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Object of interest
Why to study on-shell scattering amplitudes?

I Efficient predictions for colliders.
I New computational tools.
I Ideal test object to study new structures in QFT.

Planar N = 4 SYM: huge progress in last decade:
I Four dimensional interacting QFT.
I Yangian symmetry → integrable.
I Interesting connections: twistor string, Wilson loop/amplitude

correspondence → very powerful computational methods like
flux tube S-matrix, amplitudes at finite coupling.

Very different point of view: make all symmetries and properties of
the amplitude manifest.
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Dual formulation for planar
amplitudes

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 2012]



Integrand
In the planar theory we can define Integrand.

I Gauge invariant rational function to be integrated.
I We can define it as a sum of Feynman diagrams prior to

integration (using dual coordinates) or better as a function
that satisfies all cut conditions.

An =

∫
d4`1 d

4`2 . . . d
4`L In(`i, pj)

Why is this object interesting?
I Well-defined and finite (no IR divergencies, no regulators).
I Fascinating connections to recent discoveries in algebraic

geometry and combinatorics.
I For this object we are able to find a completely new

formulation – does it exist for integrated amplitudes?
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Dual formulation
All properties (not the actual expressions) of integrated amplitudes
should have the image in the structure of the integrand (vanishing
in different limits, transcendentality,. . .).

From now: Amplitude = Integrand.

Standard expansion: Feynman diagrams, or better tensor integrals
which coefficients are fixed using unitary methods or other
approaches.

Searching for new expansion for planar N = 4 SYM:

1. Traditional on-shell approach: using on-shell data to fix the
amplitude. We can go further: define fully on-shell objects
which directly serve as building blocks for the amplitude.

2. Yangian symmetry is obscured in the traditional formulation.
New expansion should make it manifest term-by-term.
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Dual formulation
The answer: On-shell diagrams.

I Well-defined object in any weakly coupled QFT: on-shell
gluing of elementary amplitudes.

I In Yang-Mills theory we have two elementary 3pt amplitudes:
white and black vertices

I We can use BCFW recursion relations to write the amplitude
as a sum of on-shell diagrams.

I These diagrams are not local in spacetime: presence of
spurious poles (like in BCFW).
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Dual formulation
There is a completely different way how to look at these diagrams:
relation to cells of Positive Grassmannian G+(k, n).

I G+(k, n): (k × n) matrix mod GL(k)

C =



∗ ∗ . . . ∗
...

... . . .
...

∗ ∗ . . . ∗




where all maximal minors are positive, (ai1ai2 . . . aik) > 0.
I Stratification: cell of G+(k, n) of dimensionality d given by a

set of constraints on consecutive minors.
I For each cell of dimensionality d we can find d positive

coordinates xi, and associate a logarithmic form

Ω0 =

∫
dx1
x1

. . .
dxd
xd

δ(C(xi)Zj)



Dual formulation
Further step: Amplituhedron

[Arkani-Hamed, JT, 2013]

I Glue pieces of the amplitude together and find a new
definition of the amplitude as a single object with all
symmetries and properties manifest.

I will leave it for Nima’s talk.
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Beyond planar limit
If all this is a consequence of integrability we loose everything one
step away from planar N = 4 SYM and we should not find
anything special there.

I think this is not the case.

If a dual formulation exists for any QFT we should see it in the
non-planar N = 4 SYM.

Before looking at amplitudes we can study on-shell diagrams. They
are well-defined for non-planar case.
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Non-planar on-shell diagrams
[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, to appear]



Non-planar on-shell diagrams
We can associate a cell in G(k, n) and the logarithmic form which
gives the same result as on-shell gluing.

It is not positive part of G(k, n), all the beautiful connections to
combinatorics is (naively) lost!

Each on-shell diagram represents a cut of the amplitude.

The amplitude is fully determined by its cuts so in the end we
should be able to reverse the process and write the amplitude in
terms of on-shell diagrams.

We do not know how to do it now. Studying non-planar on-shell
diagrams seems like a right step towards that goal.

