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CONSTRAINTS ON CLOSED STRING EFFECTIVE
ACTION FROM AMPLITUDE CALCULATIONS

| will consider narrowly-focused aspects of the low energy effective
string action obtained from closed string scattering amplitudes.

* FEATURES OF CLOSED STRING PERTURBATION THEORY:

Comments on relation to supergravity field theory amplitudes.
*  NON-PERTURBATIVE FEATURES - DUALITY:

Connects perturbative with non-perturbative effects.

Powerful constraints imposed by SUSY, Duality, Unitarity

Connections with quantum eleven-dimensional supergravity.

 CONNECTIONS WITH BEAUTIFUL MATHEMATICS:

Modular Forms; Automorphic forms for higher-rank groups; Multi-Zeta Values;

MBG, Stephen Miller, Pierre Vanhove arXiv:1404.2192
MBG, Eric D’Hoker, arXiv:1308.4597
MBG, Eric D’Hoker, Boris Pioline, Rudolfo Russo; arXiv:1405.6226



A PERSPECTIVE ON STRING SCATTERING AMPLITUDES

OPEN STRING THEORY generalises (super) Yang-Mills theory — ground state vector boson.
Interpreted as excitations on a D-brane

CLOSED STRING THEORY generalises Einstein (super) gravity — ground state graviton.

Scattering Amplitudes with maximal supersymmetry are highly constrained by symmetry
considerations:

In particular, DUALITIES relate theories in different regions of MODULI SPACE.
SUPERGRAVITY (low energy limit of closed string theory):

Scalar fields — (geometric and non-geometric) MODULI parameterize a symmetric space
G(R)/K(R)

groups inEn series (Cremmer, Julia)

CLOSED STRING THEORY: (real split forms)
Discrete identifications of scalar fields G(Z)\G(R)/K(R)

is symmetry of string theory.

RICH DEPENDENCE ON MODULI



STRING PERTURBATION THEORY: Expansion around boundary of moduli space.
e.g.in powers of gs = e? < 1 (c.f. FEYNMAN DIAGRAMS of quantum field theory) :

Sum of functional integrals over Riemann surfaces of arbitrary genus :

95° + 9 + 9 @ 5 e

g?h_Q X (genus-h Riemann surface)

Where + .... includes nonperturbative (e.g.instanton) effects.

DUALITIES:

Relate perturbative and non-perturbative features of amplitudes

Dependence on moduli (or coupling constants) expressed in terms of automorphic
functions for relevant duality groups.

AdS/CFT relates closed string theory in AdS space to Yang-mills theory
i.e. to the low energy limit of the open string theory.



THE LOW ENERGY EXPANSION OF STRING THEORY

* LOWEST ORDER TERM reproduces the results of classical supergravity

EINSTEIN-HILBERT

'’ 2
o =L 1 _ :
° — / A2/ — det G e 2? R + ... several other supergravity fields
£s is STRING = —¢ STRING COUPLING
e = —
LENGTH SCALE
METRIC — G, SCALAR FIELD Js CONSTANT

- DILATON

Expanding the curvature in small fluctuations of the metric around D=10 Minkowski
space gives contributions to “classical” MULTI-GRAVITON scattering amplitudes.

1
* HIGHER ORDER TERMS: /dlox V—det G F(¢,...)R* + ...

/ L MODULI-DEPENDENT COEFFICIENT
* Expansion in powers of o R, o D",



THE LOW ENERGY EXPANSION OF (TYPE |IB) STRING THEORY
HIGHER DERIVATIVE CORRECTIONS to Einstein theory

* Four-graviton scattering contributes to higher derivative corrections of the form
R* d*R* d'R* d°R* 4&°R?

BPS interactions

* N > 4 -graviton scattering contributes to:
RS *R® d'R° &’ R’
Etc.
RS @®R® d*R° dilatino

« Many U(I)- violating interactions (absent in supergravity). E.g. \'0

* Duality groups in3 < D < 10 space-time dimensions

HIGHER-RANK DUALITY GROUPS

SL(2,Z) SL(2,Z) SL(3,Z) x SL(2,Z) SL(5,Z) SO(5,5,Z) FEge)(Z) Err)(Z) Egs)(Z)
D= 10B 9 8 7/ 6 5 4 3



HOW POWERFUL ARE THE CONSTRAINTS IMPOSED BY
SUSY, D AND U 2"

The aim is to investigate the exact moduli dependence of low lying terms in the
low energy expansion.

