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Happy	  Birthday,	  Andrew!	  
same as in real spaces, it is also legitimate to picture the contour integrals using
figures in three real dimensions, and we shall do so in the following.

We now note that likewise

⇤1365⌅3

⇤1235⌅⇤2365⌅⇤1236⌅⇤1265⌅ =

�

T1365

6

(W.Z2)4
DW (21)

where T1365 has bounding faces W.Z1 = 0, W.Z3 = 0, W.Z5 = 0, W.Z6 = 0.

In both integrals, the necessary condition ⇤1235⌅ ⇥= 0 can be interpreted as the con-
dition that the vertex V135 is a finite point when the bounding face corresponding
to Z�

2 is sent to infinity.

3.1 Why spurious poles cancel: spurious boundaries

We have neglected questions of sign in the preceding discussion, (and the overall
sign will continue to neglected) but more precisely, we have tetrahedral contours
equipped with an orientation. We shall use the sign of the permutation to indicate
relative orientation, thus writing T1365 = �T1356. Then the di�erence between (18)
and (21) is equivalent to integrating over T1345 � T1365 = T1345 + T1356. This is a
new polyhedron P6 = T13[46]5 with 6 vertices, 9 edges and 5 faces (Figure 2). The
vertex V135 is absent. It follows that the combined integral, giving the amplitude,
remains finite even when the vertex V135 is at infinity. This explains geometrically
why the pole ⇤1235⌅ no longer appears in the amplitude.

Figure 2: The polyhedron P6 = T13[46]5, with 6 vertices, 9 edges and 5 faces.

Our guiding idea is that spurious poles arise from spurious boundaries. If we
consider the amplitude to be given by the integration of (W.Z2)�4 over P6, which
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6 Momentum-twistor parameters and
transversals

So far we have expressed the external parameters xi in terms of elements Xi of
CP5. But we can also separate these CP5 elements into representative twistors.
They can immediately be identified as the momentum-twistors as introduced in
(Hodges 2009).

One motivation for doing this is that when the box-integrals are combined with
the helicity structure of actual gauge-fields, we shall certainly need such helicity-
carrying twistor parameters. But even in the 4-mass scalar box-integral, where no
helicity structure is apparent, the twistor-space structure is a useful adjunct.

In (projective) twistor space, the four external xi will correspond to four skew
lines. The analysis of the 4-mass integral has shown that it behaves as a residue
calculation, the poles being determined by � and �̃ as the solutions of a (confor-
mally invariant) quadratic equation. This structure reflects the existence of just
two transversals to those four skew lines. The special case � = �̃ corresponds to
the coincidence of those two transversals.

Figure 1: 4-mass transversals

In Minkowski space, the transversals correspond to the solutions p± of the equa-
tions (p� x1)2 = (p� x2)2 = (p� x3)2 = (p� x4)2 = 0. In principle this is just a
quadratic equation, but it is surprisingly di⇤cult to write down a formula for p±.

14The second term is just the dual of this, so we arrive at the complete result

A(1–!2–!3– 4+ 5+ 6+ ) =

In alternative representations for the complete amplitude, the first of these terms 

could be represented as (for instance) either of these diagrams:

5.3 A(12345678)

By repeated use of the generalised recursion rule, we can derive a sum of 42 terms, 

of which 20 are non-vanishing on the sector with four positive and four negative 

helicities. These 20 are given by the following diagrams. We have used the freedom 

in representation to put them in a form which makes their symmetries manifest: 

they are all presented as quiltings of an octagon by quadrilateral patches: 

+ 7 similar terms

  

+ 3 similar terms

+ 7 similar terms

By ‘similar terms’ is meant, in each case, the diagrams obtained by keeping the 

exterior vertices and the exterior fields the same, but rotating the interior lines and 

dualizing the vertices as necessary.

—14—



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  In	  my	  talk,	  I	  will	  	  	  	  
•  	  explore	  	  cluster	  algebra	  structure	  of	  amplitudes	  in	  N=4	  
Yang-‐Mills	  (which	  we	  observed	  experimentally)	  

•  	  explain	  how	  to	  use	  it	  to	  compute	  2-‐loop	  all-‐n	  MHV	  
amplitudes	  

	  	  	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Plan	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
•  IntroducWon	  	  	  
•  Coproduct	  and	  amplitudes:	  funcWons	  and	  arguments	  
•  Cluster	  algebras	  basics	  
•  Cluster	  polylogs	  as	  amplitudes	  building	  blocks	  
•  Conclusion	  



2-‐loop	  6-‐point	  MHV	  amplitude	  in	  N=4	  SYM	  
	  	  

1.	  FuncWons:	  only	  classical	  polylogs	  degree	  4	  appear	  

	  	  	  	  	  	  	  

Experimental Data #1 — R (2)
6

Now let’s review some “experimental data”.

First, the two-loop six-particle MHV amplitude
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with the same set of arguments.

It is a lucky accident that this amplitude can be expressed entirely
in terms of the classical Lik functions, which allows it to be written
in an essentially canonical form.

Marcus Spradlin, Brown University Cluster Polylogarithms for Scattering Amplitudes

Lik(z) =

Z z

0
Lik�1(t)d log t Li1(z) = � log(1� z)
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2-‐loop	  6-‐point	  MHV	  Amplitude	  
	  	  
	  

1.  FuncWons:	  only	  classical	  polylogs	  appear	  	  

2.  Arguments:	  

Experimental Data #1 — R (2)
6

Now let’s review some “experimental data”.

First, the two-loop six-particle MHV amplitude

R
(2)

6

=
X

cyclic

Li
4

✓

�h1234ih2356i
h1236ih2345i

◆

� 1

4
Li

4

✓

�h1246ih1345i
h1234ih1456i

◆

+ products of Lik(�x) functions of lower weight

with the same set of arguments.

It is a lucky accident that this amplitude can be expressed entirely
in terms of the classical Lik functions, which allows it to be written
in an essentially canonical form.

Marcus Spradlin, Brown University Cluster Polylogarithms for Scattering Amplitudes

Lik(z) =

Z z

0
Lik�1(t)d log t Li1(z) = � log(1� z)

Goncharov,	  Spradlin,	  Vergu,	  AV	  



KinemaWcs	  
•  KinemaWcs	  of	  an	  n-‐point	  amplitude	  can	  be	  
described	  in	  terms	  of	  n	  momentum	  twistors	  

	  

	  

•  Dual	  conformal	  objects	  are	  raWos	  of	  4-‐brackets	  

•  Amplitudes	  are	  funcWons	  on	  3(n-‐5)	  dim	  space	  	  

Hodges	  

Drummond,	  Henn,	  Korchemsky,	  Sokachev	  

2 The Kinematic Space Confn(CP3)

Having argued that scattering amplitudes are a collection of very interesting func-

tions, we begin by addressing a seemingly simple-minded question: what variables

do these functions depend on? Despite initial appearances this is far from a triv-

ial question, and somewhat surprisingly a completely satisfactory understanding has

only emerged rather recently.

We describe the kinematics of an n-particle scattering amplitude in terms of

configurations of points Zi 2 CP3. The Zi, which are known as momentum twistors

and were introduced in ref. [22], serve to parametrize the submanifold of momenta

pi 2 C4 which satisfy the required constraints p2i = 0 (on-shell) and p1+ · · ·+ pn = 0

(energy-momentum conservation). We can assemble the homogeneous coordinates of

these points in a 4⇥ n matrix. Note that since each column of this matrix contains

the homogeneous coordinates of a point in CP3, we can rescale each column by a

seperate nonzero complex number without changing the kinematic configuration.

Everything in the previous paragraph applies equally well to any massless field

theory. In the planar limit of SYM theory we always work with color-reduced subam-

plitudes, which means that we should consider configurations of points in CP3 with

a specified cyclic ordering Z1, . . . , Zn. A very special feature of SYM theory in this

limit is that all amplitudes are invariant under dual conformal transformations [7–

13], which are generated by the action of GL(4,C) multiplying the 4 ⇥ n matrix of

Z’s from the left.

The space we have just described—complex 4⇥n matrices modulo the left-action

of GL(4,C) as well as independent rescaling of the columns—defines the quotient

Gr(4, n)/(C⇤)n�1 of the Grassmannian. We denote this space by Confn(CP3), read

as “configurations of n points in CP3”. Scattering amplitudes of n particles in SYM

theory are functions on this 3(n� 5)-dimensional kinematic domain.

Because the conformal group acts on the homogeneous coordinates of CP3 as a

GL(4,C) transformation, the natural dual conformal covariant objects are 4-brackets

of the form hijkli := det(ZiZjZkZl), which is just the C4 volume of the parallelepiped

built on the vectors (Zi, Zj, Zk, Zl).

It is useful to note an important feature of these spaces. The Grasmmannian

duality Gr(k, n) = Gr(n � k, n) means that configurations of n points in CPk are

canonically dual to configurations of n points in CPn�k�2 (see appendix A for much

more about this duality). Explicitly, at six points there is a relationship between

four-brackets in CP3 and two-brackets in CP1 given by

hijkli = 1

2!
✏ijklmnhmni, hiji = 1

4!
✏ijklmnhklmni, (2.1)

while the relationship at seven points between four-brackets in CP3 and three-

– 4 –

Figure 1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

point x in spacetime corresponds to set of twistors Z = (�, µ) which satisfy

µ

↵̇

= x

↵ ↵̇

�

↵

. (2.2)

Twistors satisfying this relation form a projective line in CP3. Even though Z has

the components of a point in C4, the incidence relation cannot distinguish Z from

tZ, and therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—

all that is needed is a pair of twistors, say Z

A

and Z

B

, that belong to the line. Given

the twistors, the line or spacetime point is found by solving the four equations coming

from imposing the incidence relation for Z

A

and Z

B

with x. It is easy to check that

the solution is,

x

↵ ↵̇

=
�

A,↵

µ

B,↵̇

h�
A

�

B

i +
�

B,↵

µ

A,↵̇

h�
B

�

A

i . (2.3)

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors

h�
A

�

B

i ⌘ ✏

↵ �

�

↵

A

�

�

B

).

Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn

}. Using the

association x

a

$ (Z
a

, Z

a+1), n spacetime points are defined. Quite nicely, it is trivial

that p

2
a

= (x
a

�x

a�1)2 = 0 because the corresponding lines, or (CP1s), intersect. This

is illustrated in Figure 1.

Given the importance of this latter fact, it is worth giving it a slightly more

detailed discussion than we have so far. If two lines in twistor-space intersect, i.e.

share a twistor Zint, then the corresponding spacetime points, say x and y, associated

with the lines are null-separated. To see this, take the di↵erence of the incidence

– 8 –

posed by Schubert in the 1870’s, and we discuss the solution of these “Schubert

problems” in detail.

In section 3 we introduce chiral integrals with unit leading singularities which

play a central role in our story. We illustrate how they work starting with the

simplest case of 1-loop MHV amplitudes.

In section 4, we discuss another feature of chiral integrals with unit leading

singularities—generic integrals of this form are manifestly infrared finite, and can

be used to express finite objects related to scattering amplitudes, such as the ratio

function [14].

In section 5, we construct a basis for all 1-loop integrands, whose building blocks

are not the familiar boxes or even pentagons, but a natural set of chiral octagons

with unit leading singularities. We also compute the finite 1-loop integrals explicitly,

and use these results to give a simple formula for the NMHV ratio-function at 1-loop,

for any number of particles.

In section 6, we discuss multi-loop amplitudes. We describe our heuristic strategy

for using leading singularities to tailor momentum-twistor integrals to the amplitude,

and show how this works for the 1-loop MHV amplitude, reproducing one of the

local forms first derived using the polytope picture of [9]. We also discuss the 1-loop

NMHV amplitudes in the same way. We then extend these methods to two loops

and beyond, and show how to “glue” the 1-loop expressions together to produce

natural conjectures for all 2- and 3-loop MHV amplitudes, as well all 2-loop NMHV

amplitudes. These conjectures are verified by comparing with the integrand derived

from the all-loop recursion relation.

A number of appendices discuss various technical points needed in the body of

the paper, including a detailed discussion of the 2-loop NMHV and 3-loop MHV

integrands.

2. Foundations

In theories with massless particles, a well-known and convenient way of trivializing

the constraint p

2
a

= 0 for each particle is to introduce a pair of spinors �

(a) and e

�

(a),

replacing p

µ

a

7! (p
a

)
↵ ↵̇

⌘ p

µ

a

(�
µ

)
↵↵̇

⌘ �

(a)
↵

e

�

(a)
↵̇

. Of course, this map is not invertible, as

any rescaling {�,

e

�} ! {t�, t

�1
e

�} leaves p invariant. This reflects that these variables

come with a new source of redundancy; in the case of particles with spin, this re-

dundancy is quite welcomed as it allows the construction of functions that transform

– 6 –

with fixed projective weights as S-matrix elements under Lorentz transformations.

This is all well-known under the name of the spinor-helicity formalism [15–19].

Amplitudes are supported on momenta that satisfy momentum conservation.

Clearly, it would be convenient to find variables where this constraint,
P

a

p

a

= 0, is

trivial. In planar theories, where color ordering is available, there is a natural way to

achieve this, by choosing instead to express the external momenta in terms of what

are known as dual-space coordinates, writing p

a

⌘ x

a

� x

a�1, [20].

To see the role played by planarity, consider the standard decomposition of scat-

tering amplitudes according to the overall color structure, keeping only the leading

color part:

A

n

= Tr(T a1
T

a2
. . . T

an)A
n

(1, 2, . . . , n) + permutations; (2.1)

here, each partial amplitude A
n

(1, 2, . . . , n) can be expanded in perturbation theory,

and we denote the L-loop contribution by AL�loop
n

. Partial amplitudes are computed

by summing over Feynman diagrams with a given color-ordering structure.

In this paper we only consider the planar sector of the theory, and therefore

AL�loop
n

will always refer to the leading-color, partial amplitude in the planar limit.

Restricted to a particular partial amplitude, say, A
n

(1, 2, . . . , n), each momenta

can be expressed as the di↵erence of two “spacetime” points. More precisely, we

make the identification p

a

⌘ x

a

� x

a�1, with p1 = x1 � x

n

. It is clear that mo-

menta obtained in this way automatically satisfy
P

a

p

a

= 0—and the redundancy

introduced in this case is a translation x

a

! x

a

+ y by any fixed vector y.

