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Introduction

 We believe that N=4 Yang-Mills is “integrable”
or “solvable”. Some pieces of the theory, such as
planar anomalous dimension, can reasonably be
said to have been already “solved”.

* But for more complicated quantities, such as
general correlation functions or scattering
amplitudes, it is not yet completely clear what
form a “solutions” will even take.

* This question is being explored “experimentally”
from a variety of complementary approaches.
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Data is Hard to Come by

Despite recent advances, relatively few scattering
amplitudes in N=4 Yang-Mills are available in the
literature.

6-point MHV and NMHV up to 5-loops [caron-Huot,
Dixon, McLeon, Von Hippel 2016]

All 2-loop MHV [Caron-Huot 2011]
7-point 2-loop NMHV [Caron-Huot, He 2011]

7-point 3-loop MHV [Drummond, Papathanasiou,
Spradlin 2014]

7-point 4-loop MHV and 7-point 3-loop NMHV

[Dixon, Drummond, Harrington, McLeod, Papathanasiou,
Spradlin, 2016]




Data is Hard to Come by

Despite recent advances, relatively few scattering
amplitudes in N=4 Yang-Mills are available in the literature.

We are looking for new tools — like those which exist at
tree level — to make loop calculations trivial...

Moreover, having more “data” in hand is crucial for
identifying new, hidden mathematical properties of these
amplitudes, and ... ultimately, to get some clues about
“what is the class of functions whose perturbative tails we
are seeing?”

It would be enormously valuable to close the gap between
our understanding integrands and amplitudes.



S-Matrix Program: Old and New

The Analytic It has long been a goal of the S-
S-Matrix matrix program to be able to
construct scattering amplitudes
based on a few physical principles
and a thorough understanding of
their analytic structure.

In todays talk: | will review some technology
(Landau singularities) from ELOP (1966).



S-matrix program: Old and New

 Why couldn’t this talk been given 50 years
ago?

 We now appreciate that the best arena for
carrying out S-matrix program is N=4 Yang-
Mills.

SUPERSYMMETRIC YANG-MILLS THEORIES *

Lars BRINK ** and John H. SCHWARZ

California Institute of Technology, Pasadena, California 91125

J. SCHERK

Laboratoire de Phys. ¢ de I'’Ecole Normale Supérieure, 24 rue Lhomond,
31 Paris, France

ed 22 December 1976

* OK, why couldn’t this talk been given 40 years
ago?



S-Matrix program: New Ingredients

Three relatively recent developments are
crucial ingredients:

1. Kinematic Variables: momentum twistors
[Penrose, Hodges 2009]

2. Integrals: Symbol of an amplitude
[Goncharov, Spradlin, Vergu, AV 2010]

3. Integrands: Amplituhedron
[Arkani-Hamed, Hodges, Trnka 2013]



Today’s Talk

* | will describe a geometric algorithm to
determine physical singularities of amplitudes
in N=4 Yang-Mills from the amplituhedron.

* | will apply the algorithm to the one- and two-
loop MHV amplitudes.

* This is a step towards translating integrands
directly to amplitudes.

Dennen, Prlina, Spradlin, Stanojevic, AV
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Landau Singularities

Landau equations for a given Feynman integral are a set of kinematic
constraints that are necessary for the appearance of a pole or
branch point in the integrated function

v N (e pt o))
- D v L ) T 7 )
r=c[l4 é,,n/.>0d as(1 -3 ay L
r=1 i~
In this talk: only focus
Y on singularities described
_ (a2 — m2 .
D = 2 oi(q; —m;), by Landau equation
P C
Landau Z a;g; =0 Vloops, . 1959
Equations 1€loop E”den, Landshoff, OIivg,’I’DoIkinghorne
Cfi(qiz _ m?) — 0 Vi The Analytic S-Matrix

Landau Singularities
locus in external kinematic data
where Landau equations admit solutions

Leading LS all a; # 0 LLS

Subleading LS  some o; =0 SLLS, S*LLS
etc



Landau 1959

O n e' LO O p B OX Eden, Landshoff, Olive, Polkinghorne

“The Analytic S-Matrix”

The Landau equations are easily solved for one-loop box integrals in four dimensions.