Duality relates different regions of moduli space —
connects perturbative and non-perturbative features in a highly nontrivial manner.



e.g. FOUR-GRAVITON SCATTERING IN TYPE || STRING THEORY

At
Ap(s,t,u; up) = R* TD(S,t,U;uzﬁ/ mesH
/,

R Linearized curvature -~ kluk,,fpg

Symmetric function of Mandelstam invariants s, ¢, w (with s + ¢ + u = 0).
Has an expansion in power series of 02 = s +t* +u’and o3 = s> + 5 + b,

(non-analytic pieces are essential, but will be ignored here)

D
Tp(s,t,u; pup) = ¥ €0 (1p) o504

2p+3
P,q ~ §2PT39

Coefficients are duality invariant functions of
scalar fields (moduli, or coupling constants).

TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?

For now focus on the ten-dimensional cases with one modulus:

Type IA: () = ggl — %4 Type lIB: ) = () +1{)y SL(2,Z) duality

inverse string coupling constant y = ggl — ¢ B

BOUNDARY DATA: STRING PERTURBATION THEORY



TREE-LEVEL: (VIRASORO AMPLITUDE)

Polarisation
tensor dilaton coupling g = e?

\ N\

A (e, Ky 0) = e 2 RATY (s, ¢, )

4@ _ 4 T(1—-ds)I'(1—a/t)I'(1 — a'u) k
O 7 stu I'(1 + o/s)I(1 + o/t)[(1 + a'u) °

R* d*R* d°R* R

Tree-level SUPERGRAVITY

} ;v Y

2¢(3)C(5) 8 ¢(9)
+ 3 o o 1

71
09 = s+ 12 +u? d10R4 \d12R4 /

03:s3+t3—|—u3:33tu

2k p4 :
INFINITE SERIES of d*" R* terms. Coefficients are powers of C values
with rational coefficients — as in loop amplitudes in quantum field theory

05+ 520Gt (0B + ()0 oF 4

- d2k:R4



GENUS ONE moduli pa € SO(d, d)/(SO(d) x SO(d))

dr|?
A (e, Ky Z R / 91 B (s,t,u;7)T - Genus-
() ko =i [ 0 Tanlesn) G

for d-torus;
moduli Pd

Integral over complex structure

Bi(s,t,u;7) = ) 1_(IImTC§ exp (Zk - k; G(zz,z])>
> i< /1

Low energy expansion - integrate powers of the genus-one Green function over the torus
and over the modulus of the torus — difficult!

m¢(3)
9

egd=0, D=10 Ag Czn = (g + 009 + o3 + .. > R4 (MBG, Russo, Vanhove)

These coefficients look analogous to the tree-level coefficients:

WHAT IS THE CONNECTION BETWEEN THEM??



GENUS TWO :

4 i
45" (er, ki 6, pa) = g7 € R / dpz Ba(s, t,u; Q) Tqq.2(pa; Q)
Mo
Ba(s,t,u; ) = / Mex —a—/Zk--k-G(z- 2i)
2\9, by, W, Sy (dety)Q p 9 -~ 1 7 1y ©J
1<)
Genus-two Green function
Sp(4, 7,)-invariant measure O(s”)
Expand in powers of o':
Lowest-order term " 12" Next term d" t*
4 4 4
A9 = 2 (lcwort A 64/ dpiz o5 R + ..
3 Mo
Proportional to volume of An invariant of genus-h
IS el e L f Riemann surface defined
) 90(2) -9 P(Q?,y) G(Z‘y) .
D’Hoker, Gutperle, Phong 8 Jx2 by Zhang and Kawazumi.