Now, the only poles that can occur in A
n

(1, 2, . . . , n) are of the form
P

b

m=a

p

m

,

i.e., only the sum over consecutive momenta can appear. In the dual variables these

become
P

b

m=a+1 p

m

= x

a

� x

b

. The same kind of simplifications happen in planar

Feynman diagrams to all orders in perturbation theory as we will describe.

Now we have the variables {�,

e

�} which make the null condition trivial while ig-

noring momentum conservation, while the dual-space variables do the opposite. It is

perfectly natural to wonder if there exists any way to combine these two constructions

which makes both the null-condition and momentum conservation trivial. It turns

out that such a set of variables does exist: they are known as momentum-twistors

and were introduced by Hodges in [13].

The standard twistor construction developed in the 1960’s [21] starts by making

a connection between points in an auxiliary space—twistor-space—and null rays

in spacetime. Likewise, a complex line in twistor space is related to a point in

spacetime. The key formula is called the incidence relation, according to which a

– 7 –

Z = (�↵, x↵↵̇�
↵)

Null	  momentum	  

Momentum	  conservaWon	  

Confn(CP

3) = Gr(4, n)/(C⇤)n
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ua =
(pa + pa+1)2(pa+3 + pa+4)2

(pa + pa+1 + pa+2)2(pa+2 + pa+3 + pa+4)2

va =
1

ua
� 1

x

±
a =

ua

2u1u2u3
(u1 + u2 + u3 � 1±

p
(u1 + u2 + u3 � 1)2 � 4u1u2u3)

obviously inherits this property. However the A2 function has a non-local ⇤2 B2 component,

so it is rather amazing that the particular linear combination of A2’s appearing inside A3

give rise to the completely local eq. (4.5). Moreover, the two coproduct components see

distinct aspects of the geometry of the Stashe↵ polytope—the ⇤2 B2 component involves the

three quadrilateral faces (i.e., the A1⇥A1 subalgebras) while the B3⌦C⇤ component involves

the six pentagonal faces (the A2 subalgebras). It is tempting to anticipate the possibility

that this notion of locality within the Stashe↵ polytope might underlie the structure of SYM

theory scattering amplitudes in a very deep way. If this proves to be so, we cannot help

but wonder (following somewhat the motivation espoused by [3]) whether there exists an

alternative formulation of SYM theory scattering amplitudes which makes this “locality in

the Stashe↵ polytope” manifest.

A conjecture central to our approach is that the set of fA3 for all possible A3 subalgebras

of Gr(4, n) spans the space of all weight-four cluster polylogarithm functions whose coproduct

components are completely “local” (involving only quadrilaterals in ⇤2 B2 and only pentagons

in B3⌦C⇤).

We now display a simple realization of the A3 function in a familiar setting: the Gr(4, 6)

algebra, relevant to 6-particle scattering, which is in fact isomorphic to A3. In order to align

with the notation in [2], we consider (x1, x2, x3) = (x�1 , e6, 1/x
+
1 ) and relate xi,1 = x

�
i and

xi,2 = x

+
i . The 15 X -coordinates can then be written as

v1 =
h1246ih1345i
h1234ih1456i , v2 =

h1235ih2456i
h1256ih2345i , v3 =

h1356ih2346i
h1236ih3456i ,

x

+
1 =

h1456ih2356i
h1256ih3456i , x

+
2 =

h1346ih2345i
h1234ih3456i , x

+
3 =

h1236ih1245i
h1234ih1256i ,

x

�
1 =

h1234ih2356i
h1236ih2345i , x

�
2 =

h1256ih1346i
h1236ih1456i , x

�
3 =

h1245ih3456i
h1456ih2345i , (4.6)

e1 =
h1246ih3456i
h1456ih2346i , e2 =

h1235ih1456i
h1256ih1345i , e3 =

h1256ih2346i
h1236ih2456i ,

e4 =
h1236ih1345i
h1234ih1356i , e5 =

h1234ih2456i
h1246ih2345i , e6 =

h1356ih2345i
h1235ih3456i .

Notably absent from this list are the three cross-ratios u1, u2, u3 often used in the physics

literature; these are related to the vi’s by ui = 1/(1+vi). Evaluating eq. (4.4) on the variables

in (4.6) generates what we will call “the Gr(4, 6) function”.

It is interesting to note that the transformation of the Gr(4, 6) function with respect

to the dihedral group acting on the 6 particles is opposite to that of the 5-particle dihedral

group acting on the A2 function. Specifically, the Gr(4, 6) function is invariant under flipping

particle i to particle 7 � i, but it is antisymmetric under a cyclic rotation i ! i + 1. This

antisymmetry is manifest for example in eq. (4.5) upon noting that the x

±
i transform under

a cyclic rotation according to

x

±
i ! x

⌥
i+1. (4.7)
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Natural	  quesWons	  

•  Why	  does	  the	  remainder	  funcWon	  contain	  	  
	  	  	  	  	  only	  classical	  polylogs	  ?	  

•  Why	  do	  these	  parWcular	  arguments	  appear	  ?	  

•  How	  to	  generalize	  this	  formula?	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  I	  will	  focus	  in	  my	  talk	  on	  2-‐loops	  all	  n.	  

	  	  	  	  	  	  For	  higher	  loops	  and	  NMHV:	  	  see	  very	  impressive	  work	  by	  Dixon,	  	  	  
Drummond,	  Duhr,	  Pennington,	  von	  Hippel	  

2.3 Cluster A- and X -coordinates

Next we provide a lightning review (see [2] for details) of the types of variables which make

an appearance in the study of scattering amplitudes in SYM theory: cluster A- and cluster

X -coordinates. Much of what we have to say about cluster polylogarithm functions may be

interesting to investigate in the context of general algebras, but we restrict our attention here

largely to Grassmannian cluster algebras, and in particular to the Gr(4, n) algebra relevant

to the kinematic configuration space Confn(P3) of n-particle scattering in SYM theory.

Examples of A-coordinates on Gr(4, n) include the ordinary Plücker coordinates hijkli
as well as certain particular homogeneous polynomials in them such as

ha(bc)(de)(fg)i ⌘ habdeihacfgi � habfgihacdei,
hab(cde) \ (fgh)i ⌘ hacdeihbfghi � hbcdeihafghi,

(2.12)

while the X -coordinates are certain cross-ratios which can be built from A-coordinates.

For n > 7 there exist arbitrarily more complicated A-coordinates on Gr(4, n). These

appear to play no role at two loops (they likely do appear at higher loop order) since the

symbol of the n-point two-loop MHV amplitude was computed in [5] and nothing more exotic

than the examples shown in eq. (2.12) occurs.

We emphasize that not every homogeneous polynomial of Plücker coordinates is an A-

coordinate, nor is every cross-ratio one can write down an X -coordinate. The only surefire

algorithm for determining such coordinates is via the mutation algorithm (see [2]), but we

note here an empirical rule for selecting X -coordinates for which we know no counterexample:

a conformally invariant ratio x of A-coordinates is an X -coordinate if 1 + x also factors into

a ratio of products of A-coordinates and if x is positive-valued everywhere inside the positive

domain (this is the subset of Confn(P3) for which habcdi > 0 whenever a < b < c < d)7. This

algorithm reveals for example that between

h1235ih1278ih2456ih5678i
h1256ih2578ih78(123) \ (456)i and � h2(13)(56)(78)ih5(12)(46)(78)i

h1256ih2578ih78(123) \ (456)i (2.13)

(whose di↵erence is 1) only the first is an X -coordinate.

2.4 Cluster polylogarithm functions

Now we turn to the heart of the paper: providing a definition of cluster polylogarithm func-

tions. Good definitions in mathematics must lie in a Goldilocks zone: they must be su�ciently

constraining so as to select out only certain objects with interesting behavior, yet they must

not be so constraining as to preclude the existence of any examples. In defining cluster

polylogarithm functions we are guided by the physics of two-loop MHV amplitudes in SYM

theory: these functions certainly exist, yet have properties which render them very special

amongst the class of all weight-four polylogarithm functions on Confn(P3).

7It is a logical possibility that there could exist some x which satisfies this criterion yet which is not an

X -coordinate, though we have never encountered such an object in various explorations through n = 9.
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Next we turn our attention to a set of well-known symbol operators ⇢n which

are constructed to annihilate products of lower-weight functions. These are defined

recursively as follows (see [28] for thorough modern review):

⇢1 = id,

⇢n(a1 ⌦ · · ·⌦ an) = ⇢n�1(a1 ⌦ · · ·⌦ an�1)⌦ an � ⇢n�1(a2 ⌦ · · ·⌦ an)⌦ a1.
(4.15)

It can be checked that ⇢n(S) = 0 for some symbol S if and only if S is the symbol

of a linear combination of products of functions of weight less than n. Acting with

⇢n on a symbol is useful in so far as it allows one to focus on the motivically most

interesting part of the corresponding function while throwing away less-interesting

components. In particular at weight four, any product of lower-weight functions nec-

essarily involves only the classical polylogarithms and is therefore in a sense trivial.

Given any polylogarithm function in L4 we can use this map to construct an

element of B3 ⌦ C⇤ as follows. First, find the symbol S of the function and then

compute ⇢4(S). We then express the result as a linear combination of the form

⇢4(S) =
X

i

(1� zi) ^ zi ⌦ zi ⌦ wi (4.16)

for some collection of z’s and w’s. Then we integrate in the first three entries (1 �
zi) ^ zi ⌦ zi ! {z}i. In this way we say that the motivic content of the function is
P

i{zi}3 ⌦ wi 2 B3 ⌦ C⇤.

In this section we have reviewed how to associate two quantities, one an element

of ^2
B2 and the other an element of B3 ⌦ C⇤, to every element of L4. These are

two examples of what we consider ‘the essential motivic content’ of a polylogarithm

function. We present a few explicit examples of the motivic content of some two-

loop scattering amplitudes in the following section. A comprehensive treatment of the

motivic content of functions of weight higher than four will be given in a subsequent

publication.

5 Results for Two-Loop n = 7 MHV Motivic Amplitudes

Now that we have defined some examples of motivic content, we will present some

explicit results. Using the symbol of the the two-loop n-point MHV amplitude, as

computed in [25], one can calculate the projections to ^2
B2 and B3⌦C⇤ as defined in

the previous section. We defer results for general n to a subsequent publication and

present here explicit results only for n = 7, since our main goal at the moment is to

call the reader’s attention to the same two non-trivial features that we emphasized

in section 3. These are first of all that the entry z appearing inside each {z}2 or

{z}3 is a single cross-ratio (rather than, as might have been the case, some arbitrary

algebraic function of cross-ratios); and secondly, that of the thousands of such cross-

ratios one can form at n = 7, only a small handful actually appear in the motivic
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beginning with ⇥(a1) = a1. Here, in a slight abuse of notation which we will perpetuate

throughout this section, we display for simplicity not how ⇥ acts on a general weight-k function

but rather how it acts on the symbol of such a function.

We use L• to denote the algebra of polylogarithm functions modulo products of functions

of lower weight. It is a commutative graded Hopf algebra with a coproduct � : L• ⇧⌅ �2L•
which satisfies �2 = 0, giving it the structure of a Lie coalgebra. Explicitly, � may be computed

(again, at the level of symbols) by

�(a1 ⇤ · · ·⇤ ak) =
k�1⇧

n=1

(a1 ⇤ · · ·⇤ an)
⌃

(an+1 ⇤ · · ·⇤ ak). (2.3)

We let Bk denote the subset of Lk generated by the classical polylogarithm functions.

The case k = 1 is trivial (any linear combination of logarithm functions can be combined into

a single logarithm) so we simply write “x” to denote the function log x and therefore denote

L1 = C⇥, the multiplicative group of nonzero complex numbers. For k > 1 elements of Bk

are finite linear combinations of objects denoted by {x}k, which can be read as shorthand for

the function �Lik(�x). These satisfy3

�{x}k =

�
(1 + x)

⌅
x k = 2,

{x}k�1
⇥

x k > 2.
(2.4)

For k = 2, 3 it is a theorem that Lk = Bk, but at weight 4, for the first time, the coproduct

has two separate components

�(a1 ⇤ a2 ⇤ a3 ⇤ a4)|�2 B2
= ⇥(a1 ⇤ a2)

⌃
⇥(a3 ⇤ a4), (2.5)

�(a1 ⇤ a2 ⇤ a3 ⇤ a4)|B3 ⇤C⇤ = ⇥(a1 ⇤ a2 ⇤ a3)
⇤

a4 � ⇥(a2 ⇤ a3 ⇤ a4)
⇤

a1. (2.6)

The classical function Li4(x) has coproduct components

� Li4(x)|�2 B2
= 0, (2.7)

� Li4(x)|B3 ⇤C⇤ = �{�x}3 ⇤ x, (2.8)

so it is clear that any polylogarithm function of weight 4 which has a nonzero �2 B2 content

cannot possibly be written in terms of classical functions. It is moreover conjectured that

the converse is true [27]4. In this sense we can say that it is the �2 B2 coproduct component

which measures the “non-trivial part” of a weight-4 polylogarithm function.

3The top line is an element of �2L1, while the bottom is the element of the summand in �2(Lk�1 ⇥ L1)

given by vectors of the form fk�1 ⇤ f1 � f1 ⇤ fk�1, and we use the standard notation of denoting such an

element by simply by fk�1 ⇤ f1 ⌅ Lk�1 ⇤ L1.
4More generally, it is conjectured that a weight-k function fk can be written in terms of the classical

polylogarithm Lik if and only if all components of �fk vanish except possibly Lk�1 ⇤ C⇤.
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Examples	  

	   This can be verified on the following identity

Li1,1(x, y) + Li1,1(y, x) + Li2(xy) = ln(1� x) ln(1� y). (105)

The symbol of Li2,2(x, y) is given by

(y � 1)⌦ (x� 1)⌦ x⌦ y + (y � 1)⌦ (x� 1)⌦ y ⌦ x+
(y � 1)⌦ y ⌦ (x� 1)⌦ x� (xy � 1)⌦ (x� 1)⌦ x⌦ y�
(xy � 1)⌦ (x� 1)⌦ y ⌦ x� (xy � 1)⌦ x⌦ (x� 1)⌦ x+
(xy � 1)⌦ x⌦ x⌦ x + (xy � 1)⌦ x⌦ x⌦ y+
(xy � 1)⌦ x⌦ (y � 1)⌦ y + (xy � 1)⌦ x⌦ y ⌦ x+
(xy � 1)⌦ (y � 1)⌦ x⌦ y + (xy � 1)⌦ (y � 1)⌦ y ⌦ x�
(xy � 1)⌦ y ⌦ (x� 1)⌦ x + (xy � 1)⌦ y ⌦ x⌦ x+
(xy � 1)⌦ y ⌦ (y � 1)⌦ y.

