Rational points on curves

p-adic and computational aspects

p-adic iterated integrals and rational points on curves

Henri Darmon

Oxford, September 28, 2012

(Joint with Alan Lauder and Victor Rotger)

Also based on work with Bertolini and Kartik Prasanna

Rational points on elliptic curves

Let E be an elliptic curve over a number field K.

BSD0: If $L(E/K, 1) \neq 0$, then E(K) is finite.

BSD1: If $\operatorname{ord}_{s=1} L(E/K, s) = 1$, then $\operatorname{rank}(E(K)) = 1$.

BSDr: If $\operatorname{ord}_{s=1} L(E/K, s) = r$, then $\operatorname{rank}(E(K)) = r$.

We will have nothing to say (hélas) about BSDr when r > 1.

(For this see John Voight's lecture on Monday.)

Equivariant BSD

Let E be an elliptic curve over \mathbb{Q} ;

Let $\rho: \operatorname{Gal}(K/\mathbb{Q}) \longrightarrow \operatorname{GL}_n(\mathbb{C})$ be an Artin representation.

Equivariant BSD conjecture (BSD $_{\rho,r}$).

$$\operatorname{ord}_{s=1} L(E, \rho, s) = r \quad \stackrel{?}{\Rightarrow} \quad \dim_{\mathbb{C}} \operatorname{hom}_{G_{\mathbb{Q}}}(V_{\rho}, E(K) \otimes C) = r.$$

Question: if $L(E, \rho, s)$ has a simple zero, produce the point in the ρ -isotypic part of Mordell-Weil predicted by the BSD conjecture.

Heegner points

K= imaginary quadratic field, χ a *ring class character* of K,

$$\rho = \operatorname{Ind}_K^{\mathbb{Q}} \chi.$$

Theorem. (Gross-Zagier, Kolyvagin, Bertolini-D, Zhang, Longo-Rotger-Vigni, Nekovar,...) $BSD_{\rho,0}$ and $BSD_{\rho,1}$ are true.

Key ingredient in the proof: the collection of Heegner points on E defined over various ring class fields of K.

More general geometric constructions

If V is a modular variety equipped with a (preferably infinite) supply $\{\Delta\}$ of interesting algebraic cycles of codimension j, and $\Pi:V\cdots\to E$ is a correspondence, inducing

$$\Pi: \mathsf{CH}^j(V)_0 \longrightarrow E,$$

we may study the points $\Pi(\Delta)$.

Bertolini-Prasanna-D: Generalised Heegner cycles in $V = W_r \times A^s$; (cf. Kartik Prasanna's lecture on Monday);

Zhang, Rotger-Sols-D: Diagonal cycles, or more interesting "exceptional cycles", on $V=W_r\times W_s\times W_t$; (cf. Victor Rotger's lecture on Thursday).

Stark-Heegner points

K= real quadratic field, χ a *ring class character* of K,

$$\rho = \operatorname{Ind}_K^{\mathbb{Q}} \chi.$$

Stark-Heegner points: Local points in $E(\mathbb{C}_p)$ defined (conjecturally) over the field H cut out by χ . They can be computed in practice, (cf. the lecture of Xavier Guitart on Monday reporting on his recent work with Marc Masdeu).

Conjecture. $L(E, \rho, s)$ has a simple zero at s = 1 if and only if $hom(V_{\rho}, E(H) \otimes \mathbb{C})$ is generated by Stark-Heegner points.

Stark-Heegner points

The completely conjectural nature of Stark-Heegner points prevents a proof of $\mathsf{BSD}_{\rho,0}$ and $\mathsf{BSD}_{\rho,1}$ along the lines of the proof of Kolyvagin-Goss-Zagier when ρ is induced from a character of a real quadratic field.