L D’Hoker, MBG
Projection operator

proportional to | w(z) w(y) *



Recently evaluated. D’Hoker, MBG, Pioline, R.Russo

Integral picks up non-zero boundary contribution from the limit in which the
genus-two surface degenerates into the union of two genus one surfaces

— &

C(4) 03R* +4¢C(4)o3R* + . .. )

d* R* d® R*

Result: A(4) = g2 2( 4
"\ 3



GENUS THREE AND HIGHER
GENERAL ISSUES:

O AW

Technical difficulties analysing 3-loops. Last year, Gomez and Mafra constructed the
genus-three amplitude using Berkovits’ PURE SPINOR FORMALISM. They evaluated the

leading low energy behaviour, giving, .
d’ R

4
ALY = 44 (2—7g(6) o3 + . ) R*

Alternative to supermoduli

space of RNS formalism
BUT! There may be a spurious factor of 3

SOME ISSUES AT HIGHER GENUS:

* Problems with singularities in the pure spinor formalism at genus > 4
(for four-graviton amplitude) remain to be resolved.

* New issues for genus > 4 (for four-graviton amplitude) in Ramond-Neveu-
Schwarz formalism (integration over super-Riemann surfaces). Superspace is
non-projected so cannot express the amplitude as an integral over bosonic
moduli. (Donagi, Witten)



NON-PERTURBATIVE EXTENSION

Duality, supersymmetry and unitarity constraints

Focus here on the simplest nontrivial duality group SL(2, Z)

Type IIB in D=10 dimensions

The lowest order (BPS) interactions can be determined by (maximal) supersymmetry.
Extending this to higher orders is a (interesting) challenge.



M-THEORY / STRING THEORY DUALITY

Recall:
(A) 11-DIMENSIONAL SUPERGRAVITY on a CIRCLE of radius [711
. . . . . 1
* Equivalent to TYPE I[IA STRING THEORY in ten dimensions with g4 — 7 Ry
11
i.e., strong coupling D=10 string <> large circle D=11 supergravity | I-dim. Planck
length
(B) | 1-DIMENSIONAL SUPERGRAVITY on a 2-DIMENSIONAL TORUS - SL(2, Z) duality
T? x M, 9—dim. Minkowski
Vi (1 Q
T° Metric: G = — !
M0, \ |9

Volume, V; Complex Structure, QQ = Q; + i)

* Equivalent to TYPE IIB STRING THEORY in D = 9, radius 7', coupling constant ¢z

VY = T§4/3€¢B/3 Qo = 9§1

CONSIDER QUANTUM CORRECTIONS TO ELEVEN-DIMENSIONAL SUPERGRAVITY

(Feynman diagrams)



QUANTUM CORRECTIONS TO ELEVEN-DIMENSIONAL SUPERGRAVITY

L-loop Feynman diagrams on 7% x My

ONE LOoP
MBG, Gutperle,Vanhove
I 2 Russo, Tseytlin
AlBisugra — - pd o Scalar box diagram
4 3

Interpret as Type |IB string theory in D=9 radius 75, ¢B = 92_1

Sum over winding numbers of loop around 2 cycles of torus

D=10 dimensions & ()(2) R ( ¢3) Ez(R2) + O(rp )> R*

(rp — 00) I\

NON-HOLOMORPHIC EISENSTEIN SERIES



NON-HOLOMORPHIC EISENSTEIN SERIES

03
128 (Q) - Z QQ 9¢ Z (Im ’YQ)S Poincare series —
ged(p,q)=1 ‘p T4 ‘ ~vET o \SL(2,Z) manifest SL(2, Z)

Parabolic subgroup

SL(2, Z) invariant (generalises to higher rank duality groups)
Solution of LAPLACE EIGENVALUE EQN. (consequence of maximal supersymmetry)
Aq Es(Q2) = s(s — 1) Es(Q) Ao = Q3(85, + 03,)

Fourier series E;(Q) =2 Z Fi(Q22) cos(2mik$2y) .
k=0

ZERO MODE k£ = 0 - TWO POWER-BEHAVED TERMS (perturbative) :
I'(s —1)C(2s — 1
5o _ s 4 YA =325 1)

Ql_s
¢(25)L'(s) ’
NON-ZERO MODES k > 0 - D-INSTANTON SUM
27’(‘8 1 1
fk = |]’€|S_5 0'23_1(16)92 KS_;(27T|]€|QQ)
C(QS)Fl(S) : ’ measure
T2

T C(29)D(s) [K|°7! 0951 (k) e~ 2RI on(k) =) _p"

plk



ONE Loorp

D=10 dimensions & ()(12) R* = <2§(3) E

(rp — 00)

(@) +O(r")) R*

N

2((3) gB% E5 () =2¢(3) g5° +4¢(2) g% + D — instantons

Two perturbative terms: tree-level genus-one

NON-RENORMALISATION BEYOND |-LOOP FOR R*
1 — BPS



A NOTE ON THE AdSs x S° CORRESPONDENCE.