(106)

This can be checked by using

Li
a,b

(x, y) + Li
b,a

(y, x) + Li
a+b

(xy) = Li
a

(x) Li
b

(x) (107)

for a = b = 2.
For Li3,1(x, y) the symbol is

(y � 1)⌦ (x� 1)⌦ x⌦ x� (xy � 1)⌦ (x� 1)⌦ x⌦ x+
(xy � 1)⌦ x⌦ x⌦ x + (xy � 1)⌦ x⌦ x⌦ (y � 1)+
(xy � 1)⌦ x⌦ (y � 1)⌦ x + (xy � 1)⌦ x⌦ y ⌦ (y � 1)+
(xy � 1)⌦ (y � 1)⌦ x⌦ x + (xy � 1)⌦ y ⌦ x⌦ (y � 1)+
(xy � 1)⌦ y ⌦ (y � 1)⌦ x + (xy � 1)⌦ y ⌦ y ⌦ (y � 1).

(108)

For Li1,3(x, y) the symbol is

(y � 1)⌦ (x� 1)⌦ y ⌦ y + (y � 1)⌦ y ⌦ (x� 1)⌦ y+
(y � 1)⌦ y ⌦ y ⌦ (x� 1)� (xy � 1)⌦ (x� 1)⌦ y ⌦ y�
(xy � 1)⌦ x⌦ (x� 1)⌦ y � (xy � 1)⌦ x⌦ x⌦ (x� 1)+
(xy � 1)⌦ x⌦ x⌦ x + (xy � 1)⌦ x⌦ x⌦ y�
(xy � 1)⌦ x⌦ y ⌦ (x� 1) + (xy � 1)⌦ x⌦ y ⌦ x+
(xy � 1)⌦ x⌦ y ⌦ y + (xy � 1)⌦ (y � 1)⌦ y ⌦ y�
(xy � 1)⌦ y ⌦ (x� 1)⌦ y � (xy � 1)⌦ y ⌦ x⌦ (x� 1)+
(xy � 1)⌦ y ⌦ x⌦ x + (xy � 1)⌦ y ⌦ x⌦ y�
(xy � 1)⌦ y ⌦ y ⌦ (x� 1) + (xy � 1)⌦ y ⌦ y ⌦ x.

(109)
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�(a1 ⇤ a2 ⇤ a3 ⇤ a4)|B3 ⇤C⇤ = ⇥(a1 ⇤ a2 ⇤ a3)
⇤

a4 � ⇥(a2 ⇤ a3 ⇤ a4)
⇤

a1. (2.6)

The classical function Li4(x) has coproduct components

� Li4(x)|�2 B2
= 0, (2.7)

� Li4(x)|B3 ⇤C⇤ = �{�x}3 ⇤ x, (2.8)

so it is clear that any polylogarithm function of weight 4 which has a nonzero �2 B2 content

cannot possibly be written in terms of classical functions. It is moreover conjectured that

the converse is true [27]4. In this sense we can say that it is the �2 B2 coproduct component

which measures the “non-trivial part” of a weight-4 polylogarithm function.

3The top line is an element of �2L1, while the bottom is the element of the summand in �2(Lk�1 ⇥ L1)

given by vectors of the form fk�1 ⇤ f1 � f1 ⇤ fk�1, and we use the standard notation of denoting such an

element by simply by fk�1 ⇤ f1 ⌅ Lk�1 ⇤ L1.
4More generally, it is conjectured that a weight-k function fk can be written in terms of the classical

polylogarithm Lik if and only if all components of �fk vanish except possibly Lk�1 ⇤ C⇤.
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• Li2,2(x,y) has the symbol: 

!

!

• And coproduct:

Coproduct Examples

�Li2,2(x, y)|B2^B2 = {�y}2 ⇤ {�x}2 � {�xy}2 ⇤ {�x}2 + {�xy}2 ⇤ {�y}2,

�Li2,2(x, y)|B3⌦C⇤ = {�x}3 ⇥ y � 2{�x}3 ⇥ (xy � 1)� {�y}3 ⇥ x+ 2{�y}3 ⇥ (xy � 1)

�
⇢

1� x

xy � 1

�

3

⇥ x+

⇢
1� y

xy � 1

�

3

⇥ y � {xy � 1}3 ⇥ y �
⇢

xy

1� xy

�

3

⇥ x

�
⇢
x(1� y)

xy � 1

�

3

⇥ y +

⇢
(1� x)y

xy � 1

�

3

⇥ x+ {x� 1}3 ⇥ x� {y � 1}3 ⇥ y

(y � 1)⌦ (x� 1)⌦ x⌦ y + (y � 1)⌦ (x� 1)⌦ y ⌦ x+ (y � 1)⌦ y ⌦ (x� 1)⌦ x

� (xy � 1)⌦ (x� 1)⌦ x⌦ y � (xy � 1)⌦ (x� 1)⌦ y ⌦ x� (xy � 1)⌦ x⌦ (x� 1)⌦ x

+ (xy � 1)⌦ x⌦ x⌦ x+ (xy � 1)⌦ x⌦ x⌦ y + (xy � 1)⌦ x⌦ (y � 1)⌦ y

+ (xy � 1)⌦ x⌦ y ⌦ x+ (xy � 1)⌦ (y � 1)⌦ x⌦ y + (xy � 1)⌦ (y � 1)⌦ y ⌦ x

� (xy � 1)⌦ y ⌦ (x� 1)⌦ x+ (xy � 1)⌦ y ⌦ x⌦ x+ (xy � 1)⌦ y ⌦ (y � 1)⌦ y

X

i,j

((1� zi) ^ zi) ^ ((1� wj) ^ wj)

Li2,2(x, y) =

X

0<n<m

x

n

n

2

y

m

m

2

Symbol[Li2,2(x, y) =

X

0<n<m

x

n

n

2

y

m

m

2
] =

1

Elements of Bk are finite linear combinations of {x}k
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B3 ⌦ C⇤

4.3 Motivic scattering amplitudes

The L-loop n-particle MHV motivic amplitudes in SYM theory, considered modulo

products, are elements AM
n,L 2 L2L. The two-loop motivic amplitudes are therefore

elements

AM
n,2(Z1, . . . , Zn) 2 L4(F ), F = Q(Z1, . . . , Zn) (4.29)

defined by a generic configuration of n points (Z1, . . . , Zn) in CP3. So, according to

the conjectural description (4.26) of L4, they can be expressed via Li4(z) if and only

if the ⇤2B2 obstruction vanishes. This is exactly what happened in [19] where the

two-loop n = 6 MHV amplitude was calculated as a sum of classical 4-logarithms.

The problem set out for us here and subsequent work is therefore:

Problem. Calculate the motivic n-particle two-loop MHV amplitudes for n > 6.

More specifically, this amounts to computing the coproduct

�M(AM
n,2(Z1, . . . , Zn)) 2 ⇤2B2(F )

M

B3(F )⌦ F ⇤
Q, F = Q(Z1, . . . , Zn). (4.30)

Unlike the mysterious extension (4.26), which is non-split, the coproduct is given

in terms of the groups Bn, n = 1, 2, 3, and so its calculation is a precise problem. The

coproduct determines the amplitude as a function up to a constant and products of

similar functions of lower weight.

We would like to stress that without the motivic approach one can not even

formulate the above problem—there is no way to define the coproduct just on the

level of functions. Moreover, due to non-split nature of the extension (4.26), there is

even no canonical way to write a general element of L4.

5 Results for the Two-Loop n = 7 MHV Motivic Amplitudes

Using the symbol of the two-loop n-point MHV amplitude, as computed in [39], one

can calculate the projections to ⇤2B2 and B3 ⌦C⇤ as defined in the previous section

and summarized in eq. (4.30). For n = 6 the former is trivial, as was noted already

in [19], while the B3 ⌦ C⇤ content may be read o↵ immediately from (3.1):
3

X

i=1

{x+
i }3 ⌦ x+

i + {x�
i }3 ⌦ x�

i � 1

2
{vi}3 ⌦ vi. (5.1)

We defer results for general n to a subsequent publication and present here

explicit results only for n = 7, since our main goal at the moment is to call the reader’s

attention to the same two non-trivial features that we emphasized in section 3. The

first feature is that the entry z appearing inside each {z}2 or {z}3 is a single cross-

ratio (rather than, as might have been the case, some arbitrary algebraic function of

cross-ratios); the second feature is that of the thousands of such cross-ratios one can

form at n = 7, only a small handful actually appear in the motivic amplitudes. The

structure of the results presented here will be extensively discussed in subsequent

sections.
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B2 ^B2 = 0

obviously inherits this property. However the A2 function has a non-local ⇤2 B2 component,

so it is rather amazing that the particular linear combination of A2’s appearing inside A3

give rise to the completely local eq. (4.5). Moreover, the two coproduct components see

distinct aspects of the geometry of the Stashe↵ polytope—the ⇤2 B2 component involves the

three quadrilateral faces (i.e., the A1⇥A1 subalgebras) while the B3⌦C⇤ component involves

the six pentagonal faces (the A2 subalgebras). It is tempting to anticipate the possibility

that this notion of locality within the Stashe↵ polytope might underlie the structure of SYM

theory scattering amplitudes in a very deep way. If this proves to be so, we cannot help

but wonder (following somewhat the motivation espoused by [3]) whether there exists an

alternative formulation of SYM theory scattering amplitudes which makes this “locality in

the Stashe↵ polytope” manifest.

A conjecture central to our approach is that the set of fA3 for all possible A3 subalgebras

of Gr(4, n) spans the space of all weight-four cluster polylogarithm functions whose coproduct

components are completely “local” (involving only quadrilaterals in ⇤2 B2 and only pentagons

in B3⌦C⇤).

We now display a simple realization of the A3 function in a familiar setting: the Gr(4, 6)

algebra, relevant to 6-particle scattering, which is in fact isomorphic to A3. In order to align

with the notation in [2], we consider (x1, x2, x3) = (x�1 , e6, 1/x
+
1 ) and relate xi,1 = x

�
i and

xi,2 = x

+
i . The 15 X -coordinates can then be written as

v1 =
h1246ih1345i
h1234ih1456i , v2 =

h1235ih2456i
h1256ih2345i , v3 =

h1356ih2346i
h1236ih3456i ,

x

+
1 =

h1456ih2356i
h1256ih3456i , x

+
2 =

h1346ih2345i
h1234ih3456i , x

+
3 =

h1236ih1245i
h1234ih1256i ,

x

�
1 =

h1234ih2356i
h1236ih2345i , x

�
2 =

h1256ih1346i
h1236ih1456i , x

�
3 =

h1245ih3456i
h1456ih2345i , (4.6)

e1 =
h1246ih3456i
h1456ih2346i , e2 =

h1235ih1456i
h1256ih1345i , e3 =

h1256ih2346i
h1236ih2456i ,

e4 =
h1236ih1345i
h1234ih1356i , e5 =

h1234ih2456i
h1246ih2345i , e6 =

h1356ih2345i
h1235ih3456i .

Notably absent from this list are the three cross-ratios u1, u2, u3 often used in the physics

literature; these are related to the vi’s by ui = 1/(1+vi). Evaluating eq. (4.4) on the variables

in (4.6) generates what we will call “the Gr(4, 6) function”.

It is interesting to note that the transformation of the Gr(4, 6) function with respect

to the dihedral group acting on the 6 particles is opposite to that of the 5-particle dihedral

group acting on the A2 function. Specifically, the Gr(4, 6) function is invariant under flipping

particle i to particle 7 � i, but it is antisymmetric under a cyclic rotation i ! i + 1. This

antisymmetry is manifest for example in eq. (4.5) upon noting that the x

±
i transform under

a cyclic rotation according to

x

±
i ! x

⌥
i+1. (4.7)
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These	  are	  Fock-‐Goncharov	  
coordinates	  for	  A3	  cluster	  algebra	  
as	  I	  will	  explain	  momentarily.	  
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Is	  there	  a	  math	  structure?	  How	  to	  integrate	  this?	  

Examples of A-coordinates on Gr(4, n) include the ordinary Plücker coordinates ⌥ijkl�
as well as certain particular homogeneous polynomials in them such as

⌥a(bc)(de)(fg)� ⇥ ⌥abde�⌥acfg� � ⌥abfg�⌥acde�, (2.12)

⌥ab(cde) ⌃ (fgh)� ⇥ ⌥acde�⌥bfgh� � ⌥bcde�⌥afgh�, (2.13)

while the X -coordinates are certain cross-ratios which can be built from A-coordinates.

For n > 7 there exist arbitrarily more complicated A-coordinates on Gr(4, n). But these

appear to play no role at two loops (they likely do appear at higher loop order) since the

symbol of the n-point two-loop MHV amplitude was computed in [4] and nothing more exotic

than the examples shown in eqs. (2.12) and (2.13) occurs.

We emphasize that not every homogeneous polynomial of Plücker coordinates is an A-

coordinate, nor is every cross-ratio one can write down an X -coordinate. The only surefire

algorithm for determining such coordinates is via the mutation algorithm (see [2]), but we

note here an empirical rule for selecting X -coordinates for which we know no counterexample:

a conformally invariant ratio x of A-coordinates is an X -coordinate if 1 + x also factors into

a ratio of products of A-coordinates and if x is positive-valued everywhere inside the positive

domain (this is the subset of Confn(P3) for which ⌥abcd� > 0 whenever a < b < c < d). This

algorithm reveals for example that between

⌥1235�⌥1278�⌥2456�⌥5678�
⌥1256�⌥2578�⌥78(123) ⌃ (456)� and � ⌥2(13)(56)(78)�⌥5(12)(46)(78)�

⌥1256�⌥2578�⌥78(123) ⌃ (456)� (2.14)

only the first is an X -coordinate.