Goal: Describe a more indirect approach whose goal is to

- Prove $\mathsf{BSD}_{\rho,0}$.
- ② Construct the global cohomology classes $\kappa_{E,\rho} \in H^1(\mathbb{Q}, V_p(E) \otimes V_\rho)$ which ought to arise from Stark-Heegner points via the connecting homomorphism of Kummer theory.

p-adic deformations of geometric constructions

A Λ -adic Galois representation is a finite free module \underline{V} over Λ equipped with a continuous action of $G_{\mathbb{O}}$.

$$\textbf{Specialisations} \colon \xi \in \mathcal{W} := \mathsf{hom}_{\mathit{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}) = \mathsf{hom}_{\mathit{cts}}(\Lambda, \mathbb{C}_p),$$

$$\xi: \underline{V} \longrightarrow V_{\xi} := \underline{V} \otimes_{\Lambda,\xi} \mathbb{Q}_{p,\xi}.$$

Suppose there is a dense set of points $\Omega_{\sf geom} \subset \mathcal{W}$ and, for each $\xi \in \Omega_{\sf geom}$, a class

$$\kappa_{\xi} \in H^1_{\text{fin}}(\mathbb{Q}, V_{\xi}).$$

Definition

The collection $\{\kappa_{\xi}\}_{\xi\in\Omega_{\mathrm{geom}}}$ interpolates p-adically if there exists $\kappa\in H^1(\mathbb{Q},V)$ such that

$$\xi(\underline{\kappa}) = \kappa_{\xi}$$
, for all $\xi \in \Omega_{geom}$.

p-adic limits of geometric constructions

Suppose that $V_p(E)=H^1_{\operatorname{et}}(\overline{E},\mathbb{Q}_p)(1)$ arises as the specialisation

$$\xi_E: \underline{V} \longrightarrow V_p(E)$$

for some ξ_E not necessarily belonging to $\Omega_{\rm geom}$. One may then consider the class

$$\kappa_E := \xi_E(\underline{\kappa}) \in H^1(\mathbb{Q}, V_p(E))$$

and attempt to relate it to L(E,1) and to the arithmetic of E.

The class κ_E is a *p*-adic limit of geometric classes, but need not itself admit a geometric construction.

Basic examples

Coates-Wiles: \underline{V} is induced from a family of Hecke characters of a quadratic imaginary field,

$$\Omega_{\mathsf{geom}} = \{ \mathrm{finite\ order\ Hecke\ characters} \},$$

the κ_{ξ} arise from the images of *elliptic units* under the Kummer map, and ξ_{E} corresponds to a Hecke character of infinity type (1,0) attached to a CM elliptic curve E.

Kato.
$$\underline{V} = V_p(E)(1) \otimes \Lambda_{\mathsf{cyc}},$$

$$\Omega_{\mathsf{geom}} = \{ \text{ finite order } \chi : \mathbb{Z}_p^{\times} \longrightarrow \mathbb{C}_p^{\times} \},$$

the $\kappa_{\chi} \in H^1(\mathbb{Q}, V_p(E)(1)(\chi))$ arise from the images of Beilinson elements in $K_2(X_1(Np^s))$ ($s = \text{cond}(\chi)$), and $\xi_E = -1$.

The Perrin-Riou philosophy

Perrin-Riou. *p*-adic families of global cohomology classes are a powerful tool for studying *p*-adic *L*-functions.

I will illustrate this philosophy in the following contexts:

- Classes arising from Beilinson-Kato elements, and the Mazur-Swinnerton-Dyer p-adic L-function (as described in Massimo Bertolini's lecture);
- Classes arising from diagonal cycles and the Harris-Tilouine triple product p-adic L-function (as discussed in Victor Rotger's lecture).

Modular units

Manin-Drinfeld: the group $\mathcal{O}_{Y_1(N)/\mathbb{C}}^{\times}/\mathbb{C}^{\times}$ has "maximal possible rank", namely $\#(X_1(N)-Y_1(N))-1$.

The logarithmic derivative gives a surjective map

$$\mathsf{dlog}: \mathcal{O}_{Y_1(N)_{/\mathbb{Q}(\mu_N)}}^\times \otimes \mathbb{Q} \longrightarrow \mathrm{Eis}_2(\Gamma_1(N),\mathbb{Q})$$

to the space of weight two Eisenstein series.