] I+ 1 (and bubbles and triangles)
B p
Py = L — 4y
2 — 2
Lij = (T — x;)
k+1 k (i — 2;)° = (Pis1 + Dig2 + -+ + ;)7

The second Landau equation puts propagators on-shell (no constraints on external kinematics).
2 2 2 2
(Z—2)" =0, (z—2;)°=0, (z—x2)°=0, (x—13)°=0
The solvability of the first equation gives a determinant constraint.

a;(x — ;) + aj(x — x;) + ag(z — zx) + y(x — ;) =0
Leading

e 2.2 2 2 2 2\2 422 2 9

Singularities v

For generic integrals it becomes a hard problem, so next we focus on specific N=4 SYM integrals.



Penrose, Hodges

Momentum TW'StO rs Arkani-Hamed, Bourijaily,

Cachazo, Trnka

Null momentum Zai
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2 AB

Momentum twistors simplify the problem of analyzing solutions to Landau equations.



Momentum Twistors! (example)

(P14 p2)*(p3+ pa)?un + ip + us — 1+ VA
(P2 + p3 + pa)? 2u1 Lo U3

)

(1456) ~

A = (1 — Uy — Uy — U3)2 — 4U1U2U3

(p1+ p2)*(pa + ps5)?
(P14 P2+ p3)?(pa + p5 + Ps)?

Ui — , Uo, U3 = CyC|iC



One-loop boxes

i+ 1

1 el
(c) (e)
Box (b): 0= (i(i—1 z+1)(j j+1)(k, k+1))
Box (¢): 0= (i—1dii+1i+2)(zi+175+1)
o Box(dr 0= (if)(ij)
Box (e): 0= (i—1¢i+1i4+2)(ii+1i+21+3)

a is the plane (a — 1,a,a + 1)
(C(A, B)(D, B)(G, H)) = (A, B,C) N (D, E,C) G H)

((4,B,C)n(D,E,F)GH) = (ABCG)(DEFH) - (ABCH)Y(DEFG)



One-loop n-point IVIHV in N=4 SYM

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily,
Cachazo, Trnka

chiral pentagon (ABinj)(ijnl)
(ABi—1i)(ABii+1)(ABj—1j)(ABj j+1){ABn1)

Dennen, Spradlin, AV

(A, B) = (i,7) or (A,B)=1iNnj

(LLS) (Gin1)(nling) =0 B — 0

Reduces to boxes

<
(SLLS) é
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gi—l i j—1 jiéj—l in 1§§n 1i—17

, P41 =1 (=1 n1)n 14 i+1

SHLLE) (i—=149 7 j+1)(j j+1n 1)(n 1i-174
(1341 j 7+ (G j+1n1){n 1ii+l) =0.
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Two-loop n-point MHV in N=4 SYM