There are special properties of certain on-shell diagrams which do
not follow from any known symmetries of N = 4 SYM.
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Non-planar on-shell diagrams
We consider k = 2 on-shell diagrams relevant for MHV amplitudes.

We consider reduced diagrams
I No internal bubbles in the diagram (no unfixed parameters).
I Number of propagators equals to 4L: the diagram is

represented by rational function.
I We often refer to them as leading singularities as they

represent 4L cuts of loop amplitudes.



Claim for MHV leading singularities
The statement for MHV leading singularities

I In planar sector we can get only a tree-level amplitude

An =
1

〈12〉〈23〉〈34〉〈45〉 . . . 〈n1〉

we refer to it as Parke-Taylor factor P (123 . . . n).
I Superconformal invariance: holomorphic function of λ only.

Our claim:

MHV leading singularities are linear combination of Parke-Taylor
factors with different orderings P (σ) and +1 coefficients.
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Claim for MHV leading singularities
This is a very non-trivial statement. Two things can happen:

1. Presence of spurious poles like

(〈12〉〈34〉 − 〈14〉〈23〉)
which happens for k > 2 already in planar sector – most of
the Yangian invariants have spurious poles.

2. Even expressions with local poles might not be expressible in
terms of Parke-Taylor factors, e.g.

1

〈12〉〈23〉〈31〉〈45〉〈56〉〈64〉

But this does not happen and we can indeed prove that the claim
is correct.
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Examples
Example 1: One-loop box

=
1

〈12〉〈23〉〈34〉〈41〉

= P (1234)

Example 2: Inverse soft-factor diagram

=
〈41〉
〈45〉〈51〉 ·

1

〈12〉〈23〉〈34〉〈41〉

= P (12453) + P (12435)
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Examples
Example 3: Non-trivial diagram

=
(〈15〉〈26〉〈34〉 − 〈14〉〈25〉〈36〉)2

〈12〉〈13〉〈14〉〈15〉〈23〉〈25〉〈26〉〈34〉〈36〉〈45〉〈46〉〈56〉

= P (126435)+P (123564)+P (123456)+P (125463)+P (126453)+P (125364)

Note that the complete expression is very compact!



Non-planar Yang-Mills amplitudes
[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, to appear]

[Bern, Herrmann, Litsey, Stankowicz, JT, to appear]



Three step strategy
The property we found for MHV on-shell diagrams must play an
important role in the full story.

However, at this moment we do not know how to expand the
non-planar N = 4 SYM amplitude in terms of on-shell diagrams.

The problem is closely related to the non-existence of unique
integrand beyond the planar limit – we can not choose unique dual
coordinates.

Let us go back to the planar case where the reformulation was
successful and read the story backwards as a 3-step process:

1. Find new property/symmetry in the result obtained by
standard methods.

2. Make this property manifest in a new expansion.

3. Find a formulation which makes all symmetries manifest.
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Three step strategy
In the case of planar N = 4 SYM:

1. New property found in the standard formulation: dual
conformal symmetry later unified to Yangian symmetry.

2. New expansion which makes this property manifest
term-by-term: on-shell diagrams and Positive Grassmannian.

3. Complete reformulation which makes all properties manifest:
Amplituhedron.

We want to follow these steps for non-planar amplitudes. We have
data up to 5-loops at 4pt but what the new property can be?

Motivation from planar sector:
I Yangian symmetry? Not directly as this requires cyclic

symmetry, perhaps some modification but hard to test now.
I Logarithmic singularities: this looks very reasonable!
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Conjecture
This is our conjecture:

The complete N = 4 SYM amplitudes have only logarithmic
singularities and no poles at infinity.

There is a difficulty with testing this conjecture on an arbitrary
representation of the amplitude: absence of the integrand – we can
not combine pieces together.

Temporary strategy: stay with the local expansion, use the basis
which makes these two properties manifest term-by-term and prove
that we can write the amplitude in this basis.

