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Rational points on elliptic curves

Let E be an elliptic curve over a number field K .

BSD0: If L(E/K , 1) != 0, then E (K ) is finite.

BSD1: If ords=1 L(E/K , s) = 1, then rank(E (K )) = 1.

BSDr: If ords=1 L(E/K , s) = r , then rank(E (K )) = r .

We will have nothing to say (hélas) about BSDr when r > 1.

(For this see John Voight’s lecture on Monday.)



Equivariant BSD

Let E be an elliptic curve over Q;

Let ρ : Gal(K/Q) −→ GLn(C) be an Artin representation.

Equivariant BSD conjecture (BSDρ,r ).

ords=1 L(E , ρ, s) = r
?⇒ dimC homGQ(Vρ,E (K )⊗ C ) = r .

Question: if L(E , ρ, s) has a simple zero, produce the point in the
ρ-isotypic part of Mordell-Weil predicted by the BSD conjecture.



Heegner points

K = imaginary quadratic field, χ a ring class character of K ,

ρ = IndQ
K χ.

Theorem. (Gross-Zagier, Kolyvagin, Bertolini-D, Zhang,
Longo-Rotger-Vigni, Nekovar,. . .) BSDρ,0 and BSDρ,1 are true.

Key ingredient in the proof: the collection of Heegner points on
E defined over various ring class fields of K .



More general geometric constructions

If V is a modular variety equipped with a (preferably infinite)
supply {∆} of interesting algebraic cycles of codimension j , and
Π : V · · ·→ E is a correspondence, inducing

Π : CHj(V )0 −→ E ,

we may study the points Π(∆).

Bertolini-Prasanna-D: Generalised Heegner cycles in
V = Wr × As ; (cf. Kartik Prasanna’s lecture on Monday);

Zhang, Rotger-Sols-D: Diagonal cycles, or more interesting
“exceptional cycles”, on V = Wr ×Ws ×Wt ; (cf. Victor Rotger’s
lecture on Thursday).



Stark-Heegner points

K = real quadratic field, χ a ring class character of K ,

ρ = IndQ
K χ.

Stark-Heegner points: Local points in E (Cp) defined
(conjecturally) over the field H cut out by χ. They can be
computed in practice, (cf. the lecture of Xavier Guitart on Monday
reporting on his recent work with Marc Masdeu).

Conjecture. L(E , ρ, s) has a simple zero at s = 1 if and only if
hom(Vρ,E (H)⊗ C) is generated by Stark-Heegner points.



Stark-Heegner points

The completely conjectural nature of Stark-Heegner points
prevents a proof of BSDρ,0 and BSDρ,1 along the lines of the proof
of Kolyvagin-Goss-Zagier when ρ is induced from a character of a
real quadratic field.

Goal: Describe a more indirect approach whose goal is to

1 Prove BSDρ,0.

2 Construct the global cohomology classes
κE ,ρ ∈ H1(Q,Vp(E )⊗ Vρ) which ought to arise from
Stark-Heegner points via the connecting homomorphism of
Kummer theory.



p-adic deformations of geometric constructions

A Λ-adic Galois representation is a finite free module V over Λ
equipped with a continuous action of GQ.

Specialisations: ξ ∈W := homcts(Z×p , C×p ) = homcts(Λ, Cp),

ξ : V −→ Vξ := V ⊗Λ,ξ Qp,ξ.

Suppose there is a dense set of points Ωgeom ⊂W and, for each
ξ ∈ Ωgeom, a class

κξ ∈ H1
fin(Q,Vξ).

Definition

The collection {κξ}ξ∈Ωgeom interpolates p-adically if there exists
κ ∈ H1(Q,V ) such that

ξ(κ) = κξ, for all ξ ∈ Ωgeom.



p-adic limits of geometric constructions

Suppose that Vp(E ) = H1
et(E , Qp)(1) arises as the specialisation

ξE : V −→ Vp(E )

for some ξE not necessarily belonging to Ωgeom. One may then
consider the class

κE := ξE (κ) ∈ H1(Q,Vp(E ))

and attempt to relate it to L(E , 1) and to the arithmetic of E .