2 loop

Anav / / :
tree y
‘AMHV AB JCD 2

Arkani-Hamed, Bourijaily,
Cachazo, Trnka

1<j<k<l<z
i [
(ijkl) (ABin7j) (CDkNI)
(ABCD) (ABi~1){ABii+1)(AB j—15)(AB j+1) (CDk—1k)(CD k k+1)(CDI-11)(CD1i+1)
(LLS) T
GikDEjkn)ENikDEN kN =0 (A,B)=(i,j)orinj and (C,D)= (k1) orknl.
§(—1, j+1) (i, i+1 §(i—1,7+1)(i—1,4) knl) =0, :
(BLLS) i1 )1k ) GG—1 #0610 Ry =0, Dennem SPradinAY
(7)) =0 and (K)(E) =0 _ _
(il =1 )G=1 k Dk L i+1) (=14 ENDENTii+1) =0, ENEI=17) IN(kk+LD)) =0,
(SPLLS) (i 12‘5 1‘;><§—1§'kz><km 1z><°; 1?/?mz‘><z%m‘z—1z'>:o, (N (@, 5+1) LN (k,k+1,0) =0,
(G i+1 j J+0( j+1 k Dk Lii+1) (-1 5 knl)(knli-1d) =0, (N (Gj-1,7) IN(k=1,k1)) =0,
(i—=1i g j+1) (G jH1k Dk 1i-10)(j—1j kND(kNTi—13) =0, (EN(4,5,5+1) 1N (k=1,k1)) =0,

It would be very difficult to solve Landau equations w/o momentum twistors!



So far we have produced

a long list of Landau singularities for

one and two-loop N=4 SYM integrals.
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Amplitudes: Symbol and Singularities

 Many of the simplest (and hence best
understood) amplitudes can be expressed in
terms of a class of generalized polylogs defined
by iterated integrals

Liy(2) = / Lip_y(Odlogt  Liy(2) = —log(1 — 2)
0

2) _ (1234)(2356) 1 (1246)(1345)
Re = Z Ha <_ <1236><2345>> gt <_ <1234><1456>>

+ products of Liy(—x) functions of lower weight

Goncharov, Spradlin, Vergu, AV

* Much of the information about the analytic
structure of such function is captured in symbol.



Symbol of Transcendental Function

Goncharov, Spradlin, Vergu, AV

TR%S(T]{;):R1®”°®R1€

Symbol is an element of the k-fold tensor product
of the multiplicative group of rational functions.

log(R) — R

ATy =Y Ti_ydlog Ry — S(Tx) = > S(Ti_,) ® R;

(2) _ L (- (1234)(2356)\ 1, . (1246)(1345)
Re” = > Lia (_<1236><2345>> T <_<1234><1456>> | >

cyclic

+ products of Lix(—x) functions of lower weight

(1256) ® (1346) ® (1246) ® (1456) + - - 7272 terms



Symbol and Singularities

* Much of the information about the analytic
structure of such function is captured in symbol.

* For amplitudes of generalized polylogarithm form
there should be a close connection between
Landau singularities and symbol alphabet of the
amplitude.

* We expect that the symbol entries appearing in
any amplitude should be such that their zeros
specify values of the external momenta where
solutions of the Landau equations exist.

Maldacena, Simons-Duffin, Zhiboedov 2015
Abreu, Britto, Duhr, Gardi, Gronqvist 2014



One-loop n-point MHV in N=4 SYM

Bern, Dixon, Dunbar, Kosower
Arkani-Hamed, Bourjaily, Cachazo, Trnka
Lig (1 — wn,i-1,5,7) — Lia (1 — wjns,5-1) — Lig (1 — i 5-1,n,i-1)

= = Lig (1 — ui7j_1,n,i_1) + Li2 (1 - Ui,j—l,j,i—l)
+10g (Ujn,i—1,j-1) 108 (Un i-1,i,5)

Lo (G015 j+1) (kk+1114+1)  zhal,

ST G ) (R kT L) el

Compute the Symbol

First Entry (i—145-13), {(i—14jj+1), (i—1in1l), (i i+1 j—1 7)
(i i+1 5 j+1), (ti+lnl), (j—1j5n1), (j j+1n 1)
Second Entry (i—1in1), (ii+1n1), (j—1jn1) and (jj+1n1)

(ig)(ij)
summary: (ab) =0 or (aa+1bb+1) =0



One-loop n-point MHV in N=4 SYM

Dennen, Spradlin, AV

B (ABinj)(ijn1)
- (ABi—1i){ABii+1)(ABj—1j){ABj j+1){ABn1)

(LLS) Ginl){nlinj) =0 Prefactor

0
(;)7 Second entries of the symbol
0

(J
(
(SLLS) (
(
{

jljnl)(nlz’—lz _
j=1jn1){nliitl First/Second
)
)

(S°LLS) entries of the symbol

ji+lnl)y(nli—114
Jji+lnl)yinleii+l

~
I
—_
%
p_\
.
~ — ~— ~—
T~~~
O o O O

)
)
)
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Two-loop n-point MHV in N=4 SYM

* Explicit analytic results for the chiral double
pentagon have only been obtained in n=6.