Let $u_{\chi} \in \mathcal{O}_{Y_1(N)}^{\times} \otimes \mathbb{Q}_{\chi}$ be the modular unit characterised by

$$d\log u_{\chi} = G_{2,\chi},$$

$$G_{2,\chi}=2^{-1}L(\chi,-1)+\sum_{n=1}^{\infty}\sigma_{\chi}(n)q^{n},\quad \sigma_{\chi}(n)=\sum_{d|n}\chi(d)d.$$

Beilinson elements

Given χ of conductor Np^s ,

$$\begin{split} \alpha_{\chi} &:= \delta(u_{\chi}) &\in \quad H^1_{\mathrm{et}}(X_1(\mathit{Np^s}), \mathbb{Z}_p(1)), \\ \beta_{\chi} &:= \delta(\mathit{w_{\zeta}} u_{\chi}) &\in \quad H^1_{\mathrm{et}}(X_1(\mathit{Np^s})_{\mathbb{Q}(\mu_{\mathit{Np^s}})}, \mathbb{Z}_p(1)) \\ \tilde{\kappa}_{\chi} &:= \alpha_{\chi} \cup \beta_{\chi} &\in \quad H^2_{\mathrm{et}}(X_1(\mathit{Np^s})_{\mathbb{Q}(\mu_{\mathit{Np^s}})}, \mathbb{Z}_p(2)), \\ \kappa_{\chi} &:= \text{ its image} & \text{ in } \quad H^1(\mathbb{Q}(\mu_{\mathit{Np^s}}), H^1_{\mathrm{et}}(X_1(\mathit{Np^s})_{\bar{\mathbb{Q}}}, \mathbb{Z}_p(2))). \end{split}$$

The latter descends to a class

$$\kappa_{\chi} \in H^1(\mathbb{Q}, H^1_{\mathrm{et}}(X_1(\mathsf{Np^s})_{\bar{\mathbb{Q}}}, \mathbb{Z}_p(2))(\chi^{-1})).$$

Let $X_1(N) \longrightarrow E$ be a modular elliptic curve, and

$$\kappa_E(G_{2,\chi}, G_{2,\chi}) \in H^1(\mathbb{Q}, V_p(E)(1)(\chi^{-1}))$$

be the natural image.

Kato's Λ-adic class

Key Remark: The Eisenstein series $G_{2,\chi_0\chi}$ (with $\mathfrak{f}_\chi=p^s$) are the weight two specialisations of a *Hida family* \underline{G}_{χ_0} .

Theorem (Kato)

There is a Λ-adic cohomology class

$$\kappa_{\mathsf{E}}(\underline{G}_{\chi_0},\underline{G}_{\chi_0}) \in H^1(\mathbb{Q},V_p(\mathsf{E})(\chi_0)\otimes \Lambda_{\mathsf{cyc}}(-1)),$$

satisfying

$$\xi_{2,\chi}(\kappa_E(\underline{G}_{\chi_0},\underline{G}_{\chi_0})) = \kappa_E(G_{2,\chi_0\chi},G_{2,\chi_0\chi})$$

at all "weight two" specialisations $\xi_{2,\chi}$.

The Kato-Perrin-Riou class

We can now specialise the Λ -adic cohomology class $\kappa_E(\underline{G}_{\chi_0},\underline{G}_{\chi_0})$ to Eisenstein series of weight one.

$$\kappa_{\mathcal{E}}(G_{1,\chi_0},G_{1,\chi_0}) := \nu_1(\kappa_{\mathcal{E}}(\underline{G}_{\chi_0},\underline{G}_{\chi_0})).$$

Theorem (Kato)

The class $\kappa_E(G_{1,\chi_0}, G_{1,\chi_0})$ is cristalline if and only if $L(E,1)L(E,\chi_0^{-1},1)=0$.

Corollary

 $BSD_{\chi,0}$ is true for E.

Hida families

To prove $\mathsf{BSD}_{\rho,0}$ for larger classes of ρ , we will

- replace the Beilinson elements $\kappa_E(G_{2,\chi},G_{2,\chi}) \in H^1(\mathbb{Q},V_p(E)(1)(\chi^{-1}))$ by geometric elements $\kappa_E(g,h) \in H^1(\mathbb{Q},V_p(E) \otimes V_g \otimes V_h(k-1))$ attached to a pair of cusp forms g and h of the same weight $k \geq 2$.
- 2 Interpolate these classes in *Hida families* $\rightarrow \kappa_E(g,\underline{h})$.
- 3 Consider the weight one specialisations

$$\kappa_E(g_1,h_1)\in H^1(\mathbb{Q},V_p(E)\otimes V_{\rho_{g_1}}\otimes V_{\rho_{h_1}}).$$

Of special interest is the case where ρ_{g_1} and ρ_{g_2} are Artin representations.

