —aja),
a; = Poly(¢;).
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This sequence is well defined as one may verify that the irrationality of o ensures that
Cj—1 —aj_1 # 0 for all j > 1. Observe that for each m > 1,

a = a0+1/(a1 +1/(a2 +1/... +1/(am71 +1/Cm)))

= [ao;alv"' 7am717Cm]'

This is easily verified by induction on m > 1. Now let [,,_; = [ag;ai,a2,...,0y_1]
and suppose that f,, 1/¢, 1 is the (m — 1)th convergent to [,, ;. Then by Result
2.15 Part 4,

o= lpa| = 1/|Cm||gmfl|2
= 1/l|anl|gm-1]*
since |(j| = |a; + Frac(¢;)| = |aj|. So we see that a = lim,, oo l,,. Hence o =

[ao; a1, as,...].

Result 2.20 Ewvery irrational element in L, may be written uniquely as an infinite
continued fraction.

Proof: We have shown that every irrational Laurent series may be written as an
infinite continued fraction. Now suppose that a = [ag; a1, a2,...] = [bo; b1,y ...] and
that these two continued fractions are “different”. That is to say, for some m > 0,
a; =b; (0 <j <m) but a,, #b,,. Let p,,, = @ @ny1,--.] and v, = by bygr, - - -]
For 0 < j < m — 1, let f;/g; denote the jth convergent to [ag;ai,...,am-1] =
[bo;b1, ..y by 1 ]. Now a = [ag;a1,.. @1, fm] = [bo;b1y... b1,V ]. Hence
from recurrences (2.14)

N’mfmfl + fm72 _ memfl + fm72

HmGm—1 + gm—2 Vm3m—1 + Gm—2 ’

from which we may deduce that u,, = v,,. In particular a,, = Poly(u,) = Poly(v,,) =
b,,. But we assumed that a,, # b,,. This contradiction establishes that a; = b; for all
7, as we wished to show.

O

Definition 2.21 The continued fraction expansion or continued fraction of
an irrational Laurent series is the unique infinite continued fraction to which it is
equal.

So every Laurent series has a unique continued fraction expansion, which is finite
if the Laurent series is rational, and infinite otherwise.

Example 2.22 Recall that in Example 2.12 we consider the quadratic element o € L3
given by

a=142z" 42034254207 "+ 208+ 272+ 20710 4 227 2272 .

One may use the continued fraction algorithm for irrational Laurent series to compute
the continued fraction of c. The first few partial quotients are found to be

a=[1;2z,z,2z, 2>,z +1,...].

It is claimed in [4, page 593] that an analogue of Lagrange’s theorem — an irrational
element has an eventually periodic expansion if and only if it is quadratic — holds
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in L,. Thus an “effective version” of this result, giving a bound on the length of the
period and initial stem in terms of the coefficients of the quadratic polynomial, would
enable one to completely determine the continued fraction of . One may bound the
length of the period for quadratic real numbers ([37, page 50]), and so it is possible
that an effective version of Lagrange’s theorem for Laurent series could be obtained,
although the author is not aware of any such result.

2.3.4 Best Approximations

Having spent several pages showing how one may expand any Laurent series as a
continued fraction in a unique way, the natural question to now address is what use
such expansions are. We shall see that the continued fraction expansion of a Laurent
series is closely related to the sequence of “best approximations” to the Laurent series.

Definition 2.23 Let o € L,,.

1. A rational function f/g is called a best approxzimation of the first kind to
a if
la = (f/9)] <la—(r/s)]
for all rational functions r/s with degs < degg, and
la = (f/9)] < la—(r/s)]
for all rational functions r/s with degs = degg.
2. A rational function f/g is a called a best approximation of the second kind
to a if
lga — f| <|sa —r],
for all rational functions /s with degs < degg.

Thus a best approximation of the first kind, is a rational function which approx-
imates a given Laurent series better than any other rational function whose denomi-
nator has smaller degree, and as least as well as any other whose denominator has the
same degree. We discuss some of the finer points concerning this definition in Note
2.26 following the proof of Proposition 2.25.

The next result explains the apparent omission of a “second requirement” for best
approximations of the second kind.

Result 2.24 Let f/g be a best approzimation of the second kind to . Then
|904—f| < |SOz—’I"|,
for all rational functions r/s distinct from f/g with degs = degg.
Proof: Suppose that there exists r/s with degs = deg g but s # g and
jsa = 7| < |ga = fI.
We may assume that s and g have the same leading coefficient. We then have that

(s —g)a—(r=f)I < max{[sa—r|[ga— [}
|ga_f|a

which is a contradiction, since 0 < deg (s — g) < degg.

We now present the main result of this section.
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Proposition 2.25 Let a € L, and f/g € F,(x). The following are equivalent
1. f/g is a best approzimation of the first kind to «.
2. f/g is a best approximation of the second kind to c.

3. f/g is a convergent of c.

Proof: (2 = 1). Let f/g be a best approximation of the second kind to «.
Suppose it is not a best approximation of the first kind. Then there exists a rational
function r/s distinct from f/g with either degs < degg and |a— (r/s)| < |a— (f/9g)l,
or degs = degg and |a — (r/s)| < | — (f/g)|. In either case multiplying through by
s we see that

[sa —r| = |sl|a—(r/s)]
< lglla=(f/9)]
= |ga_f|7

which is a contradiction, by Definition 2.23 and Result 2.24.

(1 = 3). Let f/g be a best approximation of the first kind to «. If « is rational
and f/g = « then f/g is the final convergent to «, and the result is true. So assume
that this is not the case. We claim that then there exists £ > 0 such that

deg g, < degg < deg g1,

where f;/g; is the jth convergent of . It is easily seen that this claim is true when
« is irrational. Let us now consider the case where « is rational with o = f,,,/gm,
the mth and final convergent to «. If degg > degg,, then f/g cannot be a best
approximation, and if degg = degg,, then f/g can only be a best approximation if
f/9 = a= fi./gm, which we have assumed is not the case. Hence degg < degg,, and
so, when « is rational, there exists £ > 0 such that degg, < degg < deggps:. This
proves the claim.

Now f/g is a best approximation of the first kind. Suppose that degg > deg gy,
so in particular f/g # fi./gr, as we may assume that f/g is in reduced form. Then

o= (F/9)l < la—=(fr/gi)l
= |grgrs1l s
the final equality coming from Result 2.16. Hence
\flg = felal = [ = (fi/gx)) — (= (f/9))]
= |grgrs1l ",
by Property (2.5) of ||. So we have that
lgegl™ < gk f — fral/lgllgx]
= |grgrs1l"t,

and so deg g > deg g1, which is a contradiction. So we must have that deg g = deg gy.
If f/g # fix/9r we may argue in a similar fashion as before to once again deduce that
deg g = deg gi.1, another contradiction. Hence f/g = fi/gx, and f/g is a convergent
of « as we wished to show.

(3 = 2). Let fir/gi be the kth convergent to c. We now show that fi /g is a best
approximation of the second kind to a. Let

S =A{lga— fl|f,g € Fylz], 0 < degg < deg gy}
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Let t = min Sy, and My = {f/g||ga— f| = t}. Observe that such a ¢ exists since there
are only finitely many f/g with deg g < deg g, and |ga— f| < |gra— fi| < 1. We wish
to show that My = {fi./gx}, as this is equivalent to f; /g, being a best approximation
of the second kind to a.

Choose the subset of M, of rational functions whose denominators have lowest
degree; degree [ say. Let r/s lie in this set. Then r/s approximates « in the second
sense better than any rational function whose denominator has smaller degree than [,
and so is a best approximation of the second kind to a. Now we have already shown
that best approximations of the second kind are convergents, and so /s must be a
convergent of a. So let r/s = f;/g;, the jth convergent of a. Certainly 0 < j < k
since deg s < deg g.

Recall that |gja— f;| = |gj+1]™" where {|g;|}o<j< is a strictly increasing sequence.
Thus fi/gy, certainly approximates o better than any f;/g; with j < k. Hence we
must have that j = k. Therefore r/s = fi/gx, and so fi/gy is a best approximation
of the second kind to a.

O

Note 2.26 From Result 2.24 and Proposition 2.25 (1 < 2) it can be seen that best
approximations of the first kind actually approximate the given Laurent series better
than any other rational function whose denominator has the same degree. However, we
make slighty weaker requirements when defining a best approximation of the first kind
so that we may use the theory we develop in the proof of Result 2.36 (see the comments
preceding Result 2.36). Observe also that a rational function f/g which approximates
a Laurent series a better than any other rational function whose denominator has
smaller degree need not be a best approximation. In general, such a rational function
is either a convergent or an intermediate convergent of a. (If & = [0;a4,a9,...]
with convergents fi/gx, then intermediate convergents are rational functions of the
form (bfy + fr—1)/(bgx + gx—1) where degb = degay,; and b and a;,; have the same
leading coefficient, but b # ay1.)

In traditional applications of diophantine approximation to number theory, such as
minimising linear forms, real number analogues of best approximations of the second
kind are studied. Not only are they the correct type of approximations to consider in
this context, but the theory connecting these approximations and continued fraction
expansions of real numbers is far neater than that connecting best approximations of
the first kind with continued fractions. More specifically, with a few trivial exceptions,
the best approximations of the second kind to a number and its convergents are one
and the same thing. This statement is not true for best approximations of the first
kind to real numbers. All that one can say about the best approximation of the first
kind to a real number is that it is a convergent or an “intermediate convergent”.
It is particularly satisfying that when one considers Laurent series rather than real
numbers, the three ideas — best approximations of the first and second kind and
convergents — fit together so well.

As a first application of Proposition 2.25, we prove a result from [4, Lemma 1,
Part (a)], which we shall use in Section 3.3.2 of Chapter 3.

Result 2.27 Let o € L, and f,g € F,[z] with g # 0. If |a— (f/g)| = 1/|g|*q", where
ged (f,g) =1 and d > 1, then f/g is a convergent of o with next partial quotient of
degree d.

We shall first of all need a lemma.
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Lemma 2.28 Let o € L, with convergents fi/gx. Then

la = (fe/gr)] < la = (f/9)l,

for all f/g with
deg gr, < degg < deggt1-

Proof: Suppose that the lemma is not true for a given k. Choose f/g with degg
of minimum degree subject to the conditions

o = (fi/gi)l > la = (f/9)],

and degg, < degg < deggpy1- Then f/g must be a best approximation of the
first kind to « and hence a convergent by Proposition 2.25. Since deg g, < degg <
deg gr+1 we must have that f/g = fi./gr. But |a — (f/g)| < | — (fx/gx)|, which is a
contradiction.

O

Observe that this lemma implies that

g = fil < lga = £,

for all f,g € F,[z] with degg;, < degg < deg gi1-
We now prove Result 2.27.
Proof: Suppose that | — (f/g)] = 1/|g|*q? < |g|~? and ged (f,g) = 1. Choose k
so that
deg gr < degg < deggi+1,

where fi /g is the kth convergent to a. It is easily verified that one may do this even
when « is rational. Then

la— (f/9)] <9172 < |grgl "

By the remarks following the proof of Lemma 2.28 we also have that

lgre — fil <lga— f| <|g|™"

and so
o = (fi/gr)] < lgrgl ™"
Therefore
\flg—=filgel = [a—(fi/g9x)) + ((f/g) — @)

< max{|a— (f/9)],|la — (fi/gr)l}

< lgrgl™
If f/g # fi/gr then we also have that

|f/9 — fx/gl |(far — 9fx)/grgl

> grgl™".

This is a contradiction, and so we must have that f/g = fi/gx. Thus f/g is a
convergent. That the next partial quotient has degree d follows from Result 2.16 and
the fact that ged (f,g) = 1.

O
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Example 2.29 Recall in Example 2.13 we considered the algebraic element » =
S o2 P of L, which satisfies the equation 2? — 2z + 27> = 0. We now consider its
continued fraction expansion. In this example, we shall assume that p > 2, and we
shall look at the case p = 2 in Example 2.39.
For n > 1 let

a, = a2 (z'4z P+ +z?)

b, = xP
Then ged (a,,b,) = 1 and |b,| = ¢*" . Now

|2 = (an/ba)] = |z 7" 427 4

= q_p"

||
= 1/|bn|2qp"*1(p—2)

Thus since p > 2, by Result 2.27 we have that a,/b, is a convergent to z. The next
partial quotient therefore has degree p"~'(p — 2). Thus the sequence {a,/b,},>; is a
subsequence of the sequence of convergents to z, {f;/g;};>0 say. However, these do
not give us all the convergents. For since degb, = p"~' the degree of the denominator
of the next convergent after a,, /b, is p" *(p—2)+p" ! =p"—p" * < p" =degbpyi. In
Example 4.12 of Chapter 4 we shall uncover the complete continued fraction expansion
of z, and determine exactly which special convergents of z the rational functions a,, /b,
give us.

In the next section we shall see that best approximations of the first kind play a
natural role in the study of sequences. We have already seen that best approxima-
tions of the second kind are the same as those of the first, but other than through
this connection, one cannot motivate interest in these approximations in terms of
sequences. Nevertheless, in a full exposition on the theory of continued fraction ex-
pansions of Laurent series, it is appropriate to initially distinguish between these two
types of approximations, as there may well be other applications of this theory where
approximations of the second type arise more naturally.

2.4 Sequences

One immediate and useful application of the theory we have just described is to the
study of the algebraic properties of sequences. In Section 2.4.1 we outline the basic
properties of sequences over finite fields, before moving on in Section 2.4.2 to discuss
linear complexity profiles, and describing how this is related to continued fraction
theory.

2.4.1 The Basic Properties of Sequences

Throughout this chapter, we have assumed a familiarity with the basic mathematical
notion of a sequence. For example, sequences of convergents and Cauchy sequences.
As the study of sequences over finite fields is one of the main topics of this thesis, it
is appropriate at this stage to take a step backwards, and give a formal definition.

Definition 2.30 A sequence over a finite field F, is a map S from the natural
numbers N to F,. We write S(i) = s; and denote the sequence by {s;}i>1. The
sequence is called eventually periodic if there exists m,n € N such that s; = s; +n
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for all © > m. If such an m and n exists, then the least such n is called the period of

S.

With any sequence S = {s;};>1 over a field F, we may associate the Laurent series
§:= ) ;5 82~  in L,. We call s the generating function of the sequence S.

Result 2.31 Let S be a sequence with generating function s. Then S is eventually
periodic if and only if s is a rational function.

Proof: Suppose first that S is an eventually periodic sequence. Then there exists
m,n > 0 such that s; = s;,, for all # > m. Now the coefficient of z7/(; > 1) in
(x™™ — x™)s 1S Siy(min) — Sitm- For i > 1 this is equal to 0. Hence (z™*" — 2™)s
lies in F,[z] and we may write s = r/(z™*" — 2™) for some r € F,[z].

Conversely, suppose that s is a rational function. We write s = f/g with f,g €
F,[z] and g # 0. We claim that there exists m,n € N such that g divides ™" — z™.
This follows from the fact that the factor ring F,[z]/gF,[z] is finite and so not all
powers of z modulo ¢g can be distinct. So (z™*" — z™) = hg for some h € F [z].
Hence s = hf /(™™™ — ™). Therefore s; = s;,,, for all i > m, and so S is eventually
periodic.

O

The generating function s of any sequence S which is eventually periodic may
therefore be written as s = f/g where f and g are coprime polynomials.

Definition 2.32 A sequence S satisfies a linear recurrence of length | if there
exists go, g1,---, 91 € Ky with g, # 0 such that 3 o<, 9;8i4; = 0 for all i > 0. We
call g(x) = Yo j<; 9j2’ a characteristic polynomial of the sequence S. The linear
complexity of s is the length of the shortest linear recurrence satisfied by s.

Result 2.33 Let S be a sequence with associated Laurent series s = f/g, where
ged (f,g) = 1. The linear complexity of S is degg.

Proof: We claim that S satisfies a linear recurrence with coefficients by, by, ..., b;
if and only if bs € Fy[z], where b= >, , b;jz7. This is easily verified by considering
the coefficients of 7% (¢ > 1) in bs. From this it follows that b is a characteristic
polynomial of s if and only if g|b, and so the set of characteristic polynomials of s is
the principal ideal in [P [z] generated by g. In particular, the linear complexity of s is
the degree of the smallest non-zero polynomial in this ideal, which is just degg.

O

Definition 2.34 If S is an eventually periodic sequence with s = f/g where
ged (f,g) =1 and g is monic, then g is called the minimal polynomial of S.

2.4.2 Linear Complexity Profiles

The linear complexity of a sequence is a rather inadequate measure of the unpre-
dictability of the sequence for many reasons. In particular, it may be that although
the whole sequence is difficult to generate by a linear recurrence, long initial segments
of the sequence might be much easier to generate. This is one reason for considering
the linear complexity profile of a sequence. In essence, the linear complexity profile of
a sequence reveals how easy or difficult it is to generate not just the whole sequence by
a linear recurrence, but initial segments of the sequence of any given length. Indeed,
the sequence being considered need not even be eventually periodic.
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Definition 2.35 Let S = {s;};>1 be a sequence over ;. The nth linear complexity
of S, denoted 1,,(S), is the length of the shortest linear recurrence which will generate a
sequence of the form sy, Sa, ..., Sp,Tni1, Tnte, - .. Where r; € ', (i > n) may be chosen
arbitrarily. The linear complexity profile of S is the positive integer sequence

{n(S)}nz1-

The above definition comes very clearly into focus when one interprets it in terms
of generating functions. The nth linear complexity of a sequence S with generating
function s is the degree of the smallest polynomial ¢ such that

ls = (f/la)l <q™™,

for some f € F,[z]. Now suppose that g is such a polynomial. Then we have that

s = (f/9)l <q " < s = (u/v)],

for all rational functions u/v with degv < degg. Thus f/g is almost a best approxi-
mation of the first kind, except that we do not know whether f/g approximates s as
least as well as any rational function whose denominator has degree degg. In gen-
eral f/g need not be a best approximation of the first kind, but rather is either an
intermediate convergent or a convergent (see Note 2.26). However, for each n > 1,
out of all the rational functions which approximate s to the “nth coefficient”, we may
always choose one that is a best approximation of the first kind — just choose one
which approximates s at least as well as any other. (If we had defined a best ap-
proximation of the first kind to be a rational function which approximates a given
Laurent series better than any other rational function whose denominator does not
have a larger degree, then it would not be clear that we could make such a choice.
Thus the slightly more complicated definition which we give is appropriate for our
application.) Therefore the nth linear complexity of S must always be the degree of
some best approximation of the first kind to s. In fact we have ([31, Theorem 1]).

Result 2.36 Let S be a sequence with generating function s. Suppose that the kth
convergent and partial quotient of s are denoted fi./gi and ay respectively. Further let
[,,(S) denote the nth linear complezity of S. Suppose

deg gr—1 + deggr, < n < deg gy, + deg git1,

where k > 0. Then 1,(S) = deggr. Also, if s is a rational function with final
convergent fp,/gm and we have that deg g,,—1 + deg g, < n, then [,,(S) = deg g.

Proof: For a given n > 1, let f/g be a rational function such that

s = (f/9)l <q™" < s = (u/v)],

for all rational functions u/v with degv < degg. We may choose f/g so that

s = (f/9)] < s — (u/v)]

for all rational functions u/v with degv = degg. Observe that the nth linear com-
plexity is just deg g by definition. Now f/g is a best approximation of the first kind to
s, and hence a convergent of s by Proposition 2.25. Therefore f/g = fi/g; for some
kE > 0. Thus [,,(S) = deggy. It only remains to show that n must lie in the range
specified by the theorem.
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Suppose firstly that £ = 0. Now f;/g0 = ao/1 = 0. So

g" > |s—(fo/90)| = s
|9091
= lay| !

-1
Thus in this case 1 < n < dega;. Now dega; = deggy + degg, and —oo = degg_, +

deg go < 1. Hence for n in the range

degg_1 +deggy < n < deggy + degg,

the nth linear complexity is just deg gy = 0.
If s is rational and f;, /g is the final convergent to s, so s = f./gx = fm/gm, then

|S - (fmfl/gm71)|

and so deg g,,_1 + deg g,, < n, which proves the final claim.
Suppose now that & > 1 and f; /gy, is not the final convergent to s. Then

ls = (fr/9e)l = |gkGrea]
< q"
and
|s = (fie1/9k-1)] = |gk—196]""
> q",

since deg gy, 1 < deggy. So
deg gr—1 +deggr <n < degg; + deggri1-
From this we see that for all n with
deg gr—1 +deggr <n < degg; + deggri1,

the nth linear complexity of S must be degg;. This completes the proof.
O
It is the next and final result in this chapter which will be of most interest to
us when interpreting our new theorems on continued fractions of Laurent series in
Chapters 4 and 6 in terms of sequences. We first need a definition.

Definition 2.37 The jumps profile of a sequence S is the subsequence of positive
terms in the sequence

11(8),12(S) = 11 (5),13(S) — 1o(5), ...
This may be an infinite or o finite sequence.

Result 2.38 Let S be a sequence with generating function s. Let s have continued
fraction expansion [0;ay,as,...]. The jumps profile of S is {degay}r>1.
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Proof: By Result 2.36 the subsequence of non-zero terms in the linear complexity
profile is the sequence {deg g, — deg gx—1}x>1. The result now follows from the obser-
vation that degg, = degay + deggy_,, which is obvious from recurrences (2.14), in
the case that s is rational, and (2.15) when s is irrational.

O

Example 2.39 In this final example we consider a binary sequence which is well-
known in the study of the linear complexity profiles of sequences. Let R be the
sequence over I, whose generating function z is given by

0 .
z = E xz 2.
1=0

Recall that we considered this Laurent series in Examples 2.13 and 2.29. This is
sometimes called the Rueppel sequence. We show that

z=[0;x+1,z,z,...]

and so R has the jumps profile 111....

Let « = [0;z + 1,z,z,...]. Then o = [0;2 + 1,(1/8)] where 8 = [0;z,z,...].
Now (1/8) +z = 8 and hence 5° + z3+ 1 = 0. Substituting 8 = (1+ z) + (1/«a) into
this equation we have that

& +a+z ' =0.

Hence from the case p = 2 of Example 2.13, we have that o must be z; or z;. Com-
paring polynomial parts we see that a = 2y = z, as we wished to show.

The sequence whose generating function is § = [0;z,z,...] is sometimes called
the Morii-Kasahara sequence. Both the Rueppel sequence and the Morii-Kasahara
sequence are discussed in [16, pages 38-39].
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Chapter 3

Continued Fractions with Partial
Quotients of Small Degree

3.1 Introduction
We begin by stating a long-standing conjecture in number theory.

Conjecture 3.1 For any positive integer n there exists a coprime positive integer m
such that all the partial quotients of the continued fraction expansion of m/n are not
greater than 5.

We shall call this Zaremba’s Conjecture as a form of it first appeared in print
in a paper of S.K. Zaremba in 1972 ([47]). Zaremba’s interest in finding “good lattice
points for numerical integration” led him to consider rational numbers whose partial
quotients were small. He conjectured that there is a constant C, such that for any
positive integer n, there exists a coprime positive integer m such that the partial
quotients of m/n are all not greater than C. Thomas Cusick believes that we may
take this constant to be 5 ([10]), as we have stated in our version of Zaremba’s original
conjecture. Zaremba was able to prove a weaker version of this conjecture, which we
shall call Zaremba’s Theorem ([48]).