We will do it up to 3-loops at 4pt.
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Logarithmic singularities
The form has only logarithmic singularities if near any pole xi → a,

Ω(x1, . . . , xm)→ dxi
xi − a

Ω(x1 . . . x̂i . . . xm)

We can change variables xi → f
(k)
i (xj),

Ω =
∑

k

dlog f
(k)
1 dlog f

(k)
2 . . . dlog f (k)m

where we denote dlog x ≡ dx/x. Example of such a form is
Ω(x) = dx/x ≡ dlog x, while Ω(x) = dx or Ω(x) = dx/x2 are not.

Example of 2-form:

Ω(x, y) =
dx dy

xy(x+ y + 1)
= dlog

(
x

x+ y + 1

)
dlog

(
y

x+ y + 1

)

but not Ω(x, y) = dx dy/xy(x+ y) as near x = 0: dy/y2.



Poles at infinity
Logarithmic forms for loop integrals: take residues and study if
positions of loop momentum `→∞. One-loop examples:

I2 =
d4`

`2(`− k1 − k2)2
, I3 =

d4` s

`2(`− k1)2(`− k1 − k2)2

I4 =
d4` st

`2(`− k1)2(`− k1 − k2)2(`+ k4)2

Parametrize the loop momentum:

` = α1λ1λ̃1 + α2λ2λ̃2 + α3λ1λ̃2 + α4λ2λ̃1

and study I2, I3, I4 as functions of αi. The result is:

I Bubble integral does not have logarithmic singularities.
I Triangle has log singularities with a pole for α3 →∞.
I Only the box integral has both properties.



Relation to integrated amplitudes
Logarithmic singularities and absence of poles at infinity are related
to two properties of integrated amplitudes:

I Uniform and maximal transcendentality.
I UV finiteness.

Examples of UV divergent integrals:
∫

d4`

`2(`+ p1 + p2)2
,

∫
d4`

(` · p1)(` · p2)(` · p3)(` · p4)

Examples of UV finite integrals:

∫
d4`

`2(`+ p1)2(`+ p1 + p2)2
,

∫
d4`

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2
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One-loop amplitude
In the local expansion we get sum over permutations over I

A1−loop
4 =

(
[34][41]

〈12〉〈23〉

)
·
∑

σ

Cσ Iσ

where I is a 0-mass box integral,

`− p1 − p2
`p1

p2 p3

p4
`− p1

`− p
1 − p

2

`
p1

p2

p3

p4
`− p1

`− p1 − p2

`− p4

`p1

p2 p3

p4

Figure 1. The bubble, triangle and box one-loop integrals. Need to fix size and placement

of loop momentum labels in the figure.

these are not relevant for our discussion here.) We focus here on the four point case

but a similar analysis can be performed in general. Consider the bubble, triangle and

box integrals in Fig. ??. The explicit form of these integrals is It’s probably good to

have the first version of the integrals valid in D dimensions to ward off any confusion

having to do with dim reg.

dI2 = dD`
1

`2(`− p1 − p2)2
,

dI3 = dD`
s

`2(`− p1)2(`− p1 − p2)2
, (2.5)

dI4 = dD`
st

`2(`− p1)2(`− p1 − p2)2(`+ p4)2
.

We need to decide what to do about the normalization. where s = (k1 + k2)
2 and t =

(k2 + k3)
2 are the usual Mandelstam invariants. Since these integrals carry ultraviolet

or infrared singularities we have introduced a dimensional regulator, with D = 4− 2ε.

For the purposes of studying the singularities of the integrand it is useful to to focus

on the D = 4 properties, temporarily ignoring dimensional regularization, at least until

we actually integrate. To investigate the D = 4 properties we parameterize the loop

momentum in terms of the four independent vectors constructed from the four spinors

comprising k1 = λ1λ̃1 and k2 = λ2λ̃2. Using the four basis vectors λ1λ̃1, λ2λ̃2, λ1λ̃2 and

λ2λ̃1, we expand the four-dimensional components of loop momentum as
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(2.7)

What should we do about Wick rotation i?
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This integral has logarithmic singularities and no poles at infinity.
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where the alphai are free parameters for each component. Plugging into dI2 we obtain
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Two-loop amplitude
In the two-loop case the amplitude is written using two integrals.