Type |IB STRING THEORY in <~ D=4 SU(N) YANG-MILLS
D=5 Anti de-Sitter space on boundary of AdS:.
Inverse string —>» (), = ¢ ¥ = 42—7T .
AdS/CFT coupling 9y €—— YMcoupling
dictionary a2 1 1

AdS length scale —s i Q%MN \ «—— ‘t Hooft coupling

1 _1
Effective 2" string action — / dzv—det GQ, 2 E3(Q) R*
o 2
< Coefficient of gauge invariant Yang-Mills correlator,e.g. (O(x1) ... O(xy4))

N — oo

Nz [ 2¢(3)g5/% + 4¢(2)g2 + 2/ Z K|ora (k)e2mIkl/9at2mike

<K AKN k20

— 2C(3) N2 A™2 +4¢(2) N° A% + 27N > || ()= 21/ 65+ 2mik2
k

7 /

PLANAR contribution measure obtained from SU(N) Yang-Mills
A > 1 k-INSTANTON as N — o0

(Dorey, Hollowood, Khoze)



TwO LOOPS

4);sugra Bern, Dixon, Dunbar, Perelstein,
Aé isugra —  pd I>(s,t,u)

Rozowsky

* Integrate vertex positions over three lines of skeleton.

I 2

Scalar field
theory rules

D*R*
1
LEADING TERM IN LOW ENERGY EXPANSION g2 E(1.0)(Q2) 02 R*

4
Es(Q) ~ ((5)gg” + gC(él)g% + D — instantons

MBG, Vanhove

D:jlol»—l

92E1.0(Y o R = =g

N|Ot

N | —

Perturbative terms: tree-level genus-two
(no genus-one term)

NON-RENORMALISATION BEYOND 2 LOOPS FOR D* R*
1 _ BPS



D°R?
iii) HIGHER ORDER

Next order ;! FQ) o5 R (FOQ) = £y ()
1/8-BPS (A=14, n=6, u=0)

Expand integrand to next order in s,¢,u, leads to an integral that satisfies

INHOMOGENEOUS LAPLACE EQUATION:  (MBG, Vanhove)

5 The square of the
(Q)> coefficient of R*

nojco

(Aq —12) FO(Q) = - (2(3) E

The inhomogeneous Laplace equation was obtained by evaluation of two-loop
| I-dimensional supergravity compactified on two-torus.

Detailed structure not yet derived in detail from supersymmetry but is based on
duality with M-theory :



SOLUTION OF THE INHOMOGENEOUS LAPLACE EQUATION
MBG, Miller,Vanhove

(B —12) 7(©) = — (2(3) B3())

. o
FOURIER SERIES: f(Q) = an(ﬂg) e2minih
. 2 92 2 202\ 7 Fourier mode
EQUATION FOR FOURIER MODES : (€25 0, — 12 — 47" n”(23) f(Q2) = Sn(€d2) ot source
BOUNDARY CONDITIONS :  f,, () = O(23) . )y — 00 Weak coupling
Weak coupling (TREE LEVEL) power behaviour
ﬁz(Q2) — O(Q2_2) : Qo — 0 Strong coupling

SUBTLE consequence of SL(2,7Z) invariance

These b.c’s determine a unique solution by fixing the coefficient of the solution of the
homogeneous equation, oy, /Y K% (27|n|y), for each value of n



ZERO MODE - four power-behaved terms :

~ 2 ~
ot = 250 g 4 280 g, 2L 4 20 g 1 5 Friay)
m=~0

GENUS 0 1 2 3 Non-Perturbative

e ALL PERTURBATIVE CONTRIBUTIONS AGREE WITH EXPLICIT CALCULATIONS

(BUT GENUS 3 string calculation needs RE-CHECKING)

*  NON-PERTURBATIVE TERMS 2 X 2 matrix of polynomial coefficients

32 7 03(|m])? <
o ™ oa(|m i
@)= 2 (alml) Ki@mlmlQz) K (2nlm| )

i,7=0,1

Bilinear in Ko, K;

— 4T 2 02<’m|)2 — ~J
{lp — o0 N€4| €2 (m‘l—O(QQS)) ©

—47TTI’LQQ

Behaviour suggestive of charge-zero INSTANTON / ANTI-INSTANTON pairs.