Result 3.2 For any positive integer n, there exists a coprime positive integer m, such
that all the partial quotients of the continued fraction expansion of m/n are less than
Dlog, n, where D is some constant.

Cusick provides a much shortened proof of this result in [10], in which he also
shows that we make take the constant D to be 3.

In this chapter, we study a rational function analogue of Zaremba’s Conjecture.
The main protagonists in this act are Harald Niederreiter and Simon Blackburn, both
of whose work contributes elegantly to different aspects of this problem. It is of
historical interest to note that Niederreiter, who is best known for his work in finite
fields, began academic life as a numerical analyst, and actually contributed a paper
to the conference proceedings in which Zaremba’s original conjecture first appeared.

We organise the remainder of this chapter as follows: in Section 3.2 we discuss
rational function analogues of Zaremba’s conjecture and theorem; in Section 3.3 the
orthogonal multiplicity of a polynomial is defined; and Sections 3.3.1 and 3.3.2 contain
detailed discussions of existing results on this topic. Finally, in Section 3.4 we present
some applications which have motivated research in this area.
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3.2 Rational Function Analogues of Zaremba’s Conjec-
ture and Theorem

To avoid the continual repetition of the phrase “all of whose partial quotients have
degree not greater than”, we start with a definition.

Definition 3.3 Let f/g be a rational function over a finite field I, with ged (f,g) =1
and degg > 1. Let f/g = [ao;a1,0a2,...,a,] with a; € F[z] for 0 < j < m and
dega; > 1 for 1 <j <m. Define

K (i> = max dega;.
g 1<j<m
Rational functions f/g with K(f/g) “small” relative to degg can be thought of
as being difficult to approximate, as we now explain. Recall that the convergents of a
rational function are the same as its best approximations of both the first and second
kinds (Result 2.25). We also know (by Result 2.16) that if fi /g is the kth convergent
to f/g then

\f/9 = fr/9rl = 1/arsllgel,
and so
l9x(f/9) — fel = 1/|ars1]lgsl-

Further recall that |g;| = [T-_, |a;|. Suppose that deg as,; is “small”. Then 1/|ay1| is
“large” and so the kth convergent f;/g; does not approximate f/g particularly well,
in either the first or the second sense. If K(f/g) is “small” then this means that
|agy 1] is “small” for every 0 < k < m — 1, where f/g = f,,/gm. So in this case, none
of the convergents to f/g approximate this rational function well. Thus all the best
approximations, both of the first and second kind, approximate f/g rather poorly,
and f/g can be considered difficult to approximate.

The worst possible case is when K(f/g) = 1; here the best approximations are
always as far from f/g as one could expect. These are of particular interest.

Definition 3.4 We say that f/g is badly approximable if K(f/q) = 1.

We may now state our rational function analogue of Zaremba’s conjecture. It falls
into two parts.

Conjecture 3.5 [6, page 110] Let F, be a finite field with g # 2. For all g € F[z]
with degg > 1 there exists a coprime polynomial f € F x| such that f/g is badly
approximable.

(It should be pointed out that Blackburn does not in fact make such a conjecture
in [6], but only asks if this is true.)

Conjecture 3.6 [28, page 145] For all g € Fy[x] with degg > 1 there exists a coprime
polynomial f € Fy[z] with K(f/g) < 2.

Both of these conjectures remain open; however, several partial results on these
conjectures have been obtained. We delve more deeply into the questions surrounding
these conjectures in Section 3.3. But first, we present a result due to Niederreiter,
which can be thought of as a rational function analogue of Zaremba’s Theorem.
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Result 3.7 [30, Theorem 4] Let g € F,[z] be monic of degree n > 1, and exclude
the case where ¢ =n =2 and g = x> + 2 + 1. Then there exists a monic irreducible
f € F,[z] with deg f =n, ged (f,g) =1 and

K (i> <2+ 2log, n.
9

We do not discuss in detail the methods used by Niederreiter to prove this result,
but content ourselves with the following outline of the proof.

Proof: For 0 < t < n, Niederreiter defines I,,(¢) to be the number of monic
irreducible polynomials f € F,[z] with deg f = n, such that f divides some polynomial
H, + H,g, with H,,H, € F[z], H Hy # 0 and deg H, + deg H, < t. Letting t, =
|n—2—2log, n], he obtains an upper bound on the cardinality of I,,(t,). In particular,
he observes that this upper bound is at least two less than the total number of monic
irreducible polynomials of degree n. Thus one can conclude that there exists a monic
irreducible polynomial f distinct from g such that f does not lie in I,,(¢y). For this
polynomial f, the rational function f/g is in reduced form and we will show that
K(f/g) <2+ 2log,n.

Let f;/g; denote the jth convergent to f/g, where 0 < j < m, say. Then

l9;-1(f/9) — fi-al = 1/la;llg; 1l
where a; is the jth partial quotient of f/g. Thus

deg (gj—1f — fi—19) = n —deg f;.

Here we use that fact that ap = 1 and so deg f; = }_,,<; dega; = degg;. For a fixed
g with1 <3 <m,put Hy =g;_1f— fj_1g and H, = f;_;. Then f divides H, + H,g
and we have H, H, # 0. Since f ¢ I,,(to) this implies that

deg H) +deg Hy > tp+1 >n—2 —2log, n.
Now
deg H, + deg Hy = (n — deg f;) + deg f;—1 = n — dega;,
and so
dega; <2+ 2log, n.
Since this holds for every 1 < 5 < m we have the desired bound.

3.3 The Orthogonal Multiplicity of a Polynomial

We begin with a definition.

Definition 3.8 Let g be a monic polynomial over F, of degree n > 1. The orthogo-
nal multiplicity of g is the number of coprime polynomials f in F [z] with deg f < n
and K(f/g) = 1. We denote this by m(g).

This appellation is motivated by the “orthogonal sequences of polynomials” studied
in classical analysis: one may show that the orthogonal multiplicity of a polynomial
g € F,[z] of degree n is the number of choices for gg,g1,...,9,-1 € F,[z], such that
9oy --»9n—1,9 is the initial segment of an orthogonal sequence of polynomials ([40]).

Thus Conjecture 3.5 claims that all polynomials over a finite field of size greater
than 2 have positive orthogonal multiplicity. More generally, we consider the following
related questions.
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e For a given ¢, do all polynomials over F, have positive orthogonal multiplicity?

e Can one put non-trivial bounds on the multiplicity of a polynomial?

e Can one characterise polynomials in terms of their multiplicities in any way?
We also broach the corresponding algorithmic problems in Chapter 7 where we ask

e Can one efficiently compute the orthogonal multiplicity of a given polynomial?

In the next two sections we describe the results which have been obtained and
conjectures made for both general finite fields and specific fields. However, we first
consider a few elementary ideas which throw some light on these problems.

Niederreiter was the first to observe that the average value of the orthogonal mul-
tiplicity of a monic polynomial of degree n over I, is (¢ — 1)™ ([30, Page 281]). This
is easily seen, as we now explain. The total number of continued fractions of the
form [0;a1,as,...,a,] where dega; =1 for 1 < j < n is ¢"(¢ — 1)". Each of these
corresponds to a unique pair of polynomials f and g, where g is monic of degree n
and f/g =[0;a1,as,...,a,]. From this it follows that

> m(g) =q"(¢—1)",

where the sum is taken over all monic polynomials in [P [z] of degree n. There are ¢"
such polynomials, and Niederreiter’s result now follows.

Thus if ¢ > 2 the “expected value” for the orthogonal multiplicity of a monic
polynomial grows exponentially with its degree. Unless there is very large “deviation”
from this value, one would expect that all polynomials of sufficiently large degree have
positive orthogonal multiplicity. Unfortunately, this has not yet been proved. When
q = 2, the “expected value” is 1, and in this case unless all polynomials have the same
multiplicity, some polynomials must have multiplicity zero. We shall see that indeed
some polynomials over the binary field do have multiplicity zero.

Elementary considerations also allow one to put an upper bound on the orthogonal
multiplicity. We have that

Proposition 3.9 The orthogonal multiplicity of a monic polynomial of degree n over
IF, is not greater than (q — 1)"/?1gln/21,

Proof: ~We first consider the case m even. Suppose that K(f/g) = 1 where
deg f < n and ged (f,g9) = 1. Then f/g = [0;a1,as,...,a,]| where dega; = 1 for
1 <j <n. Let f;/g; denote the jth convergent to f/g. Then

1f/9 = fas2lgns2l = 1/lag/2+1llgns2
ey q_(n""l)

since degg,/» = E;‘fl dega; = n/2. Thus f/g and f,/2/gn/> agree on the first n
coefficients s, s, ..., S,, say, in their Laurent series expansions.
Suppose now that

h/g = [0’ 1,02, ... 7an/27b(n/2)+17b(n/2)+27' .- 7bn]7

where h € F [z] and degb; = 1 for (n/2) +1 < j < n. (Thus h is necessarily coprime
to g and of degree less than n.) Then the (n/2)th convergent to h/g equals the
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Mult. | Freq. || Mult. | Freq. || Mult. | Freq.
8 3 22 15 34 12

12 3 24 21 36 36

14 6 26 6 38 18

16 12 28 21 44 24

18 3 30 18 48 24

20 12 32 3 56 6

Table 3.1: Frequencies of Orthogonal Multiplicities for Polynomials of Degree 5 over
s

(n/2)th convergent to f/g. Thus f/g and h/g must agree on the first n coefficients
S1, 82, ..., S, of their Laurent series expansions. But the remaining coefficients of each
are entirely determined by the first n, in each case by the recurrence obtained from
g. Thus we must have that f/g = h/g and so f = h. From this it follows that the
number of polynomials f of degree less than n and coprime to g such that K(f/g) = 1,

is not greater than the number of choices of linear polynomials a1, as, ..., a,/2. This
is (¢ — 1)"/2¢™/?, which proves the result in the even degree case.
The odd case is proved in a similar way. Let ai,...,a|,/2) be fixed linear poly-

nomials over F, and a a fixed element of F,”. Consider all rational functions of the
form
[0;@1,(12, -y A n/2), AT + byb[n/Z]Jrlv s 7bn]7

where b; ([n/2] < j < n) are linear polynomials and b € F,. One may show that
the Laurent series expansions of any two such rational functions agree in the first n
coefficients. It follows as before that the orthogonal multiplicity of g, where degg
is odd, cannot be greater than the number of such rational functions, which is (¢ —
1)[n/21gln/2] | This completes the proof.

O

Example 3.10 (Some experimental data for F5.) There are 3> = 243 monic polyno-
mials of degree 5 over 5. The average value of the orthogonal multiplicity is 2° = 32
and by Proposition 3.9 the upper bound is 72. Computation reveals that the lowest
orthogonal multiplicity which occurs is 8, and the highest is 56. Table 3.1 gives a
complete breakdown of the frequencies of multiplicities of such polynomials.

3.3.1 Results for Arbitrary Finite Fields

Blackburn is able to prove a general result for arbitrary finite fields by working with
the Laurent series expansions and sequences associated with the rational functions,
rather than with rational functions themselves. We outline Blackburn’s work in this
section. Following Blackburn, we will show

Result 3.11 /6, Theorem 2] Let g be a monic polynomial over F, of degree n > 1. If
n(n — 1)/2 < q then g has positive orthogonal multiplicity.

We now introduce the ideas necessary to sketch a proof of Result 3.11.

38



Let s = f/g be a rational function over a finite field I, with deg f < degg = n.
Suppose s has Laurent series expansion ), s;x %, and continued fraction expansion
[0;a1,a,...,6G,]. For j > 1, define the jth Hankel determinant to be

S1  S» cee 85

So  S3 cee S
Hj(s) =

S; Sj+1 ... S25-1

One may show that H;(s) # 0 for some j, if and only if there is a convergent to s
whose denominator has degree j ([6, Lemma 2]). Now K(s) = 1 and ged(f,g) =1
if and only if there is a convergent to s whose denominator has degree j for every
1 < j < n. This is easily seen by considering the recurrence (2.14) which defines the
denominators g; of the convergents f;/g; (1 < j < m) to s. Tying these together, we
see that K(s) =1 and ged (f,g) =1 if and only if H;(s) #0 for 1 < j <n.

Let Z be the set of all rational functions of the form f/g where deg f < degg = n.
For each 1 < j <mn, let V; C Z be the subset defined by

V, = {s € Z| Hy(s) = 0}.

If s=f/g€ Z, then K(s) =1 and ged (f,g9) =1, ifand only if s ¢ V; for 1 < j <n.
Thus g has positive orthogonal multiplicity if and only if U}_,V; # Z.

We now prove Blackburn’s theorem.

Proof: 'We may regard Z as an n dimensional vector space over F;: Any element
of Z is uniquely determined by the first n coefficients sy, ss,.. ., s, of its Laurent series
expansion, later terms being fixed linear combinations of these coefficients, the linear
combination determined by the recurrence associated with g (see Definition 2.32).
Thus for every positive integer j, we may find a polynomial h; € F [X;, X,,..., X]]
which has degree at most j and is such that H;(s) = h;(s1,S2,...,5,) for all s =
Yoy sz When j € {1,2,...,n}, we have that h; # 0, since the Laurent series
5 =35, 52" defined by

0 ifi<nandi#j
si=14 1 ifi=j
—E;L:_Ol AjSi—n+j if 4 >n

has the property that h;(sq,ss,...,5,) = Hj(s) =1 #0.

The set V; is equal to the affine variety corresponding to the principal ideal in
F,[X1, Xa,..., X,] generated by h;. Define h = hihy...h,. The set U7_,V; is equal
to the variety corresponding to the principal ideal generated by h. Clearly h is non-
zero and has degree at most in(n + 1). We have that Ur, Vi = Z if and only if
h(s1,82,...,8,) = 0 for all sy,5,,...,s, € F,. Now a standard result ([23, Theorem
6.13]) tells us that the cardinality of the zero set of h is at most (deg h)g"~'. Thus if
q > %n(n + 1) > degh then h is not zero everywhere, which proves the result in this
case. If ¢ = in(n+ 1) then ¢ = 3 and n = 2 and the result is easily checked by hand.
This completes the proof.

O

It is of interest to observe that this argument may be adapted to prove that all
polynomials defined over infinite fields have “positive multiplicity” ([6]).

We conclude this section with an explicit example which illustrates the above proof.
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Example 3.12 (Computing the orthogonal multiplicity of a polynomial over [F;.)
Consider the polynomial g = 2* + 22° + 2 = z(z + 1)? over F;. Then degg = 3 and
+3(341) > 3. So the above theorem does not apply. However, we can use the methods
of the theorem to calculate the orthogonal multiplicity of g. We need to compute the
trivariate polynomial h associated with ¢ and calculate the size of its zero set. Now
h = hyhshs where h; € F [X,..., X;] is given by

X, X, X,
, h3 = X2 X3 2X2 + X3
X, 2X,+ X5 2X, 42X,

X1 Xy

Multiplying out and simplifying we see that
h=X (X, X5 — XJ) (X1 Xo X5+ X, X3 — X, X, + X3 — XoX3 — X5 X5 — X3).
Letting the zero sets of h; be denoted V; it is easily seen that

‘/1 = {(Ovavb)|a7b€]F3}
Vo, = {(0,0,a),(a,0,0),(1,b,1),(2,b,2) | a,b € F3, b # 0}

Thus the cardinality of V; U V5, is 15. It only remains to check which of the 12 points
that do not lie on V; UV; lie on V3. It may be checked by hand that exactly 6 of these
points lie on V3 (the points (1,0,1),(1,1,0),(1,2,2),(2,0,2),(2,1,1),(2,2,0)). Hence
the orthogonal multiplicity of g, which is just the cardinality of the complement of
the zero set of h, is 27 — (15 4+ 6) = 6. Observe that applying Proposition 3.9 to this
polynomial, we see that its multiplicity must be not more than 12. We will return to
this polynomial in Example 4.10 at the end of Chapter 4.

3.3.2 Results for the Binary Field

All results prior to those in this thesis for polynomials over the binary field depend
upon a simple characterisation of binary Laurent series s with partial quotients all of
degree 1 first obtained by Baum and Sweet. In [5] they observe that if s = )°,., s;27" =

[0;a1,as,...] is an irrational Laurent series over F, then dega; = 1(5 > 1) if and
only if
S1 = 1
Si+ So;+ S9501 = 0 fori>1. (3.1)

We do not prove this here, as it will follow as a corollary of a more general investigation
in Chapter 6 (see Example 6.20). Baum and Sweet then observe ([4, page 577]) that
if s = f/g =35 siz”* where degg = n then K(s) =1 and ged (f,g) = 1 if and only
if

S1 = 1

Si+ S+ S = 0 forl1<i<n-—1. (3.2)

This observation is not difficult to prove, given the characterisation of irrational Lau-
rent series with partial quotients all of degree 1 mentioned above. For suppose that
f/g satisfies recurrences (3.2). Let the irrational Laurent series ¢ = Y, t;z~" be
given by -

ti = s forl1<i<2n-—1
tQi =  S9; for 2¢ Z 2n
t2i+1 = tzi + t, for 2 +1 Z 2n + 1.
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Then all of the partial quotients of #, excluding the Oth, have degree 1, since ¢ satisfies
recurrences (3.1). Now

|(f/g) —t] <27,

and thus by Result 2.27 in Chapter 2, we have that f/g is a convergent to ¢ and so
K(f/g) = 1. Conversely, suppose that K(f/g) = 1 with f/g = [0;a1,a2,...,a,].

Letting t = [0;ay,as,...,a,,2,x,...] we see that the coefficients in the Laurent series
expansion of ¢ satisfy recurrence (3.1), as all the partial quotients of ¢ have degree
1. Since |t — (f/g)] = 27®"*Y we have that the coefficients in the Laurent series

expansion of f/g must satisfy recurrence (3.2), as we wished to show.

Thus for the binary field, the difficult non-linear problem we confronted in the last
section miraculously collapses down to a tractable linear one. An application of linear
algebra now allows one to make great progress in tackling the pertinent questions. In
particular, we have

Result 3.13 [6, Proposition 2] Let g € Iy [z] with degg > 1. Then the orthogonal
multiplicity of g is either 0 or 2% where k is the number of distinct non-linear irreducible
factors of g.

Result 3.14 [28] A non-linear irreducible polynomial over F, has orthogonal multi-
plicity 2.

Recall that the average value for m(g) over all polynomials of degree n in [y [z] is
1. Since there certainly exist irreducible polynomials of each degree, by Result 3.14
we immediately see that for each degree greater than 1 there must be polynomials of
orthogonal multiplicity zero.

We outline the proof of the first of these results for the case z does not divide g;
a full proof can be found in [6]. We also give the proof of a modest generalisation of
the second. Once again, we follow the elegant approach taken by Blackburn.

We begin by stating a result due to Blackburn which generalises the well-known

trace representation of “M-sequences”. A proof of this result can be found in [6, page
103].

Result 3.15 [6, Proposition 1] Let g € F[z] be a non-zero polynomial of degree n.
Define R, = F,[z]/gF,[z]. Let # : R, — F, be a non-degenerate linear functional.
(That is to say, ™ is non-trivial on all non-zero ideals of R,, and so the map (x,y) —
m(zy) is a non-degenerate symmetric bilinear form on R,.) Let S = {s;};>1 be a
sequence of elements of F,. Then S has characteristic polynomial g if and only if
there exists r € Ry such that

s; = w(rz"™ ) fori> 1.
Moreover, the element v is unique.

Let g € F,[z] with degg = n, and m be a non-degenerate linear functional on R,.
Suppose that there exists an r € R, such that

w(rz®) = 1

a(r(z™ ' + 2% 1 +2%) = 0 for1<i<n-—1 (3.3)

Then the sequence S = {s;};,>1 given by s; = w(rz*~') will have characteristic poly-
nomial g and satisfy condition (3.2). Hence for f/g := >, sz~ we will have that
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K(f/g) = 1 and ged (f,g) = 1. Conversely, if ged (f,g) = 1 and K(f/g) = 1, then
if we write f/g = 3,5, s;z~" we shall find that the unique element r € R, such
that s; = w(rz’=") (i > 1) satisfies conditions (3.3). Thus the orthogonal multiplicity
of g is the number of r € R, such that r satisfies conditions (3.3). By “duality”,
such an r exists provided z° does not lie in the subspace of R, generated by the set
{71 + 2% + 2% |1 < i < n—1}. This can be checked efficiently for any g, as we
shall explain in Section 7.2.1 of Chapter 7. In the case that x does not divide g, we
can transform this condition into an alternative simpler condition which we use to
prove this case of Result 3.13.
So suppose now that x does not divide g. Then z is invertible in the ring R, and
so given any r € R, we may write r = mxz where m € R,. This may be done in a
unique way. Thus the orthogonal multiplicity of g is the number of elements m € R,
such that
w(mz) = 1

wlm(z + 2% +52)) = 0 forl1<i<n-—1. (3-4)

So the orthogonal multiplicity of g is positive provided x does not lie in the subspace
generated by the set {z' + %' + 22! |1 <4 < n — 1}. We reformulate this condition
by considering a particular linear transformation on R,.

Define the linear map T : R, — R, by

h v h+ (1+z)h*.
Note that T'(1) = z and T'(z') = z' + z*" + z*"*. Let
V={z"+z"+ 2" 0<i<n—1}.
So V' is the image of R, under 7. Hence

dimV = dimR, —dimkerT

= n —dimkerT.
If we let
W={z'+z"+*"|1<i<n-1}
then we see that W is the image under T of the subspace U generated by z, 22, ..., "}
Thus
dimW = dimU — dimker Ty
= (n—1)—dim(kerTNU).
Let
W+ ={eeR,|r(ew) =0 for all w € W},
and

Vi ={e€R,|n(ev) =0 for all v € V},

denote the orthogonal complements of W and V' with respect to the non-degenerate
symmetric bilinear form given by 7. An element m € R, will satisfy conditions (3.4)
if and only if m € W+ but m & V*+. Since W C V we have that V1 C W+, Thus the
orthogonal multiplicity of g is the cardinality of W+ — V+. Now

dimW* = n—((n—1)—dim(ker T NU))
= 1+dim(kerTNU),
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and
dimV+t = n—(n—dimkerT)
= dimkerT.

So dimW+ — dimV* = 1 — (dimker T — dim (ker T N U)). Therefore if ker T ¢ U
then W+ = V+ and the orthogonal multiplicity of g is zero. If ker T C U then the
cardinality of WL _ VL is 21+dim (ker TNU) _2dim ker T _ 21+dim kerT_2dim ker T _ 2dim kerT.

We have shown

Proposition 3.16 Let g € I, [z] with g not divisible by z. Let R, and T be as in
the preceding discussion. Then g has positive orthogonal multiplicity if and only if
kerT' C U. In this case, the orthogonal multiplicity of g is the cardinality of ker T

We may now prove Result 3.13 for the case z does not divide g.