Gross-Kudla-Schoen diagonal classes

étale Abel-Jacobi map:

$$\begin{array}{cccc} \mathsf{AJ}_{\mathsf{et}} : \mathsf{CH}^2(X_1(N)^3)_0 & \longrightarrow & H^4_{\mathsf{et}}(X_1(N)^3, \mathbb{Q}_p(2))_0 \\ & \longrightarrow & H^1(\mathbb{Q}, H^3_{\mathsf{et}}(\overline{X_1(N)}^3, \mathbb{Q}_p(2))) \\ & \longrightarrow & H^1(\mathbb{Q}, H^1_{\mathsf{et}}(\overline{X_1(N)}, \mathbb{Q}_p)^{\otimes 3}(2)) \end{array}$$

Gross-Kudla Schoen class:

$$\kappa_E(g,h) := \mathsf{AJ}_{\mathsf{et}}(\Delta)^{f,g,h} \in H^1(\mathbb{Q},V_p(E)\otimes V_g\otimes V_h(1)).$$

Hida Families

Weight space: $\Omega := \mathsf{hom}(\Lambda, \mathbb{C}_p) \subset \mathsf{hom}((1 + p\mathbb{Z}_p)^{\times}, \mathbb{C}_p^{\times}).$

The integers form a dense subset of Ω via $k \leftrightarrow (x \mapsto x^k)$.

Classical weights: $\Omega_{cl} := \mathbb{Z}^{\geq 2} \subset \Omega$.

If $\tilde{\Lambda}$ is a finite flat extension of Λ , let $\tilde{\mathcal{X}} = \mathsf{hom}(\tilde{\Lambda}, \mathbb{C}_p)$ and let

$$\kappa: \tilde{\mathcal{X}} \longrightarrow \Omega$$

be the natural projection to weight space.

Classical points: $\tilde{\mathcal{X}}_{cl} := \{x \in \tilde{\mathcal{X}} \text{ such that } \kappa(x) \in \Omega_{cl}\}.$

Hida families, cont'd

Definition

A Hida family of tame level N is a triple (Λ, Ω, g) , where

- **1** Λ_g is a finite flat extension of Λ ;
- ② $\Omega_g \subset \mathcal{X}_g := \mathsf{hom}(\Lambda_g, \mathbb{C}_p)$ is a non-empty open subset (for the p-adic topology);
- **3** $\underline{g} = \sum_n \mathbf{a}_n q^n \in \Lambda_g[[q]]$ is a formal q-series, such that $\underline{g}(x) := \sum_n x(\mathbf{a}_n) q^n$ is the q series of the *ordinary* p-stabilisation $g_X^{(p)}$ of a normalised eigenform, denoted g_X , of weight $\kappa(x)$ on $\Gamma_1(N)$, for all $x \in \Omega_{g,\text{cl}} := \Omega_g \cap \mathcal{X}_{g,\text{cl}}$.

Λ-adic Galois representations

If \underline{g} and \underline{h} are Hida families, there are associated Λ -adic Galois representations \underline{V}_g and \underline{V}_h of rank two over Λ_g and Λ_h respectively (cf. Adrian lovita's lecture on Thursday).

A p-adic family of global classes

Theorem (Rotger-D)

Let \underline{g} and \underline{h} be two Hida families. There is a $\Lambda_g \otimes_{\Lambda} \Lambda_h$ -adic cohomology class

$$\kappa_{E}(\underline{g},\underline{h}) \in H^{1}(\mathbb{Q}, V_{p}(E) \otimes (\underline{V}_{g} \otimes_{\Lambda} \underline{V}_{h}) \otimes_{\Lambda} \Lambda_{cyc}(-1)),$$

where $\underline{V}_g, \underline{V}_h = \text{Hida's } \Lambda \text{-adic representations attached to } \underline{g} \text{ and } \underline{h}, \text{ satisfying, for all "weight two" points } (y,z) \in \Omega_g \times \Omega_h,$

$$\xi_{y,z}(\kappa_E(\underline{g},\underline{h})) = *\kappa_E(g_y,h_z).$$

This Λ -adic class generalises Kato's class, which one recovers when \underline{g} and \underline{h} are Hida families of Eisenstein series.

