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Why to study on-shell scattering amplitudes?
» Efficient predictions for colliders.
» New computational tools.
» Ideal test object to study new structures in QFT.

Planar N’ = 4 SYM: huge progress in last decade:
» Four dimensional interacting QFT.
> Yangian symmetry — integrable.

» Interesting connections: twistor string, Wilson loop/amplitude
correspondence — very powerful computational methods like
flux tube S-matrix, amplitudes at finite coupling.

Very different point of view: make all symmetries and properties of
the amplitude manifest.



Dual formulation for planar
amplitudes

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 2012]
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In the planar theory we can define Integrand.
» Gauge invariant rational function to be integrated.

» We can define it as a sum of Feynman diagrams prior to
integration (using dual coordinates) or better as a function
that satisfies all cut conditions.

A, = /d4€1 d*y ... d*, T, (4, pj)

Why is this object interesting?
» Well-defined and finite (no IR divergencies, no regulators).

» Fascinating connections to recent discoveries in algebraic
geometry and combinatorics.

» For this object we are able to find a completely new
formulation — does it exist for integrated amplitudes?
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Dual formulation

All properties (not the actual expressions) of integrated amplitudes
should have the image in the structure of the integrand (vanishing
in different limits, transcendentality,...).

From now: Amplitude = Integrand.

Standard expansion: Feynman diagrams, or better tensor integrals
which coefficients are fixed using unitary methods or other
approaches.

Searching for new expansion for planar A/ = 4 SYM:

1. Traditional on-shell approach: using on-shell data to fix the
amplitude. We can go further: define fully on-shell objects
which directly serve as building blocks for the amplitude.

2. Yangian symmetry is obscured in the traditional formulation.
New expansion should make it manifest term-by-term.
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Dual formulation
The answer: On-shell diagrams.
» Well-defined object in any weakly coupled QFT: on-shell
gluing of elementary amplitudes.

> In Yang-Mills theory we have two elementary 3pt amplitudes:
white and black vertices

» We can use BCFW recursion relations to write the amplitude
as a sum of on-shell diagrams.

» These diagrams are not local in spacetime: presence of
spurious poles (like in BCFW).



Dual formulation

There is a completely different way how to look at these diagrams:
relation to cells of Positive Grassmannian G (k, n).

» Gi(k,n): (k x n) matrix mod GL(k)

C:

where all maximal minors are positive, (a;, a;, .. .a;, ) > 0.
» Stratification: cell of G (k,n) of dimensionality d given by a
set of constraints on consecutive minors.

» For each cell of dimensionality d we can find d positive
coordinates x;, and associate a logarithmic form
dxl d.’Bd

Q=[] —...— i)Z;
o= | SO 2))
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Dual formulation

Further step: Amplituhedron
[Arkani-Hamed, JT, 2013]

> Glue pieces of the amplitude together and find a new
definition of the amplitude as a single object with all
symmetries and properties manifest.

| will leave it for Nima's talk.
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Beyond planar limit

If all this is a consequence of integrability we loose everything one
step away from planar N/ = 4 SYM and we should not find
anything special there.

| think this is not the case.

If a dual formulation exists for any QFT we should see it in the
non-planar N’ = 4 SYM.

Before looking at amplitudes we can study on-shell diagrams. They
are well-defined for non-planar case.
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Non-planar on-shell diagrams

[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, to appear]
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Non-planar on-shell diagrams

We can associate a cell in G(k,n) and the logarithmic form which
gives the same result as on-shell gluing.

It is not positive part of G(k,n), all the beautiful connections to
combinatorics is (naively) lost!

Each on-shell diagram represents a cut of the amplitude.

The amplitude is fully determined by its cuts so in the end we
should be able to reverse the process and write the amplitude in
terms of on-shell diagrams.

We do not know how to do it now. Studying non-planar on-shell
diagrams seems like a right step towards that goal.

There are special properties of certain on-shell diagrams which do
not follow from any known symmetries of N' = 4 SYM.



Non-planar on-shell diagrams
We consider k = 2 on-shell diagrams relevant for MHV amplitudes.

We consider reduced diagrams
» No internal bubbles in the diagram (no unfixed parameters).

» Number of propagators equals to 4L: the diagram is
represented by rational function.

