Triple product p-adic L-functions
for balanced weights

Matthew Greenberg (Calgary)
and Marco Seveso (Milan)

Rational points on curves
Oxford, Sept. 24-28, 2012

1/22



Our project
i=1,23

p1 N; tame levels
Q; C W affinoid disks, YW = weight space

We're given an N;-new Coleman family

=" an(f)q" € 0(Q)]lqll

Thus, if k; € Q,‘7C|, then

fiki = Z an(fi, ki)q" € Siy2(To(Njp)) e

is @ normalized eigenform.
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fi k; is p-new for at most one k; € €2, .
When f; . is p-old, let

. € Sk2(To(N;))
be the unique normalized newform such that

f;?k,.| T, = al(f;, k,-)f,-?k/, for all 1 N;p.

Explicitly,
phitl
fis(9) = (@) = 5 s (@)
Lp(f'ﬂk., s)—l _ (1 _ ap(ﬁ; k’_)q—s) (1 B pk;+1 q_s)'
a,( )

3/22



Shorthand:

fl?ﬂ - flﬁ,kz X f2ﬂ7k2 X f3ﬁ,k3’ Q=1 x 2 x Q3

A triple (ki, k2, k3) of classical weights is balanced if ki + ko + k3 is

even and

ki < ky+ ks, ky < ki + ks, and k3 < ky + k.

Project goal: Construct a p-adic L-function

L(h®hH®KB)EO(Q x N x Q)

such that

L(h®h®fk)+—L

- (jjk1+k2+k3
,'(‘7

for all balanced triples k € Q..

2

alg
" 2>
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This talk

Theorem: (G-Seveso) Suppose
Ny =N, =N3 =N

with N squarefree. Then there is a function £, satisfying (a precise
version of ) the above interpolation property for balanced triples of
even weights.

The assumption N; = N, = N3 = N is for ease of exposition.

We can deal with odd weights, although there are some issues beyond
simply admitting forms with compatible nebentype.

Cyclotomic variable?
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e-factors

Since we assume N is squarefree,

-1 ifv|N,
el(ff,3) =q -1 if v.=o00 and k is balanced,

+1 otherwise
If 5(f£, 1) = —1, then the interpolation problem is trivial.

If 5( ) +1 and K is unbalanced, then the corresponding £, was
constructed by Harris & Tilouine (arXiv 1996, Math. Ann. 2001).

If 5(f 2)=+1and k is balanced, then w(N) is odd.
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The quaternion algebra B
Assume 5(f£, %) = +1 for balanced ke Q.

B = quaternion Q-algebra ramification set {v | Noo}

Tk, automorpic representation of GL,(A) with new vector fiﬁk,-

Theorem: (Prasad 1990) B is characterized by:
each 7, admits a Jacquet-Langlands lift 7TE_ to B*(A),
Homgx(ng , @ g , @7 ,,C) # 0 for all v.

Theorem: (Harris & Kudla 1991) With B as above,

Hompgx(a)(mf ® 1 @ mpp, C) # 0 = L(Ff, atigths 4 9) £ 0,
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Trilinear forms and special values

Theorem: (Harris & Kudla 1991, Gross & Kudla 1992, Bocherer &
Schulze-Pillot 1996, Watson 2002, Ichino 2008) With B as above,
there exist

m local factors C, # 0, v | Noo,
® a quantity T(fg) € Q(fg)
such that

L(fE, el o) = (2, ) [ G- T(F).

v|Noo
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Let ¢; be a Jacquet-Langlands lift of the Coleman family f; to B*
(more soon) and set

=1 & s R Ps.

We produce an analytic function k t3(¢z) on § such that

ts(z)? . f 2
e (B R R )
(or el W) ’ ap(fik)ap(f2k,)

for k € Q., where
ki + ko — ks

2

ks

Symmetrically, we also get functions k — t1(yg) and K t(r).

The t; are trilinear forms on spaces of quaternionic Coleman families,
and are the subject of the remainder of the talk.
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Quaternionic modular forms

G = GLy(Q,), K = GLy(Z,), Ko = {A = (* i) (mod p)} CK

R C B maximal order, Ry C R suborder of level p{ N, splitting
B, = B® Q, — M,(Q,) such that

X C C X

e s

Ko K G

- C

is commutative.
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7> 7
Semigroup: ¥ =GN p P
Broup (pZP ZP)

Let V be a right Q,[X]-module.

V-valued quaternionic modular forms of level J = K or Kj:

M(V,J) = {f LB /B* — V : f(kx)k, = f(x) for all k J}.

M(V, Ky) admits an action of T, {1 Np, and of U,.