The class κE is a p-adic limit of geometric classes, but need not
itself admit a geometric construction.



Basic examples

Coates-Wiles: V is induced from a family of Hecke characters of
a quadratic imaginary field,

Ωgeom = {finite order Hecke characters},

the κξ arise from the images of elliptic units under the Kummer
map, and ξE corresponds to a Hecke character of infinity type
(1, 0) attached to a CM elliptic curve E .

Kato. V = Vp(E )(1)⊗ Λcyc,

Ωgeom = { finite order χ : Z×p −→ C×p },

the κχ ∈ H1(Q,Vp(E )(1)(χ)) arise from the images of Beilinson
elements in K2(X1(Nps)) (s =cond(χ)), and ξE = −1.



The Perrin-Riou philosophy

Perrin-Riou. p-adic families of global cohomology classes are a
powerful tool for studying p-adic L-functions.

I will illustrate this philosophy in the following contexts:

1 Classes arising from Beilinson-Kato elements, and the
Mazur-Swinnerton-Dyer p-adic L-function (as described in
Massimo Bertolini’s lecture);

2 Classes arising from diagonal cycles and the Harris-Tilouine
triple product p-adic L-function (as discussed in Victor
Rotger’s lecture).



Modular units

Manin-Drinfeld: the group O×Y1(N)/C
/C× has “maximal possible

rank”, namely #(X1(N)− Y1(N))− 1.

The logarithmic derivative gives a surjective map

dlog : O×Y1(N)/Q(µN )
⊗Q −→ Eis2(Γ1(N), Q)

to the space of weight two Eisenstein series.

Let uχ ∈ O×Y1(N) ⊗Qχ be the modular unit characterised by

dlog uχ = G2,χ,

G2,χ = 2−1L(χ,−1) +
∞∑

n=1

σχ(n)qn, σχ(n) =
∑

d |n

χ(d)d .



Beilinson elements

Given χ of conductor Nps ,

αχ := δ(uχ) ∈ H1
et(X1(Nps), Zp(1)),

βχ := δ(wζuχ) ∈ H1
et(X1(Nps)Q(µNps ), Zp(1))

κ̃χ := αχ ∪ βχ ∈ H2
et(X1(Nps)Q(µNps ), Zp(2)),

κχ := its image in H1(Q(µNps ),H1
et(X1(Nps)Q̄, Zp(2))).

The latter descends to a class

κχ ∈ H1(Q,H1
et(X1(Nps)Q̄, Zp(2))(χ−1)).

Let X1(N) −→ E be a modular elliptic curve, and

κE (G2,χ,G2,χ) ∈ H1(Q,Vp(E )(1)(χ−1))

be the natural image.



Kato’s Λ-adic class

Key Remark: The Eisenstein series G2,χ0χ (with fχ = ps) are the
weight two specialisations of a Hida family Gχ0

.

Theorem (Kato)

There is a Λ-adic cohomology class

κE (Gχ0
,Gχ0

) ∈ H1(Q,Vp(E )(χ0)⊗ Λcyc(−1)),

satisfying

ξ2,χ(κE (Gχ0
,Gχ0

)) = κE (G2,χ0χ,G2,χ0χ)

at all ”weight two” specialisations ξ2,χ.



The Kato–Perrin-Riou class

We can now specialise the Λ-adic cohomology class κE (Gχ0
,Gχ0

)
to Eisenstein series of weight one.

κE (G1,χ0 ,G1,χ0) := ν1(κE (Gχ0
,Gχ0

)).

Theorem (Kato)

The class κE (G1,χ0 ,G1,χ0) is cristalline if and only if
L(E , 1)L(E , χ−1

0 , 1) = 0.

Corollary

BSDχ,0 is true for E .



Hida families

To prove BSDρ,0 for larger classes of ρ, we will

1 replace the Beilinson elements
κE (G2,χ,G2,χ) ∈ H1(Q,Vp(E )(1)(χ−1)) by geometric
elements κE (g , h) ∈ H1(Q,Vp(E )⊗Vg ⊗Vh(k − 1)) attached
to a pair of cusp forms g and h of the same weight k ≥ 2.