Proof: Suppose that g € If,[z] with g not divisible by z. From Proposition 3.16,
we know that the orthogonal multiplicity of ¢ is either 0 or 2dmker? Tt therefore
remains to show that the dimkerT" is the number of non-linear irreducible factors of
g.

Let g = (. + 1) [locicps1 9§ Where g; (2 < i <k + 1) are non-linear irreducible
binary polynomials. Then from the Chinese Remainder Theorem for polynomials ([2,
page 136]) we see that

R, = @fingf"

where g; =  + 1. Here “=” denotes an isomorphism of rings. Thus we may write
ker T = @ ker Ty ., ,
where TRg?i denotes the map from Ryei to Rye: given by

h s h*(1 4+ ) + h. (3.5)

On Ryer = R(y41)- this map is injective, as we now show: It is easily seen that the
only divisors of zero in R(,11)e: are the non-zero elements of the form z(z + 1)* where
1<i<e —1and z € Rq1)a:. Also, since 1+ is a divisor of zero there are no A in
R 41)er with h(1 +2)+1 = 0. So the only possible elements of the kernel of the map
(3.5) on R(;11)-1 are h = 0, and those elements h such that h # 0 and h(1+z)+1 #0
but A(h(1+2)+1) =0. Thus an h # 0 is in the kernel of this map only if both A and
h(1+z) + 1 are zero divisors. But in this case 1 4+ z divides both h and h(1 + z) + 1,
which clearly cannot happen. Thus ker T, ., = {0}.

Finally, we observe that dimker TRggi =1 for 2 <1 < k+ 1: following similar
arguments to those in the preceding parégraph, it is easily seen that the kernel of the
map TRgei consists of the elements 0 and (1 + z)~'. The latter element existing since
ged (1 —i—lx,gi) =1for 2 <i<k+ 1. Thus dimkerT = k, as required.

O

We may now prove that the orthogonal multiplicity of a non-linear irreducible
binary polynomial is 2. In fact, we prove a slight generalisation of this result

Proposition 3.17 The orthogonal multiplicity of a power of a non-linear irreducible
binary polynomial is 2.
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Proof: Let g = r® where r is a non-linear irreducible polynomial over [F,. Thus z
does not divide g, and so Proposition 3.16 applies. The kernel of the map T : R, —
R,: is the set of all h € R, such that

h*(1+4z)+h=0. (3.6)

One may argue as in the proof of Result 3.13 that there are no solutions to equation
(3.6) which arise from zero divisors. Hence the kernel of T' consists solely of the
elements 0 and (1+2)~!, this latter element existing since ged (1 4 2, g) = 1. We need
to show that both of these elements lie in U. Certainly 0 € U. Writing g = Y_i-, g:2",

we see that L
(1+az) =) (Zgl> z*

k=1 i=1
This may be verified by multiplying both sides of the equation by 1+ z and using the
fact that go = 1. Thus (1 + )~ ! € U. Hence the orthogonal multiplicity of g = r’ is
the cardinality of ker T" which is 2.
O

This proof demonstrates the techniques used by Blackburn to obtain results over
the binary field. We shall return to this in Chapter 7 in which we discuss efficient
algorithms for computing the orthogonal multiplicity of a binary polynomial.

Finally, Blackburn also proves the following result. We give a simpler and more
revealing proof of this result in Chapter 4 (Corollary 4.8).

Result 3.18 Let g € Fy[z]. Then g has orthogonal multiplicity 1 if and only if g =
™ (z + 1) where (™ "™) = 0 mod 2.

We finish with an example which illustrates the methods we have employed in this
section.

Example 3.19 In this example, we show how one may compute by hand the orthog-
onal multiplicity of a binary polynomial, provided the factorisation is known. Note
that we present a more practical method for doing this in Example 7.2 of Chapter
7, and this example is intended only to illustrate some of the ideas we have used.
Consider the polynomial

g = (+1)(?+z+1)°@*+2+1)
= B+ +rt 241,

Adopting the above notation, we must compute the kernel of the map 7" on R,. Now
R, = ®;_ R,

where ¢gi* = (z +1),¢52 = (2> + z + 1)? and ¢5* = (2* + 2% + 1). From the proof of
Result 3.13 we see that the kernel of this map is the vector space spanned by the set

{(0,a,0),(0,0,b)} C &%, Ry,

where a is the inverse of (14-2) in R,24,11)2, and b is the inverse of (1+x) in Rys4,24 .
Using the Euclidean Algorithm, we find that a = z® + z® and b = z°>. We now must
write the elements (0,a,0) and (0,0,b) of ®}_, R = in terms of the basis 1, 7,27, ... ,x’
of R,. This may be done using the Chinese Remainder Theorem, and we have

0,a,0) = 2°+2°+2'+2
0,0,0) = 2" +25+zx+1
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Thus kerT' is not contained in the subspace U of R, generated by z,z?,...,z", and

Proposition 3.16 tells us that the orthogonal multiplicity of g = 28 +a2° +2* + 23 +x+1
is zero. We shall return to this example at the end of Section 7.2.1 in Chapter 7.

3.4 Motivation

Mathematicians working in this area appear to have approached it from one or more
of the following three directions.

e The study of the Euclidean Algorithm for polynomials.
e The study of the linear complexity profiles of sequences over finite fields.

e The study of the statistical properties of a specific pseudorandom number gen-
erator.

We discuss all three in the following sections.

3.4.1 The Euclidean Algorithm for Polynomials

The work of Mesirov and Sweet ([28]) on the continued fraction expansions of rational
functions over the binary field is presented in terms of the Euclidean Algorithm. This
connection is undoubtedly the most transparent of the three. We discuss how this
relates to computing inverses in polynomial rings.

Recall that one may use the “Extended Euclidean Algorithm” to compute the in-
verse of a polynomial f modulo a coprime polynomial g. Let f/g = [ag; a1, a2, ..., a,,]
and fi/gr denote the kth convergent to f/g. We may assume that deg f < deg g since
we are thinking of f as an element of ', [z]/gF ,[z]. We know that f,,¢m 1 — fm—19m =
(=1)™t. Now f/g = fm/gm and so f = lf,, and g = lg,, for some | € F,”. Hence
™ gm-1) = (=)™ " mod g. Thus

1 [71g,,—1 mod g if m is odd,
J o modyg = { —17'¢,,_1 mod g if m is even.
Once we have computed the continued fraction expansion of f/g, which takes m poly-
nomial divisions, we can recover g,, ; and hence f~' mod g using recurrences (2.14)
which involves m polynomial multiplications. We shall call this the EEA-method
for computing inverses in polynomial factor rings. Thus the EEA-method for com-
puting the inverse of f modulo g, where ged (f,g9) = 1 and f/g = [0;a1,a2,...,ay],
takes m polynomial divisions and m multiplications. Now m < degg = n and thus
m is maximal when f/g has n partial quotients (excluding the Oth one), which forces
K(f/g) = 1. Thus our first question (following Definition 3.8) can be rephrased as

For any polynomial g of degree n can we find an element in F,[z]/gF,[z]
for which it takes n polynomial divisions and n multiplications to compute
its inverse using the EEA-method?

This question is of particular interest when g is irreducible and [, is a prime
field. In this case we are working in F,[z]/gF,[z] = F,, where ¢ = p". Here the
question relates to the worst case running time of the EEA-method for computing
inverses in a non-prime field using polynomial arithmetic over the underlying prime
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field. Thus Result 3.14 tells us that for any non-prime finite field Fy» of characteristic
2, we can find exactly two elements whose inversion takes as long as theoretically
possible using the EEA-method. It should be mentioned, however, that there are
faster algorithms for computing inverses in such polynomial rings and finite fields,
and so these observations are only of theoretical interest ([2, page 150]).

3.4.2 The Linear Complexity Profiles of Sequences

We have already discussed in some detail in Section 2.4 of Chapter 2 the relation
between linear complexity and continued fractions. To express concisely how the
notion of orthogonal multiplicity fits into this picture we need one last definition.

Definition 3.20 [16, page 101] Let S = {s;}i>1 be an eventually periodic sequence
whose minimal polynomial has degree n, and which has jumps sequence

111...11.
—_—

n

We say that S has a perfect staircase profile.

The notion of a perfect staircase profile is closely related to that of a perfect
linear complexity profile. We say that a sequence has a perfect linear complexity
profile if its generating function is irrational and has partial quotients all of degree 1
(excluding the Oth, which is just 0).

Result 2.38 tells us that S has a perfect staircase profile if and only if K(s) = 1.
In this context, our first question (following Definition 3.8) can be paraphrased as

Is any polynomial the minimal polynomial of a sequence with a perfect
staircase profile?

3.4.3 Pseudorandom Number Generation

Niederreiter’s interest in continued fractions with partial quotients of small degree
appears to have arisen from a connection with a pseudorandom number generator
proposed by Tausworthe. In this section, we briefly discuss this connection, closely
following Niederreiter’s own exposition on this topic in [30, Page 270].

Let p be a prime and let yg, y1, ys, - . . be a sequence of integers in the least residue
system modp generated by the recursion

Yntk = Qg—1Yntk—1 + ... + aoy, mod p for n >0,

where ag,...,a;_; are fixed integer coefficients, with ag #Z 0 mod p and the initial
values Yo, - - ., Yr_1 are not all 0. Then pseudorandom numbers simulating the interval
[0,1] are defined by

k
Tn =Y Yrnsso1p? € 0,1] for n > 0.

j=1

An important role in the theoretical analysis of these pseudorandom numbers is played
by the characteristic polynomial

flx) =" —ap_12"' — ... —ay,
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of the recursion, which is viewed as a polynomial over the finite field [F, with p el-
ements. Define L(f) = K(f/z*). Niederreiter shows that a connection with L(f)
arises when one considers the statistical independence of the pairs z,, and z,; of con-
secutive random numbers. In particular, the polynomial f should be chosen so that
L(f) is small. We refer the reader to [30] for further information on this connection
as we shall not pursue it in this thesis.
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Chapter 4

Polynomials with Odd
Orthogonal Multiplicity

4.1 Introduction

We begin by recalling the definitions and notation we shall need in this chapter. If f
and g are polynomials over a finite field FF, with ged (f,¢9) = 1 and degg > 1, then
the rational function f/g has a unique continued fraction expansion

ap+1/(a; +1/(az + ...+ 1/ay))

where a; € Flz] for 0 < j < m and dega; > 1 for 1 < j < m. We write the above
continued fraction as [ag;ay,as,...,a, | and define

AN
K (5) = 1%%); dega;.

For a monic g € F [z] with degg = n > 1, we denote by m(g) the number of
f € F,[x] with deg f < n, such that ged (f,g) = 1 and K(f/g) = 1. So m(g) is the
cardinality of the set

M, :={f/g € F(x)|degf <n,ged(f,g) =1, and K(f/g) =1}

We call m(g) the orthogonal multiplicity of g, or when there is no possibility of con-
fusion, simply the multiplicity of g.

We will be concerned primarily with polynomials over finite fields which have
positive orthogonal multiplicity; as we observed in the preceding chapter, they arise in
stream cipher theory, a sub-discipline of cryptography, as the minimal polynomials of
sequences over finite fields with perfect staircase profiles. More recently, Blackburn,
and Cattell and Muzio have applied such polynomials to cellular automata theory
([7, 9]).

For a given finite field I, it is of interest to ask exactly which polynomials over
F, have positive orthogonal multiplicity, and what can be said about their multi-
plicities. Some results in this direction, and in related areas ([30, 32]), have already
been established, as we described in some detail in Chapter 3. In [6] Blackburn
shows that if ¢ € Fj[z] with degg = n, then g has positive multiplicity provided
in(n+1) < q. Blackburn conjectures that if ¢ # 2 then every polynomial over I, has
positive multiplicity. The situation over [y, is somewhat different; in particular, there
exist polynomials over I, with multiplicity zero. However, Mesirov and Sweet ([28])
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prove that all non-linear irreducible polynomials over [F, have multiplicity 2, and one
may further show ([6, 28]) that if a polynomial g over [f, has positive multiplicity then
it has multiplicity 2¥, where k is the number of distinct non-linear irreducible factors
of g.

In Section 4.3 of this chapter we characterize polynomials which have odd orthog-
onal multiplicity and give a lower bound on the multiplicity of such polynomials. This
bound is used in Section 4.4 to prove that if the characteristic of I, is 2 and ¢ # 2,
then a polynomial over [, has multiplicity ¢ — 1 if and only if it has degree 1; and
an alternative characterization to that in Blackburn’s paper ([6]) is given in Section
4.4 of polynomials over F, of multiplicity 1. Section 4.4 also contains a proof of the
following result: if g € I, [z] splits into linear factors then there exists f € I, [z] with
ged (f,g) = 1 such that K(f/g) < 2. This establishes a special case of a conjecture
made by Mesirov and Sweet ([28]). Section 4.5 contains a discussion of odd character-
istic fields, as well as three examples. All of these results depend upon lemmas which
are contained in Section 4.2.

4.2 Preliminaries

If f/g9 = [0;5a1,as,...,a,]| where f and g are polynomials over [, and degg > 1,
then kf/g = [0;kay, kay, ..., kY a,,] for any k € F,". Hence if f/g € M, then
kf/g € M, for any k € F,”, and so the orthogonal multiplicity of a polynomial over a
field IF, is a multiple of |F,”| = ¢— 1. Since we are interested in this chapter mainly in
polynomials with odd multiplicity, we shall primarily be concerned with finite fields
of characteristic 2. Throughout this section and Sections 4.2.2, 4.3 and 4.4, F, will be
a finite field of characteristic 2.

4.2.1 Continued Fractions

Let f/g be a rational function over the field I, with ged (f,g) = 1 and f/g =
[ao;ai,as,...,a,]. Recall that the rational functions f;/g; (0 < j < m) defined
by

f-1=1, fo=ao, fi=a;jfj-1+ fj—2,for 1 <5< m,

. 4.1
9g-1=0,90=1, gj=a;g;1+gj_o,forl<j<m. (4.1)

are called the convergents of f/g, and the polynomials a; the partial quotients of f/g.

It is easily shown that f;/g; = [ao;ai,...,a;]. One may write the above recurrences
conveniently for 1 < 5 <m as

(o by (v )= (5 0,
(5 o) (3 o) (7 o)=(0 i) (42

Following [35], we write

and so

(fj fie

by gj1> < [ag;ai,as,...,a;],

to indicate the correspondence between continued fractions and matrices of a partic-
ular form.
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The above approach allows one to prove simple continued fraction identities with
great ease. For example, taking the determinant of both sides of (4.2) gives us the
identity f;g;—1 — g;f;i-1 = (—1)7*" (Result 2.15 Part 2), or, as we are working in
characteristic 2, f;g;—1 + ¢;fj—1 = 1. This implies that ged (f;,9;) = 1 and so the
convergents are in reduced form.

The following lemma is central to the methods in this chapter.

Lemma 4.1 Let charF, =2 and a € F[z]. For 0 < j <m, let f;/g; denote the jth

convergent of the continued fraction [0;ay,as, ..., 6y ]. S0 fr/gm =[0;a1,a2,...,a,].
Then
1. gm—l/gm = [O;Gmaam—la"' 7a1]-

2' (fmgm + ]-)/gr2n = [0;a17a27"' y Am—1, Qm + ]-7am + 17am717"' 7a27a1]'
3' (afmgm + ]_)/(Zg?n = [0;a17a27"' y Am—1,Qmy Ay Gy Q1,4+ - - 7a27a1]-

The lemma may be deduced from results proved by Niederreiter in [30]; however,
we give a simple proof which follows the approach taken by van der Poorten and
Shallit in [35].

Proof: 'To prove Part 1, take the transpose of each side of (4.2). Putting ay =0
and post-multiplying each side of the resulting identity by <(1) (1)> gives us

(o) o) (V)= ) e

Setting 7 = m we get gnm/9m-1 = [@m;Gm-1,Gm_2,...,01], and so

gmfl/gm = [O;vaamfh ceey Q1 ]
We prove Part 2 by considering the matrix product

0 1 ap 1 Om—1 1 anm+1 1 anm+1 1 ap 1
1 0 1 0/ 1 0 1 0 1 0)°""\1 0
& [0;a17a27"'7am717am+17am+17am717"'7a27a1]-

Multiplying the first m and the last m — 1 matrices together using identities (4.2) and
(4.3), with j = m — 1, gives us

(s sy (o ) (0 ).

We multiply these matrices using the fact that f,, 19m 2+ gm_1fm_2 =1 to get

(fmgm +1 fa )
9o, fmgm +1)"

and 8o (frgm +1)/92, =[0;a1,a2, ... 0m 1,0m + 1,00 + 1,0, 1,...,a02,a1].
The steps in the proof of Part 3 are outlined below; in this case the identity
fmGm-1+ gmfm—1 =1 is used.

(o) (3 o) (T o) (T o) (T o) (T 0)
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= G ) )= ()

S [05a1,09, ...y Gty QG Gy Gy Q1+ -+ 5 G, Gy |

O

Now, to facilitate the exposition, we introduce some new definitions and notation.
Let w = aaz...a, be a word over the alphabet {a € F,[z]| dega > 1}. We let
W= w and w = Gy --.a; and write [w] to mean [0;a;,az,..., G, ] If w=1w
then we call [w] a symmetric continued fraction. Define the mapping ¢ on the set
of all words by ¢: ajas...a,, — aias...an_1(a, +1). Since charF, = 2, the map ¢
is an involution.

Let g be a monic polynomial and suppose that [w] € M,, so each letter in the
word w is a polynomial of degree 1. It is easily seen, by considering the recurrence
relations (4.1) that generate the convergents of [w], that m = degg. The following
observation will be of use in the proof of Theorem 4.5.

Observation 4.2 If [w] € M, is a symmetric continued fraction and degg is even
then w =v v for some word v, and if deg g is odd then w =v a v for some word v
and polynomial a of degree 1.

We restate the results in Lemma 4.1 which are of greatest relevance to us in the
following way.

Lemma 4.3 Let F, be a finite field of characteristic 2.
1. If g is a monic polynomial and [’L_>U] € M,, then [E] € M,.

2. (i) If g is a monic polynomial and [17)1;] € M,, then g = h* for some monic

—
polynomial h and [$(w) ] € M.
N —
(ii) If h is a monic polynomial, [w] € My, and g = h?, then [ p(w) p(w) ] € M,.

3. (i) If g is a monic polynomial and [17)) a t<_u] € M, with a = kb, b a monic
polynomial of degree 1 and k € FZ, then g = bh? for some monic polynomial
h and [w] € M,,.

(ii) If h is a monic polynomial, [17))] € M,, and g = bh*> where b is a monic
polynomial of degree 1, then [17) a 1;] € M, for any a = kb where k € IF;

Proof: The lemma is essentially a rewording of the special case of Lemma 4.1 in
which all the partial quotients a; (1 < j < m) of f/g and the polynomial a are of
degree 1. We prove Part 3; the other parts are proved in a similar way.

3(i) Let [w a w] € M, where a = kb with b a monic polynomial of degree 1 and
k € F,. Then there exists f € F [z] with f/g = (W a w]. If we write w = a,as . . .
where dega; = 1(1 < j < m), and let r,,/s,, denote the m'" convergent of the
continued fraction [w], then by Lemma 4.1 Part 3, (armsm + 1)/as?, = [0 a w].
Hence (ary sy, + 1)/as?, = f/g. Let as?, = [bh* where h is monic and [ € F,. Then
Y (armsm—+1)/bh* = f/g with ged (" (ary, s, + 1), bh?) = ged (ary, s, + 1,a8%,) = 1.
Since ged (f,9) = 1 and both bh* and g are monic, we have that g = bh?. Finally,
[w] € M), since VEI="r,,/h = [w] and each letter in the word w is a polynomial of
degree 1.
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3(ii) Let [w] € M,, where h is monic, and let g = bh? where b is monic of degree 1.
Let a = kb for some k € . If we write w = @05 . .. a,, where dega; = 1(1 < j <m),

and let r,,/s, denote the m'™ convergent of the continued fraction [B], then by
Lemma 4.1 Part 3, (armsm + 1)/as?, = [0 a w]. Now s, = lh for some [ € I, and
so as?, = kI*bh?*. Thus k'l ?(ar,s, + 1)/bh* = (ar,s, + 1)/as?, and, moreover,
ged (K772 (ar, sm + 1), bh2) = ged (arsm + 1,as2) = 1. Since g = bh? and all the
letters in the word w a w are polynomials of degree 1, we have that [w a w] € M,.

a

4.2.2 Folded Polynomials

We define the set of all folded polynomials in [F,[z] recursively as follows.
1. If r is a monic polynomial of degree 1 then r is folded.

2. If r is folded then r? and ar® are folded, where a is a monic polynomial of degree
1.

The motivation for this definition comes from [35] in which a class of contin-
ued fractions dubbed “folded continued fractions” is studied by van der Poorten and
Shallit; the denominators of certain types of “folded continued fractions” are folded
polynomials, as we define them.

It is easily seen that folded polynomials are monic and split into linear factors. In
fact, it is a simple matter to classify which polynomials of this form are folded. (We
write n = (qpa1asy .. .), to indicate that n =Y ,5, ;2 where a; =0 or 1 for 7 > 0.)

Proposition 4.4 Let g € F [z], char[F, = 2, with g = ai*'ay”...a™ where a; is
monic of degree 1 and m; = (oo ...)y for 1 < j < k. Then g is folded if and only
if al'ad> =0 for all 1 < j; # jy <k and i > 0.

Proof: For the sake of clarity we only consider the case ¢ = 2; the general case is
proved in an analogous fashion.

Let g be a folded polynomial over F,. Then g splits into linear factors and we
may write g = 2™ (z 4+ 1) where m; = (qy s ...)y and my = (Bof152 .. .)2. If
degg = 1 then o;0; = 0 for ¢+ > 0. Let degg > 1. Observe that since g is folded
at most one of m; and my can be odd. Firstly, suppose that m,; and ms, are even,
so g = By = 0. Then g = h*> where h = z'*(x + 1) is a folded polynomial with
I = (i ...)s and Iy = (5105 ...)s. We may assume by induction that «;3; = 0 for
1 > 1. Hence o;0; = 0 for ¢ > 0. Suppose now that m,; is odd and m, is even, so
ap =1 and By = 0. Then g = zh? where h = 21 (z + 1)"2 is a folded polynomial with
I, = (pay...)y and Iy = (B0 ...)2. Once again, we may assume by induction that
a;0; =0 for 4 > 1. So a;0; = 0 for 4 > 0, as required. The remaining case, m, even
and m,; odd, follows in the same way.

Conversely, let a;0; = 0 for ¢+ > 0. If degg = 1 then g is folded. Let degg > 1.
We have that ayy = 0 and so there are three possibilities for the pair «y, Gy: either
ap=L=0;ap=1and By =0;0or oy =0 and B, = 1. If oy = By = 0 then g = h? for
some polynomial h. Now h = z'*(z + 1)!2 where I} = (s ...)s and I, = (315> .. .).
Since «;3; = 0 for 1 > 1 we may assume by induction that h is folded. Hence g is
folded. The remaining two cases are proved in a similar way.