» We often refer to them as leading singularities as they
represent 4L cuts of loop amplitudes.
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Claim for MHV leading singularities

The statement for MHV leading singularities
> In planar sector we can get only a tree-level amplitude

1
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Claim for MHV leading singularities

The statement for MHV leading singularities

> In planar sector we can get only a tree-level amplitude

1

An = (12)(23)(34)(45) . .. (n1)

we refer to it as Parke-Taylor factor P(123...n).
» Superconformal invariance: holomorphic function of A only.

Our claim:

MHYV leading singularities are linear combination of Parke-Taylor
factors with different orderings P(c) and +1 coefficients.
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Claim for MHV leading singularities

This is a very non-trivial statement. Two things can happen:

1. Presence of spurious poles like

((12)(34) — (14)(23))
which happens for & > 2 already in planar sector — most of
the Yangian invariants have spurious poles.
2. Even expressions with local poles might not be expressible in

terms of Parke-Taylor factors, e.g.

1
(12)(23)(31)(45)(56)(64)

But this does not happen and we can indeed prove that the claim
is correct.
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Examples

Example 1: One-loop box

2 3
B 1
C o (12)(23)(34)(41)
1 \ = P(1234)
Example 2: Inverse soft-factor diagram
1
) 1
5 2 (4B)(B1) (12)(23)(34)(41)

—  P(12453) + P(12435)



Examples

Example 3: Non-trivial diagram

1 —
(12)(13)(14)(15)(23)(25)(26)(34)(36)(45) (46) (56)

= P(126435) + P(123564) 4 P(123456) + P(125463) -+ P(126453) 4 P(125364)

Note that the complete expression is very compact!



Non-planar Yang-Mills amplitudes

[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, to appear]

[Bern, Herrmann, Litsey, Stankowicz, JT, to appear]
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Three step strategy

The property we found for MHV on-shell diagrams must play an
important role in the full story.

However, at this moment we do not know how to expand the
non-planar AV = 4 SYM amplitude in terms of on-shell diagrams.

The problem is closely related to the non-existence of unique
integrand beyond the planar limit — we can not choose unique dual
coordinates.

Let us go back to the planar case where the reformulation was
successful and read the story backwards as a 3-step process:

1. Find new property/symmetry in the result obtained by
standard methods.
2. Make this property manifest in a new expansion.

3. Find a formulation which makes all symmetries manifest.
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Three step strategy

In the case of planar N' =4 SYM:
1. New property found in the standard formulation: dual
conformal symmetry later unified to Yangian symmetry.

2. New expansion which makes this property manifest
term-by-term: on-shell diagrams and Positive Grassmannian.

3. Complete reformulation which makes all properties manifest:
Amplituhedron.

We want to follow these steps for non-planar amplitudes. We have
data up to 5-loops at 4pt but what the new property can be?
Motivation from planar sector:

» Yangian symmetry? Not directly as this requires cyclic
symmetry, perhaps some modification but hard to test now.

» Logarithmic singularities: this looks very reasonable!
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singularities and no poles at infinity.

There is a difficulty with testing this conjecture on an arbitrary
representation of the amplitude: absence of the integrand — we can
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Conjecture
This is our conjecture:

The complete N/ = 4 SYM amplitudes have only logarithmic
singularities and no poles at infinity.

There is a difficulty with testing this conjecture on an arbitrary
representation of the amplitude: absence of the integrand — we can
not combine pieces together.

Temporary strategy: stay with the local expansion, use the basis
which makes these two properties manifest term-by-term and prove
that we can write the amplitude in this basis.

We will do it up to 3-loops at 4pt.



Logarithmic singularities
The form has only logarithmic singularities if near any pole z; — a,

dZL‘Z‘

r; —a

Qx1,...,Tm) — Qxy...%5...xm)

We can change variables z; — fi(k) (x}),

Q=3 dlog f*) dlog £ ... dlog £
k

where we denote dlog x = dz/x. Example of such a form is
Q(z) = dr/x = dlog z, while Q(z) = dz or Q(z) = dx/x? are not.

Example of 2-form:

dzd
Qz,y) = — Y _qog [ —2 ) dlog [ — Y
zy(x+y+1) r4+y+1 z+y+1

but not Q(z,y) = dz dy/zy(x + y) as near x = 0: dy/y>.



Poles at infinity

Logarithmic forms for loop integrals: take residues and study if
positions of loop momentum ¢ — oo. One-loop examples:

d*¢ I d*l s
0=k — k)2’ ST k)20 — k1 — k)2

d*0 st
(00— k)20 — k1 — ko)2(€ + kyq)?