Generalised Kato Classes

Lei, Loeffler and Zerbes are studying similar families of "twisted Beilinson-Flach elements". There is a strong parallel between the three settings:

- **9 Beilinson-Kato elements**, leading to the Kato class $\kappa_E(G_{1,\chi}, G_{1,\chi}) \in H^1(\mathbb{Q}, V_p(E)(\chi^{-1}));$
- **2 Twisted diagonal cycles**, leading to classes $\kappa_E(g,h) \in H^1(\mathbb{Q},V_p(E)\otimes V_g\otimes V_h)$ where g and h are cusp forms of weight one with $\det(V_g\otimes V_h)=1$;
- **3** The **twisted Beilinson-Flach elements** in David Loeffler's lecture, leading to classes $\kappa_E(g, G_{1,\chi}) \in H^1(\mathbb{Q}, V_p(E) \otimes V_g)$, where V_g is a *not-necessarily-self-dual* representation.

All three will be called **generalised Kato classes** for *E*.

A reciprocity law for diagonal cycles

As in Kato's reciprocity law, one can consider the specialisations of $\kappa_E(g,\underline{h})$ when g and \underline{h} are evaluated at points of weight one.

Theorem (Rotger-D; still in progress)

Let
$$(y, z) \in \Omega_g \times \Omega_h$$
 be points with $\operatorname{wt}(y) = \operatorname{wt}(z) = 1$. The class $\kappa_E(g_y, h_z)$ is cristalline if and only if $L(V_p(E) \otimes g_y \otimes h_z, 1) = 0$.

Main ingredients:

- 1. The *p*-adic Gross-Zagier formula for diagonal cycles described in Rotger's lecture, and its extension to levels divisible by powers of *p*;
- 2. Perrin-Riou's theory of Bloch-Kato logarithms and dual exponential maps "in *p*-adic families".

BSD_{ρ} in analytic rank zero.

Corollary

Let E be an elliptic curve over \mathbb{Q} and ρ_1, ρ_2 odd irreducible two-dimensional Galois representations. Then $BSD_{\rho_1\otimes\rho_2,0}$ is true for E.

Proof. Use the ramified class $\kappa_E(g,h) \in H^1(\mathbb{Q}, V_p(E) \otimes \rho_1 \otimes \rho_2)$ to bound the image of the global points in the local points.

Corollary

Let χ be a dihedral character of a real quadratic field K, and let $\rho = \operatorname{Ind}_K^{\mathbb{Q}} \chi$. Then $BSD_{\rho,0}$ is true.

Proof. Specialise to the case $\rho_1 = \operatorname{Ind}_F^{\mathbb{Q}} \chi_1$ and $\rho_2 = \operatorname{Ind}_F^{\mathbb{Q}} \chi_2$.

Analytic rank one, and Stark-Heegner points?

Question. Assume that

- g and h are attached to classical modular forms, and hence to Artin representations ρ_g and ρ_h ;
- ② $L(E, \rho_g \otimes \rho_h, 1) = 0$, so that $\kappa_E(g, h)$ is cristalline.

Project with Lauder and Rotger: Give an explicit, computable formula for

$$\log_p(\kappa_E(g,h)) \in (\Omega^1(E/\mathbb{Q}_p) \otimes D(V_{\rho_g}) \otimes D(V_{\rho_h}))^{\vee}.$$

This would be useful both for theoretical and experimental purposes.

Perrin-Riou's formula for the log of the Kato class

Recall there are two Mazur-Swinnerton-Dyer p-adic L-functions: $L_{p,\alpha}(E/\mathbb{Q},s)$ and $L_{p,\beta}(E/\mathbb{Q},s)$

$$x^2 - a_p x + p = (x - \alpha)(x - \beta), \quad \operatorname{ord}_p(\alpha) \le \operatorname{ord}_p(\beta).$$

 $\operatorname{ord}_p(\beta) = 1$: Kato-Perrin-Riou; Pollack-Stevens; Bellaiche.

$$L_{
ho,\dagger}(E,s) := \left(1 - rac{1}{eta}
ight)^2 L_{
ho,lpha}(E,s) - \left(1 - rac{1}{lpha}
ight)^2 L_{
ho,eta}(E,s).$$

Perrin-Riou's formula for the Kato class

Theorem (Perrin-Riou)

If $L(E,\chi,1)=0$, there exists $\omega\in\Omega^1(E/\mathbb{Q})$ such that

$$L'_{p,\dagger}(E,\chi,1) = \frac{\alpha-\beta}{[\varphi\omega,\omega]}\log_{\omega,p}(\kappa_E(G_{1,\chi},G_{1,\chi})).$$