O
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4.3 Theorems

The main theorem of this chapter reveals the intimate connection between polynomials
with certain orthogonal multiplicities and the folded polynomials we have described.

Theorem 4.5 Let F, be a finite field of characteristic 2 and let g be a monic polyno-
mial over ;. Then g has odd orthogonal multiplicity if and only if g is folded.

Proof: Let g be a monic polynomial. We first prove that if g has odd multiplicity
then ¢ is folded. To be more precise, we show that if ¢ has odd multiplicity and
degg > 1 then g = ah® where a = 1 or a is monic of degree 1, and where h is monic
and has odd multiplicity. The result then follows by induction from the fact that all
monic polynomials of degree 1 are folded.

Let g have odd multiplicity with degg > 1. Let 8 denote the map that acts on
the set {r/s € F,(z)| degr < degs} and sends the continued fraction [w] to the
continued fraction [w]. Then the set M, is invariant under § by Lemma 4.3 Part 1,
and 6 is an involution. Since #(M,) is odd, there must exist an element of M, which
is fixed by 6. The involution 6 fixes a continued fraction if and only if it is symmetric.
So there exists a symmetric continued fraction [v] in M,. There are two cases to
consider.

Firstly, suppose that degg is odd. Then by Observation 4.2, v = w a w for some
word w and polynomial a of degree 1, and we have that [t_f) a E] € M,. Let a = kb
where k € ]F; and b is monic. Then by Lemma 4.3 Part 3(i), g = bh*® where h is

monic and [t_f)] € M;,. We need to show that h has odd multiplicity. Suppose then
that m(h) is even. Let U = {[w ¢ w]|[w] € My, ¢ = Ib, ] € F,}. Since every
continued fraction in U is symmetric, U is invariant under the involution 6, and by
Lemma 4.3 Part 3(ii), we have that U C M,. Hence M, — U is invariant under 6.
Now #(U) = (¢ — 1)#(M},) = (¢ — 1)m(h), an even number. Therefore #(M, —U) is
odd, and so there must be a symmetric continued fraction [¢ d ©] in M, — U where
u is a word and d is a polynomial of degree 1. Now [Z] € M, for some unique monic
r, and d = le where e is monic and [ € IF; By Lemma 4.3 Part 3(i), g = er?, and
so er? = bh?. If e # b then e would occur as a factor an odd number of times on
the left-hand side of this equation and an even number of times on the right-hand
side. Therefore e = b and so r = h, since char[F, = 2. But then [4] € My, and so
[ du]eU. This is a contradiction and so m(h) must be odd.

Suppose now that deg g is even. Then by Observation 4.2, v = ww for some word

—
w, and so [wWw] € M,. Let h be the unique monic polynomial such that [ ¢p(w)] € M,,.
Then by Lemma 4.3 Part 2(i), we have that ¢ = h*. We argue by contradiction to

—
prove that m(h) is odd. Suppose m(h) is even. Let U = {[p(w) p(w)]|[w] € My}.
Then by Lemma 4.3 Part 2(ii), U C M, and we further have that M, — U is invariant
under the involution . Now #(U) = #(M,,) is even and so #(M, — U) is odd, and
there must be a symmetric continued fraction, [17> Z] say, in M, —U. Letting r be the

—
unique monic polynomial such that [¢(u)] € M,, we find by Lemma 2 Part 2(ii) that
—
r? = g = h? and so r = h, as charF, = 2. Hence [¢(u)] € M} and so, since ¢ is an
involution, [ © ] € U, which is a contradiction. Therefore m(h) is odd.
We now show by induction on degg that if g is a folded polynomial then the
multiplicity of g is odd. Let g be a folded polynomial. If degg = 1 then K(k/g) =1
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for all k£ € ]F; and so g has multiplicity ¢ — 1. Let degg > 1. We must consider two
cases.

Firstly, suppose deg g is odd. Then g = bh®> where h is folded and b is monic of
degree 1. We may assume by induction that m(h) is odd. We argue by contradiction
to prove that m(g) is odd. Suppose that m(g) is even. Let U = {[w ¢ w]|[w] €
My, ¢ =1b,l € F,}. Then U C M, by Lemma 4.3 Part 3(ii), and M, — U is invariant
under the involution 6. Now #(U) = (¢ — 1)#(M}) = (¢ — 1)m(h), an odd number,
and so #(M, — U) is also odd. Therefore M, — U contains a symmetric continued
fraction [Z d Z] where u is a word and d is a polynomial of degree 1. If we let r be
the unique monic polynomial such that [1_2] € M,, and let d = le where e is monic
and [ € F;, we have that er? = bh?. As before, we conclude that r = h and so

[4 dw] €U, which is a contradiction. Therefore m(g) is odd.

Suppose now that degg is even. Then g = h? where h is folded. We may assume
— N

by induction that m(h) is odd. Suppose that m(g) is even. Let U = {[¢(w) d(w) ]| [w
| € My}. Once again, U C M, by Lemma 4.3 Part 2(ii), and #(U) = #(M,,) is odd.

So #(M,—U) is odd and M, — U must contain a symmetric continued fraction [« u ].
—

If we let r be the unique monic polynomial such that [¢(u)] € M,., then r* = g = h?
and so r = h. We then have that [u u] € U, which is a contradiction. So m(g) is
odd. This completes the proof.
O
As we observed in the remarks preceding Proposition 3.9 in Section 3.3, the ex-
pected value for the orthogonal multiplicity of a polynomial of degree n over F, is
(¢ — 1)™. Proposition 3.9 also tells us that the orthogonal multiplicity of such a poly-
nomial is no greater than (¢ — 1)["/?1¢l"/2], There are, however, no known non-trivial
lower bounds on the multiplicity of an arbitrary polynomial. Theorem 4.6 gives us a
lower bound on the multiplicity of a folded polynomial.

Theorem 4.6 Let g € F, [z], charF, = 2, be a folded polynomial of degree n. Let
wt(n), denote the weight of the binary representation of n. Then m(g) > (q¢—1)vt™=.

Proof: We prove by induction on deg g that if ¢ is folded then m/(g) > (g—1)w* ")z,
where n = deg g and wt(n), denotes the weight of the binary representation of n. Let
g € F,[z], charF, = 2, be a folded polynomial. If degg = 1 then K(k/g) =1 for all
k € F, and so m(g) = (¢ — 1) = (¢ — 1)**™2. So let degg > 1.

Suppose that degg = n is even. Then g = h*® where h is folded of degree n/2.
We may assume by induction that m(h) > (¢ — 1)**"/?2. From the proof of the
even case of the second part of Theorem 4.5, it is clear that m(g) > m(h). Now
wt(n), = wt(n/2), and so we have that m(g) > m(h) > (g — 1)/ = (g — 1)wtM)e2,

Suppose now that degg = n is odd. Then g = bh? where h is folded of degree
(n—1)/2 and b is a monic polynomial of degree 1. We may assume by induction that
m(h) > (g — 1)*U=1/22 = (¢ — 1)»H")2=1 Define the set U as in the odd case of
the second part of Theorem 4.5. Then m(g) = #(M,) > #({U) = (¢ — 1)#(M,) =
(g — 1)m(h). Since m(h) > (g —1)**™="1 we have m(g) > (¢ — 1)m(h) > (g — 1)*4™>
as required.

O
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4.4 Further Results

As we have mentioned before, the orthogonal multiplicity of a polynomial over a finite
field F, is a multiple of ¢ — 1 and so a polynomial over F, with positive multiplicity
must have multiplicity at least ¢— 1. If a polynomial g over I, has multiplicity exactly
q — 1 then this means that there exists a unique monic f, of degree less than that
of g and coprime to g, such that K(f/g) = 1. Theorem 4.6 has as a corollary a
classification of all polynomials with multiplicity ¢ — 1 over finite fields of even order

q# 2.

Corollary 4.7 Let g be a monic polynomial in F, [x], charF, = 2, with ¢ # 2. Then
m(g) = q— 1 if and only if g has degree 1.

Proof: 1f g is a monic polynomial of degree 1 then K(k/g) =1 for all k € IF; and
so m(g) = g — 1. Conversely, let g € F,[z], charF, = 2, have multiplicity ¢ — 1. By
Theorem 4.5, g is a folded polynomial. If degg = n then we must have by Theorem
4.6 that wt(n), = 1, that is to say, n = 2™ for some m. We claim that the only folded
polynomials of degree 2™ for some m > 0 are those of the form a*>", where a is a
monic polynomial of degree 1. This is easily proved by observing that if s is folded
of degree 2™ then s = t* for some folded polynomial of degree 2™~!'. We may assume
by induction that ¢t = a2"" for some monic polynomial a of degree 1. Thus s = a*" .
Therefore we must have that ¢ = a®>” for some monic polynomial a of degree 1. We
now prove by induction on m > 1 that m(a®") > m(a?). Certainly m(a?') > m(a?).
Assume now that m(a®""') > m(a?) for some m > 2. It is clear from the proof of the
even case of the second part of Theorem 4.5 that m(a®") = m((a®" ')?) > m(a®>" ).
So m(a*") > m(a®) as required. Finally, observe that if degb =1 and b # la, | € I},
then ged (b,a®) =1 and K(b/a®) = 1. So m(a®) = (¢—1)*> > q—1, since q # 2. Hence
m(a*") > g — 1 for m > 1. We must therefore have that ¢ = a where @ is a monic
polynomial of degree 1.

O

In [6] Blackburn shows that a polynomial g over [, has orthogonal multiplicity 1
if and only if it is of the form ™ (z +1)™* where (™ '™*) = 1 mod 2 (Result 3.18). Tt
is of interest that Theorem 4.5 can also be used to obtain an alternative, but of course
equivalent, classification of polynomials of multiplicity 1 over F,. (This equivalence
can be seen directly from the Lucas congruence for binomial coefficients ([26]).)

Corollary 4.8 Let g € Fy[z]. Then g has orthogonal multiplicity 1 if and only if
g = ™ (x + 1) where my = (o1 Qs ...)s, My = (BoiPs...)2 and ;B = 0 for
1> 0.

Proof: Let g € Fy[z]. We claim that g has multiplicity 1 if and only if g is folded.
By Theorem 4.5, if g has multiplicity 1 then g is folded. Conversely, if g is folded then
it must have odd multiplicity. From Result 3.13, we know that if a polynomial g over
F, has positive multiplicity then it must have multiplicity 2%, where & is the number
of distinct non-linear irreducible factors of g. Therefore a polynomial over I, which
has odd multiplicity must have multiplicity 1. This proves the claim. The result now
follows from the characterization of folded polynomials given in Proposition 4.4.

O

By Result 3.13, if a polynomial over [F; which splits into linear factors has positive
orthogonal multiplicity then it must have multiplicity 2° = 1. Therefore by the above
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corollary, there exist polynomials over IF; which split into linear factors which have
multiplicity zero. We show, however, that if g is a polynomial over [F, which splits into
linear factors then there exists a polynomial f over F, with ged (f,g) = 1 such that
K(f/g) < 2. This proves a special case of Conjecture 3.6 from Chapter 3 which claims:
If g € F,y[z] then there exists f € Iy [x] with ged (f, g) = 1 such that K(f/g) < 2.

Proposition 4.9 If g € F,[z] splits into linear factors then there exists f € Fy[z]
with ged (f,g) = 1 such that K(f/g) < 2.

Proof: Let g € I, [x] with g = ™ (z +1)™>. We prove by induction on deg g that
there exists f € Fy[z] with ged (f,g) = 1 such that K(f/g) < 2.

If degg = 1 then we have that K(1/g) = 1. Let degg > 1. If m; and m, are
even then we may write g = s> where s splits into linear factors. We may assume by
induction that there exists r € Fy[x] with ged (r,s) = 1 and K(r/s) < 2. Without loss

of generality, we may further assume that degr < degs, and so r/s = [w] for some
W= ayas...a, withdega; <2(1 <j<m). Let r,/s,, denote the m* convergent of
[w]. Thenr,,/s,, = [w]=r/sand ged (7, $,n) = 1. Hence, since we are working over

F,,r =r,, and s = s,,. By Lemma 4.1 Part 2, (rs+1)/g = (rs+1)/s* = [qu(Tu) ¢@)],
and we also have that ged (rs+ 1, 9) = ged (rs + 1, s%) = 1. Finally, since dega; < 2
for 1 <7 < m, we have that K((rs +1)/g) < 2.

If at least one of m; and m, is odd then we may write g = as? where 1 < dega < 2
and s splits into linear factors. We may assume by induction that there exists r €
I, [z] with ged (r,s) =1 and K (r/s) < 2. We may further assume that degr < degs,
and so r/s = [w] for some w = aia;...a, with dega; < 2(1 < 57 < m). Let
Tm/Sm denote the m'" convergent of r/s. We have that r = r,, and s = s,,, and
so by Lemma 4.1 Part 3, (ars + 1)/g = (ars + 1)/as® = [w a w]. Certainly,
ged (ars+1,9) = ged (ars 4+ 1,as?) = 1. By assumption dega; < 2 for 1 < j < m,
and we further have that dega < 2. Hence K((ars+1)/g) < 2, which completes the
proof.

O

4.5 Comments and Examples

One may define folded polynomials over finite fields I, of odd characteristic in an
obvious way; however, few of the results which hold for folded polynomials in char-
acteristic 2 are still true. A plausible analogue of Theorem 4.5, that a polynomial
has orthogonal multiplicity k(¢ — 1) where k is odd if and only if it is folded, is, in
general, false. For example, over Fy the folded polynomial z* has multiplicity 8, and
the polynomial 2* + x = z(z* + 1) has multiplicity 6. One may show, however, that
if g is a folded polynomial over F, with degg = n then m(g) > (¢ — 1)**™2 and, of
course, an odd characteristic analogue of Proposition 4.4 is still true. It also seems
reasonable to conjecture that over a finite field I, of odd characteristic a polynomial
has multiplicity ¢ — 1 if and only if it is linear.

We now present two examples which illustrate the ideas introduced in this chapter.

Example 4.10 (Folded polynomials over F5.) Recall that in Example 3.12 in Chapter
3 we illustrated the proof of Result 3.11 by computing the orthogonal multiplicity of
the polynomial g = z* + 22? + x = z(x 4+ 1)? over F3. We found that m(g) = 6. Now ¢
is easily seen to be a folded polynomial. The lower bound on the multiplicity of folded
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Mult. | Freq. || Mult. | Freq. || Mult. | Freq.
114 24 186 72 282 24
126 4 210 24 294 72
138 12 222 60 306 48
144 12 234 216 318 72
162 60 246 108 330 72
174 48 258 24 342 36
177 12 261 4
180 12 270 8

Table 4.1: Frequencies of Orthogonal Multiplicities for Polynomials of Degree 5 over
F,.

polynomials in odd characteristic which we mentioned in the preceding paragraph
tells us that m(g) > (3 — 1)*2(® = 4. We may immediately write down 4 continued
fractions in M,; namely

[0;a(z + 1),bz, —a(z + 1) ],

where a and b are non-zero elements of ;. The remaining two continued fractions in
M, must be symmetric. They are in fact

[0;az,a(2z + 1), az],

where a is a non-zero element of 5.

Example 4.11 (The orthogonal multiplicity of polynomials over F,.) Consider the
field F, with four elements 0,1,v,1 + v where 4> = 1 +~. Let ¢ = 2° + vz =
z(z + (1 +v))®. Then g is certainly a folded polynomial and so by Theorem 4.6 it
must have orthogonal multiplicity at least (4—1)“*®)2 = 9. The 9 badly approximable
rational functions in reduced form whose denominators are g which we know exist from
Theorem 4.6 are those of the form

[0;a(z + (1 4+7)), bz, alz + (1 +7))],

where a, b are non-zero elements of ;. The average value of the orthogonal multiplicity
of a polynomial of degree 3 over F, is (4—1)* = 27 and the upper bound is (4 —1)?4 =
36. In fact, the orthogonal multiplicity of g is 21.

For polynomials of degree 5 over [F, the expected value for the orthogonal multi-
plicity is 3° = 243 and the upper bound is 334? = 432. Computation reveals (see Table
4.1) that the lowest multiplicity occurring amongst such polynomials is 114 and the
highest is 342. Exactly 216 polynomials have multiplicity 234 and 108 polynomials
have multiplicity 246, these being the closest values to the average which occur. Thus
324 polynomials out of all 1024 monic polynomials of degree 5 over [F, have orthogonal
multiplicity very near to the average. There are 16 folded polynomials of degree 5 over
[F,. Twelve of those have multiplicity 177 and the remaining 4 have multiplicity 261.
The lower bound given by Theorem 4.6 is 32 = 9 in this case. Thus there is certainly
considerable room for improvement to this bound.

We conclude this chapter by returning to an earlier theme. The next example
unravels the puzzle of the missing convergents in Example 2.29.

o7



Example 4.12 Recall that in Examples 2.13, 2.29 and 2.39 we studied the algebraic
element z = 3., 27" in L,, where char[F, = p. In Example 2.39 we gave the explicit
continued fraction of z in the case p = 2, and in Example 2.29 we were able to find a
subsequence of the sequence of convergents to z when p > 2. We now give the explicit
continued fraction expansion of z in the case p > 2. In fact, we shall do much more.

Let ¢ be any integer greater than 2 and consider the element y = >",. 2% over
the finite field ;. So the element z in which we are most interested is just the case
t = charF, = p. Then it may be shown using a generalisation of Lemma 4.1 Part
3 to arbitrary characteristic (called the “folding lemma” in [36]) that the continued
fraction expansion of y is

0 1 0 2
[0; 2, —at (=) — g — gt (0=2) g (=2 g (=),

tO(t—2 th(t—2 tO(t—2 t3(t—2
z,—zt 2 g gt =2 g gt (D) g gt (=2 ]

To explain the pattern into which the partial quotients fall, we need to borrow some
notation from [35, page 242-243]: As in Section 4.2.1 let w = a, a5 . .. a,, denote a word
over the alphabet {a € F,[z]| dega > 1}, and let w= w. Write [w] for the continued
fraction [0;ay,...,an . Further, let —tw= (—am)(—am_1)...(—a;). For any element
a in this alphabet, let the map F, send a word w to the word W a—w. Denote by
[Ii<i<, Fa: the composition of maps F, o...oF, . Given an infinite sequence of
maps F,,, write [[22, F.. (w) to be the limit of the sequence of words [],<,<,, Fa, (w) as
n — oo. The limit is with respect to the natural topology on words where two words
are considered close together if they agree initially in many places.
With this notation, the continued fraction expansion of y is

[f[f_xtiuz) () ].

Putting ¢ = p and char[F, = p gives us the continued fraction of z. So

oo

2= F oo (@)].
=0
The convergent a,,/b,, of z, for n > 0, defined in Example 2.29 is just the finite con-
tinued fraction obtained by truncating the above expansion before the first appearance
of —zP" =2 For n > 1 we can write this as

an /b, = [”1_[ F_prio2 (7) ]

Thus the convergents a, /b, are rather special ones, as they are the only convergents
of z whose continued fractions are symmetric.

Finally it is of interest to note that the continued fraction expansion of the Laurent
series y = >_;5, 2" is the same when y is viewed as a member of the field of Laurent
series over Q. Using the method of “specialisation” described in [36], this enables us
to present the continued fraction expansions of the (transcendental) real numbers

—tt
257
i>0

where s is some integer at least 2. However, pursuing this fascinating connection
would lead us too far astray, and the reader is referred to [36] for more details.
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Chapter 5

Continued Fractions of Algebraic
Laurent Series

5.1 Introduction

In this short chapter, we turn our attention to the continued fraction expansions
of algebraic Laurent series. As before, we begin by considering an area of classical
number theory, the study of continued fraction expansions of algebraic numbers. In
his delightful book on continued fractions penned in the 1930s ([17]), A.Ya. Khinchin
comments

It is interesting to note that we do not, at the present time, know the
continued-fraction expansion of a single algebraic number of degree higher
than 2. We do not know, for example, whether the sets of elements in
such expansions [partial quotients] are bounded or unbounded. In gen-
eral, questions connected with the continued-fraction expansion of alge-
braic numbers of higher degree than the second are extremely difficult and
have hardly been studied.

In the intervening years, many significant papers have been published in this area,
but none have shed light on the open questions laid before us by Khinchin in this
quotation. This failure was bluntly expressed in a recent paper of Van der Poorten
and Shallit ([35]), which opened

It is notorious that it is damnably difficult to explicitly compute the con-
tinued fraction of a quantity expressed in some other form.

However, when one recasts Khinchin’s problems in terms of Laurent series over
finite fields rather than real numbers, much more progress can be made. Since interest
in continued fraction expansions of Laurent series was rekindled in the 1970s by the
work of Baum and Sweet, a number of papers have answered analogues of the problems
of Khinchin. Two essential differences between Laurent series over finite fields and
real numbers, the positive characteristic and non-Archimedean norm, have made this
possible. In the next chapter we will present a new result on continued fraction
expansions of algebraic Laurent series, but we first lay in place the background to this
new work by discussing the progress which has been made in this area in recent years.
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5.2 The Contribution of Baum and Sweet

After Artin’s thesis in the 1920s in which the continued fraction algorithm for Laurent
series over finite fields was apparently introduced ([2, page 149]), other than a few
scattered results, scant attention was paid to this area. However, since the work
of Baum and Sweet in the 1970s there has been a steady trickle of papers on the
subject, a tributary to a larger flow of new results on the algebraic and combinatorial
properties of formal Laurent series. Baum and Sweet wrote two papers on this topic.
The first ([4]) is a mélange of constructions of Laurent series in characteristic 2 whose
continued fractions have partial quotients of both bounded and unbounded degrees.
In the second ([5]) they present a simple characterisation of “badly approximable”
Laurent series over the binary field, and this forms the starting point for our new
work in Chapter 6. We begin by describing some of the highlights of the first paper.

Baum and Sweet present a cubic equation whose root in L, has a continued fraction
with partial quotients of bounded degree.

Result 5.1 [}, Theorem 2] Let a € Ly satisfy
o +z7la+1=0.
Then all the partial quotients of a have degree < 2.

One may see from Hensel’s Lemma, (Result 2.11) that the polynomial T3+ 1T +1
indeed has a unique root in L,. The explicit continued fraction expansion of this root,
known as the Baum-Sweet cubic, is not given in [4] but is presented in [29].

Result 5.1 cannot be generalised in a straightforward way to higher degree ele-
ments, as shown by the next result.

Result 5.2 [}, Theorem 5] Let n > 1. If o € Ly satisfies
T a1,
where u € Fy[z] has degree > 1, then a has unbounded partial quotients.

It is also worth noting that one may use linear fractional transformations to obtain
other elements with bounded/unbounded partial quotients from existing ones with
bounded/unbounded partial quotients.

Result 5.3 [}, Lemma 4] Let g1, g2, h1, ha € Fy () with gtha+h1gs # 0. Then o € Lo
has bounded partial quotients if and only if (g + hy) /(g2 + hy) has bounded partial
quotients.