A2−loop
4 =

(
[34][41]
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)
·
∑

σ

[
C(P )
σ I(P )

σ + C(NP )
σ I(NP )

σ

]

The planar double box I(P )

2

Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4

∑

σ∈S4

∫ [
C

(P )
σ,NI(P )

σ +C
(NP )
σ,N I(NP )

σ

]
δ4|2N

(
λ·q
)
(6)

where σ is a permutation of the external legs and
δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
(

[3 4][4 1]

〈1 2〉〈2 3〉

)2

; (7)

the integration measures I(P )
σ , I(NP )

σ correspond to,

I(P )
1,2,3,4 ≡ (p1 + p2)2 × (8)

and

I(NP )
1,2,3,4 ≡ (p1 + p2)2 × (9)

for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

can be directly written in the dlog form

dlogα1 dlogα2 dlogα3 . . . dlogα8

where α1≡`21/(`1 `∗1)
2, α5≡`22/(`2 `∗2)

2,
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Two-loop amplitude
In the two-loop case the amplitude is written using two integrals.

A2−loop
4 =

(
[34][41]
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)
·
∑

σ
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σ I(P )

σ + C(NP )
σ I(NP )
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]

The planar double box I(P )
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Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4

∑

σ∈S4

∫ [
C

(P )
σ,NI(P )

σ +C
(NP )
σ,N I(NP )

σ

]
δ4|2N

(
λ·q
)
(6)

where σ is a permutation of the external legs and
δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
(

[3 4][4 1]

〈1 2〉〈2 3〉

)2

; (7)

the integration measures I(P )
σ , I(NP )

σ correspond to,

I(P )
1,2,3,4 ≡ (p1 + p2)2 × (8)

and

I(NP )
1,2,3,4 ≡ (p1 + p2)2 × (9)

for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

can be directly written in the dlog form
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Non-planar double box
The non-planar double box I(NP )

σ
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Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4

∑

σ∈S4

∫ [
C

(P )
σ,NI(P )

σ +C
(NP )
σ,N I(NP )

σ

]
δ4|2N

(
λ·q
)
(6)

where σ is a permutation of the external legs and
δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
(

[3 4][4 1]

〈1 2〉〈2 3〉

)2

; (7)

the integration measures I(P )
σ , I(NP )

σ correspond to,

I(P )
1,2,3,4 ≡ (p1 + p2)2 × (8)

and

I(NP )
1,2,3,4 ≡ (p1 + p2)2 × (9)

for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

does not have logarithmic singularities. For example, do quadruple
cut on `2 and triple cut on `1 = xp2 we get

I(NP )
1234 =

dx

(x+ 1)x2tu

Proposal: there are cancelations between terms and the amplitude
is indeed logarithmic.

We want to keep the same diagram and just change its numerator.
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Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4
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∫ [
C
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σ +C
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]
δ4|2N

(
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(6)

where σ is a permutation of the external legs and
δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
(

[3 4][4 1]

〈1 2〉〈2 3〉

)2

; (7)

the integration measures I(P )
σ , I(NP )

σ correspond to,

I(P )
1,2,3,4 ≡ (p1 + p2)2 × (8)

and

I(NP )
1,2,3,4 ≡ (p1 + p2)2 × (9)

for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

does not have logarithmic singularities. For example, do quadruple
cut on `2 and triple cut on `1 = xp2 we get

I(NP )
1234 =

dx

(x+ 1)x2tu

Proposal: there are cancelations between terms and the amplitude
is indeed logarithmic.

We want to keep the same diagram and just change its numerator.
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Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4

∑

σ∈S4

∫ [
C

(P )
σ,NI(P )

σ +C
(NP )
σ,N I(NP )

σ

]
δ4|2N

(
λ·q
)
(6)

where σ is a permutation of the external legs and
δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
(

[3 4][4 1]

〈1 2〉〈2 3〉

)2

; (7)

the integration measures I(P )
σ , I(NP )

σ correspond to,

I(P )
1,2,3,4 ≡ (p1 + p2)2 × (8)

and

I(NP )
1,2,3,4 ≡ (p1 + p2)2 × (9)

for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

We change (p1 + p2)
2 → (`1 + p3)

2 + (`1 + p4)
2.