2 Interpolate these classes in Hida families → κE (g , h).

3 Consider the weight one specialisations

κE (g1, h1) ∈ H1(Q,Vp(E )⊗ Vρg1
⊗ Vρh1

).

Of special interest is the case where ρg1 and ρg2 are Artin
representations.



Gross-Kudla-Schoen diagonal classes

étale Abel-Jacobi map:

AJet : CH2(X1(N)3)0 −→ H4
et(X1(N)3, Qp(2))0

−→ H1(Q,H3
et(X1(N)

3
, Qp(2)))

−→ H1(Q,H1
et(X1(N), Qp)

⊗3(2))

Gross-Kudla Schoen class:

κE (g , h) := AJet(∆)f ,g ,h ∈ H1(Q,Vp(E )⊗ Vg ⊗ Vh(1)).



Hida Families

Weight space: Ω := hom(Λ, Cp) ⊂ hom((1 + pZp)
×, C×p ).

The integers form a dense subset of Ω via k ↔ (x )→ xk).

Classical weights: Ωcl := Z≥2 ⊂ Ω.

If Λ̃ is a finite flat extension of Λ, let X̃ = hom(Λ̃, Cp) and let

κ : X̃ −→ Ω

be the natural projection to weight space.

Classical points: X̃cl := {x ∈ X̃ such that κ(x) ∈ Ωcl}.



Hida families, cont’d

Definition

A Hida family of tame level N is a triple (Λ,Ω,g), where

1 Λg is a finite flat extension of Λ;

2 Ωg ⊂ Xg := hom(Λg , Cp) is a non-empty open subset (for the
p-adic topology);

3 g =
∑

n anq
n ∈ Λg [[q]] is a formal q-series, such that

g(x) :=
∑

n x(an)q
n is the q series of the ordinary

p-stabilisation g
(p)
x of a normalised eigenform, denoted gx , of

weight κ(x) on Γ1(N), for all x ∈ Ωg ,cl := Ωg ∩ Xg ,cl.



Λ-adic Galois representations

If g and h are Hida families, there are associated Λ-adic Galois
representations V g and V h of rank two over Λg and Λh

respectively (cf. Adrian Iovita’s lecture on Thursday).



A p-adic family of global classes

Theorem (Rotger-D)

Let g and h be two Hida families. There is a Λg ⊗Λ Λh-adic
cohomology class

κE (g , h) ∈ H1(Q,Vp(E )⊗ (V g ⊗Λ V h)⊗Λ Λcyc(−1)),

where V g ,V h = Hida’s Λ-adic representations attached to g and
h, satisfying, for all ”weight two” points (y , z) ∈ Ωg × Ωh,

ξy ,z(κE (g , h)) = ∗κE (gy , hz).

This Λ-adic class generalises Kato’s class, which one recovers when
g and h are Hida families of Eisenstein series.



Generalised Kato Classes

Lei, Loeffler and Zerbes are studying similar families of “twisted
Beilinson-Flach elements”. There is a strong parallel between the
three settings:

1 Beilinson-Kato elements, leading to the Kato class
κE (G1,χ,G1,χ) ∈ H1(Q,Vp(E )(χ−1));

2 Twisted diagonal cycles, leading to classes
κE (g , h) ∈ H1(Q,Vp(E )⊗ Vg ⊗ Vh) where g and h are cusp
forms of weight one with det(Vg ⊗ Vh) = 1;

3 The twisted Beilinson-Flach elements in David Loeffler’s
lecture, leading to classes κE (g ,G1,χ) ∈ H1(Q,Vp(E )⊗ Vg ),
where Vg is a not-necessarily-self-dual representation.

All three will be called generalised Kato classes for E .



A reciprocity law for diagonal cycles

As in Kato’s reciprocity law, one can consider the specialisations of
κE (g , h) when g and h are evaluated at points of weight one.

Theorem (Rotger-D; still in progress)

Let (y , z) ∈ Ωg ×Ωh be points with wt(y) = wt(z) = 1. The class
κE (gy , hz) is cristalline if and only if L(Vp(E )⊗ gy ⊗ hz , 1) = 0.