It is of interest to consider a related result: We say that two Laurent series o and
«* in Ly are equivalent if
o = N + hy
G20+ hy’

where g1hy + g2hy = 1 and g1, g2, ha, hy €Fy[x]. As is observed in [4, Page 601], one
may show that o and a* are equivalent if and only if the there exists m and n such
that a,,,; = b,,; for all i > 0, where o = [ag; a1, as,...] and a* = [by; by, bs,...].

In fact, these ideas are used in [8, 29] to compute the continued fractions expansions
of certain elements o € L,, where p is a prime, such that a and o are related by
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a linear fractional transformation. For example, if we let a denote the Baum-Sweet
cubic, then za® + a + x = 0. One may verify that the first two partial quotients of «
are 1 and = and so « = [1;z, 3] for some 3 € L,. A calculation reveals that

(> +x2)3”+1

g = YT

and so 3 and (3 are related by a linear fractional transformation. This allows Mills
and Robbins ([29]) to explicitly exhibit the continued fraction expansion of § and
therefore «, which contains symmetries similar to those explored in Chapter 4.

Baum and Sweet also consider questions relating to the rational approximation of
Laurent series. Recall that Liouville’s theorem for real numbers states that if « is an
algebraic real number of degree D then there is a constant ¢ depending only on « such
that

= (m/m)l > ¢/n”

for any rational number m/n. Here ||, denotes the absolute value norm on R. This
is easily proved. A far more profound result was obtained by Roth ([38]), following
on from work of Thue, Seigel and Dyson: Suppose that the inequality

|l = (m/n)| <1/n",

has an infinite number of rational solutions m/n. Roth proved that « < 2. This
exponent for n is best possible, for the sequence of convergents {m;/n;};>o to a gives
an infinite number of solutions m/n to

o — (m/n)|e < 1/n°.

It is observed in [27] that an analogue of Liouville’s theorem holds for Laurent
series.

Result 5.4 [27, Theorem 1] Let o € L, be algebraic of degree D > 1 over F (z).
Suppose that h(a) = 0 where h := 2_0<j<D h;T7 is an irreducible polynomial with
coefficients in I [z]. Define ¢, = max{l,|a|} and c; = maxo<j<p {|h;|}. Then for
c:=min{cy,1/cic’ '} we have that

oo = (f/9) = ¢/19]",
for all f,g € F,[x].
Mahler further observes that the rational number z in L, which satisfies
-z =0

shows that the above result is sharp, as we now explain. Recall from Example 2.29 in
Chapter 2 we saw that there is a subsequence {a, /b, },>1 to the sequence of conver-
gents {fi/g;}i>o0 of z such that

|2 = (an/bn)| = 1/[bn".

We also proved in Example 2.13 that z has exact degree p over F,(z), with minimal
polynomial T? — T + z~'. Applying Result 5.4 we see that

|z = (f/9)l = 1/lg]",
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for all rational functions f/g in F,(x). The infinite subsequence of convergents
{an/bp}n>1 meets this bound. Thus no Roth type improvement to Result 5.4 can
be made without putting some restriction on «. It is claimed in [1] that an analogue
of Roth’s theorem is true for elements which do not lie in power of p cyclic extensions
of F,(x), but this is shown to be false in characteristic 2 in [4]. Explicitly, Baum and
Sweet show [4, Corollary 7] that if « is the unique element in L, which satisfies

Tt rza4+1=0

then )
la—(f/9)l =27"/|g]” *

has infinitely many solutions f/g € F,(z). However, one may prove an analogue of
Thue’s theorem, a weaker and earlier version of Roth’s theorem, for elements o € L,
such that o and o*’, where char L, =p and for any f > 1, are not related by a linear
fractional transformation ([21, Theorem 1]).

We now turn our attention to the second paper of Baum and Sweet ([5]). Re-
call that P, denotes the set of all Laurent series in L, with a zero polynomial part,
and write CF ({z,z + 1}) for the set of continued fractions in P, which have partial
quotients a; (j > 1) all of degree 1. The main result of [5] states

Result 5.5 [5, Theorem 1] An element o € Py lies in CF({z,z + 1}) if and only if
« satisfies
&+ (z+Da+1=z6,

for some B € Ps.

One significant corollary of this result is that the coefficients of the Laurent series
expansions of badly approximable rational functions over I, satisfy a simple linear
recurrence. This was discussed in Chapter 3 Section 3.3.2.

We conclude by presenting a modest generalisation of this result due to Baum and
Sweet which we greatly extend in the next chapter.

Result 5.6 [5, Theorem 6]
1. If the partial quotients of o € Py satisfy a; = u,v, or u+v for all j > 1, then
o +ua+1=uv(u+v)3,
for some B € Py

2. Conversely, when degu = degv = 2 and deg (u +v) = 1, then for any B € P,
there is an element o € Py with

& +ua+1=uv(u+v)3,
and all its partial quotients equal to u,v or u + v.

This result is used in [16, pages 112-117] to study sequences with specific linear
complexity profiles. We discuss similar applications of our more general theorem in
Section 6.5.2 of the next chapter.
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Chapter 6

Continued Fractions of Laurent
Series with Partial Quotients
from a Given Set

6.1 Introduction

In this chapter we consider families of continued fractions of Laurent series whose
partial quotients all lie in a given set. Following ideas of Baum and Sweet ([5]), we
show that one may describe the zeros of certain collections of equations in terms of
such families. The two paragraphs which follow recall the notation and definitions
necessary to give a fuller description of our results.

Let IF, be the finite field with ¢ elements and L, denote the field of formal Laurent
! over I, given by

L,= {Zaixi|nEZ,ai E]Fq}.

i=n

series in £~

We have the inclusions F,[z] C F,(z) C L,. Elements in F,(z) are called rational,
and those which lie in L, but not in ¥ (z) are called irrational. We define the norm
|| on L, as follows: If a € L, is non-zero then we may write a = >_,.,, a;z~" where
@, # 0. In this case we define |a| = ¢~ ". If a = 0 we define |a| = 0. Observe that if
« = s/t is a rational Laurent series with s, t € F,[z] then |a| = ¢d®65~dee! We define
P, to be the ring of all & € L, with |a| < 1, and we will frequently abbreviate L, and
P, to L and P.

We saw in Chapter 2 Section 2.3 that a continued fraction theory exists for the field
L,. In particular, any irrational Laurent series v in L has a unique infinite continued
fraction expansion

a=ag+1/(a; +1/(az +1/(...)))

where a; € F,[z] with dega; > 1 for j > 1. We write a = [ao;0a1,as,...]. We call
the polynomials a; (j > 0) the partial quotients of o, and qy is also referred to as the
polynomial part of ce. Any irrational Laurent series in P will have a zero polynomial
part. It is these elements of L with which we shall be primarily concerned. The
significance of the continued fraction expansion of a Laurent series is that one may
use it to define a sequence of rational functions which are best approximations to the
original Laurent series, as we saw in Chapter 2 Section 2.3.4. Laurent series whose
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continued fractions have partial quotients of “small degree” are of particular interest
as these may be thought of as being difficult to approximate. This was justified for
rational Laurent series in Chapter 3 Section 3.2; it is equally true for irrational Laurent
series, as is readily seen.

We need one new definition before we may present the results of this chapter: Let
A be a finite subset of FF,[z], and CF(A) C P be given by

CF(A) ={[0;a1,as,...]|a; € A, dega; > 1}.

So CF(A) is the set of all infinite continued fractions which have a zero polynomial
part and whose remaining partial quotients lie in A.

We begin with a result for arbitrary finite fields which describes the number of
expressions a;z~! + ... a,, ™™ which occur as the initial segment of a Laurent series
in CF(A) in terms of a generating function. This result, Proposition 6.4, is not only
of some independent interest, but is a vital ingredient in the sections which follow.
We now describe the main theorem. For a fixed u € F [z] where charF, = 2, let I,
denote the set of all & € P for which there exists a § € L with

@ +ua+ (1+z8%) =0.

We first show, Lemma 6.6, that one may construct non-empty sets A such that
CF(A) C I,. Moreover, an application of Proposition 6.4 allows us to prove that
for certain u there exists associated sets A such that CF(A) = I,; this is Theorem
6.13, the main result of the chapter. We determine all v for which this is true in
Propositions 6.14, 6.15, 6.17 and Table 6.1. The case u = x + 1 over [, is a well-
known result due to Baum and Sweet ([5]) which has an application in the study
of binary sequences. Our new results have similar applications which we discuss in
Section 6.5.2. We also show in Corollary 6.19 that for “many” values of d, there exist
Laurent series in L4 which are algebraic over [, (z) of degree d, and which have partial
quotients of bounded degree in their continued fraction expansion.

The remainder of this chapter is organised in the following way. We gather some
technical lemmas and a definition in Section 6.2. The first two lemmas will be used
in Section 6.3 to determine the cardinality of sets of the form C'F(A) up to a given
rational approximation. The final one is used in the proof of the main theorem.
Section 6.4 contains a statement and proof of the main theorem of the chapter as well
as several related propositions. Finally, we present two different applications of our
theorem in Section 6.5.

6.2 Preliminaries

In this chapter, we shall assume a familiarity with the basic notions from the theory
of continued fractions of Laurent series, as presented in Chapter 2 Section 2.3.
6.2.1 Lemmas

This section does not contain any essential definitions, and the reader may move
directly onto Section 6.2.2 and refer back when required. We begin with a technical
lemma which shall be used in the proof of the first part of Proposition 6.4.
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Lemma 6.1 Let a = [0;a,,a,,...] and o' = [0;a},a3,...] where aj,a; € F [z] (j >
1). Suppose that a; = a} for 1 < j < s—1 and a, # a;. Let 3, ., dega; = 0.
Then

’ |a’s — a’;|
o — | = —72-.
7> |as|[al]
Proof: For j > 1, let f;/g; denote the j** convergent to [0;ay,as,...]. So f;/g; =
[0;a1,as,...,a;] with ged (f;,9;) = 1.
Let 8 = [as; G511, 0542,...] and ' = [al;a) ,,0a,,,,...]. Then by recurrences (2.14)
in Chapter 2
_Bfsmitfi—2 ,_ Bfsmi + fooe
a=—-"—"——""" g ="
BYgs—1 + gs—2 B'gs—1 + gs—2
Hence )
: (=1)"2*(B-8)

a— o =

(Bgs—1 + gs—2)(B'gs—1 + gs—2)’
where we use the relation f,_1g;_» — gs_1fs—o = (—1)*? (Chapter 2 Result 2.15 Part
2). The lemma now follows since || = |a4|, |#'| = |a.| and |g,_1| = ¢°.
O
For any complex function h(z) which is analytic in some region, let [2"]h(z) denote
the coefficient of 2" in the power series expansion of h(z). The next result is from [33,
Theorem 10.2], and shall be useful in the proof of the second part of Proposition 6.4.

Lemma 6.2 Let h(z) be a complex function which is analytic in the disk ||z|]] < R,
where || || denotes the complex modulus and R € R. Then for anyr € R with0 <r < R
and any n € Z with n > 0 we have

Ilz"1h(2)[| < 7" max [|h(z)]].

o Izll=r

1 h(z
Proof: From the Cauchy integral formula we have that [2"]h(z) = 57 / 75 +Z dz
L Jr 2
where T' is any closed contour in the disk {z € C ||z|| < R} that contains the
origin inside it and is positively orientated (traversed in a counter-clockwise direction).
Taking I" to be the circle centre the origin radius r gives us the result.
O
We conclude with a result which we shall appeal to in the proof of Lemma, 6.10.

For a polynomial f € F,[z] the coefficient of 2" in f is denoted [z"]f.

Lemma 6.3 Let W C F,[z] and let a be an odd positive integer and b an arbitrary
integer with b > a. Denote by n,(W) the number of elements ¢ € F, such that ¢ = [2°]f
for some f € W. Suppose that

1. Each polynomial in W has degree not greater than b.

2. If v,v" € W with v # v' then the degree of v —v' is an odd number at least a.
Then #(W) < ny(W)gl0=9)/21.

Proof: For each ¢ € I, let W(c) denote the set of all polynomials f in W with
[z°]f = c¢. If W(c) # 0 then we may choose f, € W(c). Let V(c) = f. — W(c).
Then by property 2 of W, any two polynomials in V (c) differ in some coefficient x¢
where d is odd and @ < d. Furthermore d < b by property 1. There are [(b — a)/2]
such odd numbers d. So the cardinality of V(c) is not greater than ¢/®*=*/21. Thus
£V (e) = #(V(0)) < ¢/, Hence #(W) = 52, #(W(c) < ny(W)g =/ as
required.

O
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6.2.2 An Equivalence Relation on Sets of Polynomials

We define the following equivalence relation on finite subsets of F,[z]: We say that A
and B are equivalent if {a € A| dega > 1} = {a € B| dega > 1}. So if A and B are
equivalent, then CF(A) = CF(B). (The converse is also true.) It will be convenient
for us to consider sets C'F(A) where A contains polynomials of degree zero and zero
itself. Any set B which is equivalent to such a set A will give us the same collection of
continued fractions CF(B) (= CF(A)), and we will make frequent use of this simple
equivalence relation in the statements of the results which follow.

6.3 The Cardinality of CF(A) up to a Given Rational
Approximation

Let A be a finite set of polynomials in F,[z]. We wish to count the number of elements
in CF(A) up to a given rational approximation. To be more precise, for each m € N
we define an equivalence relation ~,, on L by

a~g,d Sla—d|<qg ™

We consider the equivalence relation ~,, restricted to CF(A) and denote the set of
equivalence classes by CF(A)/~,,. Soifa, o' € CF(A) then a ~,, o' if and only if the
first m coefficients in the Laurent series expansions of a and &’ agree. Proposition 6.4
describes the number of equivalence classes mod~,, (m > 1) in terms of a generating
function which we construct in the paragraphs which follow. This result is not only of
some interest in its own right, but is also a crucial ingredient in the proof of Theorem
6.13.

We make the following definitions: for ¢ > 1 let v; denote the number of polyno-
mials in A of degree i and let the degree enumerator f,(z) of A be given by

fa(z) =) vz’ € C[z].

i>1

For ¢ > 1, define the equivalence relation =; on A in the following way. Let v, v’ € A.
Define v =; v’ if

(1/v) ~ai1 (1/0").

Let w; be the number of =;-equivalence classes of polynomials of degree greater than
in A. Thus w; is the cardinality of the largest subset of polynomials of degree greater
than 4 in A which lie in distinct =¥;-equivalence classes. Defining wy = 1 we let the
deficiency polynomial g4(z) of A be given by

ga(z) = wiz' € C[z].

i>0

Observe that if A and B are equivalent sets (according to Section 6.2.2) then f4(z) =
f(z) and ga(z) = gg(2z). Also note that we shall write f(z) and g(z) for f4(z) and
ga(z) when there is no risk of confusion.

Recall that the coefficient of 2" in g(z)/(1 — f(2)) is denoted [2"]g(2)/(1 — f(z)).
Also, let [m/2] denote the least integer which is not less than m/2; so [m/2] =
(m + 1)/2 when m is odd, and m/2 when m is even. We may now state the main
result of this section.
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Proposition 6.4 Let m be an odd positive integer. Then the cardinality of CF(A)/ ~.,,
is [2/™/*g(2) /(1 — f(2)). If the root [roots] of 1 — f(z) with the smallest complex mod-
ulus has [have] modulus R, then for any e > 0 there exists a constant ¢ € R such that
the cardinality of CF(A)/~,, is bounded above by c(1/(R — €))™/?]

Proof: We begin by proving the first statement of the proposition. Let m be an
odd positive integer. For any o = [0; ay, as, ... ] define the mth-deficiency of « to be
the unique integer k such that [m /2] —k = 3>, ;. dega; < [m/2] < 30,1y, degay.
We first claim that any two elements «, o' in CF(A) with mth-deficiencies k and k'
respectively, where & # k', must lie in different equivalence classes mod ~,,. For
suppose o = [0;ay,0ay,...] and &' = [0;a},a;,...] liein CF(A), with 3°, ;. dega; =
[m/2] =k, 32, <j<p dega;’ = [m/2] — k' where dega;11 > k, dega; , > k" and k # k'
Let j = s be the minimum integer for which a; # a). Then certainly s < min{/,I'} +1,

!
and by Lemma 6.1 we have that |a —o/| = % where 0 = 3, ;.. dega;.
Since « and o' have different mth-deficiencies, ag least one of degas and degal is
strictly less than [m/2] — 0. So suppose dega; < dega! with degas < [m/2] —o. If
deg a, = dega’, then both are less than [m /2] — o and so |a—a/| > ¢~ 2["/21 > g=m~1,
Otherwise dega, < dega’ and |a — o/| = g 277482 > ¢g=o~[m/21 But certainly
o < [m/2] and so |a — | > ¢72™/?1 > g=™~1. This proves the claim.

Let CF(A)(0 < k < [m/2]) be the set of all elements in CF(A) with mth-
deficiency k. We have shown that the number of equivalence classes of CF(A)/ ~,,
is equal to the summation over k(0 < k < [m/2]) of the number of classes of
CFk(A)/Nm'

Consider now the set of continued fractions C'F},(A) for some 0 < k < [m/2]. Let
a, o' € CF(S) with a = [0;a,,ay,...] and o' =[0;a},a,,...] where 37, ;. dega; =
Yicjer degal = [m/2] — k and degai1, degay; > k. If a; # aj for some j (1 <
J < min{l,I'}) then a similar argument to the one in the preceding paragraph shows
that a 7, a’. Otherwise [ =" and a; = a; (1 < j <1). In this case by Lemma 6.1,

!
a1 — ai. | > ¢!, But this latter
|arsa|lag 4|
condition is equivalent to [(1/a;41) — (1/aj )| > ¢, that is to say, a;11 %y aj,q-
(Here we need the fact that m is odd. We refer the reader to the paragraphs following
this proof for a brief discussion of slight modification we need to make in the case m
even.) So the cardinality of CF}(A)/ ~,, is the number of ways of selecting polynomials
a; in A of degree at least 1 whose degrees sum to [m/2] —k, multiplied by the number
of ~j-equivalence classes in A of polynomials of degree greater than k. (There are
two exceptions to this: in the case k = 0 we actually “multiply” the number of ways
of selecting non-constant polynomials in A whose degrees sum to [m/2] by 1; when
k = [m/2] we take the number of ways of selecting no polynomials whose degrees
sum to zero to be 1.) The latter is simply wy, the coefficient of z* in g(z). The
former is the coefficient of z[™/21=% in 3"._  f(2)" = 1/(1— f(z)). Thus the cardinality
of CF(A)/ ~,, is the summation of this product over k, which is the coefficient of
zI™/21in g(2)/(1 — f(2)). (See [46, page 36] for a description of the “arithmetic” of
generating functions.) This proves the first part of the proposition.

To prove the second part, let h(z) = g(z)/(1 — f(2)). Then h is certainly analytic
in the disk centre the origin of radius R, where R is the modulus of the “small-
est” root [roots] of 1 — f(z). By Lemma 6.2, we have [|[z™/%](g(2)/(1 — f(2)))| =
(221 (g(2) /(1 = f(2))) < e(1/(R —€))[™/?1 where € > 0 and ¢ = max),—g—- h(z).

O

and o' are in different ~,,-classes if and only if
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To determine the cardinality of CF(A)/~,, where m is even we must work with a
slightly different generating function §(z)/(1—f(z)). The polynomial §(z)(= ga(z)) =
> >0 Wiz', which we call the new deficiency polynomial, is defined as follows. Let
wWo=1. For i >1 and v,v' € A let v ~; v' if

(1/v) ~ai (1/01).

Let w; denote the number of ~;-equivalence classes of polynomials of degree greater
than i in A. One may show that #(CF(A)/~,,) for m even is the coefficient of 2™/? in
G(2)/(1 — f(2)). Thus the statement of Proposition 6.4 remains true if we replace “m
an odd positive integer” by “m an even positive integer” and g(z) by g(z). The proof
in the even case is almost identical to that given for the odd case, except we must
replace g(z) by g(z) wherever it occurs, and make other appropriate minor changes.
We shall only need the case m odd in the proof of the case of Theorem 6.13 which we
explicitly give in Section 6.4.2, but in the outlined proof of the other case in Section
6.4.3 we use the new deficiency polynomial §(z).

6.4 The Main Theorem

6.4.1 Preliminary Results

Let char[F, = 2 and u € F,[z]. Abbreviate L, to L and P, to P. We shall be concerned
with the set of roots which lie in P of equations of the form

T° +uT + (1 + z4%)

where (3 is a suitably chosen element in L. Let degu = t. Suppose that for some 3
there exists an « in P with o? + ua + 1 = z3?. Then taking the norm of both sides
we have |3]> < ¢'=2. Conversely

Lemma 6.5 For any 8 € L with |3]* < ¢'=* where degu = t there exists a unique
a € P with o® +ua + (1 +z3?) = 0.

Proof: Let 3 € Lwith|B]> < ¢'~ Letu =3, ujz’ and x> = 3,5 _(,_) hiz™".
Observe that h; = 0 for ¢ even. We wish to show that there exists a unique o =
Yoy fizTh € P with o + ua + (1 + 23?) = 0. Consider the Laurent series Y, a;z™°
defined in the following way. Let oy; = 0 for 4 < 0 and determine «; for i > 1 from the
following recurrences (here s > —(t — 1)).

Do<j<t UjQsyj + a3 =0 for s even, s # 0
ZOSJ‘St Ujsyj+1=0 fors=0
ZOSiSt Ui j+hy =0 for s odd

(The sequence {«;} is consistently and uniquely defined because for each s > —(t —1)
the associated recurrence relation defines a,,; uniquely in terms of the «; with 7 <
s +t.) The Laurent series @ := Y_,5; a;z " then satisfies o® + ua + (1 + z?) = 0
by construction, and the properties of the Frobenius map (Chapter 2 Section 2.2.3).
This proves existence. Uniqueness follows from the observation that the sequence of
coefficients of any Laurent series a € P for which o? + ua + (1 + z5%) = 0 must
satisfy the above recurrences. (Alternatively, observe that if « € P is a root of
T? +uT + (1 +2(3?) then the other root is & +u. This root does not lie in P if u # 0,
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and is not distinct from « if u = 0.)
O

Define D, = {8 € L||B]> < ¢} = {B € L||B| < ¢¥?)7'}. Let the map
¢ : D, — P be defined as follows: for g € D, let ¢ : B — « where « is the unique
Laurent series in P with o +ua + (1 + z3?) = 0. Denote the image of the map ¢ by
I,,. Observe that the map ¢ is an injection since char [, = 2 and so ¢ is a bijection
from D, to I,. An equivalent description of I, is the set of all & € P for which there
exists 3 € L with o® + ua + 1 = x>

The proof of the implication (<) in the following lemma is based upon the proof
of the first part of Theorem 1 in Baum and Sweet ([5]).

Lemma 6.6 Let u € F [z] with charF, = 2. Let A be a finite set of polynomials in
F,[z]. Then CF(A) C I, if and only if for each polynomial v € A of degree at least 1
there exists w € F,[z] with v* + uv = zw?.

