Convergence polygon of a connection and differential Grothendieck-Ogg-Shafarevich formula for coverings of p-adic analytic curves

Francesco Baldassarri*

Oxford, March 18, 2010

Let k be a non-archimedean field extension of \mathbb{Q}_p , $|p| = p^{-1}$, and let k° be its ring of integers. We use analytic geometry in the sense of Berkovich. Let X be a rig-smooth compact strictly k-analytic curve. We deal with connections (\mathcal{E}, ∇) on X/k. We use a formal semistable model \mathfrak{X} of X over k° to measure radii of disks globally on X; we assume that \mathcal{E} extends to a locally free $\mathcal{O}_{\mathfrak{X}}$ -module.

We attach to each point $x \in X$, a normalized convergence polygon $\mathcal{N}(x) = \mathcal{N}_{\mathfrak{X}}(x; (\mathcal{E}, \nabla))$ of (\mathcal{E}, ∇) at x, a convex polygon connecting (0, 0) with $(\operatorname{rk} \mathcal{E}, H(x))$ in the first quadrant, in such a way that

- 1. The highest slope of $\mathcal{N}(x)$ is $-\log_p \mathcal{R}(x)$, where $\mathcal{R}(x) = \mathcal{R}_{\mathfrak{X}}(x, (\mathcal{E}, \nabla))$ is our \mathfrak{X} -normalized radius of convergence of (\mathcal{E}, ∇) at x.
- 2. $\mathcal{N}(x)$ is a global intrinsic form of the polygon defined by (P. Th. Young and) Kedlaya when x is a point of Berkovich type (2) or (3).
- 3. the function $x \mapsto \mathcal{N}(x)$ is continuous on X.

Of special interest is the function $x \mapsto H(x)$, called the *total height* of $\mathcal{N}(x)$.

The skeleton $\Gamma = \mathbf{S}(\mathfrak{Y})$ of a formal semistable model \mathfrak{Y} of X is a complete graph in X and there is a continuous retraction $\tau_{\mathfrak{Y}} = \tau_{\Gamma} : X \to \Gamma$. We say that the complete graph Γ controls the connection (\mathcal{E}, ∇) on X if there exists an admissible blow-up $\mathfrak{Y} \to \mathfrak{X}$ such that

(0.0.0.1)
$$\mathcal{N}_{\mathfrak{X}}(x,(\mathcal{E},\nabla)) = \mathcal{N}_{\mathfrak{X}}(\tau_{\mathfrak{Y}}(x),(\mathcal{E},\nabla)) .$$

All these notions extend to the case when (\mathcal{E}, ∇) has meromorphic singularities along a divisor $Z = \mathfrak{Z}_{\eta} \subset X$, where \mathfrak{Z} is a Cartier divisor on \mathfrak{X}/k° . Some open half-lines, ending in Z, must be added as edges to graphs. Then, Γ determines a partition \mathscr{P}_{Γ} of $X \setminus Z$ into a finite family of affinoids with good canonical reduction, open annuli and pointed open disks. For example, the connection with solution $\exp \pi(x - x^p)$ on $\mathcal{O}_{\mathbb{P}^1}(*\infty)$ is controlled by a star-shaped graph consisting of p-1 segments and one half-line (ending at ∞) all departing from the generic point of the disk $D(0, (p^{\frac{1}{p-1}-\frac{1}{p^2}})^+)$.

We interpret and globalize results of Robba, Christol-Mebkhout, and Kedlaya as follows.

1. Every connection on X is controlled by a finite graph Γ .

 $^{^{*}}$ Università di Padova, Dipartimento di matematica pura
e applicata, Via Trieste, 63, 35 121 Padova, Italy.

2. Assume X is projective Z is as above, and Γ controls (\mathcal{E}, ∇) . Assume moreover that for any disk, open annulus, pointed open annulus or affinoid $U \subset X \setminus Z$, the De Rham cohomology of U with coefficients in (\mathcal{E}, ∇) (resp. in $j_{U,X}^{\dagger}(\mathcal{E}, \nabla)$ if U is affinoid) is finite-dimensional. Then the function $x \mapsto H(x)$ is harmonic on $X \setminus Z$, except possibly at the vertices of Γ , *i.e.* at the maximal points η_U of affinoids $U \in \mathscr{P}_{\Gamma}$. In that case, either U = X is a projective curve with good reduction, $\Gamma = {\eta_X}$, and then H is also harmonic at η_X or U is an affinoid with good canonical reduction \mathcal{U} and the laplacian of H at η_U is

$$(0.0.0.2) \qquad \qquad \Delta_{\eta_U}(H) = (\operatorname{rk} \mathcal{E}) \cdot \chi_{\operatorname{rig}}(\mathfrak{U}_s/k) - \chi(X, j_{U \subset X}^{\dagger} \mathcal{DR}_{X/k}((\mathcal{E}, \nabla))).$$

This is our differential formula of Grothendieck-Ogg-Shafarevich in rigid cohomology (due to Christol-Mebkhout in the special case of overconvergent isocrystals satisfying the Robba condition and the **NL** assumption.)

- 3. Consider the special case of a generically finite étale covering $f: Y \to X$ of projective curves and of $(\mathcal{E}, \nabla) = (f_*\mathcal{O}_Y, f_*(d_{Y/k}))$ (in which case the finiteness assumption follows from a result of Grosse-Klönne). Let \mathfrak{X} (resp. \mathfrak{Y}) be a semistable model of X(resp. Y) such that f extends to a finite flat morphism $\mathfrak{f}: \mathfrak{Y} \to \mathfrak{X}$ with discriminant the Cartier divisor \mathfrak{Z} of \mathfrak{X}/k° (this is possible after replacing k by a finite extension). Let $Z = \mathfrak{Z}_{\eta}$; then for any $x \in X \setminus Z$, let the integral closure A of $\mathscr{H}(x)^\circ$ in the affine algebra of the fiber Y_x is a finite flat $\mathscr{H}(x)^\circ$ -algebra. The morphism \mathfrak{f} offers a logarithmic presentation of A, and, therefore, for any $a \in \mathbb{Q}$, the logarithmic Abbes-Saito ramification of $A/\mathscr{H}(x)^\circ$ is $\leq a$ iff $\mathcal{R}_{\mathfrak{X}}(x, (\mathcal{E}, \nabla)) \geq p^{-a}$.
- 4. Under the assumptions of the previous point, if \vec{v} is any tangent vector to X at η_U , represented by either a residue class of U or by the inverse image by specialization of a double point of \mathfrak{X}_s in the closure of \mathfrak{U}_s , then $d_{\vec{v}}H$ is the Swan conductor of Y/X introduced by Huber and discussed by Ramero, at the point $\vec{v} \in X_{III}$ (Huber's notation).