Drummond, Henn

* Symbol of two-loop n-point MHV amplitude
Caron-Huot <CL b> <a a+1 bN 5>

(abcct+l)  (a(a—1la+1)(bb+1)(cct1))

* It can be that individual chiral double pentagon integrals have an even
larger symbol alphabet, with nontrivial cancelation in the sum which gives
the amplitude.

* All of symbol entries are on the list of Landau
singularities.

Dennen, Spradlin, AV



Two-loop n-point MHV in N=4 SYM

2 loop

Anav / / :
tree y
‘AMHV AB JCD 2

Arkani-Hamed, Bourijaily,
Cachazo, Trnka

1<j<k<l<z
i [
(ijkl) (ABin7j) (CDkNI)
(ABCD) (ABi—1i){ABii+1)(AB j—14)(ABj j+1) (CD k=1k){CD kk+1)(CDI-11){CD11+1)
(LLS) T
GikDEjkn)ENikDEN kN =0 (A,B)=(i,j)orinj and (C,D)= (k1) orknl.
§(i—1, j+1)(i, i+1 i(ji—1, j+1)(i-1,3) knl) =0, :
(BLLS) i1 )1k ) GG—1 #0610 Ry =0, Dennem SPradinAY
({)E) =0 and (k) {R) =0 _ _
(il =1 )G=1 k Dk L i+1) (=14 ENDENTii+1) =0, ENEI=17) IN(kk+LD)) =0,
(S?LLS) <i—1i§—1§><§'—1§'kl><kl@ 1z><f; 1?/2m‘><z%m‘z—1 iy=0, @N(,475+1) Nk Ek+1,1)) =0,
(G i+1 j J+0( j+1 k Dk Lii+1) (-1 5 knl)(knli-1d) =0, (N (Gj-1,7) IN(k=1,k1)) =0,
(i—10 7 40 1 kDR Li-1a) (-1 knD{ENTi-14) =0, (in(i,j,j+1) [N (k=1,k1) =0,



Landau Singularities and Symbology

* All symbol entries are Landau singularities.

 Can we make a stronger statement? Why
various other Landau singlularities don’t
appear in the symbol?

e SSLLS involve more complicated four-brackets

t

t
t

nan those which appear in amplitudes, but

ney are similar to cluster A-coordinates for
ne Grassmannian cluster algebra that it
relevant to planar SYM.
N (i,5—1,5) LN (k,k+1,0)) =0
(i (4,7, 5+1) LN (k, k+1,1)) = 0.
GN (i, j—1,5) I (k=1,k, 1)) = 0
GN (i, 4,5+1) 1N (k=1,k1)) =0



 We can try to explore spurious singularities using
cluster algebras.

e All evidence to date says that for the simplest

amplitudes in planar N=4 Yang-Mills symbol entries are
cluster coordinates on Gr(4,n).

Goncharoyv, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

A2 oy g Lt Ltata 1t

ai a10a2 as

(1234)

N
(1235) — (1236) —» — (123n — 1) — (123n)
AN AN N } N
(1245) — (1256) —> — (12n—2n—1) — (12n — 1n)
Gr(4,n) N
) (1345) — (1456) —» — (In—3n—-2n-1) — (In—2n—1n)
N N N } N

(2345) (3456) (n—4n—-3n—-2n-1) (n—=3n—-2n—1n)



n=6 o n=/

(12) \\\\\
\\\\\ (267) —= (367) —= (467) —= (567)

(18) — (14 — (15) —[(61) LN NN
Az NN\ NN

(23) (34) (45) (56)

(127)  [123)  (234)  (345)

e Cluster algebras structure has been used for

advancing computations of multi-loop N=4 Yang-
Mills amplitudes.