Parametrize the loop momentum:

I, =

I =

0= a1 M A1 + aadado + azhida + agdod

and study I, I3, I as functions of «;. The result is:
> Bubble integral does not have logarithmic singularities.
» Triangle has log singularities with a pole for a3 — co.

> Only the box integral has both properties.
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Relation to integrated amplitudes

Logarithmic singularities and absence of poles at infinity are related
to two properties of integrated amplitudes:

» Uniform and maximal transcendentality.

» UV finiteness.

Examples of UV divergent integrals:

1y / d*e
20+ p1 + p2)?’ (€-p1)(€-p2)(L-p3)(L- pa)

Examples of UV finite integrals:

d*e d*e

020+ p1)2(€ + p1 + p2)? (L4 p1)2(L+ p1 4 p2)? (L — py)?



One-loop amplitude

In the local expansion we get sum over permutations over 7
_ 34][41]
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One-loop amplitude

In the local expansion we get sum over permutations over 7
_ 34][41]
Al loop _ [ . C. T
4 (12)(23) ZG: 7
where 7 is a 0-mass box integral,

P2 —p1 — pw P3

{—p l—py

Dp1 l 2

This integral has logarithmic singularities and no poles at infinity.

2 2

0 —p1)? 0 —p1 — p2)? ¢

=2 T = T — e TRy

and the one-loop amplitude preserves this property.



Two-loop amplitude

In the two-loop case the amplitude is written using two integrals.

2—loop [34] [41] . (P) 7(P) (NP) 7(NP)
.A4 - <<12> (23> ; |:CO' IO' + Ca' Ia'



Two-loop amplitude

In the two-loop case the amplitude is written using two integrals.

2—loop __ M . (P) 7(P) (NP) 7(NP)
2 _<<12><23> > [ 2P + e 1

(e

The planar double box Z(¥) 2 , , 3

p
Il(,2?3,4 =(m +P2)2 X

1 4
can be directly written in the dlog form
dlog a1 dlog ae dlog ag .. .dlog ag

where a1 =03/ (6h—17)?, as =13/ (la—15)?,
ar= (0 —p2)? /(L= £7)?, o= (L1+02)% [ (L~ 13)?,
as=(li—p1—p2)?/(L1—€7)?, ar = (la—p3)?/(L2—05)?,
as=(l+ps)’/(—61)?,  as=(la—ps—pa)?/(la—13)?,



Non-planar double box

The non-planar double box IC(,NP)
B 2
N
b
I§]\2]347(P1 +p2)? x A 4 3

A

1

does not have logarithmic singularities. For example, do quadruple
cut on /o and triple cut on £1 = xps we get

T(NP) _ dx
12347 (g + 1)22tu



Non-planar double box

The non-planar double box IC(,NP)
B 2

s,

I§2347(1)1 +p2)® x A 4 3

A

1

does not have logarithmic singularities. For example, do quadruple
cut on /o and triple cut on £1 = xps we get

T(NP) _ dx
12347 (g + 1)22tu

Proposal: there are cancelations between terms and the amplitude
is indeed logarithmic.

We want to keep the same diagram and just change its numerator.



Non-planar double box

And indeed such a numerator exists!
" 2

!
e S

12547([114‘1)2) 4 3

A
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We change (p1 + p2)? — ({1 +p3)? + ({1 + ps)?.



Non-planar double box

And indeed such a numerator exists!
" 2
\ 14
Uy

I§2347(1)1 +p2)® x A 4 3

A

1

We change (p1 + p2)? — ({1 +p3)? + ({1 + ps)?.

The difference cancels in the color sum and all terms in the
expansion have logarithmic singularities and no poles at infinity.

There is also a dlog form which contains several terms because
leading singularities of this integral are not unit.



Three-loop amplitude

The three-loop amplitude is a sum over permutations of nine
master integrals with proper color factors,

[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]

2 3 2 3
7
] X N
1 (a) 4 1 (b) 4 1 (c)
2 5 3 2 5
2 3 N
1 (d) 1
1 6 (e) 4 1”7 6 (f)
N_? ’ NGRS 2
sy 16 19 7 6

g | 13
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Three-loop amplitude

We can try to repeat the exercise and find the numerators for
these integrals which give integrals with logarithmic singularities
and no poles at infinity.

It is hard to prove cancelations in color sums.

We can slightly change the strategy:
» Find the basis of integrals with our desired properties.