Proof: In this proof we use the equivalent description of I, as the set of « € P
for which there exists a 8 € L such that o® + ua + 1 = x>

(<) Let @ = [0;a1,as,...] where a; € A(j > 1) with dega; > 1. For each [ > 0
define oY = [0;ay,as,...,a;,u,u,...] where we use the obvious convention for I = 0.
We prove by induction on [ that there exists ) € L with (a”)? +ua® +1 = 2(B8")2.
If I = 0 then o(® = [0;u,u,...] and so (1/a®) +u = a® and (a?)? +ua® +1 = 0.
We may therefore take 3(©) = 0. Now suppose that [ = n > 0. Then (1/a™) +a; =
[0;a2,...,0,,U,u,...]. So by induction, there exists ' € L such that

{(1/a™) +a}2 +u{(1/a™) +a;} +1 = z(8)%

Hence
(™) +ua™ +1 = z{a™ (B +w)}?

where af 4+ ua; = zw?.
Now o = [0;a4,as,...]. So a:llim oV where o = [0;a4,...,a;,u,u,...]. To
| —

each o there corresponds a unique 8¢ with (a'”)? + ua® + 1 = z(3")2. Taking
limits we find that o + ua + 1 = z3* where 8 = llim Y. By Result 2.8, the field L
—00

is complete with respect to || and so § € L as required.

(=) To prove the converse suppose that & = [0;a1,as,...] where a; € A(j > 1)
with dega; > 1 and o® + ua + 1 = z3* for some 8 € L. Since CF(A) C I, there
exists a 3 € L such that o' := [0;as,as,...] satisfies (¢/)? + ua/ +1 = z(8')>. Now
o = (1/a) +a; and so (a} +ua;) = z(B' + (6/c))?. The righthand side contains only
odd powers of z and so there must exist w € F,[z] with a] + ua; = zw?. Since a; was
a arbitrary non-constant polynomial of A this completes the proof.

O

(Observe that if degu = 0 or u = 0 then if v> + uv contains no even powers of z
we must have that degv = 0 or v = 0. But if A is a set which does not contain any
polynomials of degree greater than zero then CF(A) = (). Thus the cases degu = 0
and v = 0 are of no interest and we assume for the remainder of the chapter that
degu > 1.)

Lemma 6.6 motivates Section 6.4.2 in which we study the pairs of polynomials v
and w in F,[z] which satisfy v? + uv = zw? for some fixed u € F,[z]. We show that
there is a bound on the number of pairs that can occur, and when and only when
this bound is met we have that CF(A) = I,, for some suitably chosen A C [, [z]. We
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prove this by considering the cardinality of the set of equivalence classes CF(A)/~,,
(where A is the appropriate set) and so must first determine the forms of f4(z) and
ga(z) to make use of Proposition 6.4.

We finish this section with an example which illustrates the proof of Lemma 6.6.

Example 6.7 Let u =2’ +z+1 € Fy[z] and A = {z,2* 4+ 1,u}. Then one may verify
that for every v € A there exists a corresponding w € [y [z] such that v* + uv = zw?.
For instance, (z241)?+(z’+z+1)(z’+1) = 2°+z = z(z+1)?. Thus Lemma 6.6 tells us
that CF(A) C I,,. As an example, consider the element o = [0; 2, 22 + 1, u, u,u,...]| €
CF(A). Then

. 1 _xz
S Way—e @Y

= [0;u,u,u,...].

We know that (o/)?4+ua’+1 = 0. Hence o® +ua+1 = z3* where § = (14+2*)a+(1+z).

6.4.2 The Case degu Even

It is easier to treat the cases deg u even and deg u odd separately, although the analysis
in each case is essentially the same. In this section, we consider the former case, and
briefly discuss the latter in the next.

Let degu = t be a positive even number. We are interested in determining the
solutions in F [z] x F,[z] of the equation T? + uT + zY? = 0 where charF, = 2.
Observe that if (v,w) is such a solution, then w is uniquely determined by v (since
squaring is an automorphism in [F,). We therefore define the set G(u) to be the set of
all v € F,[z] for which there exists w € F,[z] with v* + uv = zw?. (It is convenient to
include polynomials of degree zero and zero itself in G(u), although these polynomials
do not occur as partial quotients of continued fractions in CF(G(u)).) For the sake
of notational simplicity, we occasionally abbreviate G(u) to G. For m > 0, let G,,
denote the set of all polynomials in G of degree less than or equal to m, and V,,, the
set of polynomials in G with degree exactly m. Define G_; = {0}.

Lemma 6.8 The set G is an elementary abelian 2-group under addition and the sets
G are subgroups with G = G;. Furthermore, #(Gpn/Gm—2) < q for 1 <m <t -1
and #(G¢/Gi-1) = 2.

Proof: 1t is easy to see that the set G is an elementary abelian 2-group with
the sets G, as subgroups. We claim that G does not contain any elements of even
degree except those elements of degree ¢. For if v has even degree not equal to ¢ then
the leading term of v? + uv has even degree, and so no polynomial w can exist with
v? +uv = zw?. Thus G,, = G,,_, for m even. Similarly G does not contain any
polynomials of odd degree greater than . Thus G = G;. To prove the remaining
remarks, it suffices to consider the case m odd with m less than ¢. Suppose that
#(G,,/Gp—2) > q where m is odd with 1 < m < t — 1. Then G,,/G,,—» must
contain elements of the form yz™ +~'z™' + G,,_» and yz™ + "™ + G,,_» where
vy, y" € F, with ' # +". But then (¢ — ")z ! + G,_s € G,,/G—s and so G,
contains a polynomial of even degree. This is a contradiction since m < t—1. To prove
the final claim, we first observe that 0, u € G and so #(G;/G;_1) > 2. Suppose that
#(G¢/G;_1) > 2. Then G, contains an element v whose leading coefficient [(v) differs
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from the leading coefficient (u) of u. But since v* 4+ uv contains only odd powers of
x, we have that [(u)? + [(u)l(v) = 0, which implies [(u) = [(v). This contradiction
establishes the final claim and completes the proof.
a
We call the set G = G(u) the full solution group for u, and a subset of G a
solution set for u. If G meets the bounds imposed by the above lemma then we say
that G is a maximal solution group.

Lemma 6.9 Let v € F [z] have even degree t > 2 where char[F, = 2, and suppose
that G(u) is a mazimal solution group for u. Then the degree enumerator f(z) of
G(u) is given by

fz) = 2 (qg— gD 4 g2yt
1<i<t—1
todd

and we have the factorisation

1= f() = (1—g2) 2 gP( +2M),
0<i<t—2

Proof:  Recall that V,,, = {v € G| degv = m}. So the mth coefficient (m > 1)
of f(z) is v, = #(V,,). As we observed in the proof of the preceding lemma, for
m even and not equal to ¢, and for m odd and greater than ¢, we have #(V,,) = 0.
For m odd and less than t, #(V,,) = #(G,.) — #(G—1) = #(G,,) — #(G,,—2) since
#(G 1) = #(G_s). Now #(G_;) = 1 and since G meets the bounds imposed by
the previous lemma we have that #(G,,/G,,_2) = q for m odd with 1 <m <t — 1.
An easy induction argument establishes that #(G,,) = ¢/™*"/? and furthermore since
#(G,/G, 1) = 2 we have that #(G;) = 2¢"/*. So #(V,,) = (¢ — 1)g'"™1/? for m
odd and less than ¢. Similarly #(V;) = #(Gy) — #(G_1) = 2¢/* — ¢!/*> = ¢!/>. The

factorisation is easy to verify.
O

(We in fact have the fuller factorisation

1—f(z)=(1-qz)(1+2) H (q2* — exp 2mis/(t/2)).

1<s<(t/2)—1

It is somewhat curious that the roots of 1 — f have complex modulus 1/¢,1/,/q and
1, although this observation plays little part in what follows.)

Having determined the form of the degree enumerator polynomial f(z) in the
case that G is a maximal solution group, we now wish to find that of the deficiency
polynomial g(z). We show in Lemma 6.10 that g(z) is actually equal to the cofactor
of 1 — gz in the factorisation of 1 — f(z), and so ¢g(z)/(1 — f(z)) = (1 — ¢z)™". Using
Proposition 6.4 we then see in Lemma 6.11 that the cardinality of CF(G)/ ~2n_1
when G is a maximal solution group is ¢”. This allows us to prove Lemma 6.12, which
is the main result of Section 6.4.2.

Lemma 6.10 Let u € F,[z] have positive even degree t where char[F, = 2, and sup-
pose that G(u) is maximal. Then the deficiency polynomial g(z) of G(u) is given
by

g(z) — Z qi/2(zi +Zi+1)

0<i<t—2

ieven
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Proof: Let g(z) denote the deficiency polynomial of G = G(u) and w; (¢ > 0) the
coefficient of 2! in g(z). Certainly w; = 0 for ¢ > ¢ and by definition wy, = 1. For
1 <3 <t—1 we must establish that

w — { q'? when i is even,
7] ¢ Y/ when i is odd.
We first show that w; < ¢l¥/?l (1 <4 < t—1) by considering the number of polynomials
of each degree in a subset W) C G of polynomials of degree greater than i which
lie in distinct ~;-equivalence classes. We then argue that this bound can be met by
considering the structure of the maximal solution group G.

Suppose that W® C G is a set of polynomials of degree greater than 4 which lie
in distinct ~;-equivalence classes. Let W9 denote the subset of polynomials in W ?
which have degree s. Then # (W) =% __ #(W®). Since W C G, #(W)) = 0 if
s >t,or s <t with s even. It remains to bound the cardinality of W9 for s =t or
1 < s <t with s odd.

We consider two cases: Suppose first that 2 < ¢. Let i < s < 27 with s odd (and so
s <t). Letv,v" € W withv # v'. Since v %; v' we have that |(1/v)—(1/v")| > ¢~ 2+?
and so |[v — v'| > ¢*¢~9*! Furthermore, since v,v’ € G and G is a group which
contains only polynomials of odd degree (excluding those of degree t) we have that
deg (v —v') is odd. We now apply Lemma 6.3 with b = s and a = 2(s — 1) + 1 to
deduce that #(W)) < (g — 1)g®*"V/2. Writing W, for Usso; W) we see that if
Ws,; contains two distinct members v and v' of degrees m and n respectively with
m > n > 2i then ¢™ > |v —v'| > g 2Ftmtrtl > gmtl which is a contradiction.
Thus #(W>;) < 1. It is a simple exercise in summing geometric series to then show
that #(W(i)) = Zs>i #(Ws(z)) = Ei<s<2i,s odd #(Ws(z)) + #(WZ%) < Zi<s<2i,s odd(q -
1)qZi—s—1/2 4 1 = glif2l

Suppose now that 20 > ¢t. For ¢ < s <t —1 < 27 and s odd one may show as
before that #(W ) < (¢ — 1)¢**=*=Y/2, Similarly we may appeal to Lemma 6.3 to
show that #(Wt(is)) < q=9/2 (Recall that #(G,/G,_;) = 2 and so n,(W;”) =1 in
Lemma 6.3 in this case.) Once again summing over s one concludes that #(WD) =
Sicociot # W) + # W) < Ticoci1souald = D> =702 4 g0/ = gl

To show that w; = ¢l*/?] one must first prove that the bounds on the cardinalities
of the sets W) discussed above can actually be met. For each i(1 < i <t —1)
and each suitable s we show that one may construct a set W 9, of polynomials of
degree s in G which lie in distinct ~;-equivalence classes, whose cardinality meets the
appropriate bound. (For each i, we also define a set W,; which we need in the case
2i < t.) We then take suitable unions of these sets to give, for each required i, a
set W, of polynomials of degree greater than i which lie in distinct a;-equivalence
classes, such that #(W @) = ¢li/2l,

If s is even or s is greater than ¢, then we define W) = (). In the case 2i < t we
define Ws,; = {f} where f is any polynomial in G with degree at least 2i. The main
cases to consider are s odd with 1 < s < ¢, and s = t. In the former case, one must
show that for each i (1 <14 < t—1) there exist a set W) (i < s < min{2i—1,t}, s odd)
of (g — 1)q?=5=Y/2 polynomials of G which have degree s such that distinct elements
lie in different ~;-equivalence classes. That is to say: v,v" € W with v # v' =
|v —v'| > ¢*=D+1. We construct such a set as follows: For each positive m which is
odd and less than ¢, choose polynomials fy.,, fm,,---,fm, , such that the images of
the f,,, under the natural homomorphism G,, — G,,/G,_» are distinct. (One may
do this since G is a maximal solution group.) We may assume that deg f,,, = m for
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1 <i<q—1. Let the set W be given by

WO ={fo+ 2 fm, |1<i<g—1;foreach m,0< j, <q—1}.
2(s—i)+1<m<s—2
m odd
It is easy to verify that W ) meets our requirements.

The case s =t is similar. It is easily verified that for each i (1 <i <t —1) the set
W, constructed as follows has cardinality ¢=%/2, and if v,v' € W, with v # v’ then
|v—2'| > ¢?*=9+! and so distinct members lie in different ~;-equivalence classes: Let
fi, and f;, be elements in G; with distinct images under the natural homomorphism
Gy = Gy/Gy_y, and frs fones - -5 fim,_, (m odd and less than ) be as in the preceding
paragraph. (Such elements exist since G is maximal.) We may assume deg f;, = t.
Let Wt(i) be given by

Wt(i) ={fi, + Z fm, |For each m, 0 < j, <q—1}.
2(t—i)+1<m<t—1
m odd
Finally, for each i (1 < i <t — 1) we define a set W of polynomials of degree
greater than i which lie in distinct =s;-equivalence classes, with #(W®) = ¢li/2]
as follows: For 2i < t let W = U, o;WD U Wsy; and for 20 > t let W =
Uics<i—1 W U W, ", From the construction of the sets W we know that W will in
both cases have the appropriate cardinality. We need to show that distinct polynomials
in W® lie in different =z;-equivalence classes. Let v,v' € W with degv = s and
degv' = s' and v # v'. Now W can contain at most one polynomial of degree greater
than 2i. So s,s' < 2 and v € W, v’ € Ws(,i). If s = &' then v %; v' by our previous
observations on the set W0 (= W), If s # s’ then |(1/v) — (1/v')| = ¢~ ™in{s+"} >
q 2! since min{s, s'} is odd. Hence v #%; v in this case. Thus w; = #(W ) = ¢l¥/2]
which completes the proof.
O
Recall that we say that two sets of polynomials are equivalent if any polynomial
of degree at least 1 which lies in one, lies in the other.

Lemma 6.11 Let u € F,[x] have positive even degree and charF, = 2. If H is
a solution set for u which is equivalent to a mazimal solution group for u then the
cardinality of CF(H)/ ~an_1 is ¢". If H is a solution set for u which is not equivalent
to a mazimal solution group then the cardinality of CF(H)/ ~s, 1 is strictly less than
q" for sufficiently large n.

Proof: Let G = G(u) denote the full solution group for v and let H be a solution
set for u. Denote the degree enumerator and deficiency polynomials for G and H by
fa(2), ga(2) and fg(2), g (z) respectively. Suppose that H is equivalent to a maximal
solution group for u. Then in this case G must be maximal and from Lemmas 6.9 and
6.10, the rational function g5 (z)/(1 — fe(2)) is (1 — gz)~'. But H is equivalent to G
and so gu(2)/(1 — fu(2)) = ga(2)/(1 — fa(z)). So by Proposition 6.4, the cardinality
of CF(H)/~an-1 18 ¢".

We now consider the second case in which H is not equivalent to a maximal solution
group. The coefficients of fx(z) are positive real numbers and are bounded by those
of fa(z); thus fu(z) < fa(z) for all positive real z. We claim that fy(1/q) < 1: In
the case that G is maximal we have that fo(1/¢) = 1 and so fy(1/q) < 1 since at
least one coefficient of fx(z) is strictly smaller than the corresponding coefficient of
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fa(z) (here H is not equivalent to G). If G is not maximal then it is not difficult to
see that fz(1/q) < 1. Since fu(1/q) < fa(1/q) our claim is also true in this case.

Now let v € C be the root of 1 — fx(z) with smallest complex modulus. If ||y]| < 1/¢
then |1 — fu(v)| > 1 — fu(llvll) > 1 — fu(1/q) > 0 (the penultimate inequality holds
because fp is an increasing function on the positive reals). Hence ||y|| > 1/q. Letting
A = H in Proposition 6.4 and choosing ¢ in the second part of the proposition so that
|l7]l — € > 1/q yields the second statement.

O
We may now state the main result of this section.

Lemma 6.12 Let u € I [z] have positive even degree and charF, = 2. Then I, =
CF(A) if and only if A is equivalent to a mazimal solution group for u.

Proof: (<) Suppose that A is equivalent to a maximal solution group for u. Let
B, B' € D, with ¢(8) = o and ¢(5') = o where «a, o € I,,. Subtracting the relevant
equations we find that

(0 —a)* +u(a— o) = (8- B
and so |3 — ) = ¢"'|a — |. From this it follows that

B ~n—(t/2) B e o~y g d (6.1)

where degu = t.

Thus #([u/ ~2n-1) = #(Du/ ~n—(t/2)) = ¢" (the first equality holds because of
(6.1) and the final one comes directly from the definition of D,,). From Lemma 6.11,
#(CF(A)/ ~2,-1) = ¢" since A is a equivalent to a maximal solution group, and so
#(CF(A)] ~2n-1) = #(1,,/ ~an_1) for each n. Furthermore CF(A) C I, by Lemma
6.6. Suppose that CF(A) # I,. Let « € I, with a ¢ CF(A). In particular, for some
m we have that « #,,, | o for all o € CF(A). Since CF(A) C I, it follows that
#(I,/ ~2m_1) > #(CF(A)/ ~2,_1), which is a contradiction. Thus CF(A) = I,.

(=) Suppose that A is not equivalent to a maximal solution group for u. If A is
not equivalent to a solution set for w then the contrapositive of (=) in Lemma 6.6
shows that CF(A) Z I,,. So suppose that A is equivalent to a solution set for u but
is not equivalent to a maximal solution group. Then by Lemma 6.11 the cardinality
of CF(A)/ ~a,_1 is strictly less than ¢" for sufficiently large n. But if CF(A) = I,
then we must have that #(CF(A)/ ~2n-1) = #(I./ ~2n—1) = ¢" for all n. Therefore
CF(A) # I, as required.

O

6.4.3 The Case degu Odd

The case deg u odd can be treated in a similar way to deg u even, modulo a few changes
which we describe in this section.

The full solution group G(u) of a polynomial u of odd degree t is defined in exactly
the same way and any subset of this group is called a solution set for u. The full
solution group G(u) is said to be maximal if its degree enumerator f(z) is of the form

fz) = 2o (q—1)qls + g,
1<i<t—1
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In this case we have the factorisation

1= /() = (1-g)(+ 2 g2+ 2m),
1<i<t—2
iodd

For any finite subset A of F,[z], recall (from the discussion following Proposition
6.4) that one may define the new deficiency polynomial g4 (z) = 3,5, w;z". We then
have that the cardinality of CF(A)/ ~s, equals the coefficient of 2" in §4(z)/(1 —
fa(2)), where fa(z) is the degree enumerator of A. Examining the proof of Lemma
6.12, we see that to establish an odd case version of the lemma we need to show the
following: if G(u) is a maximal solution group for u then #(CF(G(u))/ ~an) = ¢,
and if H is any solution set which is not equivalent to a maximal solution group then
#(CF(H)/ ~an) < q" for sufficiently large n. Once again, the latter is straightforward
and follows from the fact that the complex modulus of the smallest root of 1 — fg(2)
in the case that H is a solution set for u which is not equivalent to a maximal solution
group is strictly greater than 1/q. To prove the former we must establish the form
of the new deficiency polynomial §(z) of a maximal solution group G(u). We must
show that it is equal to the cofactor of 1 — gz in the above factorisation of 1 — f(z).
Fortunately, we can use Lemma 6.10 to do this: Observe first that if G(u) is a maximal
solution group for u where degu is odd, then zG(u) is a maximal solution group for
zu, which has even degree. Now suppose that W C G(u) is a set of polynomials of
degree greater than ¢ which lie in distinct ~;-equivalence classes. Then it is easily
seen that W C zG(u) is a set of polynomials of degree greater than i + 1 which lie
in distinct =;;;-equivalence classes. One may deduce (with a little work) from this
observation and Lemma 6.10 that for ¢ with 1 <4 <t — 1 the coefficient of 2’ in §(z)
is gU"tY/2 if 4 is odd, and ¢*/? if i is even. Thus §(z) has the required form.

Lemma 6.12 together with the odd case version of the lemma whose proof we have
just outlined together establish Theorem 6.13, which we present in the next section.

6.4.4 A Statement of the Main Theorem

We have now proved the following theorem, which is the central result of this chapter.
For ease of reference, we include all necessary definitions in the statement of the
theorem.

Theorem 6.13 Let I, be a finite field of characteristic 2 and u € F,[z]. Let I,
denote the set of all o € P, for which there ezists a 8 € L, with

@ +ua+ (1+z8%) =0.
For a finite set of polynomials A, let CF(A) be given by
CF(A) ={[0;a1,as,...]|a; € A, dega; > 1}.

Then I, = CF(A) if and only if A is equivalent to a mazimal solution group for u.
That is to say, degu > 1 and A is a set of polynomials which satisfies the following
criteria

1. For each v € A of degree at least 1 there exists w € F[z] with v* + uv = zw?.
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2. The number n,, of polynomials of degree m > 1 in A is:
For degu even

(g — 1)g'™= Y72 for m odd and less than degu
nm=1. 0 for m even or m greater than degu
qm? for m = degu

For degu odd

(g —1)g™"?  for m even and less than degu
Nm=1. 0 for m odd or m greater than degu
gl th/2 for m = degu.

In the remaining parts of Section 6.4 we will be concerned with finding all polyno-
mials whose full solution groups are maximal. We shall see that they do not exist for
fields with more than 4 elements; however, we are able to give a complete description
in the case that the field has 2 or 4 elements.

6.4.5 Polynomials with Maximal Solution Groups

We begin with a result which implies that in the search for polynomials with maximal
solution groups we may restrict our attention to the fields with two elements and four
elements.

Proposition 6.14 Let u € F,[z] and degu > 1, where char[F, = 2 and q # 2 or 4.
The full solution group for u is not mazimal.

Proof: Let u € F[z] with degu > 1 and char[F, = 2. Observe that if G(u) is a
maximal solution group for u where degu is odd, then zG(u) = {zv|v € G(u)} is a
maximal solution group for zu. We may therefore assume that u has even degree at
least 2. Suppose that G(u) is maximal; so it meets the bounds imposed by Lemma
6.8. In particular #(V;) = #(G1) — #(G_)) = q— 1. Let u = Y jcic; usx’ and
v = a + bz € V. Then the polynomial v*> + uv contains only odd powers of z. Thus
the coefficients of z° and z? in v?>4uwv, which are a®+au, and b? +bu, +au, respectively,
are both 0. We conclude that a = 0 or ug. If a = 0 then b = u;, since we must assume
that b # 0. When a = wug, b can take at most 2 values. Hence #(V;) < 3. Thus
g — 1 =4(V}) <3, which completes the proof.

O

We now determine all polynomials over the field with four elements which have
maximal solution groups.