The difference cancels in the color sum and all terms in the
expansion have logarithmic singularities and no poles at infinity.

There is also a dlog form which contains several terms because
leading singularities of this integral are not unit.



Non-planar double box
And indeed such a numerator exists!

2
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Three-loop amplitude
The three-loop amplitude is a sum over permutations of nine
master integrals with proper color factors,
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]
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FIG. 6: Cubic four-point graphs entering the four-point three-loop amplitudes.

B. Three loops

At three loops, the integrand of the N = 4 sYM four-point amplitude begins to have

dependence on the loop-momentum in its numerator, as well as (non-planar) terms that

cannot be detected in the maximal cuts. For this reason, the three-loop N = 8 supergravity

amplitude, in its initial two forms [12, 13], was not given by simply squaring the N = 4 sYM

results — except for a subset of the graphs that could be inferred using only two-particle

cuts. More recently, three of the present authors rearranged the three-loop N = 4 sYM

amplitude so as to make manifest its color-kinematic duality [56]. In this form the N = 8

supergravity amplitude can once again be found by a simple squaring procedure. Here we

will give the amplitudes in the form found in ref. [13], which requires only the nine cubic

graphs shown in Fig. 6. (Three more cubic graphs, containing three-point subdiagrams,

enter the solution in ref. [56].)

Both the N = 4 sYM and N = 8 supergravity amplitudes are described by giving the

loop-momentum numerator polynomials N (p) for these graphs. In addition, the N = 4 sYM

graphs are multiplied by the corresponding color structure, as in Fig. 5.

17



Three-loop amplitude
We can try to repeat the exercise and find the numerators for
these integrals which give integrals with logarithmic singularities
and no poles at infinity.

It is hard to prove cancelations in color sums.

We can slightly change the strategy:

I Find the basis of integrals with our desired properties.
I Expand the amplitude in this basis by matching leading

singularities or unitary cuts.

Even if the amplitude has these properties it is not guaranteed that
we can make them manifest term-by-term in the local expansion.

But it is indeed possible to do it!
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Three-loop amplitude
As an example, I will show the most annoying diagram which has
three pentagons in it:

(a) Diagram h), layout a (b) Diagram h), layout b

(c) Diagram h), layout c (d) Diagram h), layout d

Figure 17: Diagram h), My momentum routing, chosen to make power counting manifest,
i.e. loop momentum only flows inside a single pentagon.

3.8 Diagram h)

From power counting the numerator should look something like

N (h)(5, 6, 7) ∼ (5 + · · · )2(6 + · · · )2(7 + · · · )2 + (5± 6 + · · · )2(7 + · · · )2

+ (5± 7 + · · · )2(6 + · · · )2 + (6± 7 + · · · )2(5 + · · · )2 + (5± 6± 7 + · · · )2.

Here is a list of constraints we have on diagram h).
The notation is related to Zvi’s by:

5new = 6Zvi (3.36)

6new = (5− 6)Zvi (3.37)

7new = (1 + 2− 5 + 6− 7)Zvi (3.38)

From the absence of double poles, we found:

• N (h)
new(6 = −4, 7 = −3; 5) ∼ (5 + 2 + 3)2

softcollinear cut 72, (7 + 3)2, (6 + 7 + 3 + 4)2, (6 + 4)2 ⇒ 7 = −3, J7 = (6 + 3 + 4)2,

– 25 –

The original numerator is only linear in loop momenta,

N (h) = s12(`6 + `7 +p3 +p4) · (p1 +p2)+s23(`5) · (p2 +p3)+s12s23

but the integral with this numerator has double poles.