2.4 Cluster polylogarithm functions

Now we turn to the heart of the paper: providing a definition of cluster polylogarithm func-

tions. Good definitions in mathematics must lie in a Goldilocks zone: they must be su⇤ciently

constraining so as to select out only certain objects with su⇤ciently interesting behavior, yet

they must not be so constraining as to preclude the existence of any examples. In defining

cluster polylogarithm functions we are guided by the physics of two-loop MHV amplitudes

in SYM theory: these functions certainly exist, yet have properties which render them very

special amongst the class of all weight-4 polylogarithm functions on Confn(P3).

We first define a cluster A-function of weight k to to be a conformally invariant function of

transcendentality weight k whose symbol can be written with only the A-coordinates of some

cluster algebra appearing in its entries. Functions of this type for the Gr(4, 6) cluster algebra

(and satisfying various other physical constraints) were extensively classified and studied in

the papers [8, 9, 23].

Our goal here is to impose additional mathematical constraints to focus on a di�erent

(and at least for larger n, much smaller) collection of functions: those which “depend on”

only the cluster X -coordinates of some cluster algebra. At weight k < 4, where we know

that the classical polylogarithm functions generate all of Lk, we can make this statement

– 6 –

The coproduct of         was calculated in [GGSVV]: 

!

                                    

(                          )where

R(2)
7

X =
n h1234ih1267ih1567ih3456i
h1256ih1346ih7(12)(34)(56)i

o

3
�

n h1234ih1567ih3467i
h1346ih7(12)(34)(56)i

o

3
+

n h1267ih1347ih3456i
h1346ih7(12)(34)(56)i

o

3
+ . . .

Y =
n h1234ih1267ih4567i
h1247ih6(12)(34)(57)i

o

3
�

n h1236ih4567i
h6(12)(34)(57)i

o

3
�

n h1234ih1267ih3567i
h1237ih6(12)(34)(57)i

o

3
+ . . .

�(R(2)
7 )|B2^B2 =

n h6(17)(23)(45)i
h1267ih3456i

o

2

^

n

� h5(17)(23)(46)i
h1567ih2345i

o

2
+

n h1234ih2357i
h1237ih2345i

o

2

^

n

� h5(17)(23)(46)i
h1567ih2345i

o

2

+
n h1256ih4567i
h1567ih2456i

o

2

^

n h1235ih2456i
h1256ih2345i

o

2
+ dihedral + parity

�(R(2)
7 )|B3⌦C⇤ = X ⌦ h1234ih3567i

h1237ih3456i +
1

2
Y ⌦ h1567ih2345ih3467i

h1237ih3456ih4567i + dihedral + parity



	  Now	  we	  would	  like	  to	  establish	  a	  
connecWon	  between	  	  

amplitudes	  and	  	  
cluster	  algebras.	  



Cluster	  Algebras	  
•  Cluster	  algebras	  were	  first	  discovered	  and	  
developed	  by	  Fomin	  and	  Zelevinski	  (2002).	  

•  Very	  informally:	  commutaWve	  algebras	  
constructed	  from	  disWnguished	  generators	  
(cluster	  variables)	  grouped	  into	  disjoint	  sets	  of	  
constant	  cardinality	  (clusters)	  which	  are	  
constructed	  recursively	  from	  the	  iniWal	  cluster	  
by	  mutaWons.	  

•  Cluster	  algebra	  portal:	  	  
	  	  	  	  	  	  	  	  	  	  hjp://www.math.lsa.umich.edu/~fomin/cluster.html	  
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Sequence	  with	  period	  5	  =>	  5	  cluster	  variables	  

the C⇤ term is left invariant. The corresponding B3 terms are identical up to a 40-

term Li3 identity, of the type discussed in sec. B. The parity invariance of the second

term in eq. (6.6) is easier to prove: applying parity as defined in sec. A followed

by the permutation (4, 5, 6, 7, 1, 2, 3) leaves the C⇤ term invariant and it also leaves

invariant the corresponding B3 part. Therefore in this case the parity invariance is

manifest, without using any complicated Li3 identities.

7 Cluster Algebras

Having presented some concrete examples of motivic content for the two-loop n = 7

MHV amplitude, we now turn to the meat of this paper: establishing the connection

between motivic content and cluster algebras. We start with a short introduction to

cluster algebras, which were discovered and first developed in a series of papers [?

? ] by Fomin and Zelevinsky. The configuration space Confn(CPk) of n points in

Pk has the structure of a cluster Poisson variety [? ]—a structure closely related

to cluster algebras. This section is aimed primarily at physicists since most of this

material is a review of fairly well-known mathematical facts, with a focus on the

intended application to Confn(CP3), the space on which scattering amplitudes live.

Our aim in this section is to guide the reader quickly to an understanding of what

cluster A- and X -coordinates are for the Grassmannian cluster algebras and how

these coordinates may be systematically constructed via a process called mutation.

The interested reader may find much more information on cluster algebras in the

reviews [REF].

7.1 Introduction and definitions

We can informally define cluster algebras as follows: they are commutative alge-

bras constructed from distinguished generators (called cluster variables) grouped

into non-disjoint sets of constant cardinality (called clusters), which are constructed

recursively from an initial cluster by an operation called mutation. The number of

variables in a cluster is called the rank of the cluster algebra.

A simple example is the A2 cluster algebra defined by the following data:

• cluster variables: am for m 2 Z, subject to am�1am+1 = 1 + am

• rank: 2

• clusters: {am, am+1} for m 2 Z

• initial cluster: {a1, a2}

• mutation: {am�1, am} ! {am, am+1}.
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A2

a1, a2, a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

, a6 = a1, a7 = a1.

5X

i=1

Li2(�ai) = 0These	  are	  the	  arguments	  in	  Abel	  idenWty	  
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x2 x1
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µ1 µ2

µ1

µ2µ1

Figure 2. Seeds and seed mutations in type A2.

the union of clusters of all the seeds in the pattern. The elements xi,t ∈ X are called
cluster variables. The cluster algebra A associated with a given pattern is the Z[c]-
subalgebra of the ambient field F generated by all cluster variables: A = Z[c][X ].
We denote A = A(x, Q), where (x, Q) is any seed in the underlying cluster pattern.
In this generality, A is called a cluster algebra from a quiver, or a skew-symmetric
cluster algebra of geometric type. We say that A has rank n because each cluster
contains n cluster variables.

2.2. Example: the type A cluster algebra. In this section we will construct a
cluster algebra using the combinatorics of triangulations of a d-gon (a polygon with
d vertices). We will subsequently identify this cluster algebra with the homogeneous
coordinate ring of the Grassmannian Gr2,d of 2-planes in a d-dimensional vector
space.
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Figure 3. A triangulation T of an octagon, the quiver Q(T ), and
the labeling of T by Plücker coordinates.

Definition 2.12 (The quiver Q(T )). Consider a d-gon (d ≥ 3), and choose any
triangulation T . Label the d−3 diagonals of T with the numbers 1, 2, . . . , d−3, and
label the d sides of the polygon by the numbers d−2, d−1, . . . , 2d−3. Put a frozen
vertex at the midpoint of each side of the polygon, and put a mutable vertex at
the midpoint of each diagonal of the polygon. These 2d−3 vertices are the vertices
Q0(T ) of Q(T ); label them according to the labeling of the diagonals and sides of
the polygon. Now within each triangle of T , inscribe a new triangle on the vertices
Q0(T ), whose edges are oriented clockwise. The edges of these inscribed triangles
comprise the set of arrows Q1(T ) of Q(T ).

We	  can	  represent	  this	  using	  quivers	  and	  mutaWons	  
at	  each	  vertex:	  

A2



Quivers	  and	  MutaWons	  

•  We	  can	  define	  cluster	  algebra	  by	  a	  quiver:	  
oriented	  graph	  without	  loops	  and	  2-‐cycles.	  
•  Given	  a	  quiver,	  get	  a	  new	  one	  by	  mutaWon	  rule:	  

Given a quiver and a choice of some vertex k on that quiver we can define a new

quiver obtained by mutating at vertex k. The new quiver is obtained by applying

the following operations on the initial quiver:

• for each path i ! k ! j, add an arrow i ! j,

• reverse all arrows on the edges incident with k,

• and remove any two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession at the same

vertex we come back to the original quiver.

Quivers of the special type we restricted to are in one-to-one correspondence

with skew-symmetric matrices defined as

bij = (#arrows i ! j)� (#arrows j ! i). (6.2)

Since at most one of the terms above is nonvanishing, bij = �bji. Under a mutation

at vertex k the matrix b transforms to b0 given by

b0ij =

8

>

>

>

>

<

>

>

>

>

:

�bij, if k 2 {i, j},
bij, if bikbkj  0,

bij + bikbkj, if bik, bkj > 0,

bij � bikbkj, if bik, bkj < 0.

(6.3)

If we start with a quiver with n vertices and associate to each vertex i a variable

ai, we can use the skew-symmetric matrix b to define a mutation relation at the

vertex k by

aka
0
k =

Y

i|bik>0

abiki +
Y

i|bik<0

a�bik
i , (6.4)

with the understanding that an empty product is set to one. The mutation at k

changes ak to a0k defined by eq. (6.4) and leaves the other cluster variables unchanged.

To illustrate these ideas we note that the initial cluster of the A2 cluster algebra

can be expressed by the quiver a1 ! a2. Then, a mutation at a1 replaces it by

a01 =
1+a2
a1

⌘ a3 and reverses the arrow. A mutation at a2 replaces it by a02 =
1+a1
a2

⌘ a5
and preserves the direction of the arrow.

6.2 Grassmannian cluster algebras

In our application we are interested in a special class of cluster algebras called clus-

ter algebras of geometric type. They are also described by quivers, but some of the

vertices are special and called frozen vertices. Edges connecting two frozen vertices

are not allowed, and we also do not allow mutations on the frozen vertices. The

variables associated to the frozen vertices are called coe�cients instead of cluster
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2. What is a cluster algebra?

In this section we will define the notion of cluster algebra, first introduced by
Fomin and Zelevinsky in [13]. For the purpose of acquainting the reader with
the basic notions, in Section 2.1 we will give the simple but somewhat restrictive
definition of a cluster algebra defined by a quiver, also called a skew-symmetric
cluster algebra of geometric type. We will give a detailed example in Section 2.2,
and then present a more general definition of cluster algebra in Section 2.3.

2.1. Cluster algebras from quivers.

Definition 2.1 (Quiver). A quiver Q is an oriented graph given by a set of vertices
Q0, a set of arrows Q1, and two maps s : Q1 → Q0 and t : Q1 → Q0 taking an
arrow to its source and target, respectively.

A quiver Q is finite if the sets Q0 and Q1 are finite. A loop of a quiver is an
arrow α whose source and target coincide. A 2-cycle of a quiver is a pair of distinct
arrows β and γ such that s(β) = t(γ) and t(β) = s(γ).

Definition 2.2 (Quiver Mutation). Let Q be a finite quiver without loops or 2-
cycles. Let k be a vertex of Q. Following [13], we define the mutated quiver µk(Q)
as follows: it has the same set of vertices as Q, and its set of arrows is obtained by
the following procedure:

(1) for each subquiver i → k → j, add a new arrow i → j;
(2) reverse all allows with source or target k;
(3) remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Exercise 2.3. Mutation is an involution, that is, µ2
k(Q) = Q for each vertex k.

Figure 1 shows two quivers which are obtained from each other by mutating at
the vertex 1. We say that two quivers Q and Q′ are mutation-equivalent if one can
get from Q to Q′ by a sequence of mutations.

1

2 3

4 1

2 3

4

Figure 1. Two mutation-equivalent quivers.

Definition 2.4. Let Q be a finite quiver with no loops or 2-cycles and whose
vertices are labeled 1, 2, . . . ,m. Then we may encodeQ by anm×m skew-symmetric
exchange matrix B(Q) = (bij) where bij = −bji = $ whenever there are $ arrows
from vertex i to vertex j. We call B(Q) the signed adjacency matrix of the quiver.

Exercise 2.5. Check that when one encodes a quiverQ by a matrix as in Definition
2.4, the matrix B(µk(Q)) = (b′ij) is again an m×m skew-symmetric matrix, whose

For	  vertex	  1:	  



Quivers	  and	  Cluster	  Coordinates	  

	  	  	  We	  can	  encode	  a	  quiver	  by	  a	  skew-‐symmetric	  matrix	  

	  	  
	  	  	  To	  each	  vertex	  i	  associate	  	  variable	  	  

	  Use	  matrix	  b	  to	  define	  mutaWon	  relaWon	  at	  vertex	  k	  

Given a quiver and a choice of some vertex k on that quiver we can define a new

quiver obtained by mutating at vertex k. The new quiver is obtained by applying

the following operations on the initial quiver:

• for each path i ! k ! j, add an arrow i ! j,

• reverse all arrows on the edges incident with k,

• and remove any two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession at the same

vertex we come back to the original quiver.

Quivers of the special type we restricted to are in one-to-one correspondence

with skew-symmetric matrices defined as

bij = (#arrows i ! j)� (#arrows j ! i). (6.2)

Since at most one of the terms above is nonvanishing, bij = �bji. Under a mutation

at vertex k the matrix b transforms to b0 given by

b0ij =

8

>

>

>

>

<

>

>

>

>

:

�bij, if k 2 {i, j},
bij, if bikbkj  0,

bij + bikbkj, if bik, bkj > 0,

bij � bikbkj, if bik, bkj < 0.

(6.3)

If we start with a quiver with n vertices and associate to each vertex i a variable

ai, we can use the skew-symmetric matrix b to define a mutation relation at the

vertex k by

aka
0
k =

Y

i|bik>0

abiki +
Y

i|bik<0

a�bik
i , (6.4)

with the understanding that an empty product is set to one. The mutation at k

changes ak to a0k defined by eq. (6.4) and leaves the other cluster variables unchanged.