Main ingredients:

1. The p-adic Gross-Zagier formula for diagonal cycles described in
Rotger’s lecture, and its extension to levels divisible by powers of p;

2. Perrin-Riou’s theory of Bloch-Kato logarithms and dual
exponential maps “in p-adic families”.



BSDρ in analytic rank zero.

Corollary

Let E be an elliptic curve over Q and ρ1, ρ2 odd irreducible
two-dimensional Galois representations. Then BSDρ1⊗ρ2,0 is true
for E .

Proof. Use the ramified class κE (g , h) ∈ H1(Q,Vp(E )⊗ ρ1 ⊗ ρ2)
to bound the image of the global points in the local points.

Corollary

Let χ be a dihedral character of a real quadratic field K, and let
ρ = IndQ

K χ. Then BSDρ,0 is true.

Proof. Specialise to the case ρ1 = IndQ
F χ1 and ρ2 = IndQ

F χ2.



Analytic rank one, and Stark-Heegner points?

Question. Assume that

1 g and h are attached to classical modular forms, and hence to
Artin representations ρg and ρh;

2 L(E , ρg ⊗ ρh, 1) = 0, so that κE (g , h) is cristalline.

Project with Lauder and Rotger: Give an explicit, computable
formula for

logp(κE (g , h)) ∈ (Ω1(E/Qp)⊗ D(Vρg )⊗ D(Vρh
))∨.

This would be useful both for theoretical and experimental
purposes.



Perrin-Riou’s formula for the log of the Kato class

Recall there are two Mazur-Swinnerton-Dyer p-adic L-functions:
Lp,α(E/Q, s) and Lp,β(E/Q, s)

x2 − apx + p = (x − α)(x − β), ordp(α) ≤ ordp(β).

ordp(β) = 1: Kato-Perrin-Riou; Pollack-Stevens; Bellaiche.

Lp,†(E , s) :=

(
1− 1

β

)2

Lp,α(E , s)−
(

1− 1

α

)2

Lp,β(E , s).



Perrin-Riou’s formula for the Kato class

Theorem (Perrin-Riou)

If L(E , χ, 1) = 0, there exists ω ∈ Ω1(E/Q) such that

L′p,†(E , χ, 1) =
α− β

[ϕω,ω]
logω,p(κE (G1,χ,G1,χ)).

Conjecture (Perrin-Riou)

If L(E , χ, 1) = 0, there exists a point Pχ ∈ (E (Qab)⊗Qχ)χ and
ω ∈ Ω1(E/Q) such that

L′p,†(E , χ, 1) =
α− β

[ϕω,ω]
log2

ω,p(Pχ).



Experimental evidence

Numerical verifications have been carried out by Bernardi and
Perrin-Riou, and pushed further by M. Kurihara and R. Pollack
using the Pollack-Stevens theory of overconvergent modular
symbols to compute logp(κE (G1,χ,G1,χ)) p-adically when p is a
supersingular prime.

Example: The curve X0(17) is supersingular at p = 3.

X0(17)193 : y2 + xy + y = x3 − x2 − 25609x − 99966422

(x , y) =
(

915394662845247271
25061097283236 , −878088421712236204458830141

125458509476191439016

)
.



The logarithms of the generalised Kato classes

Main idea: The p-adic logarithms of the (generalised) Kato
classes should be expressed a limits of “p-adic iterated integrals”.

Alan Lauder has devised highly efficient algorithms to compute
these iterated integrals numerically.

Caveat: The p-adic integrals that will be introduced in this talk
are very different from the ones that arose in the lecture of
Jennifer Balakrishnan on Monday.

We are a bit baffled by this last fact.



The cohomological interpretation of modular forms

A modular form g of weight k = 2 + r ≥ 2 can be interpreted as
an element

ωg ∈ H0(X , ωr ⊗ Ω1
X ), X = X1(N).

ωr ⊂ Lr = symrH1
dR(E/X ).

Gauss-Manin connection:

0 −→ Lr
∇−→ Lr ⊗ Ω1

X −→ 0.