» Expand the amplitude in this basis by matching leading
singularities or unitary cuts.

Even if the amplitude has these properties it is not guaranteed that
we can make them manifest term-by-term in the local expansion.

But it is indeed possible to do it!



Three-loop amplitude

As an example, | will show the most annoying diagram which has
three pentagons in it:

5-7+2 5+6-1

6+7+3+4

T+43 6+4

The original numerator is only linear in loop momenta,

N = 519(06+ L7+ p3+pa) - (D1 +p2) + 523(L5) - (P2 +D3) + S12523

but the integral with this numerator has double poles.
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Three-loop amplitude

We impose the complete set of constraints and get two
independent numerators:

NP = (s +po+p3)” (b + br)* — €2 (L + by — 1 — p2)°

N = [+ tr = p1)* o+ (o £ = p2)?] [(65 =) + (65 — pa)’]
—402 (bg + b7 — p1 — pa)°

The numerator is balanced: quartic polynomial in loop momenta,

» Enough to cancel all double poles.

» Still no poles at infinity are generated.

We can do the exercise for all master topologies and prepare the
basis with logarithmic singularities and no poles at infinity.

Interesting relation to work by Johannes Henn and (Smirnov)?.

Try to expand the amplitude in this basis ... and succeed!
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Back to on-shell diagrams

We have a representation of the amplitude in terms of local
integrals with logarithmic singularities and no poles at infinity.

This is a very strong evidence for the conjecture that this property
holds to all loop orders.

Now we would like to proceed to Step 2 of our process: make these
properties manifest in some new expansion to all loop orders.

The on-shell diagrams are the natural candidates as they
manifestly have both properties.



Supergravity
[Arkani-Hamed, Bourjaily, Cachazo, JT, to appear]

[Bern, Herrmann, Litsey, Stankowicz, JT, in progress]
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On-shell diagrams
We can repeat the exercise for ' = 8 SUGRA.

On-shell diagrams

» They are well-defined, we can obtain them by gluing 3pt
vertices.

» We can associate a cell in G(k,n) for each reduced diagram.

» However, we do not know what is the form to be associated
with a diagram — it is not a logarithmic form.
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Supergravity amplitudes

We can also analyze the results for loop amplitudes in N’ =8
SUGRA.

Idea: amplitudes in A/ = 8 SUGRA are still logarithmic and no
poles at infinity.

At 1-loop it is equivalent to the absence of triangles: correct

At 2-loops we can try to use new basis and expand the amplitude:
successful.

At 3-loops we better use BCJ representation of the gravity

amplitude: (new) (BCJ)
p
D

Agr =

where the BCJ numerator Nx(/B]V?J) is only linear in loop momenta.



Supergravity

Based on this expansion we can easily prove that the gravity
amplitude still has logarithmic singularities while the manifest
absence of poles at infinity is lost.

For £ = a1p1 + agpa + azps + asps we get

NV _ Nyla) 1
D Ny(a)  ala+1)

q=p+2

The BCJ numerator is Nﬁ\/[c‘]) ~ « and therefore

1
Agr ~ —
«

Pole at infinity: @ — oo. It still might cancel between terms but
the preliminary checks show they do not.
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Supergravity
Logarithmic singularities are present for gravity up to 3-loops.
Naively, the powercounting of BCJ numerators suggest that the

logarithmic singularities are lost at higher loops. Further studies
must answer the question.

It should also tell us if/why the amplitude does/does not diverge
at 7-loops (or higher).

Logarithmic singularities and no poles at infinity guaranteed UV
finiteness in the case of ' =4 SYM.

If the poles at infinity do not cancel for ' = 8 SUGRA, the theory
is either UV divergent or there is some other mechanism which
implies UV finiteness.
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Conclusion
Dual formulation for the integrand in the planar NV = 4 SYM.

Explore if these ideas extend beyond this case: natural candidates
are scattering amplitudes in complete N' = 4 SYM.

Two different approaches:

» Study properties of on-shell diagrams: special structure of
MHYV leading singularities.

» Study properties of amplitudes written in traditional form:
logarithmic singularities and no poles at infinity up to 3-loops.

Goal: find dual formulation using on-shell diagrams (or similar
objects), perhaps unified in Amplituhedron-type construction.

Similar study for N' = 8 Supergravity: logarithmic singularities up

to 3-loops. Further studies at higher loops should also
prove/disprove the finiteness conjecture.
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..... and happy birthday, Andrew!