To illustrate these ideas we note that the initial cluster of the A2 cluster algebra

can be expressed by the quiver a1 ! a2. Then, a mutation at a1 replaces it by

a01 =
1+a2
a1

⌘ a3 and reverses the arrow. A mutation at a2 replaces it by a02 =
1+a1
a2

⌘ a5
and preserves the direction of the arrow.

6.2 Grassmannian cluster algebras

In our application we are interested in a special class of cluster algebras called clus-

ter algebras of geometric type. They are also described by quivers, but some of the

vertices are special and called frozen vertices. Edges connecting two frozen vertices

are not allowed, and we also do not allow mutations on the frozen vertices. The

variables associated to the frozen vertices are called coe�cients instead of cluster
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In	  pracWce:	  see	  Keller	  Java	  program	  

ai



Grassmannian	  cluster	  algebras	  
•  Scoj	  (2003)	  classified	  all	  Grassmannian	  cluster	  
algebras	  of	  finite	  type.	  	  

•  Amplitudes	  are	  funcWons	  on	  	  
•  We	  have	  3	  x	  (n-‐5)	  iniWal	  quiver	  (k=4,	  l=n-‐4)	  with	  
iniWal	  cluster	  variables	  which	  we	  then	  mutate	  to	  
obtain	  all	  cluster	  coordinates.	  

variables (and the rank of the algebra is equal only to the number of unfrozen ver-

tices). We define the principal part of such a quiver to be the quiver obtained by

erasing the frozen vertices as well as all edges which connect them to any of the

non-frozen vertices. When drawing these special kinds of quivers, we will indicate

each frozen node by placing its label inside a box.

We now review the cluster algebras of geometric type which arise from the Grass-

mannian Gr(k, n) [38]. One principal new ingredient is that there are two natural

and di↵erent, but closely related, kinds of cluster variables, called A-coordinates and

X -coordinates, the latter having been introduced in [36]. The coordinates discussed

in the previous subsection were the A-coordinates, but both kinds are actually al-

ready familiar to amplitudeologists. The Plücker coordinates hi1 . . . iki, being the

minors obtained by computing the determinant of the indicated columns i1 . . . ik of

a matrix representative of a point in Gr(k, n), are examples of A-coordinates, while

the X -coordinates are certain cross-ratios built from them.

The Plücker coordinates satisfy the relation

hi, j, Iihk, l, Ii = hi, k, Iihj, l, Ii+ hi, l, Iihj, k, Ii, (6.5)

where I is a multi-index with k�2 entries, which bears a resemblance to the exchange

relation shown in eq. (6.4). Indeed the cluster algebra for Gr(k, n) is constructed by

starting with an initial cluster whose variables are certain Plücker coordinates. The

operation of mutation generates additional Plücker coordinates, as well as other,

more complicated, cluster A-coordinates. For general k and n and with l = n � k,

the appropriate initial quiver is given in ref. [39] (this construction is also reviewed

in ref. [40])

f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

//

✏✏

__

// //

✏✏

__

//

✏✏

__

//

✏✏

// //

✏✏

__

//

✏✏

__

✏✏ ✏✏

____

✏✏

(6.6)

– 18 –

Gr(k, k + l)
where

fij =

(

hi+1,...,k,k+j,...,i+j+k�1i
h1,...,ki , i  l � j + 1,

h1,...,i+j�l�1,i+1,...,k,k+j,...,ni
h1,...,ki , i > l � j + 1

. (6.7)

The boxes identify the frozen variables while the rest of the variables are unfrozen.

In order to obtain the quivers we will use below we need to make one last change

to the quiver above. We rescale all the coordinates, frozen and unfrozen, by h1, . . . , ki.
This produces a frozen variable h1, . . . , ki which connects to the node labeled by f1l
by an ingoing arrow. After this modification all the unfrozen vertices of the initial

quiver have an equal number of ingoing and outgoing arrows.

The simplest nontrivial example is that of Gr(2, 5), which is relevant for config-

urations of five points in CP1. In this case the initial quiver is simply

h13i h14i h15i

h45ih34ih23i

h12i

//

__

✏✏

��

//

__

✏✏

(6.8)

where each node is labeled by its A-coordinate. In this case it is easy to check that

successive mutations on the two unfixed vertices, in any order, generate only five

distinct quivers. The algebra so generated is nothing but the A2 algebra defined at

the beginning of sec. 6.1. The name of the algebra comes from the fact that the

principal part of this initial quiver is the same as the Dynkin diagram of the A2 Lie

algebra.

Let us use this example to define X -coordinates. There is one such coordinate as-

sociated to each unfrozen node k, defined by taking the product of the A-coordinates

on the nodes connected to k by an incoming arrow, divided by the product of the

A-coordinates on the nodes connected to k by an outgoing arrow. So in the A2

quiver shown above the X -coordinates associated to the nodes h13i and h14i are

h12ih34i/h23ih14i and h13ih45i/h34ih15i respectively. Cluster A-coordinates are not

invariant under rescaling of the individual vectors in a Gr(k, n) matrix, but the

X -coordinates are. Therefore only the latter are good coordinates on the quotient

Gr(k, n)/(C⇤)n�1 = Confn(CPk�1) and are hence appropriate objects to appear in

motivic amplitudes.

In terms of A-coordinates and the matrix b, the X -coordinates are given by

Xi =
Y

j

a
bij
j . (6.9)

Under a mutation at vertex k, the X -coordinates transform as

X 0
i =

(

X�1
k , i = k,

Xi(1 +Xsgn bik
k )bik , i 6= k

. (6.10)

– 19 –

Quiver	  for	  	  

Gr(4, n)/(C⇤)n



Quivers	  for	  cluster	  algebras	  of	  finite	  type	  can	  
be	  turned	  into	  Dynkin	  diagrams	  by	  mutaWons	  

The two simplest examples relevant to SYM theory scattering amplitudes are

those for 6 or 7 points in CP3 (or, equivalently, in CP1 or CP2, respectively). For the

former it is evident from (6.6) that the principal part of the quiver is the same as the

A3 Dynkin diagram. For the latter the initial quiver is slightly more complicated:

h267i h367i h467i h567i

h456i

h345ih234i

h346ih236i

h123i

h126i

h127i

h167i

//

__

✏✏

��

//

__

✏✏

//

__

✏✏

//

__

✏✏

__

//

✏✏

//

__

✏✏

. (6.11)

If we label the vertices occupied initially by h267i, h367i, h467i, h126i, h236i, h346i
by numbers 1 through 6, then after a sequence of mutations at vertices 4, 3, 2, 5, 1,

4, 3, 4, 6, the principal part of the quiver is brought into the form of the E6 Dynkin

diagram3

h124i h247i

h256i

h5⇥6,7⇥2,3⇥4i h3⇥4,5⇥6,7⇥1i h157i
✏✏

// oooo //

(6.12)

Therefore the Gr(3, 7) cluster algebra is also called the E6 algebra.

In [17] Fomin and Zelevinsky showed that a cluster algebra is of finite type (i.e., it

has a finite number of cluster variables) if there exists a sequence of mutations which

turns the principal part of its quiver into the Dynkin diagram of some classical Lie

algebra. However, if the principal part of the quiver contains a subgraph which is an

a�ne Dynkin diagram, then the cluster algebra is of infinite type.

In ref. [38], Scott has classified all the Grassmannian cluster algebras of finite

type. This result has striking implications for scattering amplitudes in N = 4 super-

Yang-Mills theory. There, the relevant Grassmannian is Gr(4, n), for n � 6. If

n = 6 we need Gr(4, 6) = Gr(2, 6) which is of finite type A3. If n = 7 we need

Gr(4, 7) = Gr(3, 7) which is again of finite type E6. However, starting at n = 8 the

relevant cluster algebras are not of finite type anymore. This indicates that there are

infinitely many di↵erent A-coordinates which could appear in the symbol of these

3If we order them in the same way as in the initial cluster, the A-coordinates after this sequence
of mutations are h3 ⇥ 4, 5 ⇥ 6, 7 ⇥ 1i, h256i, h124i, h247i, h5 ⇥ 6, 7 ⇥ 2, 3 ⇥ 4i, h157i.
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Gr(4, 6) = Gr(2, 6) ! A3

Gr(4, 7) = Gr(3, 7) ! E6

Examples:	  n=6	  &	  n=7	  

h13i h14i h15i h61i

h56ih45ih34ih23i

h12i

//
__

✏✏

��
//

__

✏✏

//
__

✏✏
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Fomin,	  Zelevinsky,	  Scoj	  



A	  and	  X-‐coordinates	  
•  In	  previous	  examples,	  iniWal	  clusters	  were	  
labeled	  by	  Plucker	  coordinates	  

•  These	  are	  called	  A-‐coordinates.	  
•  They	  are	  not	  invariant	  under	  rescaling	  of	  
individual	  vectors.	  

•  Instead	  define	  X-‐coordinates	  for	  each	  
“unfrozen”	  node:	  

	  	  	  	  	  cross-‐raWos	  
•  MutaWon	  at	  vertex	  k:	  

< i1 . . . ik >

where

fij =

(

hi+1,...,k,k+j,...,i+j+k�1i
h1,...,ki , i  l � j + 1,

h1,...,i+j�l�1,i+1,...,k,k+j,...,ni
h1,...,ki , i > l � j + 1

. (6.7)

The boxes identify the frozen variables while the rest of the variables are unfrozen.

In order to obtain the quivers we will use below we need to make one last change

to the quiver above. We rescale all the coordinates, frozen and unfrozen, by h1, . . . , ki.
This produces a frozen variable h1, . . . , ki which connects to the node labeled by f1l
by an ingoing arrow. After this modification all the unfrozen vertices of the initial

quiver have an equal number of ingoing and outgoing arrows.

The simplest nontrivial example is that of Gr(2, 5), which is relevant for config-

urations of five points in CP1. In this case the initial quiver is simply

h13i h14i h15i

h45ih34ih23i

h12i

//

__

✏✏

��

//

__

✏✏

(6.8)

where each node is labeled by its A-coordinate. In this case it is easy to check that

successive mutations on the two unfixed vertices, in any order, generate only five

distinct quivers. The algebra so generated is nothing but the A2 algebra defined at

the beginning of sec. 6.1. The name of the algebra comes from the fact that the

principal part of this initial quiver is the same as the Dynkin diagram of the A2 Lie

algebra.

Let us use this example to define X -coordinates. There is one such coordinate as-

sociated to each unfrozen node k, defined by taking the product of the A-coordinates

on the nodes connected to k by an incoming arrow, divided by the product of the

A-coordinates on the nodes connected to k by an outgoing arrow. So in the A2

quiver shown above the X -coordinates associated to the nodes h13i and h14i are

h12ih34i/h23ih14i and h13ih45i/h34ih15i respectively. Cluster A-coordinates are not

invariant under rescaling of the individual vectors in a Gr(k, n) matrix, but the

X -coordinates are. Therefore only the latter are good coordinates on the quotient

Gr(k, n)/(C⇤)n�1 = Confn(CPk�1) and are hence appropriate objects to appear in

motivic amplitudes.

In terms of A-coordinates and the matrix b, the X -coordinates are given by

Xi =
Y

j

a
bij
j . (6.9)

Under a mutation at vertex k, the X -coordinates transform as

X 0
i =

(

X�1
k , i = k,

Xi(1 +Xsgn bik
k )bik , i 6= k

. (6.10)
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Fock,	  Goncharov	  
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In terms of A-coordinates and the matrix b, the X -coordinates are given by

Xi =
Y

j

a
bij
j . (6.8)

Under a mutation at vertex k, the X -coordinates transform as

X 0
i =

(

X�1
k , i = k,

Xi(1 +Xsgn bik
k )bik , i 6= k

. (6.9)

The two simplest examples relevant to SYM theory scattering amplitudes are

those for 6 or 7 points in CP3 (or, equivalently, in CP1 or CP2, respectively). For the

former it is evident from fig. 1 that the principal part of the quiver is the same as the

A3 Dynkin diagram. For the latter the initial quiver is slightly more complicated:

h267i h367i h467i h567i

h456i

h345ih234i
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If we label the vertices occupied initially by h267i, h367i, h467i, h126i, h236i, h346i
by numbers 1 through 6, then after a sequence of mutations at vertices 4, 3, 2, 5, 1,

4, 3, 4, 6, the principal part of the quiver is brought into the form of the E6 Dynkin
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	  2-‐loop	  6-‐point	  	  &	  	  	  	  	  	  	  	  	  cluster	  algebra	  
•  Start	  with	  quiver.	  Generate	  all	  coordinates	  by	  
mutaWons.	  MutaWon	  generates	  14	  clusters.	  

•  15	  A-‐coordinates:	  6	  fixed	  <ii+1>;	  9	  unfixed	  <ij>	  
•  15	  X-‐coordinates:	  	  

•  Note:	  	  The	  top	  9/15	  are	  exactly	  the	  arguments	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  2-‐loop	  6-‐point	  amplitude!	  

appear in the two-loop answer. For completeness let us list here all 15 X -coordinates

v1 = r(3, 5, 6, 2), v2 = r(1, 3, 4, 6), v3 = r(5, 1, 2, 4),

x+
1 = r(2, 3, 4, 1), x+

2 = r(6, 1, 2, 5), x+
3 = r(4, 5, 6, 3),

x�
1 = r(1, 4, 5, 6), x�

2 = r(5, 2, 3, 4), x�
3 = r(3, 6, 1, 2), (7.1)

e1 = r(1, 2, 3, 5), e2 = r(2, 3, 4, 6), e3 = r(3, 4, 5, 1),

e4 = r(4, 5, 6, 2), e5 = r(5, 6, 1, 3), e6 = r(6, 1, 2, 4),

in terms of the CP1 cross-ratio defined in eq. (3.4).

We note that r(a, b, c, d) satisfies the identities

r(b, c, d, a) =
1

r(a, b, c, d)
, r(d, c, b, a) = r(a, b, c, d) (7.2)

as well as

� r(a, c, b, d) = 1 + r(a, b, c, d), �r(b, a, c, d) =
1

1 + 1/r(a, b, c, d)
. (7.3)

Out of the 45 possible cross-ratios of the form r(a, b, c, d), the 15 X -coordinates are

special in that they are precisely those in which the points a, b, c, d come in cyclic

order. The three most well-known cross-ratios which are not cluster X -coordinates

are the ones known in the literature as

u1 = �r(3, 6, 5, 2), u2 = �r(1, 4, 3, 6), u3 = �r(5, 2, 1, 4), (7.4)

which are related to cluster X -coordinates by ui = 1/(1 + vi).