* Exploring cluster algebras at more then 8 points
becomes very hard, and it will be interesting to
explore the connection in details.

 How can we get rid of spurious singularities?

e |nstead let us turnto ......



= [IME

BEST INVENTIONS

The 25 Best Inventions of the Year 2013
W Tweet | G+ 6 in share M Pin it Read Later

Interesting

The Amplituhedron € s P

VIEW AL

By TIME Staff | Nov. 13, 2013

Physicists at the Institute for Advanced Study in Princeton, N.J., B L.
recently found a major shortcut for predicting subatomic-particle __I_Z j"“'j ';’_j_ gl

collisions. The new method represents probabilities as
pyramid-like structures, then combines the pyramids into one
elegant gemstone-like structure called an amplituhedron, thereby
massively simplifying the task of calculating particle interactions.
Ultimately the amplituhedron could lead to the long-sought quantum
theory of gravity.

‘
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Amplituhedron

Arkani-Hamed, Trnka 2013
The integrand of an L-loop MHV amplitude is a rational
function of the momentum twistors /; (external
kinematics) and L loop momenta (each of which
corresponds to some line £¢) in P3)

Amplituhedron provides a construction for amplitudes
when /. take values in the positive domain G (4,n)

Each line £ in P> maybe characterized by a pair of
: ) )
points L7, L,

In the MHV amplituhedron, a pair of points specifying
each £(®) may be expressed in the /, basis via D-
n

0"
1—=1



Amplituhedron

Arkani-Hamed, Trnka

* Inside the amplituhedron, D-matrices are in G (2,n)

(LY 4 5) >0 for i < j and all £, and
(L) £E)Y 5 0 for all 44, £s.

e Boundaries occur when one or more of these
equalities approach zero.

 The integrand of an MHV amplitude is a canonical
form defined by having logarithmic singularities
only on the boundary of the amplituhedron.



How can we use Amplituhedron to
eliminate spurious singularities?

Use positivity constraints in the
amplituhedron!



Example: Spurious Three-Mass Box

o Dennen, Prlina, Spradlin, Stanojevic, AV

i G G=1541)(ii+1)(kk+1)) =0

It arises from the cut conditions:

) ‘ ‘ '
L Y 4
- -

y 0= (Liit1) = (Lj—17) = (Ljj+1) = (Lkk+1)
These are three-mass box type and have solutions

L=Gii+1)N(Gkk+1)or L= (N GEi+1), 5N (kk+1))

Solutions can be Z. i ;

represented by D-matrix. Do <<'+1 2@/@+1> <‘.2k+1> (1))
1+17 —(17

;D matrices are not positive i il k k+1

definite when Z are positive! p— (<@'+01~7> ‘<éj> <_,]S+1> <"0/<;>>
—\J J



Compare: Two-Mass Easy Box
J

"\ \ It arises from the cut conditions:
1

(Li—11) = (Lii+1) = (Lj—15) = (Ljj+1) =0
Cut conditions have a solution: o
o Positive D-matrix!! vJ
L=(ij) D - (1 O)

0 1



Examplg: two-loop double-pentagon

(G (=141 (i—148) (kDY (G—1j+1)(i~19) kNI =0

+ |t arises from the cut conditions:

(LWi—14) = (LW j—1j) = (LW j j+1) = (LW LE) = 0,

Z. (£ k—1k) = (£O) k1) = (£O 1—11) = (L@ 114+1)

l
The last line can be solved by  £& = (k1) or L& = kN1,

Taking the first solution, solve the first line
LY = (ji-19) NG kD) = (Z;, Ziea(ij k1) — Zi(i—15 k1)) or

L0 = ((z’—lz’) N7, (kD) mj) = (Zi_1<z'§> — Z;(i—13), Zi(lj) — Zz<k5>)
Minors do not have uniform sign!