Proposition 6.15 Let u € F,[z] with degu > 1. Then the full solution group for u
is mazimal if and only if u = uy + u T + uyx® where uguy = u3 # 0.

Proof: 'We first consider the case degu = 2. So u = ug + u1z + usz®. Then G(u)
is maximal if and only if #(V;) =4 — 1 = 3 and #(V2) = 4. If #(V1) = 3 then since
u € Vo and v+ Vi C V, we have that #(V3) = 4. Thus G(u) is maximal if and only if
#(V1) = 3. We have seen from the proof of Proposition 6.14 that this is true precisely
when uy # 0 (this ensures that the a in Proposition 6.14 can take two distinct values)
and there are two elements b, and b, in F, such that b? + u1b; + uou, = 0(i = 1,2)
(this ensures the non-zero value of a will yield two distinct choices for b). Observe
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that u; # 0 in this case. Making the substitution b; = u;c; € F; and dividing by u?
we see that Tr(c;) := ¢ +¢; = wgua/ui. If ugus/uj € Fy there are two distinct such ¢;,
and otherwise there are none. We have therefore shown that any polynomial of degree
2 with a maximal solution group must be of the form described in the proposition. If
degu = 1 and G(u) is maximal then zu has a maximal solution group G(zu) = zG(u).
But zu has a zero constant term. This contradicts our description of polynomials of
degree 2 with maximal solution groups. Thus there are no polynomials of degree 1
with maximal solution groups.

Suppose now that degu > 2 with u = Y ,., w;z’. Once again, we may assume
that degwu is even. Let G(u) be a maximal solution group for u. Then G(u) must
contain (¢ — 1)g = 12 polynomials of degree 3. Let vy + vz + v22? + v32® € V5. So
v3 # 0. Then the coefficients of z°, 22, z*, 2% in v*> + uv are 0. Therefore

Vi 4 ugvy =
v} 4 UpU2 + UV + Uy =

V3 + U1v3 + Uy + Uz + UgVy
V3 4 UgUz + Uy =

o O OO

One may use ad hoc arguments to show that the above system of equations has at
most 8 solutions (vg, vy, Vs, v3) with vz # 0, for any choice of u; (0 < 7 < 4). Therefore
G(u) cannot be maximal. This contradiction completes the proof.
O
The above lemma gives a family of 9 polynomials u of degree 2 over [, with
I, = CF(G(u)). More explicitly, if u = ug + w1z + usz? € Fy[z] where ugu, = u? # 0,
then G(u) is the additive group generated by the polynomials u,z, uy + yu,z and wu.
Here v € F; with y #0, 1.

Example 6.16 (A maximal solution group in [, [z].) Letting u = 1+ z + 2> we have
that G(u) = {0,z,1 +~vyz, 1+ (1 +y)z, 1+ 2+ 2%, 1+ 2% (1 +v)x + 2, yz + 2*}. Any
continued fraction a € P whose partial quotients lies in G(u) must satisfy an equation
of the form o +ua+1 = x3? for some 3 € L. We shall see in Corollary 6.22 that this
implies the sequence of coefficients of such an « satisfies an “IF,-linear” recurrence.

We conclude by considering the [, case.

Proposition 6.17 Let u € Iy [z] with degu > 6. The full solution group of u is not
mazimal.

Proof: Once again it is enough to prove the proposition for u a polynomial of even
degree t with ¢ > 8. So suppose that u is such a polynomial and G(u) is maximal.
Then either z or z + 1 lies in G(u) and also one of z*, z® + 1, 2* + 2% or 2 + 22 + 1
must lie in G(u).

Suppose that z € G(u). Then u =z + > ,.,, 2° + ' where M C {2,4,...,¢t —2}.
Now z® ¢ G(u) as z° + uz® contains the even power z*. Also z® + 1 ¢ G(u) as
2%+ 1+ (2* 4+ 1)u contains the term z' (since ¢ > 6). Similarly, if v = z* 4+ z? or
z® + 2% +1 then v € G(u) since v* 4+ uv contains the even power z'*2 (since t+2 > 6).

Hence z + 1 € G(u). So u must include the term z'~!. Also observe that (z 4+ 1)u
consists of 1, 22 and odd powers of z. If v = 2* or 2* + 1 then v € G(u) since v? + uv
contains the even power z!*2. If v = 2% 4+ z? then 2% + z* + z?(z + 1)u contains the
term 2% by our previous observation and so v € G(u). Finally, 2° + 2> + 1 & G(u) as
28+ 1'+1422(x+1)u+u contains the even power x! (since ¢ > 6). This contradiction
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Table 6.1: Polynomials with Maximal Full Solution Groups in [, [z]

completes the proof.
O
We list all polynomials u € F,[z] whose full solution groups are maximal in Table
6.1 along with (the generators of) their full solution groups.

Example 6.18 (A maximal solution group in Fy[z].) Recall in Example 6.7 we
considered the polynomial v = z*> +x + 1 over IF,. From Table 6.1 we see that u has a
full solution group and so CF(G(u)) = I,. Thus if we choose any 3 € L with |§| <1
then we may find an « € CF(G(u)) such that o® + ua + 1 = z3*. For example, if
we take an appropriate 3 € F,(z), then the corresponding o € CF(G(u)) must be
either an element of FF,(z), or have degree 2 over IF,(z). But all elements in CF(G(u))
have infinite continued fraction expansions and are therefore irrational. Hence « is a
quadratic element in this case and so has an eventually periodic continued fraction
expansion (see Example 2.22 in Chapter 2).

6.5 Corollaries to the Main Theorem

In this section, we discuss some applications of Theorem 6.13 and the results which
follow it. The first is to the problem of constructing algebraic Laurent series with

partial quotients of bounded degree, and the second to the study of sequences over
finite fields.

6.5.1 Algebraic Laurent Series with Bounded Partial Quotients

There is a well-known conjecture in number theory which asserts that the partial
quotients of the continued fraction expansion of an algebraic real number of degree
at least 3 are unbounded ([35, page 238]); however, almost nothing is known about
the continued fractions of such numbers, as we explained at the beginning of Chapter
5. The situation over fields of Laurent series in positive characteristic is somewhat
different; in particular, in recent years several explicit expansions of algebraic Laurent
series which have bounded partial quotients have been given (see Chapter 5 Section
5.2). The first and simplest result along these lines is that over the binary field, there
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exist algebraic Laurent series of every even degree, whose partial quotients are all
linear polynomials ([5, Proposition 3]). We prove a similar result for the field of four
elements.

Corollary 6.19 Let d € N be such that there exists an element of Ly algebraic of
degree d over Fy(xz). Then there exists an element of L, with partial quotients of
degree not greater than 2 which is algebraic of degree d or 2d over Fy(x).

Proof: Consider the polynomial u = 1 + x 4+ 2* € Fy[z] C F,[z]. Then u has a
maximal solution group G(u), by Proposition 6.15. From Theorem 6.13 we know that
CF(G(u)) = I,. Let B € L, be algebraic of degree d over I, (z). By multiplying by a
suitable power of #, we may assume that || < 1 = ¢!l?/2/=1. Now £3? has either degree
d or possibly, if d is even, degree d/2 over [, (z). We show that the latter cannot
occur. For suppose that $* has degree d/2 with minimum polynomial h(T) where
deg; h = d/2. Then 3 is a repeated root of h(T?) and deg, h(T?) = d. Since § has
degree d, h(T?) must be the minimum polynomial of 3, and so 3 is not separable. This
contradicts Result 2.10 of Chapter 2. Thus /? is algebraic of degree d and therefore
the unique element o € CF(G(u)) C P, for which o® + ua + (1 4+ z5%) = 0 has degree
d or 2d. The partial quotients of the continued fraction of a belong to G(u) and so
have degree 1 or 2. This completes the proof.

O

6.5.2 An Application to Sequences

Let S = {s;};>1 be a sequence over the field F,. One measure of the predictability of
a sequence which is of interest in stream cipher theory, a part of cryptography, is its
linear complexity profile (see Chapter 2 Section 2.4). In this section, we discuss se-
quences which have prescribed linear complexity profiles, and mention how this relates
to rational functions whose continued fractions have partial quotients of prescribed
degrees.

Recall that the linear complexity profile of a sequence S = {s;};>; over I, may
be described as follows (Definition 2.35). For n > 1 let [,,(S) denote the length of the
shortest linear recurrence satisfied by a sequence of the form {r;},>; where r; = s; (1 <
i <n). The linear complexity profile of S is the positive integer sequence {1,,(S)},>1-
The jumps profile of S (Definition 2.37) is the subsequence of non-zero terms in the
(non-negative) sequence [;(S),15(S) — 11(S),l3(S) — I5(S),.... The positive integers
which appear in the jumps profile are called the jumps of S, and a linear complexity
profile with jumps of size 1 is called perfect. Result 2.38 tells us that the jumps profile
of a sequence S = {s;};>1 is {dega;};>1 where s =Y .o, ;27" =[0;a1,a0,...].

Each polynomial in Table 6.1 gives us a different family of binary sequences with
particular linear complexity profiles which satisfy simple linear recurrences.

Example 6.20 (Binary sequences with perfect linear complexity profiles.) Consider
the case u =z + 1. Let S = {s;};>; and s = > ,5; s;2~". Then S has a perfect linear
complexity profile if and only if all the partial quotients in the continued fraction
expansion of s have degree 1, in other words, s lies in CF({z,z+1}). Now G(z+1) =
{0,1, 2,z + 1} and we have see from Table 6.1 that CF(G(z +1)) = I,;;. Thus S has
a perfect profile if and only if there exists an element 8 € L, such that

s+ (x+1)s+1=z6
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Equating coefficients of z? on each side of this equation we see that S has a perfect
linear complexity profile if and only if

S1 = 1
Si+ So;+ S9501 = 0 fori>1.

This is a well-known result which we discussed in Chapter 3 Section 3.3.2.

Example 6.21 (Binary sequences with bounded jumps.) For v = z* + 1 we get that
a binary sequence which satisfies

S1 = 0
S3 = 1
0

S; + Sa; + 82543 = for i > 1,

has a linear complexity profile with jumps of sizes 2 and 3. The converse is not true in
that there exist sequences whose linear complexity profiles have jumps of size 2 and 3
but which do not satisfy the above recurrence. However, it is easy to classify exactly
which sequences do (namely those whose associated continued fractions have partial
quotients which belong to the full solution group of z* + 1).

We do not get such neat linear recurrences for sequences over IF; however, we have
the following “IFy-linear” result.

Corollary 6.22 Let ug,ui,us € Fy with upus = ui # 0. Then a sequence {s;};>
over By which satisfies

U Sy + U181 + 1 = 0,
UzSaiqs + Ut Soipr + UgSa; + 57 = 0 fori>1,

has a linear complexity profile with jumps of sizes 1 and 2.

Proof: Tt is easily seen that if {s;};>1 satisfies the recurrence relations then the
Laurent series s = Y., s;z~ " will satisfy s* + us + (1 + z(3?) for some § € Ly. Here
U = Uy + ux + u2x2._(C0mpare the recurrence relations with those in the proof of
Lemma 6.5.) The conditions on the coefficients of u ensure that I, = CF(G(u)) (by
Theorem 6.13 and Proposition 6.15) and so f € CF(G(u)). Thus the partial quotients
in the continued fraction of f have degree 1 or 2 and so by Result 2.38 we know that
the sequence {s;};>; must have a jumps profile which consists solely of ones and twos.

O

It is conceivable that this corollary could be used to prove results for rational

functions over the field I, whose continued fractions have partial quotients of small
degree.
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Chapter 7

Algorithms for Continued
Fractions

7.1 Introduction

In this short chapter, we discuss some algorithmic questions relating to badly ap-
proximable rational functions. The main two problems we shall attempt to tackle
are

e Given g € F [z] compute m(g), the orthogonal multiplicity of g, efficiently.

e Given a polynomial over a finite field of characteristic 2, determine whether it
has odd orthogonal multiplicity efficiently.

We deem an algorithm to be efficient if the number of I -field operations it involves
is bounded by a polynomial in the algorithm’s input size. Thus an algorithm which
takes as input a polynomial of degree n over [F, is considered efficient if its running
time is bounded by a polynomial in n and Ingq := 1+ |log, q| (see [2, page 41] for this
notation). We shall use “big O” notation to present bounds on the number of field
operations involved in an algorithm: we write f(n) = O(g(n)) if there exist constants
¢ > 0 and N such that f(n) < eg(n) for all n > N. The algorithms we consider will
be deterministic. A full account of the relevant ideas from complexity theory can be
found in [2, Chapter 3.

This chapter is organised in the following way. In Section 7.2.1 we observe that
one may efficiently compute the orthogonal multiplicity of a binary polynomial, and
in Section 7.2.2 we discuss the more difficult case for general finite fields. The main
theorem in Chapter 4 is used in Section 7.3 to show that one may check whether
a polynomial in characteristic 2 has odd orthogonal multiplicity in time which is
polynomial in its degree.

7.2 Computing the Orthogonal Multiplicity

7.2.1 The Binary Field

We first of all show that the orthogonal multiplicity of a binary polynomial may be
computed efficiently.

Proposition 7.1 Let g € Iy [z] with degg =n > 1. The orthogonal multiplicity of g
can be calculated using O(n®) binary field operations.
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Proof: We shall describe an algorithm for computing the orthogonal multiplicity
of g. The algorithm falls into two parts. We first of all use row-reduction on a specific
matrix to determine whether g has positive orthogonal multiplicity. By Proposition
3.13, it only then remains to calculate the number of distinct non-linear irreducible
factors of g, which we show may easily be done.

Let R, = I, [z]/g[F;[z]. Recall from the discussion following Result 3.15 in Chapter
3 that g has positive orthogonal multiplicity if and only if the element 1 € R, is not
in the subspace of R, generated by the set {z*~' + z*~!' + 2% |1 <i <n —1}. For
1 <4< n-—1, let m; denote the n x 1 column vector which expresses the element
'~ 4+ 2%~ 4+ 2% in terms of the basis 1,z,...,2""! of R,. Let m,, denote the column
vector expressing 1 in terms of the basis elements 1,z,...,2" !, which is just the
transpose of (1,0,...,0). Let M denote the n x n matrix whose ith column is m;. The
column m; (1 < i < n—1) of M is computed by dividing g into 2! + 2?1 + 2% which
may be done using O(n?) binary field operations. Thus matrix M may be constructed
in time O(n?). We may put M into “row-reduced echelon form”, M’ say, in O(n?)
binary field operations. It is a standard result in linear algebra ([45, Result 28.2]) that
m, may be written as an [Fy-linear combination of the vectors m; (1 < i < n—1) if and
only if M' does not contain any row of the form (0,0, ...,0,1). Thus we may determine
whether 1 lies in the subspace generated by the set {z'~! +z* ' + 2% |1 <i<n—1}
using O(n?) binary field operations.

We describe how to compute the number of non-linear irreducible factors of g. We
first remove all linear factors from g by division to obtain a polynomial h such that
g = z°(x + 1)®h where ged (h,z(z +1)) = 1. Let degh = d < n. We now wish
to calculate the total number of distinct irreducible factors of h, as this equals the
number of distinct non-linear irreducible factors of g. Let F': R, — R, be given by
r — r2. Let I denote the identity map on R, and consider the map FF —1 : r — 7% —r.
As observed in [23, page 135], the number of distinct irreducible factors of g is the
dimension of the kernel of the map F — I. (This may easily be proved by analysing
the linear map F' — I in a similar way to the map 7" in the proof of Proposition 3.13.)
The matrix for the map F — I with respect to the basis 1,z,...,2%"! of R, may be
constructed in time O(d?). The dimension of the kernel of this matrix may then be
computed in time O(d®) using elementary row operations ([2, Theorem 7.4.3]).

O

Observe that for polynomials which are not divisible by z, Proposition 3.16 may be
used to construct an algorithm for computing the orthogonal multiplicity which has
the same asymptotic running time as that in Proposition 7.1, but is more practical.
One simply computes the kernel of the map T on R, using [2, Theorem 7.4.3] and
checks whether it lies in the subspace of R, generated by z,z?,...,2"".

Example 7.2 Consider the polynomial g = 2%+ 2° + 2%+ 2+ 2+ 1 whose orthogonal
multiplicity we calculated to be zero in Example 3.19. In this example we recompute
its orthogonal multiplicity using the method suggested in the paragraph following
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Proposition 7.1. The matrix of the map 7" on R, in this case is

O OO O oo
SO OO = ==
SO R = O = OO
—_— -0 O = O OO
O = O == O -
SO O = O ==
(el N =)
O === O OO

Reducing this matrix using elementary row operations we get

1 1.0 001 00
01101 110
001 1.0 O0O0TDO0
0 001 1 011
0 00O0O 1 1 00
0000 0 1 11
0 00O0O OO O0OTUO
0O 0OO0OO O O0OTUO
To construct elements (vg, vy, ..., v7) in the kernel of T', we choose vg and v; arbitrarily,

and the remaining v; are determined from the relations defined by the top 6 rows of
the above row-reduced matrix. A basis for the kernel of the linear map T is found to
be (0,1,0,0,1,1,1,0) and (1,0,0,0,1,1,0,1). Hence by Proposition 3.16 we see that
the orthogonal multiplicity of g is zero.

7.2.2 General Finite Fields

Without the apparatus of linear algebra which is available to us for the binary field, it is
not clear that one may efficiently compute the orthogonal multiplicity of a polynomial.
Given a monic polynomial g of degree n over I, the naive method would be to compute
the continued fraction expansion of f/g for all f with deg f < n. This would take
O(q"n?) field operations. One may certainly refine this naive method by restricting
the polynomials f which one considers, but the algorithm remains exponential in n.
It is conceivable that one may be able to improve on this by exploiting the algebraic-
geometric method of Blackburn presented in Section 3.3.1 of Chapter 3; however,
there are significant obstacles to this, as we explain in the next paragraph, and the
problem of efficiently computing m(g) for g over arbitrary finite fields remains open.

Using the notation introduced in Section 3.3.1 of Chapter 3, the orthogonal mul-
tiplicity of a polynomial g is the cardinality of the complement of the zero set of the
associated multivariate polynomial h € F [X;, X5,...,X,], where degg = n. The
polynomial h has total degree not greater than in(n + 1). One possible method for
computing m(g) would be to calculate the number of points on the variety defined by
h. (Computing the number of points on a variety is a major area of research, and their
exist non-trivial algorithms for varieties with extra structure, such as abelian varieties,
although the general algorithmic problem remains intractable ([43]).) However, since
h is the product of ¢ x i determinants for 1 < i < n, it may have as many as [[,,,, ¢!
terms, and so it does not even seem practical to construct h, for large n. Therefore
methods based upon point counting on algebraic varieties do not appear much help in
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tackling this problem. In the next chapter we shall discuss some algorithms for other
problems involving multivariate polynomials over finite fields.

7.3 Polynomials with Odd Orthogonal Multiplicity

The main theorem of Chapter 4 gives a quick method for checking whether a polyno-
mial over a field of characteristic 2 has odd multiplicity. The algorithm is not efficient
in the strict sense, but is nevertheless practical for polynomials of large degree over
fields of modest size.

Proposition 7.3 Let charF, = 2 and g be a monic polynomial over F, of degree
n > 1. One may determine whether the orthogonal multiplicity of g is odd using
O(gn) F,-field operations.

Proof: By Theorem 4.5 of Chapter 4, g has odd multiplicity if and only if g is
folded, and this latter condition may easily be checked, as we now explain.

We first describe an auxiliary algorithm A which we shall need. The algorithm A
takes as input a monic polynomial g of degree n and outputs either a monic polynomial
h or NOT FOLDED according to the following rules.

1. If n is even with ¢ = h? then output h. If n is even and g is not a square then
output NOT FOLDED.

2. If n is odd and there is a unique monic polynomial i such that g = ah?® for
some monic polynomial a, then output h. If n is odd and there is more than one
monic polynomial A with g = ah? for some linear polynomial a, or there are no
such polynomials, then output NOT FOLDED.

We now describe algorithm A: If n is even then check whether g is a square. If it is,
then compute its square root, and if not output NOT FOLDED. This may be done
in time O(nIn® ¢) since we are working in characteristic 2 ([2, page 155]). If n is odd
then for each monic linear polynomial a in F,[z] divide g by a. This takes O(gn)
field operations. In each case, if the remainder is zero, check whether the quotient
is a square. If there is exactly one monic polynomial a¢ such that a divides g and
the quotient is a square, then compute the square root of g/a. If there are no such
polynomials or more than one then output NOT FOLDED. The running time of A is
O(qn).
If g is folded then it is easily proved that there will be a unique monic polynomial
h such that either ah? or h? equals g, for some monic linear polynomial a. Thus
algorithm A will output A in this case. Observe that h is folded. We may then apply
algorithm A to the output h, and continue in this way until a polynomial of degree 1 is
obtained. If g is not folded then after successive iterative applications of algorithm A,
the output NOT FOLDED will be given. In either case, by iterative use of algorithm
A, we shall determine whether g is folded using O(X, <, 10, » 2[7/2']) = O(gn) field
operations.
O
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Chapter 8

Absolutely Irreducible Bivariate
Polynomaials

8.1 Introduction

In this chapter we present some new algorithms for multivariate polynomials over finite
fields. We do not attempt to tackle the difficult problem of efficiently computing
the number of points on an arbitrary algebraic variety mentioned in Section 7.2.2
of Chapter 7, but content ourselves by presenting some new ideas for more modest
problems. Although the algorithms we describe in this chapter do not contribute in
any direct way to this difficult problem, it is conceivable that the simple new ideas
this chapter contains could lead to improved algorithms for important problems such
as computing the zeta function of a variety ([43]). We begin by discussing some more
direct applications of the work in this chapter.

The set of zeros of an absolutely irreducible bivariate polynomial form an irre-
ducible algebraic curve, and a version of Weil’s theorem gives bounds on the number
of points of such curves over finite fields ([41, page 197]). These bounds have been
applied in numerous areas including number theory, coding theory ([24]) and com-
binatorics ([41]). It is therefore of interest to create efficient algorithms for testing
absolute irreducibility, to produce easily-checked criteria for absolute irreducibility,
and to construct families of absolutely irreducible polynomials. In this chapter, fol-
lowing ideas of Gao ([12]), we present a simple algorithm which tests for the absolute
irreducibility of a bivariate polynomial defined over an arbitrary field. The algorithm
will not identify all absolutely irreducible polynomials, but it is widely applicable and
very efficient. We also present some absolute irreducibility criteria for bivariate poly-
nomials which complement those of Gao, and construct families of polynomials which
satisfy these criteria.

The idea behind the results is simple: with each k-variate polynomial we associate
a convex polytope in k-dimensional Euclidean space. If the polynomial reduces over
any extension of the original field, then the associated polytope will decompose in
a certain way into several other convex polytopes. Thus if the polytope does not
“decompose”, the polynomial must be absolutely irreducible. For a bivariate poly-
nomial of total degree n, our algorithm determines whether the associated polytope
is “indecomposable” in O(n?) steps. Our absolute irreducibility criteria for bivariate
polynomials depend upon criteria for the “indecomposability” of a convex polygon.