Hodge filtration exact sequence

0 −→ H0(X , ωr ⊗ Ω1
X ) −→ H1

dR(X ,Lr ,∇) −→ H1(X , ω−r ) −→ 0.



p-adic modular forms

p a prime not dividing N;

A ⊂ X the ordinary locus;

W ⊃ A a wide open neighborhod of this affinoid region.

H1
dR(X ,Lr ,∇) =

H0(W,Lr ⊗ Ω1
X )

∇H0(W,Lr )

=
H0(W, ωr ⊗ Ω1

X )

∇H1(W,Lr ) ∩ H0(W, ωr ⊗ Ω1
X )

=
Moc

k (N)

d1+rMoc
−r (N)

.



The d operator

Here d = q d
dq is the d operator on p-adic modular forms.

d j(
∑

n

anq
n) =






∑
n njanq

n if j ≥ 0;

∑
p!n njanq

n if j < 0.

Fact: If g ∈ Moc
k (N), then d1−kg ∈ Moc

2−k(N).



p-adic iterated integrals: Type I

Suppose γ ∈ H1
dR(X/Qp), and g , h ∈ Mk(N) (k = r + 2 ≥ 2).

Definition

The p-adic iterated integral of g and h along γ is

∫

γ
ωg · ωh := 〈γ, d1−kg × h〉X ,

where 〈 , 〉X is the Poincaré duality on H1
dR(X/Qp) = H1

rig(W).

Key fact: If γ ∈ H1
dR(X )ur, the unit root subspace, then

∫

γ
ωg · ωh = 〈γ, eord(d

1−kg × h)〉X ,

where eord is Hida’s ordinary projector.



p-adic iterated integrals: Type II

Suppose γ ∈ H1
dR(X ,Lr ,∇), and that f ∈ M2(N), g ∈ Mk(N)

(k = r + 2 ≥ 2).

Definition

The p-adic iterated integral of f and g along γ is

∫

γ
ωf · ωg := 〈η, d−1f × g〉r ,

where 〈 , 〉r is the Poincaré duality on H1
dR(X ,Lr ,∇).



Logarithms of Generalised Kato classes

Consider these classes in the “range of geometric interpolation”: f
is of weight two, attached to an elliptic curve E , and g and h are
of weight k = r + 2 ≥ 2 (and level prime to p).

Then κE (g , h) ∈ H1
f (Q,Vp(E )⊗ Vg ⊗ Vh(r + 1)).

Bloch-Kato logarithm:

logp(κE (g , h)) ∈ Fil2r+3(H1
dR(X )⊗ H r+1

dR (Wr )⊗ H r+1
dR (Wr ))

∨.

Theorem (Rotger, D)

1. logp(κE (g , h))(ηur
f ⊗ ωg ⊗ ωh) = ∗

∫
ηur

f
ωg · ωh. (This is an

iterated integral “of Type I”.)
2. logp(κE (g , h))(ωf ⊗ ωg ⊗ ηur

h ) = ∗
∫
ηur

h
ωf · ωg . (This is an

iterated integral “of type II”.)



The p-adic logarithms of generalised Kato classes

Suppose now that g and h are of weight one, and that
L(E , ρg ⊗ ρh, 1) = 0, so that κE (g , h) is cristalline.

Goals of the current project with Lauder and Rotger.

1. Express the p-adic logarithms of the generalised Kato classes
κE (g , h) in terms of (p-adic limits of) p-adic iterated integrals.

2. Compute these logarithms using Alan Lauder’s fast algorithms
for computing ordinary projections. (The computational aspects
will be described in Alan’s lecture.)



A final question

When g and h are Eisenstein series of weight one, the relation
between logp(κE (G1,χ,G1,χ)) and p-adic iterated integrals suggests
a strategy for proving Perrin-Riou’s conjecture:

logp(κE (G1,χ,G1,χ))
?
= × log2

p(Pχ),

for χ quadratic, as described in Bertolini’s lecture of yesterday.

Question: When ρg and ρh are induced from characters of a real
quadratic field K , show that

logp(κE (g , h)) = ∗ log2
p(Pg ,h),

where Pg ,h are Stark-Heegner points attached to E and K .

This would relate the (a priori purely local, and poorly understood)
Stark-Heegner points to the global classes κE (g , h).



Thank you for your attention!