7.2 The Stashe↵ polytope for Gr(2, 6)

Let us now discuss the geometry of the Stashe↵ polytope for the A3 cluster algebra

detailed in the previous section. In this case each cluster is in correspondence with

a 2-simplex, or a triangle. There are 14 clusters, to each of which corresponds a

triangle. We can label each triangle by the three A-coordinates which appear on its

vertices:

h13i, h14i, h15i, h14i, h15i, h24i, h13i, h15i, h35i, h13i, h14i, h46i,
h15i, h24i, h25i, h14i, h24i, h46i, h15i, h25i, h35i, h13i, h35i, h36i,
h13i, h36i, h46i, h24i, h25i, h26i, h24i, h26i, h46i, h25i, h26i, h35i,
h26i, h35i, h36i, h26i, h36i, h46i.

(7.5)

These triangles fit together in a polytope with 14 triangular faces, shown in fig. 3.

The polytope has 9 vertices given by the non-frozen A-coordinates h13i, h14i, h15i,
h24i, h25i, h26i, h35i, h36i and h46i, and 21 edges.
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The second striking fact about (3.1) is that out of the 45 distinct cross-ratios of

the form

r(i, j, k, l) = �hijihkli
hjkihlii (3.4)

only the 9 shown in (3.3) actually appear. Note that here, as throughout the paper,

we shall never count both x and 1/x separately.

In a certain sense this example is too simple, as this amplitude is likely unique

in SYM theory in being expressible in terms of classical polylogarithm functions Lin
only. We do not aim to write explicit formulas for more general amplitudes as there

would be no particular preferred or canonical functional form, so the question of

what variables the function depends on requires a more precise definition involving

the more sophisticated mathematics to which we turn our attention in the next

section.

However we note that this question does make immediate sense for any element

of the coproduct of an amplitude involving functions of weight less than four, since

these can always be written in terms of Lin functions only. For example, for the

di↵erential of any two-loop amplitude, or for the triple discontinuity of any three-

loop amplitude, the question of what variables the function depends on simply means

what are the arguments of the various Lin functions.

4 Polylogarithms and Motivic Lie Algebras

In this section we provide some of the necessary mathematical preliminaries on tran-

scendental functions and explain ways of distilling the essential motivic content of

such functions. This section assumes basic knowledge about the concept of the sym-

bol of a transcendental function, and the coproduct of a Hopf algebra. Gentle recent

introductions for physicists, from an amplitude point of view, may be found in [3, 27].

4.1 The motivic avatars of polylogarithms

Let us start with the motivic background. Given any field F , there is an as yet

hypothetical mathematical object called the motivic Tate Lie coalgebra L•(F ) of

this field [28]. It is graded by positive integers, the weights, i.e. one has

L•(F ) =
1
M

n=1

Ln(F ). (4.1)

There is a cobracket �, which is a weight preserving linear map

� : L•(F ) �! ⇤2L•(F ). (4.2)

It satisfies the property that the following composition is zero:

L•(F )
��! ⇤2L•(F )

�^Id� Id^��! ⇤3L•(F ). (4.3)
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appear in the two-loop answer. For completeness let us list here all 15 X -coordinates

v1 = r(3, 5, 6, 2), v2 = r(1, 3, 4, 6), v3 = r(5, 1, 2, 4),

x+
1 = r(2, 3, 4, 1), x+

2 = r(6, 1, 2, 5), x+
3 = r(4, 5, 6, 3),

x�
1 = r(1, 4, 5, 6), x�

2 = r(5, 2, 3, 4), x�
3 = r(3, 6, 1, 2), (7.1)

e1 = r(1, 2, 3, 5), e2 = r(2, 3, 4, 6), e3 = r(3, 4, 5, 1),

e4 = r(4, 5, 6, 2), e5 = r(5, 6, 1, 3), e6 = r(6, 1, 2, 4),

in terms of the CP1 cross-ratio defined in eq. (3.4).

We note that r(a, b, c, d) satisfies the identities

r(b, c, d, a) =
1

r(a, b, c, d)
, r(d, c, b, a) = r(a, b, c, d) (7.2)

as well as

� r(a, c, b, d) = 1 + r(a, b, c, d), �r(b, a, c, d) =
1

1 + 1/r(a, b, c, d)
. (7.3)

Out of the 45 possible cross-ratios of the form r(a, b, c, d), the 15 X -coordinates are

special in that they are precisely those in which the points a, b, c, d come in cyclic

order. The three most well-known cross-ratios which are not cluster X -coordinates

are the ones known in the literature as

u1 = �r(3, 6, 5, 2), u2 = �r(1, 4, 3, 6), u3 = �r(5, 2, 1, 4), (7.4)

which are related to cluster X -coordinates by ui = 1/(1 + vi).

7.2 The Stashe↵ polytope for Gr(2, 6)

Let us now discuss the geometry of the Stashe↵ polytope for the A3 cluster algebra

detailed in the previous section. In this case each cluster is in correspondence with

a 2-simplex, or a triangle. There are 14 clusters, to each of which corresponds a

triangle. We can label each triangle by the three A-coordinates which appear on its

vertices:

h13i, h14i, h15i, h14i, h15i, h24i, h13i, h15i, h35i, h13i, h14i, h46i,
h15i, h24i, h25i, h14i, h24i, h46i, h15i, h25i, h35i, h13i, h35i, h36i,
h13i, h36i, h46i, h24i, h25i, h26i, h24i, h26i, h46i, h25i, h26i, h35i,
h26i, h35i, h36i, h26i, h36i, h46i.

(7.5)

These triangles fit together in a polytope with 14 triangular faces, shown in fig. 3.

The polytope has 9 vertices given by the non-frozen A-coordinates h13i, h14i, h15i,
h24i, h25i, h26i, h35i, h36i and h46i, and 21 edges.
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A3

2 The Kinematic Space Confn(CP3)

Having argued that scattering amplitudes are a collection of very interesting func-

tions, we begin by addressing a seemingly simple-minded question: what variables

do these functions depend on? Despite initial appearances this is far from a triv-

ial question, and somewhat surprisingly a completely satisfactory understanding has

only emerged rather recently.

We describe the kinematics of an n-particle scattering amplitude in terms of

configurations of points Zi 2 CP3. The Zi, which are known as momentum twistors

and were introduced in ref. [22], serve to parametrize the submanifold of momenta

pi 2 C4 which satisfy the required constraints p2i = 0 (on-shell) and p1+ · · ·+ pn = 0

(energy-momentum conservation). We can assemble the homogeneous coordinates of

these points in a 4⇥ n matrix. Note that since each column of this matrix contains

the homogeneous coordinates of a point in CP3, we can rescale each column by a

seperate nonzero complex number without changing the kinematic configuration.

Everything in the previous paragraph applies equally well to any massless field

theory. In the planar limit of SYM theory we always work with color-reduced subam-

plitudes, which means that we should consider configurations of points in CP3 with

a specified cyclic ordering Z1, . . . , Zn. A very special feature of SYM theory in this

limit is that all amplitudes are invariant under dual conformal transformations [7–

13], which are generated by the action of GL(4,C) multiplying the 4 ⇥ n matrix of

Z’s from the left.

The space we have just described—complex 4⇥n matrices modulo the left-action

of GL(4,C) as well as independent rescaling of the columns—defines the quotient

Gr(4, n)/(C⇤)n�1 of the Grassmannian. We denote this space by Confn(CP3), read

as “configurations of n points in CP3”. Scattering amplitudes of n particles in SYM

theory are functions on this 3(n� 5)-dimensional kinematic domain.

Because the conformal group acts on the homogeneous coordinates of CP3 as a

GL(4,C) transformation, the natural dual conformal covariant objects are 4-brackets

of the form hijkli := det(ZiZjZkZl), which is just the C4 volume of the parallelepiped

built on the vectors (Zi, Zj, Zk, Zl).

It is useful to note an important feature of these spaces. The Grasmmannian

duality Gr(k, n) = Gr(n � k, n) means that configurations of n points in CPk are

canonically dual to configurations of n points in CPn�k�2 (see appendix A for much

more about this duality). Explicitly, at six points there is a relationship between

four-brackets in CP3 and two-brackets in CP1 given by

hijkli = 1

2!
✏ijklmnhmni, hiji = 1

4!
✏ijklmnhklmni, (2.1)

while the relationship at seven points between four-brackets in CP3 and three-

– 4 – with	  Golden,	  Goncharov,	  Spradlin,	  Vergu	  



Geometrically:	  Stasheff	  polytopes	  
•  Unfrozen	  verWces	  of	  rank	  r	  cluster	  algebras	  =	  
verWces	  of	  (r-‐1)	  simplex.	  

•  MutaWng	  we	  get	  new	  (r-‐1)-‐simplex	  sharing	  (r-‐2)-‐
face	  of	  the	  iniWal	  one.	  

•  Glue	  them	  together.	  Do	  all	  possible	  mutaWons	  to	  
obtain	  a	  polytope.	  

	  	  	  	  	  	  	  	  	  	  	  

!13"

!14"

!15"

!24"

!35"

!46"

!25"

!36"

!26"

Figure 3: The polytope obtained by gluing together the triangles associated to

clusters of the Gr(2, 6) (i.e., A3) cluster algebra.

〈46〉〈24〉

〈15〉 〈13〉

〈12〉〈34〉
〈14〉〈23〉

〈16〉〈45〉
〈14〉〈56〉

〈14〉〈23〉
〈12〉〈34〉

〈14〉〈56〉
〈16〉〈45〉

〈14〉

(a) 〈46〉

〈36〉

〈35〉〈15〉

〈14〉

〈13〉

〈16〉〈34〉
〈13〉〈46〉

〈34〉〈56〉
〈36〉〈45〉

〈13〉〈56〉
〈16〉〈35〉

〈13〉〈45〉
〈15〉〈34〉

〈16〉〈45〉
〈14〉〈56〉

(b)

Figure 4: The cross-ratios (X -coordinates) around a valence 4 vertex (a) and a

valence 5 vertex (b) of the polytope (fig. 3) associated to the Gr(2, 6) cluster al-

gebra. For clarity we have omitted the crucial overall minus sign in front of each

X -coordinate.
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9	  V,	  21	  E,	  14	  F	  

14	  V,	  21	  E,	  9	  F	  

A3

9F=3S+6P	  



cluster	  algebra	  

•  49	  A-‐coordinates:	  35	  Plucker	  
	  	  	  	  	  	  	  brackets	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  cyclic	  =14	  	  

•  MutaWons	  generate	  833	  clusters	  
•  	  	  	  	  	  	  Stasheff	  polytope:	  833	  V,	  2499	  E,	  2856	  
F2	  (1785S+	  1071P),	  1547	  F3	  	  
•  Analyzing	  all	  quivers:	  385	  X-‐coordinates	  

All faces are triangles, but there are two di↵erent types of vertices: h14i, h25i and
h36i have valence four (they are incident with four edges) while the other six vertices

have valence five. The polytope has the topology of a sphere as can be confirmed by

computing the Euler characteristic � = V � E + F = 9� 21 + 14 = 2.

Now recall that to each edge of the polytope we can associate a pair consisting

of an X -coordinate and its inverse. Let us take a closer look at the X -coordinates

corresponding to the edges incident on the two kinds of vertices. In order for the

association between X -coordinates and edges to be one-to-one, we need to pick an

orientation. Consider for example the valence 4 vertex shown in fig. (4a). As we go

around it we encounter the cross-ratios

� h14ih23i
h12ih34i , �h14ih56i

h16ih45i , �h12ih34i
h14ih23i , �h16ih45i

h14ih56i . (7.6)

The third cross-ratio is an inverse of the first while the fourth is an inverse of the

second. Therefore, the cluster coordinates are the same as for the A1 ⇥ A1 cluster

algebra. This is the dual of the statement shown in eq. (6.19).

On the other hand, if we consider for example the valence 5 vertex shown in

fig. 4b, the corresponding list of cross-ratios is

� h13ih45i
h15ih34i , �h13ih56i

h16ih35i , �h34ih56i
h36ih45i , �h16ih34i

h13ih46i , �h16ih45i
h14ih56i . (7.7)

These are the X -coordinates of an A2 cluster algebra. It can be checked that these

are precisely (minus) the arguments of dilogarithms in the five-term dilogarithm

identity (4.12). This is the dual of the statement shown in eq. (6.20).

The dual polytope, shown in fig. 5, has 14 vertices and 9 faces, three of which are

quadrilaterals and six of which are pentagons. This is the Stashe↵ polytope or the

K5 associahedron. The name associahedron comes from the following construction:

consider n (in the case of K5 we take n = 5) non-commutative variables and all the

ways of inserting parentheses. For example, we have ((ab)(cd))e, (((ab)c)d)e, etc. In

total there are Cn�1 ways of parenthesizing n variables, where Cn is the nth Catalan

number. Then, join together two such expressions if one can be obtained from the

other by applying the associativity rule once. By joining all these expressions, we

build up the Stashe↵ polytope.

7.3 Cluster coordinates for Gr(3, 7)

Beginning with the initial quiver for Gr(3, 7), we can similarly generate all of the

clusters and their A- and X -coordinates by successive mutations until all possibilities

are exhausted. The E6 algebra generated in this manner has a total of 49 well-known

A-coordinates, composed of the 35 Plücker coordinates hijki on Gr(3, 7) together

with 14 composite brackets of the form

h1⇥ 2, 3⇥ 4, 5⇥ 6i, h1⇥ 2, 3⇥ 4, 5⇥ 7i (7.8)
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All faces are triangles, but there are two di↵erent types of vertices: h14i, h25i and
h36i have valence four (they are incident with four edges) while the other six vertices

have valence five. The polytope has the topology of a sphere as can be confirmed by

computing the Euler characteristic � = V � E + F = 9� 21 + 14 = 2.