945 ((3)2¢(5) 1 bation of 0% term b
0y — 0 - © O(log Q cancellation of /5~ term by
’ 4 75 03 (log £22) infinite number of “instantons”.




NON-ZERO MODES: . = 0,1
2 X 2 matrix of polynomial coefficients

ﬁL(Qg):@n\/Q2K%(2ﬂn\Qg)—|— > M (m|n|Q2) K;(2m|n1 |Q2) K;(27|n2|Q2)

ni+ns =n

Constant «,, determined by cancellation (n1,n2) # (0,0) 5 -
of the (), 7 term in the Q5 — 0 limit. € (I |+{n2])Q2;
BPS INSTANTON PAR if |n1| + |[n2| = |n| = |n1 + no (sign n1 = sign no)

charge = action

“INSTANTON / ANTI-INSTANTON” pair if [121| + |n2| < |1 (sign ny = —sign ny)

charge < action

Fu(Q2) ~ e 27InI02 (8 % ¢(3) QL2 4+ 0(1)) t e 2rnlHD92 oy 4

Qy >>1



* Solution can be expressed as a Poincare series:

@)=Y o

v €T \SL(2,Z)

where  @(Q) = ap(2) + Z an (Qg) e2™h (an(£22) is linear in Ky, K1)
n#0

 D-instantons contribute with distinctive leading powers of {22 (g_l) — origin
not understood in detail.



HIGHER-RANK DUALITY GROUPS

Compactify M-theory on a d-torus to D=1 |-d dimensions MBG, Miller, Russo, Vanhove
Duality Group G(Z) SPace-time Pioline
dimension
1 I0A
SL(2,Z) 10B Automorphic functions for higher-rank groups ;
SL(2,Z) 9 . o . .
Langlands Eisenstein series’ associated with
SL(3,Z) x SL(2,Z) 8 . .
maximal parabolic subgroups of G.
SL(5,7) 7
EG
SO(5,5,7) 6 S
EG(G)(Z) 5 rankr S1,...,5. € C
labels associated with nodes of Dynkin diagram
Eq7)(Z) 4
Eg(8)(Z) 3
G 4 G 4 pa
E%aov"'ao R E%’O""’O D R
G 6 4 Satisfies inhomogeneous
5(0,1) D°R 8

Laplace equation for G

* Encodes perturbative string results in compactified theories.

D-INSTANTONS fill out expected fractional BPS orbits — minimal, next-to-minimal, ....



Maximal Parabolic Subgroups and Eisenstein Series

A maximal parabolic subgroup /3 associated with a simple root 3

2
Pg = LgUps
Lg Levi subgroup obtained
by deleting root [}
O 0O) O @) =-=c=coosomon: -O——o
1 3 4 5 d d+1 Us Unipotent radical - the largest normal

subgroup consisting of unipotent matrices

. . upper triangular with unit diagonal).
Dynkin diagram for Fg4 (upp g gonal)

Maximal parabolic Eisenstein series

G . 2s{wg,H
ES, = Z ¢ 25 (ws,H(v9))

YEP(Z)\G(Z)
Cartan

wg dual to simple root 3 lwasawa ¢ € NeH ) i



COMMENTS:

* Some results on higher derivative interactions for N < 8 SUSY e.g. Tourquine,Vanhove
and in open string theory.

String theory is free of ultraviolet divergences at all orders.
All supergravity field theory Feynman diagrams are packaged into a single
world-sheet diagram.

FANTASY: DETERMINE PROPERTIES OF SUPERGRAVITY FEYNMAN DIAGRAMS BY
SUITABLE LIMIT OF STRING THEORY DIAGRAMS