The author is not aware of any other algorithms which check for absolute irre-
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ducibility, although efficient algorithms exist for testing the irreducibility of a bivariate
polynomial over a finite field or an algebraic number field ([13]), and factoring such
polynomials ([14, 22, 42]). There are other well-known simple criteria for the absolute
irreducibility of bivariate polynomials (Stepanov-Schmidt and Eisenstein-Dumas (see
[12])), but they are just special cases of the criteria presented in Gao ([12]). Some
of the ideas presented in this chapter were prefigured in Lipkovski ([25]); however,
Lipkovski is concerned with analytic reducibility and Newton polyhedra and does not
obtain any new results on bivariate polynomials.

The remainder of this chapter is organised in the following way: in Section 8.2 the
fundamental connection between multivariate polynomials and convex polytopes is
explained, and we gather some preliminary results; Section 8.3 contains our absolute
irreducibility testing algorithm; some simple absolute irreducibility criteria appear in
Section 8.4; we conclude with a informal discussion of other results which it may be
possible to obtain following the ideas in this chapter.

8.2 Preliminaries

8.2.1 The Newton Polytope of a Multivariate Polynomial

Before we can describe the connection between polynomials and polytopes, it is neces-
sary to recall some terminology and results from the theory of convex polytopes ([15]).
A convex set in Euclidean k-space is a set such that the points on the line segment
joining any two points of the set lie in the set; the convex hull of a set of points
is the smallest convex set which contains them; and the convex hull of a finite set of
points is called a convex polytope. A point of a polytope is called a vertex (or
extreme point ([15, page 17])) if it does not belong to the relative interior of any line
segment contained in the polytope. A polytope is the convex hull of its vertices ([15,
page 18]). A hyperspace cuts a polytope if both of the open half spaces determined
by it contain points of the polytope. A hyperspace which does not cut a polytope,
but has a non-empty intersection with it is called a supporting hyperspace. The
intersection of a supporting hyperspace and a polytope is a (proper) face, and the
union of all (proper) faces is the boundary. One may equivalently define a vertex to
be a 0-dimensional face, and 1-dimensional faces are known as edges.

For two subsets A and B in Euclidean k-space, define their Minkowski sum to
be A+ B={a+bla € A bec B} ([15, page 316]). We call A and B the summands
of A+ B. It is easy to show that the Minkowski sum of two convex polytopes is a
convex polytope ([15, page 32]).

Let f € K[X,,Xs,...,X}], where K is an arbitrary algebraically closed field. The
polynomial f is called absolutely irreducible if it has no non-trivial factors over
K. For a polynomial defined over a finite field, the case we are most interested in,
we say that it is absolutely irreducible if it is absolutely irreducible over an algebraic
closure of the finite field. Denote the coefficient of the multinomial X/* X2 ... X;* in
f by @i, i, and associate with f the set of points in Euclidean k-space

Supp(f) = {(ilai% cee 7ik) |a’i1i2---ik 7& 0}

The total degree of f, where f # 0, is the maximum value of >, ;. i; over all
(i1,...,%,) € Supp(f). The convex hull of the set Supp(f), denoted P}, is known as
the Newton polytope of f.
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The following lemma appears in Ostrowski ([34]); since this lemma is central to
the chapter, we present a proof which follows the approach taken by Gao.

Lemma 8.1 Let f,g,h € K[X;,X>,...,X] with f = gh. Then P; = P, + P,.

Proof: [Gao] The inclusion Py C P, + P, is straight-forward. Observe that P, + P,
is a convex polytope; to prove the reverse inclusion it is therefore enough to show that
every vertex of P, + P, lies in Py, as a polytope is the convex hull of its vertices. Let
w be a vertex of P, + Pj,. So there exist points v and v of P, and P, respectively, with
w = u + v. We wish to show that these points are unique, and are in fact vertices.
The uniqueness follows from the observation that if u +v = w = v’ + ', with v’ € P,
and v' € P, then w = (u'+v) + 5 (u+v'). Thus w is the midpoint of the line joining
the points v’ + v and « + v'. But both these points lie in P, + P, and so, since w is
a vertex of P, + P, all three points must coincide. It follows easily that v = u' and
v = v'. This proves uniqueness. Suppose now that u is not a vertex. Then u lies on a
line segment which is strictly contained in P,. One may show that this implies that w
lies on a line segment which is strictly contained in P, + P,, which contradicts the fact
that w is a vertex. Thus u is a vertex, as is v. Let a, and a, be the non-zero terms
in g and h respectively, which correspond to the vertices u and v (such terms exist
as both « and v must have integer coordinates). Then the term a,a, is non-zero and
corresponds to the point u + v in Py, = P;. Hence w = u + v lies in Py, as required.

O

An integral polytope is a polytope whose vertices have integer coordinates, and
we say that a polytope is integrally [in]Jdecomposable, or more simply
[in]decomposable, if it can[not] be written as the Minkowski sum of two integral
polytopes, each of which has more than one point. Observe that the Newton polytope
of a multinomial is a single integral point, and more generally, it is easy to see that
Newton polytopes are integral. If a polynomial factors into two polynomials each
of which has at least two terms, then by Lemma 8.1 its Newton polytope must be
decomposable. Thus:

Corollary 8.2 Let f € K[X,Xs,...,X] with f containing no factor of the form
X} for 1 <1 < k. If the Newton polytope of f is integrally indecomposable, then f is
absolutely irreducible.

8.2.2 Convex Polygons

For the remainder of this section and the following section we will be concerned pri-
marily with bivariate polynomials and polytopes in Euclidean 2-space. Such a poly-
tope is called a polygon. (We refrain from using the term Newton polygon for a
2-dimensional Newton polytope as historically this term is used to referred to the
boundary of the “Newton polyhedron”.) Observe that hyperspaces in real Euclidean
2-spaces are just lines, and each edge has a unique supporting line.

The following lemma is an elaboration of the case k = 2 of a more general result
which appears in Gao ([12, Lemma 3.2]); we sketch a proof, and refer the reader to
[12] for more details.

Lemma 8.3 Let P, Q and R be convex polygons in Fuclidean 2-space with P = Q+R.
Any edge of P decomposes uniquely as the sum of a face of Q and a face of R, at least
one of which is an edge. Conversely, any edge of Q or R is a summand of exactly one
edge of P.
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Proof: Let F be a edge of P, with [ the supporting line and the suppose that the
polytope lies in the lower half-plane defined by [. Let m and n be translates of the
line [ such that the line m intersects Q with ) lying in the lower half-plane defined
by m, and n intersects R with R lying in the lower half-plane defined by n. Define
the faces G = m N Q and H = n N R of ) and R respectively. One may show that
F = G+ H. Uniqueness is proved by showing that any two faces that sum to F must
have supporting lines which are parallel to I, with the polygons lying in the lower
half-planes defined by these lines, and must therefore be G and H. The observation
that one of these faces must be an edge follows from the fact that the sum of two
vertices is a single point. The converse is proved in a similar way: If G is any edge of
@, then one may consider the line m which supports it, and the appropriate translates
of this line which support faces of P and R.

O

We now describe the input to our polygon decomposition algorithm; we partly
follow the notation of Lipkovski ([19]). Given a convex polygon in 2-dimensional
Euclidean space, one may form a finite sequence of vectors associated with it as follows:
Let vy, v1,...,v,,_1 be the vertices of the polygon, with v, chosen to be the lowest
point among the left-most points on the boundary, and the remaining points taken in
clockwise order from v, around the boundary. Let v; —v; ; = (X;,Y;) for 1 <i < m,
where the indices are taken modm. Let n; = ged (X;,Y;) and define e; = (z;,y;) =
(Xi/n;,Yi/n;). We call e; a primitive edge vector, n;e; an edge vector and the
line segment joining v;_; and v; the i'" edge of P, denoted &;. Each edge &; contains
n; + 1 integral points. The sequence of vectors {n;e;}1<;<,, which we call the edge
sequence, uniquely identifies the polygon up to translation, and will be the input
to our polygon decomposition algorithm. It will be convenient to identify sequences
with those obtained by extending the sequence by inserting an arbitrary number of
zero vectors. We may thus assume that the edge sequence of a summand of a polygon
P is the same length as that of P. As the boundary of the polygon is a closed path,
we have that >, ., me; = (0,0) and S0 Y1 i<, MiTi = D1 <ijcm MiYi = 0. A suitable
permutation of any sequence which satisfies the conditions in the preceding sentence
will be the edge sequence of some polygon; we call such a sequence a polygonal
sequence.

Lemma 8.4 Let P be a polygon with edge sequence {n;e;}1<;<m. Let Q be a summand
of P. Then the edge sequence of Q is of the form {kie;}1<i<p with 0 < k; < n,.
Furthermore, >, cicm ki®i = Yq1cicm kiyi = 0, where e; = (z;,y;) for 1 < i < m.
Conversely, any sequence of this form determines a summand of P.

This Lemma is closely related to Lemma 2.11 in Lipkovski ([19]), although the
latter contains a small error.

Proof: Let {€}}1<i<m be the edge sequence of (). By the final statement in Lemma
8.3, each edge of Q) occurs as the summand of some edge of P, and it is easily seen
that its corresponding edge vector must be of the form ke, with 0 < k < n, where ¢
is an edge vector of P whose related edge has n + 1 integral points. By considering
supporting lines, one may show that if £; and &; are edges of ) with j < k then they
occur as summands of the edges &, and &, of P, with p < ¢. This proves the first
assertion. The second assertion is simply the observation that the boundary of @ is
a closed path. Conversely, any sequence of this form will determine a closed path.
By considering supporting lines one may show it actually defines the boundary of a
convex polygon. It will be a summand of P, with the other summand a polygon whose
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edge sequence is {(n; — k;)e; }1<i<m-
o O
Given as input a sequence of edge vectors {n;e;}1<;<, of a polygon, our poly-
gon decomposition algorithm will check for the existence of a sequence of the form
{kiei}1<i<m, where 0 < k; <n,; for 1 <i <m and k,,, # n,,, for which >, ., kie; =
(0,0). The “subset-sum” problem ([2, Page 63]), which is NP-complete, is polynomial-
time reducible to this computational problem, and so one cannot reasonably expect
to find a genuinely efficient algorithm for this. However, we are interested in find-
ing an efficient algorithm for testing a bivariate polynomial for absolute irreducibility
given as input its “dense representation”, and we shall see that enough “information”
about the polynomial is discarded when we consider only its Newton polytope, that
the algorithm we construct for absolute irreducibility testing is efficient in terms of
its input size. (In the dense representation of a multivariate polynomial f of total
degree n, one explicitly gives the coefficient in f of each monomial X’ ... X;* with
Y1<j<k iy <. So for example, if f is defined over [, then this will require O(n*1nq)
bits, regardless of how many non-zero terms there are in f.)

8.3 Algorithms

Our absolute irreducibility algorithm can be divided into two parts: one first computes
the edge sequence of the Newton polytope corresponding to the bivariate polynomial
which is inputed; this polygon is then tested for indecomposability. We begin by
sketching a simple algorithm which performs the first part. We make two inessential
assumptions which simplify the algorithm: we assume the input polynomial has no
“trivial” factors, and that all its non-zero terms have the coefficient 1. The defin-
ing field of the polynomial plays no part in what follows, and the latter assumption
obviates the need to consider how one encodes it.

Algorithm 8.5 (Construct Polygon)

Input: The dense representation of a bivariate polynomial f(X;,X,) € K[X;, X5].
(We assume that X; and X, do not divide f and the non-zero terms in f have coeffi-
cient 1.)

Output: The edge sequence of P;.

Step 1: Consider the set of points (7, j) for 0 < i < n, where j is the highest or lowest
power of X, that occurs in the coefficient of X! in f. (This gives at most 2n points
and it is easily seen that the convex hull of these points is the Newton polytope of f.)
Compute the gradients of the line segments between pairs of these points, and trace
out the boundary of the convex hull of these points by starting with the lowest point
on the X,-axis (such a point exists and must be a vertex) and picking out the line
segment from that point which has the highest gradient. Repeat this with the point
at the other end of that line segment, until the starting point is reached once more.
This sequence of points may be used to determine the edge sequence.

Proof of timing: Computing the gradients involves O(n?) computations each of
which can be done with division of numbers bounded by n. Tracing out the polygon
simply involves ordering O(n) lists of numbers, each of length O(n). Thus the total
time is certainly O((nlnn)?).

O
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We now describe the second algorithm, which checks whether a given polygonal
sequence is that of an indecomposable polygon.

Algorithm 8.6 (Polygon Decomposition)
Input: The edge sequence {n;e;}1<i<m = {(n:x;,ny;) }1<i<m of a convex polygon P.
Output: YES if P is decomposable, and NO otherwise

Step 1: Define X =3, sonizi, Y =32, 5o niy; and Y = 2 yiewi<0,y:>0 NiYi- Initialise
a (2X 4+ 1) x (2Y + 1) array A, in the following way. Index the cells as [a,b] where
—X<a<XandY —-Y <b<Y +Y. Write NO in all cells, except the cell [0,Y]
which is set to FIRST.

Step 2: For ¢ from 1 up to m — 1 define the array A; as follows:

1. If the cell A; [a,b] is YES or FIRST, then set cells A;[a + kz;, b+ ky;] to YES,
where 0 <k <n;and - X <a+kx; <X, Y Y <b+ky; <Y +Y.

2. Set A;[a,b] = A;_]a,b] for all remaining undefined cells.
Step 3: Define the array A as follows:

1. If the cell A,, [a,b] is YES or FIRST, then set cells Ala+ kx,,, b+ ky,,| to YES,
where 0 < k < n,, and - X <a+ kz,, < X, Y—ng—i—kym <Y+Y.

2. Set Ala,b] = A,,—1[a, b] for all remaining undefined cells.

Step 3: Return YES if A[0,Y] = YES and NO otherwise.

Proof of correctness and timing: Observe first of all that if we take any sequence
of the form {(k]IL'], k]yg)}lgjgz with 0 S k] S n;, then

0,Y)+ Y (kjz;,ky;) = (a,b)

1<j<i

where — X <a< X andY -Y <b<Y +Y. By construction the array A; (1 <
i < m — 1) stores YES in all cells A;[a,b] such that there exists a sequence of the
form {(kjx;, kjy;) h<j<i where 0 < kj < nj; with (0,Y) + 35, ;< (kjz;, kjy;) = (a,0).
Similarly, the array A stores YES in all cells Ala,b] such that the following is true:
there exists a sequence of the form {(k;z;, k;y;)}1<j<m where 0 < k; <n; for 1 <j <
m—1and 0 < Ky, < 7y, such that (0,Y)+, ;.. (kjz;, k;y;) = (a,b). If the polygon
is decomposable, then by Lemma 8.4 there exists a sequence {(k;x;, k;y;) }1<j<m where
0,Y) + X1 cjembizskjy;) = (0,Y) with 0 < k; < mnjfor 1 < j < m—1 and
0 < k,, < n,,. Thus in array A the cell [0,Y] will hold YES. Conversely, if the cell
A[0,Y] holds YES, then we know that a sequence of the form in the preceding sentence
exists, and so by Lemma 8.4 the polygon is decomposable.
Steps 2 and 3 take O(>", .;,, niXY) steps. (We need only hold two full arrays at
any one time and so the space-complexity is just O(XY).)
O
Combining these two algorithms gives our absolute irreducibility algorithm for
bivariate polynomials.

Algorithm 8.7 (Absolute Irreducibility)
Input: The dense representation of a non-zero bivariate polynomial of total degree n.
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Qutput: If the output is IRREDUCIBLE then the polynomial is absolutely irreducible.
Otherwise the output will be FAILURE.

Step 1: Remove all factors of the form X/ XJ and replace each non-zero coefficient in
the new polynomial by 1. Input this polynomial to Algorithm 8.5. Apply Algorithm
8.6 to the output of Algorithm 8.5. Output IRREDUCIBLE if the output to Algorithm
8.6 is NO, and FAILURE otherwise.

Proof of correctness and timing: The correctness follows from Corollary 8.2. The
running time is dominated by the time taken (O(},<;<,, 7:XY)) to perform Algo-
rithm 2. Certainly XY < n? and ¥, .,.,. n; < 3n and so the algorithm takes O(n?)
steps. o

O

Example 8.8 We finish this section with an example which illustrates the absolute
irreducibility testing algorithm which we have presented. Consider the polynomial

=X+ X, X3+ X2X3+ X!+ X0X) + XT(X2+ X5) + X7 XJ,

which lies over the finite field FF,. The Newton polytope of f has edge sequence
(1,2), (4,1),2(2, —1), (=2, -5), (—=3,-2),2(—=2,3). Thus X =Y =9, Y = 6 and
m = 6. We follow Algorithm 8.6 to test if P; is integrally indecomposable; however,
we make one simplification. It suffices to work with the smaller (X + 1) x (Y + 1)
arrays B; (1 <i <m — 1) and B defined as follows: initialise By in exactly the same
way as Ay, only By is indexed by [a,b] where 0 < a < X and 0 < b <Y. Construct B;
from B;_; and B from B,,_; following a similar rule to that given in Algorithm 8.6,
adjusting the bounds appropriately (for example, require that 0 < a+ kz; < X rather
than —X < a + kz; < X). To prove that this modified algorithm works is slightly
more involved, as one must show that no important information is compromised by
working with a smaller array.

In the case of f, By is a 10x 10 array with NO in all cells, except the cell [0, 6] which
is set to FIRST. Following our modified algorithm we find that Bj is the following
array (we replace NO by 0, YES by 1 and FIRST by F).

0 00 0 01 00 0 07
01 000O0O0OT1TU0°TO0
001 11000O0O01
F 000111000
1 110001010
001 1100O0O0O0
0 000O0OT1O0O0O0O0
1110000100
0011100000
L1 00 0101000 |

Writing 1 in all cells which can be reached by adding the vector (—2,3) to cells
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containing 1 in Bj, and copying remaining values across, we find that B is the array

0 01 1 1 1 0 0 0 07
1 100101100
1111100001
F 001111000
1110011010
1111100000
001 01 10O00O00O0
1110000100
001 1100O0O0O0
L1 00 01 010 0 0]

Cell [0, 6] in B holds FIRST rather than YES, and so P; must be integrally indecom-
posable. Hence f is absolutely irreducible. Now the total degree of f is d = 16. From
[41, page 197] we know that the number of ¥ -rational points, denoted #(V,(f)), on
the curve defined by f satisfies

g+1—(d=1)(d=2)y/qg<#V,(f)) < g+1+(d—1){d—-2)/q.

For ¢ sufficiently large compared to d this gives non-trivial information.

8.4 Absolute Irreducibility Criteria

In [12] Gao presents absolute irreducibility criteria for k-variate polynomials (k > 2)
based upon the irreducibility of their Newton polytopes. Lipkovski takes a similar
approach, but instead considers polyhedra associated with multivariate formal power
series. He obtains indecomposability criteria by considering 2-dimensional faces of
the polyhedra. Lipkovski presents simple conditions ([25, Lemma 2.12]) which ensure
that these polygons are indecomposable and uses these results to obtain analytic
irreducibility criteria for k-variate formal power series (kK > 3); however, more directly
we get the following absolute irreducibility criterion for bivariate polynomials:

Proposition 8.9 Let f € K[X,, X,] be a bivariate polynomial not divisible by X, or
X, whose Newton polytope is a pentagon with 5 integral points on its boundary, in-
cluding the vertices. Furthermore, suppose that the polytope does not have any parallel
edges. Then f is absolutely irreducible

Proof: The sequence of primitive edge vectors of the Newton polytope of f has
five non-zero terms. Thus if P is decomposable, since each of these primitive edge
vectors is indecomposable, there must be a subsequence of them which sums to zero.
It is easily seen that this implies that two of the primitive edge vectors must sum to
zero and so the Newton polytope has parallel edges.

O

Example 8.10 Any bivariate polynomial whose Newton polytope has vertices
(07 m)7 (m7m + n)? (m + n + 17”)7 (n + 27 0)7 (]‘7 ]‘)

where ged (m,n) = ged (m,n + 1) = ged (m — 1,n) = 1 is absolutely irreducible. This
example is of interest as all (2-dimensional) examples presented in Gao ([12]) have
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one indecomposable edge whose supporting angles sum to less than 27; such polygons
are indecomposable for a simple reason. If n > m — 1 > 1 then all the interior angles
in our Newton polytope are obtuse. For example, taking m > 3 an odd prime and
n an odd number greater than m — 1 with n # 0,1 mod m, gives us a new family of
absolutely irreducible bivariate polynomials.

One may also construct simple absolute irreducibility criteria which depend upon
conditions related to the lengths of the horizontal projections of the sides.

Proposition 8.11 Let P be the Newton polytope of f € K[X,, X,], where f is not
divisible by X, or X, with edge sequence {(z;,y;)}1<i<m- Suppose that z; =1 mod m
for 1 <i<m. Then f is absolutely irreducible.

Proof: If J is a non-empty proper subset of {1,2,...,m} then }°,_;z; = |J| #
0 mod m and so }_;.; x; # 0.
O

Example 8.12 We give an example of a polygon which fulfils the criteria of the
preceding proposition: Suppose that 4 divides m and let p be prime such that p does
not divide im + 1 for 1 < 7 < m/4. Let ¢ and 0 denote reflections in the lines
z = (m/4) + (m?*(m +4)/32) and y = pm/4 respectively. Let [ be the closed set from
the vertex (0, mp/4) along the sequence of vectors {(im+1,p)}1<i<m/a. If the Newton
polytope of f has boundary the union of I, ¢(1),0(l) and ¢ o 6(I) then f is absolutely
irreducible.

8.5 Comments

To construct a similar algorithm for k-variate polynomials where & > 2 one would need
to construct an indecomposability testing algorithm for higher dimensional integral
polytopes. This appears to be considerably more difficult, as the problem acquires
a graph-theoretic flavour in higher dimensions. There are, however, some interesting
combinatorial problems which remain in two dimensions. In analysing the running
time of the algorithm, we gave the worst case running time, which corresponds to
polygons with as many edges as possible. An answer to the following problem would
allow one to estimate the average running time of the algorithm: how many integral
point on average lie on the boundary of the Newton polytope of a bivariate polynomial
of total degree not greater than n? The answer, of course, depends upon the cardinality
of the finite field in question. Perhaps a more natural related question to ask is: how
many sides does a “typical” polygon have? There are many ways in which one may
formulate this problem. For example, consider the set S(n) of integral points in
Euclidean 2-space given by S(n) = {(a,b) |0 < a,b < n}. Let 0 < m < 1. For any
A C S(n) let s(A) be the number of sides of the convex hull of A. If each point
(a,b) € S(n) belongs to A with probability m what is the expected value for s(A)?

A different direction for further work is to try and use the ideas in this chapter to
improve current factoring algorithms for bivariate polynomials over finite fields. For
example, the author has been able to use such ideas to make heuristic improvements
to a bivariate factoring algorithm due to Wan ([42]) which uses “Hensel lifting” and
univariate factorisation. More generally, it may be possible to incorporate these simple
geometrical ideas into other algorithms for multivariate polynomials and algebraic
varieties over finite fields.
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