Now recall that to each edge of the polytope we can associate a pair consisting

of an X -coordinate and its inverse. Let us take a closer look at the X -coordinates

corresponding to the edges incident on the two kinds of vertices. In order for the

association between X -coordinates and edges to be one-to-one, we need to pick an

orientation. Consider for example the valence 4 vertex shown in fig. (4a). As we go

around it we encounter the cross-ratios

� h14ih23i
h12ih34i , �h14ih56i

h16ih45i , �h12ih34i
h14ih23i , �h16ih45i

h14ih56i . (7.6)

The third cross-ratio is an inverse of the first while the fourth is an inverse of the

second. Therefore, the cluster coordinates are the same as for the A1 ⇥ A1 cluster

algebra. This is the dual of the statement shown in eq. (6.19).

On the other hand, if we consider for example the valence 5 vertex shown in

fig. 4b, the corresponding list of cross-ratios is

� h13ih45i
h15ih34i , �h13ih56i

h16ih35i , �h34ih56i
h36ih45i , �h16ih34i

h13ih46i , �h16ih45i
h14ih56i . (7.7)

These are the X -coordinates of an A2 cluster algebra. It can be checked that these

are precisely (minus) the arguments of dilogarithms in the five-term dilogarithm

identity (4.12). This is the dual of the statement shown in eq. (6.20).

The dual polytope, shown in fig. 5, has 14 vertices and 9 faces, three of which are

quadrilaterals and six of which are pentagons. This is the Stashe↵ polytope or the

K5 associahedron. The name associahedron comes from the following construction:

consider n (in the case of K5 we take n = 5) non-commutative variables and all the

ways of inserting parentheses. For example, we have ((ab)(cd))e, (((ab)c)d)e, etc. In

total there are Cn�1 ways of parenthesizing n variables, where Cn is the nth Catalan

number. Then, join together two such expressions if one can be obtained from the

other by applying the associativity rule once. By joining all these expressions, we

build up the Stashe↵ polytope.

7.3 Cluster coordinates for Gr(3, 7)

Beginning with the initial quiver for Gr(3, 7), we can similarly generate all of the

clusters and their A- and X -coordinates by successive mutations until all possibilities

are exhausted. The E6 algebra generated in this manner has a total of 49 well-known

A-coordinates, composed of the 35 Plücker coordinates hijki on Gr(3, 7) together

with 14 composite brackets of the form

h1⇥ 2, 3⇥ 4, 5⇥ 6i, h1⇥ 2, 3⇥ 4, 5⇥ 7i (7.8)
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E6

E6

h1⇥ 2, 3⇥ 4, 5⇥ 6i = h512ih634i � h534ih612i
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Figure 5: The exchange graph for E6.
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Poisson	  bracket	  
•  There	  is	  a	  natural	  Poisson	  bracket	  on	  X-‐coordinates	  
in	  a	  given	  cluster:	  

•  It	  is	  invariant	  under	  mutaWons.	  
•  Geometrically:	  coordinates	  have	  Poisson	  bracket	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ±1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	  

The dual of the polytope we have described is called the Stashe↵ polytope (or

associahedron, for a reason we will describe in the following section) associated to

the cluster algebra. It is a theorem [38] (see also [42]) that for Grassmannian cluster

algebras, the faces are always either quadrilaterals or pentagons. For example, the

Stashe↵ polytope associated to Gr(2, 6) has 3 quadrilateral faces and 6 pentagonal

faces, while the Gr(3, 7) polytope has 1785 quadrilaterals and 1071 pentagons.

6.4 Poisson bracket

There is a natural Poisson bracket on the cluster X -coordinates which will play an

important role in elucidating the structure of motivic amplitudes. It is enough to

define the Poisson bracket between the X -coordinates in a given cluster, for which it

is given in terms of the antisymmetric matrix bij defined in (6.2) by

{Xi, Xj} = bijXiXj. (6.17)

An important property of this Poisson bracket is that it is invariant under mutations,

in the sense that

{X 0
i, X

0
j} = b0ijX

0
iX

0
j (6.18)

whenever X 0
i and b0ij are obtained from Xi and bij by a mutation.

There is a simple connection between the Poisson bracket and the geometry of

the Stashe↵ polytope:

Two X -coordinates x1, x2 have zero Poisson bracket if the Stashe↵ polytope has

some quadrilateral face containing both x1 and x2 at each vertex in the configuration

{1/x1, x2, . . .}

{1/x1, 1/x2, . . .}{x1, 1/x2, . . .}

{x1, x2, . . .}

, (6.19)

where the dots stand for other X -coordinates (some of which may overlap between

some, but not all, of the four corners). In such a case the variables x1, x2 form a

closed A1⇥A1 subalgebra of the cluster algebra. Moving left-to-right or up-to-down

is accomplished by mutating on x1 or x2, respectively.

Two X -coordinates x1, x2 have Poisson bracket ±1 if they form a closed A2

subalgebra. In this case the Stashe↵ polytope has some pentagonal face containing

– 23 –
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x1 and x2 in the configuration

{x1(1 + x2)/x2, . . .}

{x2, . . .}{x1, . . .}

{x2(1 + x1)/x1, . . .}

{x1 + x2 + x1x2, . . .}

. (6.20)

6.5 Parity invariance

In this section we show that the parity operation reviewed in sec. 2 is an element

of the cluster modular group. That is, using the identities in appendix A, we verify

that the parity transform of any quiver is related by a sequence of mutations to the

original quiver. This implies that the set of cluster X -coordinates is closed under

parity. It would be very interesting to see if the rest of the cluster modular group

plays some role, or has a nice interpretation when acting on motivic amplitudes.

Of course, in simple cases like six points in CP3 the parity invariance of the

set of cluster X -coordinates can be explicitly checked by enumerating all of them.

However, due to the large number of cluster coordinates, this is much more di�cult

for seven points and it is impossible for more than seven points since then the cluster

algebras are of infinite type.

For six points in CP3 the initial quiver is shown in fig. 1a. Parity amounts

to replacing hijkli ! [ijkl]. The angle brackets hijkli are invariants made up of

twistors Zi, Zj, Zk, Zk whereas the square brackets [i, j, k, l] are invariants made up

of dual twistors Wi,Wj,Wk,Wk. Dual twistors can be written in terms of twistors

as4 Wi = Zi�1 ^ Zi ^ Zi+1. Then we rewrite the [ijkl] in terms of angle brackets, as

follows

[1235] = h6123ih1234ih2456i, [1245] = h6123ih3456ih1245i,
[1345] = h2345ih3456ih6124i, [1234] = h6123ih1234ih2345i,

cyclic permutations of [1234].

The X -coordinates of the quiver in fig. 1b generate parity conjugates of the X -

coordinates of the quiver in fig. 1a. This quiver can be obtained from the initial

quiver by mutations, but with opposite directions of the arrows. Switching the

direction of all arrows replaces all the cross-ratios by their inverses. This does not

4This is often written as Wi = Zi�1^Zi^Zi+1

hi�1iihii+1i such that Wi and Zi scale with opposite weight.
The two-brackets hiji are defined by choosing an arbitrary line I (also called ‘infinity twistor’)
and setting hiji = hIiji. When constructing cross-ratios these two-brackets cancel out so in the
following we will not keep track of them.
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2-‐loop	  7-‐point	  and	  	  	  	  	  	  	  	  Cluster	  Algebra	  

•  All	  	  	  	  	  	  	  	  	  	  	  	  	  and	  	  	  	  	  	  	  	  	  	  	  	  in	  coproduct	  for	  2-‐loop	  7-‐points	  
amplitude	  are	  cluster	  X-‐coordinates	  for	  	  	  	  	  	  	  	  	  	  cluster	  
algebra	  	  	  

•  	  Out	  of	  385	  only	  231	  appear	  in	  the	  amplitude.	  	  
	  	  	  	  	  	  What	  is	  the	  criterion??	  	  [Note:	  9/15=231/385!]	  
•  For	  each	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  are	  in	  the	  same	  
cluster.	  Appear	  in	  pairs	  with	  zero	  Poisson	  bracket.	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  a	  sum	  of	  42	  squares	  of	  	  	  	  	  	  	  	  Stasheff	  
polytope.	  

7.4 The motivic DNA of the two-loop n = 7 MHV amplitude

Obviously it is impractical for us to display the Stashe↵ polytope for the Gr(3, 7)

cluster algebra, with its 833 vertices, 2499 edges, and 2856 1-dimensional faces (of

which 1785 are quadrilaterals and the other 1071 are pentagons). However, we are

in a position now to carry out a ‘motivic analysis’ of the two-loop n = 7 MHV

amplitude using the information contained in the previous subsection.

First of all we note the amazing fact that all of the entries of {z}2 and {z}3 in

the results in sec. 5 are always cluster X -coordinates of Conf7(CP2). Interestingly,

of the 385 such coordinates available, only 231 of them actually appear in the n = 7

MHV amplitude at two loops. This might be a two-loop accident, but if it continues

to hold at higher loop order it would be important to find some sort of geometric

explanation.

Turning our attention now to the expression for the ⇤2B2 content shown in

eq. (5.1), we note first of all the further highly nontrivial fact that for each term

{x1}2 ^ {x2}2, there is always at least one of the 833 clusters which contains both x1

and x2. And more spectacularly, the variables always appear in pairs with Poisson

bracket {x1, x2} = 0. Now we understand the geometric meaning of the ambiguity

mentioned in eq. (5.3), in light of eq. (6.19)—it is exactly the ambiguity of trying to

chose one of the four vertices of a quadrilateral, when there is no reason at all to have

to make a choice: each term in ^2B2 corresponds naturally to a certain quadrilateral

face.

We conclude that the most canonical, invariant way of expressing the ⇤2B2

motivic content of the two-loop n = 7 MHV amplitude is not by the formula (5.1),

but by writing it as a sum of 42 quadrilateral faces of the E6 Stashe↵ polytope. It is

obviously of paramount importance to understand what makes these 42 special, out

of the 1785 such faces available.

A similar motivic analysis of the B3 ⌦ C⇤ content requires a classification of

all of the possible A3, A2 ⇥ A1 and A1 ⇥ A1 ⇥ A1 subalgebras of E6. The Stashe↵

polyhedron has 1547 3-dimensional faces, consisting of 357 cubes (A1⇥A1⇥A1), 714

pentaprisms (A2 ⇥ A1) and 476 of the A3 polytopes shown in fig. 5. The 3-skeleton

underlies the amplitude in a manner which will be explored in future work.

8 Conclusion

Appropriately defined scattering amplitudes in maximally supersymmetric Yang-

Mills theory are functions on Confn(CP3) which have a very rich mathematical

structure but do not, in general, admit any particular canonical or even preferred

functional representation. The one important exception is the two-loop MHV am-

plitude for n = 6 reviewed in section (3), which does have a canonical form (up to
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	  	  In	  order	  to	  find	  the	  corresponding	  funcWon,	  we	  
need	  to	  find	  a	  funcWon	  whose	  coproduct	  can	  be	  
expressed	  enWrely	  in	  terms	  of	  cluster	  
coordinates	  
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From	  coproduct	  to	  funcWons	  	  

2.2 Integrability

Next we discuss the integrability condition which plays the crucial role in the following two

sections. A second application of � at weight 4 maps each of the two components to B2⇥�2C�,

as indicated in the diagram:

L4

�2 B2

�
B3⇥C� ,

-

B2⇥�2C�
�

-

where the bottom two arrows are given explicitly by

�({x}2 � {y}2) = {x}2
�

(1 + y) � y � {y}2
�

(1 + x) � x, (2.9)

�({x}3 ⇥ y) = {x}2
�

x � y. (2.10)

Given arbitrary elements b22 ⌅ �2 B2 and b31 ⌅ B3⇥C�, there does not necessarily exist

any function f4 ⌅ L4 whose coproduct components are b22 and b31. A necessary and su⇤cient

condition for such a function to exist is that the integrability condition

0 = �2f4 = �(b22) + �(b31) (2.11)

is satisfied. Equivalently, we can say that a pair b22, b31 satisfying (2.11) uniquely determines

a weight-4 polylogarithm function (modulo products of functions of lower weight).

It is important to note that given any element b22 ⌅ �2 B2 there does exist some function

f4 with b22 as its coproduct component (indeed Goncharov has written down [32] an explicit

map ⇥ : �2 B2 ⇤ B3⇥C� such that the pair b22,⇥(b22) satisfies (2.11) for any b22 ⌅ �2 B2),

but for generic b22 the B3⇥C� component ⇥(b22) of that function will not have any cluster

algebra structure of the type we study below.

2.3 Cluster A- and X -coordinates

Next we provide a lightning review (see [2] for details) of the types of variables which make

an appearance in the study of scattering amplitudes in SYM theory: cluster A- and cluster

X -coordinates. Much of what we have to say about cluster polylogarithm functions may be

interesting to investigate in the context of general algebras, but we restrict our attention

here largely to Gr(4, n) Grassmannian cluster algebras, and in particular the Gr(4, n) algebra

relevant to the kinematic configuration space Confn(P3) of n-particle scattering in SYM

theory.
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Given b22 2 ^2B2 and b31 2 B3 ⌦ C⇤

�2f4 = �(b22) + �(b31) = 0

funcWon	  	  	  	  	  	  	  	  with	  these	  coproduct	  components	  exists	  	  iff	  f4



	  Cluster	  Polylogarithms	  A2
A2 Cluster Polylogarithms

There is a unique solution!

Make an ansatz that the coproduct is a general linear 
combination of the available x-coordinates, and then solve:

�

0

@
5X

i,j

aij{xi}2 ^ {xj}2 + bij{xi}3 ⌦ xj

1

A = 0



	  	  	  	  	  	  	  	  Cluster	  Polylogarithm	  A2

and the dimension of B3 is again 5—spanned by the five {xi}3, which are independent.

It is simple to check that in the 10-dimensional space ⇤2 B2, there is a unique element

b22 for which there exists a b31 in the 25-dimensional B3⌦C⇤ satisfying eq. (2.11). We call

this solution the A2 function (or the pentagon function). The B3⌦C⇤ component of the A2

function is not uniquely fixed by eq. (2.11) since one always has the freedom to add any linear

combination of the five �Li4(�xi). We fix this freedom by choosing to define the A2 function

to have the coproduct components

�fA2(x1, x2)|⇤2 B2
=

5X
i,j=1

j{xi}2 ^ {xi+j}2,

�fA2(x1, x2)|B3 ⌦C⇤ = 5
5X

i=1

({xi+1}3 ⌦ xi � {xi}3 ⌦ xi+1) .