Conjecture (Perrin-Riou)

If $L(E,\chi,1)=0$, there exists a point $P_\chi\in (E(\mathbb{Q}^{ab})\otimes \mathbb{Q}_\chi)^\chi$ and $\omega\in\Omega^1(E/\mathbb{Q})$ such that

$$L'_{p,\dagger}(E,\chi,1) = \frac{\alpha - \beta}{[\varphi\omega,\omega]} \log_{\omega,p}^2(P_\chi).$$

Experimental evidence

Numerical verifications have been carried out by Bernardi and Perrin-Riou, and pushed further by M. Kurihara and R. Pollack using the Pollack-Stevens theory of overconvergent modular symbols to compute $\log_p(\kappa_E(G_{1,\chi},G_{1,\chi}))$ p-adically when p is a supersingular prime.

Example: The curve $X_0(17)$ is supersingular at p = 3.

$$X_0(17)_{193}: y^2 + xy + y = x^3 - x^2 - 25609x - 99966422$$

$$(x,y) = \left(\frac{915394662845247271}{25061097283236}, \frac{-878088421712236204458830141}{125458509476191439016}\right).$$

The logarithms of the generalised Kato classes

Main idea: The *p*-adic logarithms of the (generalised) Kato classes should be expressed a limits of "*p*-adic iterated integrals".

Alan Lauder has devised highly efficient algorithms to compute these iterated integrals numerically.

Caveat: The *p*-adic integrals that will be introduced in this talk are *very different* from the ones that arose in the lecture of Jennifer Balakrishnan on Monday.

We are a bit baffled by this last fact.

The cohomological interpretation of modular forms

A modular form g of weight $k = 2 + r \ge 2$ can be interpreted as an element

$$\omega_g \in H^0(X, \underline{\omega}^r \otimes \Omega_X^1), \qquad X = X_1(N).$$

$$\underline{\omega}^r \subset \mathcal{L}_r = \operatorname{sym}^r H^1_{dR}(\mathcal{E}/X).$$

Gauss-Manin connection:

$$0 \longrightarrow \mathcal{L}_r \stackrel{\nabla}{\longrightarrow} \mathcal{L}_r \otimes \Omega^1_X \longrightarrow 0.$$

Hodge filtration exact sequence

$$0 \longrightarrow H^0(X,\underline{\omega}^r \otimes \Omega^1_X) \longrightarrow H^1_{dR}(X,\mathcal{L}_r,\nabla) \longrightarrow H^1(X,\underline{\omega}^{-r}) \longrightarrow 0.$$

p-adic modular forms

p a prime not dividing N;

 $A \subset X$ the ordinary locus;

 $\mathcal{W}\supset\mathcal{A}$ a wide open neighborhod of this affinoid region.

$$H^{1}_{dR}(X, \mathcal{L}_{r}, \nabla) = \frac{H^{0}(\mathcal{W}, \mathcal{L}_{r} \otimes \Omega_{X}^{1})}{\nabla H^{0}(\mathcal{W}, \mathcal{L}_{r})}$$

$$= \frac{H^{0}(\mathcal{W}, \underline{\omega}^{r} \otimes \Omega_{X}^{1})}{\nabla H^{1}(\mathcal{W}, \mathcal{L}_{r}) \cap H^{0}(\mathcal{W}, \underline{\omega}^{r} \otimes \Omega_{X}^{1})}$$

$$= \frac{M_{k}^{oc}(N)}{d^{1+r}M_{-r}^{oc}(N)}.$$

The *d* operator

Here $d = q \frac{d}{da}$ is the d operator on p-adic modular forms.

$$d^{j}(\sum_{n}a_{n}q^{n})=\left\{egin{array}{ll} \sum_{n}n^{j}a_{n}q^{n} & ext{if } j\geq 0; \ \sum_{p
eq n}n^{j}a_{n}q^{n} & ext{if } j<0. \end{array}
ight.$$

Fact: If $g \in M_k^{oc}(N)$, then $d^{1-k}g \in M_{2-k}^{oc}(N)$.

p-adic iterated integrals: Type I

Suppose $\gamma \in H^1_{dR}(X/\mathbb{Q}_p)$, and $g, h \in M_k(N)$ $(k = r + 2 \ge 2)$.