1—1 1 j k1 i__l U - k l

0 0 1 0 0 @y) —{i=15 0 0
pw Gikl) —(i—1jkl) 0 0 0 <D(”>: 0 0 @) ki |
p®) = | o 0 0 1 0 o : 0 1 0

0 0 00 1 0 0 0 1



Summary so far

Dennen, Prlina, Spradlin, Stanojevic, AV

First, consider a representation of an amplitude as a
sum over particular integrals. Find Landau singularities
of a generic term in the sum. These tell us potential
singularities.

Second, for each potential singularity check whether the
corresponding on-shell conditions have a non-zero
intersection with the (closure of) the amplituhedron. If
the answer is no, then the singularity must be spurious.

This approach is straightforward but inefficient.

The most significant drawback of the approach is that it
relies on having an explicit representation of an
integrand in terms on local Feynman integrals.



An Amplituhedrony Approach

Dennen, Prlina, Spradlin, Stanojevic, AV

* |nstead of using Feynman diagrams to
generate sets of cut conditions that we need
to check one by one, we can ask
amplituhedron itself directly to identify all
potentially “valid” sets of cut conditions that
are possibly relevant to the singularities of an
amplitude.

* For each valid set of cut conditions, solve
Landau equations and find the corresponding

singularity.
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One-loop MHV

* The maximum codimension boundaries for
the one-loop MHV amplituhedron occur when

L=(j)
* On this boundary four cut conditions of the
two-mass easy type are satisfied :

(Li—18) = (Lii+1) = (Lj—1j) = (Ljj+1) =0

1

* Aleading solution to the Landau equations for
two-mass easy box exists only if

(ij){ij) =0



One-loop MHV Amplitude

Subleading Landau equations are obtained by
relaxing one of the four on-shell conditions. This
leads to cuts of two-mass triangle type, which
don’t give anything.
At sub-subleading order we reach cuts of bubble
type. For instance, we encounter
(1—115—17) =0

Altogether, we all physical branch points occur on
loci of the form

(ab) =0 or (aa+1bb+1) =0

These are precisely the singularities of the one-
loop MHV amplitudes (symbol alphabet)!



Two-Loop MHV Amplitudes:
configurations of positive lines

Maximum
codimension
boundary

On this boundary the following nine cut conditions
are satisfied

(LY 5—-14) = (LW ii+1) = (£P i—14¢) = (LD §44+1)
(LW j-15) = (LY jj+1) = (LD k—1k) = (LD kk+1)
(LW £

0,
0,
0.



Two-Loop MHV Amplitudes:
two valid double relaxations
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Two-Loop MHV Amplitudes:
Landau diagrams for each \Z,/alid relaxation

These are precisely the singularities of
the two-loop MHV amplitudes (symbol alphabet)!



Summary: geometric algorithm

Input: list of the maximal codimension boundaries
of the amplituhedron. These are known for MHV.

Step 1: Identify the list of all cut conditions
satisfied on the given boundary, and consider all
lower codimension boundaries by relaxing various
subsets. Eliminate those which do not overlap
with the closure of the amplituhedron.

Step 2: For each valid set of cut conditions, solve
the corresponding Landau equations to determine
the location of singularities.

Output: A list of the loci in external kinematics
space where the given amplitude has branch
points.

Dennen, Prlina, Spradlin, Stanojevic, AV



Conclusion

* We proposed a geometric algorithm to determine
singularities of amplitudes in N=4 SYM from the
amplituhedron.

 We applied the algorithm to the one- and two-loop
MHV amplitudes.

* This is a step towards translating integrands directly
to amplitudes.

* Many questions remain:

--generalizations to other cases
--relation between cluster structure and Landau singularities