(3.3)

This is the unique choice which is skew-dihedral invariant—that means it is (1) cyclically

invariant under xi ! xi+1 and (2) changes sign under xi ! x6�i. A very important facet

of this definition is the antisymmetry of �fA2(x1, x2)|B3 ⌦C⇤ under {x}3 ⌦ y ! {y}3 ⌦ x.

In some sense we can therefore consider fA2 to be a “purely non-classical” cluster function

(although this notion is not precisely defined), since any linear combination of the classical

functions �Li4(�xi) functions has a naturally symmetric B3⌦C⇤ component. This antisym-

metry property of the A2 function makes them useful building blocks for expressing scattering

amplitudes, as discussed below in sec. 5.

It is also interesting to note that the B3⌦C⇤ content of fA2 can be expressed in an

evidently “local” manner—by this we mean that the two X -coordinates in each term {xi}3⌦xj

always have j = i ± 1 and therefore appear together inside some cluster and moreover have

Poisson bracket {xi, xi±1} = ±1. In contrast, the ⇤2 B2 component is non-local: the two

variables appearing in each term {xi}2^{xj}2 do not in general appear together in a common

cluster and do not have any particularly simple Poisson bracket with each other.

Let us pause to clarify one point of notation which will allow us to avoid confusion later.

All five X -coordinates appear on the right-hand sides of (3.3), but we appropriately write

fA2(x1, x2) as a function of only two variables since the others may be expressed in terms of

these via the relation (3.1). Below we will frequently need to discuss A2 subalgebras of larger

cluster algebras. Any such subalgebra is generated by a pair of X -coordinates which appear

together inside some cluster and which have Poisson bracket {x, y} = 1. When this happens

the corresponding A2 function is simply fA2(x, y). To summarize using the quiver notation

reviewed in [2]: fA2(x, y) is a function of any two X -coordinates appearing inside a quiver as

x ! y.

We emphasize that the equations (3.3) completely and unambiguously define the A2

function as an element of L4—i.e., modulo products of functions of lower weight. Nevertheless,

the reader with an appetite for seeing an actual function with these coproduct components

may turn to the appendix for satisfaction, and we can write here a relatively simple expression
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(see for example [30] for a discussion), whose symbol is

(y � 1)⌦ (x� 1)⌦ x⌦ y + (y � 1)⌦ (x� 1)⌦ y ⌦ x+ (y � 1)⌦ y ⌦ (x� 1)⌦ x

� (xy � 1)⌦ (x� 1)⌦ x⌦ y � (xy � 1)⌦ (x� 1)⌦ y ⌦ x� (xy � 1)⌦ x⌦ (x� 1)⌦ x

+ (xy � 1)⌦ x⌦ x⌦ x+ (xy � 1)⌦ x⌦ x⌦ y + (xy � 1)⌦ x⌦ (y � 1)⌦ y

+ (xy � 1)⌦ x⌦ y ⌦ x+ (xy � 1)⌦ (y � 1)⌦ x⌦ y + (xy � 1)⌦ (y � 1)⌦ y ⌦ x

� (xy � 1)⌦ y ⌦ (x� 1)⌦ x+ (xy � 1)⌦ y ⌦ x⌦ x+ (xy � 1)⌦ y ⌦ (y � 1)⌦ y. (A.1)

A.1 The A2 function

The A2 function may be represented as

fA2 ⇠
5X
i,j

jL2,2(xi, xi+j) (A.2)

in terms of

L2,2(x, y) =
1

2
Li2,2

✓
x

y

,�y

◆
+

1

6

✓
Li4

✓
1 + x

xy

◆
+ Li4

✓
x(1 + y)

y(1 + x)

◆◆
+

1

5

✓
Li4

✓
1 + x

xy

◆
+

1

2
Li4

✓
1 + x

1 + y

◆◆
+

1

2
Li3

✓
x

y

◆
log

✓
1 + x

1 + y

◆
� (x $ y). (A.3)

The factor of j in the summand may seem awkward, but when fully expanded out the sum

generates a total of 20 Li2,2 terms, each with coe�cient ±3
2 or ±1

2 (each possibility occurs five

times). Note that the function L2,2 has the simple coproduct �L2,2(x, y)|⇤2 B2
= {x}2 ^ {y}2

(it is therefore very similar to Goncharov’s (x, y) function [35]). The rather strange looking

Li4 terms in eq. (A.3) of course make no contribution to ⇤2 B2; they are carefully tuned to

ensure that eq. (A.2) has clustery B3⌦C⇤ content. The Li3 · log terms are of course irrelevant

inside L4, but they are required for fA2 to be a cluster A-function of the A2 algebra. The

symbol of eq. (A.2) is not identical to the one shown in eq. (3.4), but the di↵erence between

the two is annihilated by ⇢ (i.e., they di↵er by products of functions of lower weight).

A.2 The A3 function

The A3 function may of course be written as the sum of eq. (A.3)’s for the six pentagons in A3,

but the simple form of �fA3(x1, x2, x3)|⇤2 B2
suggests that there is a more concise functional

representation. Indeed, we find that a representative of the A3 function can be written as

fA3(x1, x2, x3) ⇠
3X

i=1

K2,2(xi,1, xi,2) +
1

2

6X
i=1

(�1)i Li4(�ei) (A.4)

where the xi,j and ei are defined in (4.1) and we use here the new combination

K2,2(x, y) =
1

2
Li2,2(x/y,�y)� Li4(x/y)�

2

3
Li3(x/y) log(y)� (x $ y). (A.5)

As was the case for the A2 function, the Li3 · log terms are chosen so that the symbol of (A.4)

is expressible entirely in terms of cluster A-coordinates of the A3 algebra.
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Cluster	  Polylogarithm	  

Recall	  that	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  derived	  from	  the	  
amplitude	  side	  only	  has	  pairs	  with	  Poisson	  bracket	  
zero,	  which	  is	  an	  addiWonal	  constraint,	  and	  leads	  
to	  a	  parWcular	  combinaWon	  of	  pentagon	  funcWons.	  

A3

B2 ^B2

associated to products of lower-weight functions (it is the choice which makes the symbol an

eigenvector of �), but we are not yet ready to commit to any choice.

Although we believe this function to be new (and hopefully interesting) to the mathe-

matics community, it may seem that this example is too trivial to be relevant to SYM theory,

where the relevant algebras are Gr(4, n). For sure, Gr(4, n) contains many A2 subalgebras,

and we may evaluate fA2 on each of these, but are there any other solutions of (2.11) for these

algebras? Surprisingly, we have checked in addition to A2 the finite algebras A3, A4 and D4,

and in each case we have found that there are no other solutions—for these cluster algebras,

all non-trivial weight-4 cluster functions are linear combinations of A2 functions6!

It remains an interesting mathematical problem to determine, for general cluster algebras

(even for infinite ones), the set of non-trivial cluster polylogarithm functions; that is, the

subspace of �2 B2 on which (2.11) can be solved in terms of an element b31 expressible purely

in terms of cluster X -coordinates. However, even if more exotic solutions exist in general, for

the limited purpose of studying two-loop n-point MHV amplitudes it seems clear that the A2

functions are completely su⌅cient, in part because these amplitudes only live in a finite (and

small) piece of the relevant cluster algebras, as discussed below in sec. 5.

4 The A3 function

We now turn our attention to cluster polylogarithms for the A3 cluster algebra, beginning with

the seed quiver x1 ⇥ x2 ⇥ x37. This quiver generates the following 15 cluster X -coordinates:

x1,1 = x1 x1,2 = 1/x3 v1 =
(x2 + 1) (x1x2x3 + x2x3 + x3 + 1)

x1x2

x2,1 = (x1x2 + x2 + 1)x3 x2,2 =
x1x2 + x2 + 1

x1
v2 =

x3 + 1

x2x3

x3,1 =
x2x3 + x3 + 1

x2
x3,2 =

x2x3 + x3 + 1

x1x2x3
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e1 =
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(x1 + 1)x2
e2 =
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e3 =
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x3 + 1

e4 =
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e5 =

x1 (x3 + 1)

x1x2x3 + x2x3 + x3 + 1
e6 = x2.

The structure of the algebra is summarized in the Stashe⇥ polytope shown in fig. (2).

The polytope has 9 faces (comprising six pentagons and three quadrilaterals), 14 vertices,

and 21 edges, each of which is labeled by an X -coordinate.

We now review a few facts about the natural Poisson structure [26] on Confn(P3) fol-

lowing [2]. A pair of cluster X -coordinates has a simple Poisson bracket (“simple” means ±1

6We were unable to check this for the finite algebra E6 (= Gr(4, 7)) due to a lack of su⇤cient computer

power. In this case the relevant spaces �2 B2, B3 �C� and B2 ��2C� have dimension 8646, 15246 and 227304

respectively.
7Note that this is really shorthand for “a triplet of X -coordinates {x1, x2, x3} that are all in the same cluster

(this distinguishes between xi and 1/xi) and have the Poisson structure {x1, x2} = {x2, x3} = 1, {x1, x3} = 0.”
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Figure 2. The Stashe� polytope for the A3 cluster algebra. The caption of fig. (1) applies, except that
here a cluster of three X -coordinates is associated to each vertex. The three quadrilateral faces are
shaded blue to distinguish them visually from the six pentagonal faces. The interior of this polytope
can be identified with the blow-up of the positive domain in Conf6(P3), see for example [33].
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coordinates (x1, . . . , x5) (following the notation of sec. 3) for each of the six A2 subalgebras:

(e4, 1/e6, x1,1, v3, x2,2), (e5, 1/e1, x2,2, v1, x3,1),

(e6, 1/e2, x3,1, v2, x1,2), (e1, 1/e3, x1,2, v3, x2,1), (4.3)

(e2, 1/e4, x2,1, v1, x3,2), (e3, 1/e5, x3,2, v2, x1,1).

Each cyclically adjacent pair of variables appearing here, for example {e6, 1/e4} or {x2,1, e1},
has Poisson bracket +1. The three entries in the left column can be read o⇥ from fig. (2) by

going around the pentagons clockwise (as seen from outside the Stashe⇥ polytope), while the

three entries in the right column must be read o⇥ counterclockwise.

Finally we come to the question of cluster functions for the A3 algebra. As revealed

already at the end of the previous section, it is a simple problem in linear algebra to verify

that the equation (2.11) admits solutions only when b22 lies in the 6-dimensional subspace

of �2 B2 spanned by the six A2 functions associated to (4.3). We may represent these six

functions as fA2(ei, 1/ei+2) for i = 1, . . . , 6 thanks to the cyclic invariance of the A2 function.

It is now time, in our quest to cook up a fine selection of special functions for the two-

loop MHV amplitudes, to toss in one more very special ingredient. Beyond the fact that

they are cluster polylogarithm functions, an even more amazing property of these amplitudes

is that they have �2 B2 content which can be expressed entirely in terms of pairs of cluster

X -coordinates {xi}2 ⌅ {xj}2 which Poisson commute: {xi, xj} = 0! This was shown to be

true for n = 7 in [2], and is in fact known to be true for all n [24, 25].

For the A3 algebra it is simple to check that there is a unique linear combination of the

six A2 functions with this property, which we naturally call the A3 function:

fA3 =
1

2

6�

i=1

(�1)ifA2(ei, 1/ei+2). (4.4)

The coproduct of the A3 function has the spectacularly simple, “local” �2 B2 content

�fA3 |�2B2
=

3�

i=1

{xi,1}2 ⌅ {xi,2}2. (4.5)

We do not write the B3⇥C� component since it does not simplify beyond the alternating sum

of six copies of the corresponding component from the A2 function.

We observed beneath eq. (3.3) that the B3⇥C� content of the A2 function is “local”

(involving only pairs of variables which appear in a common cluster), and the A3 function
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All	  non-‐trivial	  degree	  4	  cluster	  funcWons	  for	  	  	  	  	  	  	  	  are	  
linear	  combinaWons	  of	  	  	  	  	  	  	  	  	  	  funcWons	  

D.	  Parker	  and	  	  A.	  Scherlis	  

E6



2-‐loop	  7-‐point	  amplitude	  
	  	  	  	  	  
	  
	  
	  
	  
	  
	   Cluster	  polylog	  funcWons	  are	  building	  blocks	  	  
necessary	  to	  write	  down	  	  
all-‐n	  funcWon	  for	  2-‐loop	  MHV.	  

with	  Golden,	  Spradlin,	  Paulos	  

R(2)
7 =

1

2

fA3

⇣
h1245ih1567i
h1257ih1456i ,

h1235ih1456i
h1256ih1345i ,

h1234ih1257i
h1237ih1245i

⌘
+

1

2

fA3

⇣
h1345ih1567i
h1357ih1456i ,

h1235ih3456i
h1356ih2345i ,

h1234ih1357i
h1237ih1345i

⌘

�Li4
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⌘
� Li4
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⌘
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⌘
� 1

2

Li4
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⌘

+ dihedral + parity conjugate + products of terms of lower weight.



Conclusion	  
•  We	  have	  advocated	  the	  study	  of	  cluster	  structure	  of	  
N=4	  YM	  amplitudes.	  

•  We	  can	  use	  this	  structure	  for	  advancing	  
computaWons.	  

•  Many	  quesWons	  remain:	  cluster	  structure	  @	  loops,	  
other	  heliciWes,	  strong	  coupling…..	  	  

	  	  	  	  	  very	  impressive	  explicit	  results	  by	  Dixon,	  Drummond,	  Duhr,	  
	  	  	  	  	  	  	  Henn,	  Pennington,	  von	  Hippel	  &	  Basso,	  Sever	  Vieira	  

•  ConnecWon	  to	  the	  integrands:	  cluster	  structure	  also	  
appeared	  in	  on-‐shell	  diagrams	  	  

	  	  	  	  	  [Arkahi-‐Hamed,	  Bourjaily,	  Cachazo,	  Goncharov,	  Postnikov,	  Trnka]	  