Definition

The *p-adic iterated integral* of g and h along γ is

$$\int_{\gamma} \omega_{\mathsf{g}} \cdot \omega_{\mathsf{h}} := \langle \gamma, \mathsf{d}^{1-\mathsf{k}} \mathsf{g} \times \mathsf{h} \rangle_{\mathsf{X}},$$

where $\langle \ , \ \rangle_X$ is the Poincaré duality on $H^1_{\mathrm{dR}}(X/\mathbb{Q}_p)=H^1_{\mathrm{rig}}(\mathcal{W}).$

Key fact: If $\gamma \in H^1_{dR}(X)^{ur}$, the unit root subspace, then

$$\int_{\gamma} \omega_{\mathsf{g}} \cdot \omega_{\mathsf{h}} = \langle \gamma, \mathsf{e}_{\mathsf{ord}} (\mathsf{d}^{1-\mathsf{k}} \mathsf{g} \times \mathsf{h}) \rangle_{\mathsf{X}},$$

where e_{ord} is Hida's ordinary projector.

p-adic iterated integrals: Type II

Suppose
$$\gamma \in H^1_{dR}(X, \mathcal{L}_r, \nabla)$$
, and that $f \in M_2(N)$, $g \in M_k(N)$ $(k = r + 2 \ge 2)$.

Definition

The *p-adic iterated integral* of f and g along γ is

$$\int_{\gamma} \omega_f \cdot \omega_g := \langle \eta, d^{-1}f \times g \rangle_r,$$

where \langle , \rangle_r is the Poincaré duality on $H^1_{dR}(X, \mathcal{L}_r, \nabla)$.

Logarithms of Generalised Kato classes

Consider these classes in the "range of geometric interpolation": f is of weight two, attached to an elliptic curve E, and g and h are of weight $k = r + 2 \ge 2$ (and level prime to p).

Then
$$\kappa_E(g,h) \in H^1_f(\mathbb{Q},V_p(E)\otimes V_g\otimes V_h(r+1)).$$

Bloch-Kato logarithm:

$$\log_p(\kappa_E(g,h)) \in \mathsf{Fil}^{2r+3}(H^1_{\mathsf{dR}}(X) \otimes H^{r+1}_{\mathsf{dR}}(W_r) \otimes H^{r+1}_{\mathsf{dR}}(W_r))^\vee.$$

Theorem (Rotger, D)

- 1. $\log_p(\kappa_E(g,h))(\eta_f^{\mathrm{ur}} \otimes \omega_g \otimes \omega_h) = * \int_{\eta_f^{\mathrm{ur}}} \omega_g \cdot \omega_h$. (This is an iterated integral "of Type I".)
- 2. $\log_p(\kappa_E(g,h))(\omega_f \otimes \omega_g \otimes \eta_h^{\text{ur}}) = * \int_{\eta_h^{\text{ur}}} \omega_f \cdot \omega_g$. (This is an iterated integral "of type II".)

The p-adic logarithms of generalised Kato classes

Suppose now that g and h are of weight one, and that $L(E, \rho_g \otimes \rho_h, 1) = 0$, so that $\kappa_E(g, h)$ is cristalline.

Goals of the current project with Lauder and Rotger.

- 1. Express the *p*-adic logarithms of the generalised Kato classes $\kappa_E(g,h)$ in terms of (*p*-adic limits of) *p*-adic iterated integrals.
- 2. Compute these logarithms using Alan Lauder's fast algorithms for computing ordinary projections. (The computational aspects will be described in Alan's lecture.)

A final question

When g and h are Eisenstein series of weight one, the relation between $\log_p(\kappa_E(G_{1,\chi},G_{1,\chi}))$ and p-adic iterated integrals suggests a strategy for proving Perrin-Riou's conjecture:

$$\log_p(\kappa_E(G_{1,\chi},G_{1,\chi})) \stackrel{?}{=} \times \log_p^2(P_\chi),$$

for χ quadratic, as described in Bertolini's lecture of yesterday.

Question: When $\rho_{\rm g}$ and $\rho_{\rm h}$ are induced from characters of a real quadratic field K, show that

$$\log_{p}(\kappa_{E}(g,h)) = *\log_{p}^{2}(P_{g,h}),$$

where $P_{g,h}$ are Stark-Heegner points attached to E and K.

This would relate the (a priori purely local, and poorly understood) Stark-Heegner points to the *global classes* $\kappa_E(g,h)$.

Thank you for your attention!