Jacquet-Langlands correspondence: There is a
Hecke-equivariant, Q,-linear isomorphism

~

Sk+2(rO(Np)a @p)N_neW — M( Vi, KO)/Ei57

where V| is the irred. rep. of G of dimension k + 1.
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Trilinear forms

Theorem: (Clebsch & Gordan)

dime HOI‘I’]G(Vkl X sz X Vk3, @p(kl -+ k2 -+ k3))
{1 if k is balanced,

0 otherwise.
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Explicitly: P, = P = Q,[x, y]x, Vi = Homg,(Px,Q,)

If k is balanced, then
X 5 1 x % 1 ki
v = 1 N 1 N 2 Y2 c P,:(—k1 o — k3)G,
X2 Y2 X3 ¥3 X3 Y3
where
—k,' k,'/ k,w « . .
k;k = + . I : PE — Pkll,n ® szz,)@ Q Pk337y3-

When it's nonzero,
Home (vkl ® Vio ® Vi, Qplky + ko + k3)> _Q,-t.

where
t;(u):/v;d,u.
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Trilinear forms on coefficients induce trilinear forms on modular
forms:

M(Vi) @ M(Vi,) @ M(Vi) — M(Viq @ Vi, @ Vi)
7 E|s
— M(@p(kl + k2 + k3)) Qp
Abusing notation slightly,
tE . M(Vkl) & M(V/Q) X M(Vk3) — @p
for the composition of the above maps.
If ¥ € M(V4,, K)[ff, ] is nonzero and ¥ = 1 ® 1, ® ¢3, then

tz(v)
(1, )

N

T(ff) =
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p-adic families of trilinear forms

The p-adic L-function arises from deforming t; over the weight space.

Let k; : Z; — O; = O(Q;) be associated to Q; C W.
LetX:Z: XZP and 0201®02®O3.

We might want (but won't quite get) a diagram

M(Dy, (X)) ® M(Dy, (X)) ® M(Dy, (X)) —— O

K l luz.—w?

M(Vkl) ® M(sz) ® M(Vk3)

coming from a trilinear form Dy, (X) ® Dy,(X) @ Dy,(X) 5 0.
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Canonical isomorphism:

Dk1 (X) ® Dkz(X) ® D]k3 (X) — Dk1@1k2@]k3(x3)

where, for t € Z;,

thi®ke®ks . 4k ® tha X ths 0120, 03 =0.

First crack at defining t;:

Xy k3 Xy k3 Xy ki
1 N 1 N 2 Y2
t- = du,
k(u) /x3 X2 Y2 X3 )3 X3 Y3 a
k; & ki ki
where k¥ = oK e 5 © :

Problem: These determinants need not belong to Z.
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Fix: If Y = pZ, xZ, =X (2 é) then

ks ke

X1 N
X3 Y3

X2 Y2
X3 Y3

makes sense on X? x Y, while if

Z= {((X17y1)7 (X2>Y2)) € X% x1y2 — xop1 € pZP},

then
k3
X1 N

X2 Y2

makes sense on X? — Z.
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Therefore, we may define t2 : Dy, eimi; (X2 — Z) x Y) — O by

(2(y1) = /
(X2—Z)xY

Dualizing the extension-by-zero map on analytic functions, we get

k3 k ky

X1 N du

X2 Y2

X1 N
X3 Y3

X2 Y2
X3 Y3

Dk1®k2€9k3(X2 X Y) — Dk169]k269k3((x2 - Z) X Y)a
so we may view t2 as a map Dy, aiek, (X* X Y) — O.

We get an induced map on quaternionic modular forms:

tz : M(Dy, (X)) © M(Di, (X)) @ M(Diy(Y)) — O.
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The p-adic L-function

Let
pi € M(Dy,;(X))I[f]

be the Jacquet-Langlands lift of the Coleman family f;.

We (finally) define

L(h®hH®KB)EO(Q x N x Q)

t2(p1 ® 2 ® 3| W)
<901, S01| Wp><9027 802| Wp><<)037 903| Wp>'

Lo(h®h® )=
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Interpolation

New problem: 2 no longer specializes to t; — the trilinear form that
evaluates special values — for ke Q..

However, if we let
t; - M(Diy (X)) ® M(Dy,(X)) @ M(Diy(Y)) — Qp
be the weight—E specialization of tﬂg, then we have:

Key Proposition: Let ¢); € M(Dy,(X)), i = 1,2,3, be such that
Yi|Up = aj9p;. Then

t2(11 ® 1y ® P3| W) = (1 —p % ) tz (11 @ 2 ® 13).

diar
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Elements of the proof:

1. Analyze the difference between (1)1 ® ¥)|U, and 11| U, ® 12| Up:
(V1 @ Y2)|Up = 2122 <¢1 Ry — (Y1 ® ¢2)|x2—z>7
2. Consider t; as a pairing,
() : M(Dor(X?)) @ M(Dig(Y)) — Qp,
with respect to which p*3 U} is right adjoint to U:
(01 @ 1) |Up, 13| W) = (01 @ 1hn, 3| W,p'S US)
= p’s (1 @ o, P3| U, W)
= pS a3y @ o, 3| Wp)

Theorem: If k € Q., then

o 2 2
<S0/?790/}"Wp> ap(ﬂ,kl)ap(é,kg) &




Lunch! Free afternoon! )
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