Three-loop amplitude
We impose the complete set of constraints and get two
independent numerators:

N
(h)
1 = (`5 + p2 + p3)

2
(`6 + `7)

2 − `25 (`6 + `7 − p1 − p2)
2

N
(h)
2 =

[
(`6 + `7 − p1)

2
+ (`6 + `7 − p2)

2
] [

(`5 − p1)
2

+ (`5 − p4)
2
]

−4`25 (`6 + `7 − p1 − p2)
2

The numerator is balanced: quartic polynomial in loop momenta,

I Enough to cancel all double poles.
I Still no poles at infinity are generated.

We can do the exercise for all master topologies and prepare the
basis with logarithmic singularities and no poles at infinity.
Interesting relation to work by Johannes Henn and (Smirnov)2.

Try to expand the amplitude in this basis . . . and succeed!
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Back to on-shell diagrams
We have a representation of the amplitude in terms of local
integrals with logarithmic singularities and no poles at infinity.

This is a very strong evidence for the conjecture that this property
holds to all loop orders.

Now we would like to proceed to Step 2 of our process: make these
properties manifest in some new expansion to all loop orders.

The on-shell diagrams are the natural candidates as they
manifestly have both properties.
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Supergravity
[Arkani-Hamed, Bourjaily, Cachazo, JT, to appear]

[Bern, Herrmann, Litsey, Stankowicz, JT, in progress]



On-shell diagrams
We can repeat the exercise for N = 8 SUGRA.

On-shell diagrams
I They are well-defined, we can obtain them by gluing 3pt

vertices.
I We can associate a cell in G(k, n) for each reduced diagram.
I However, we do not know what is the form to be associated

with a diagram – it is not a logarithmic form.
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Supergravity amplitudes
We can also analyze the results for loop amplitudes in N = 8
SUGRA.

Idea: amplitudes in N = 8 SUGRA are still logarithmic and no
poles at infinity.

At 1-loop it is equivalent to the absence of triangles: correct

At 2-loops we can try to use new basis and expand the amplitude:
successful.

At 3-loops we better use BCJ representation of the gravity
amplitude:

AGR =
∑ N

(new)
YM ·N (BCJ)

YM

D

where the BCJ numerator N (BCJ)
YM is only linear in loop momenta.
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Supergravity
Based on this expansion we can easily prove that the gravity
amplitude still has logarithmic singularities while the manifest
absence of poles at infinity is lost.

For ` = α1p1 + α2p2 + α3p3 + α4p4 we get

N
(new)
YM

D
=
Np(α)

Nq(α)
∼ 1

α(α+ 1)
q ≥ p+ 2

The BCJ numerator is N (BCJ)
YM ∼ α and therefore

AGR ∼
1

α

Pole at infinity: α→∞. It still might cancel between terms but
the preliminary checks show they do not.



Supergravity
Logarithmic singularities are present for gravity up to 3-loops.

Naively, the powercounting of BCJ numerators suggest that the
logarithmic singularities are lost at higher loops. Further studies
must answer the question.

It should also tell us if/why the amplitude does/does not diverge
at 7-loops (or higher).

Logarithmic singularities and no poles at infinity guaranteed UV
finiteness in the case of N = 4 SYM.

If the poles at infinity do not cancel for N = 8 SUGRA, the theory
is either UV divergent or there is some other mechanism which
implies UV finiteness.
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Conclusion
Dual formulation for the integrand in the planar N = 4 SYM.

Explore if these ideas extend beyond this case: natural candidates
are scattering amplitudes in complete N = 4 SYM.

Two different approaches:
I Study properties of on-shell diagrams: special structure of

MHV leading singularities.
I Study properties of amplitudes written in traditional form:

logarithmic singularities and no poles at infinity up to 3-loops.

Goal: find dual formulation using on-shell diagrams (or similar
objects), perhaps unified in Amplituhedron-type construction.

Similar study for N = 8 Supergravity: logarithmic singularities up
to 3-loops. Further studies at higher loops should also
prove/disprove the finiteness conjecture.
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to 3-loops. Further studies at higher loops should also
prove/disprove the finiteness conjecture.
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