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chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]
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The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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Introduction

• We	believe	that	N=4	Yang-Mills	is	“integrable”	
or	“solvable”.	Some	pieces	of	the	theory,	such	as	
planar	anomalous	dimension,	can	reasonably	be	
said	to	have	been	already	“solved”.

• But	for	more	complicated	quantities,	such	as	
general	correlation	functions	or	scattering	
amplitudes,	it	is	not	yet	completely	clear	what	
form	a	“solutions”	will	even	take.

• This	question	is	being	explored	“experimentally”	
from	a	variety	of	complementary	approaches.



N=4	Yang-Mills



Integrand

Scattering	
Amplitude



Data	is	Hard	to	Come	by
• Despite	recent	advances,	relatively	few	scattering	
amplitudes	in	N=4	Yang-Mills are	available	in	the	
literature.

• 6-point	MHV	and	NMHV	up	to	5-loops	[Caron-Huot,	
Dixon,	McLeon,	Von	Hippel	2016]

• All	2-loop	MHV	[Caron-Huot 2011]
• 7-point	2-loop	NMHV	[Caron-Huot,	He	2011]
• 7-point	3-loop	MHV	[Drummond,	Papathanasiou,	

Spradlin 2014]
• 7-point	4-loop	MHV	and	7-point	3-loop	NMHV	

[Dixon,	Drummond,	Harrington,	McLeod,	Papathanasiou,	
Spradlin,	2016]



Data	is	Hard	to	Come	by
• Despite	recent	advances,	relatively	few	scattering	

amplitudes	in	N=4	Yang-Mills	are	available	in	the	literature.
• We	are	looking	for	new	tools	— like	those	which	exist	at	

tree	level	— to	make	loop	calculations	trivial...	
• Moreover,	having	more	“data”	in	hand	is	crucial	for	

identifying	new,	hidden	mathematical	properties	of	these	
amplitudes,	and	...	ultimately,	to	get	some	clues	about	
“what	is	the	class	of	functions	whose	perturbative	tails	we	
are	seeing?”

• It	would	be	enormously	valuable	to	close	the	gap	between	
our	understanding	integrands	and	amplitudes.	



S-Matrix	Program:	Old	and	New

It	has	long	been	a	goal	of	the	S-
matrix	program	to	be	able	to	
construct	scattering	amplitudes	
based	on	a	few	physical	principles	
and	a	thorough	understanding	of	
their	analytic	structure.	

In	todays	talk:	I	will	review	some	technology	
(Landau	singularities)	from	ELOP (1966).	



S-matrix	program:	Old	and	New

• Why	couldn’t	this	talk	been	given	50	years	
ago?

• We	now	appreciate	that	the	best	arena	for	
carrying	out	S-matrix	program	is	N=4	Yang-
Mills.	

• OK,	why	couldn’t	this	talk	been	given	40	years	
ago?

S-Matrix Theory – Old and New

Why couldn’t this talk been given 50 years ago?
They should have, but didn’t, discover the simplest QFT:

We now appreciate that the best arena for carrying out the
S-program is
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Yang-Mills theories with simple supersymmetry are constructed in 2, 4, 6, and 10 dimen- 
sions, and it is argued that these are essentially the only cases possible. The method of di- 
mensional reduction is then applied to obtain various Yang-Mills theories with extended 
supersymmetry in two and four dimensions. It is found that all possible four-dimensional 
Yang-Mills theories with extended supersymmetry are obtained in this way. 

1. Introduct ion  

Three types of supersymmetric Yang-Mills theories in four dimensions are known. 
In the first one that was found [1] the infinitesimal parameter of the supersymmetry 
transformation is a Majorana spinor ("simple" supersymmetry). In the second one [2] 
it is a Dirac spinor ("complex" supersymmetry). In the third case it consists of four 
Majorana (or Weyl) spinors [3]. This last model was obtained recently by applying 
the method of dimensional reduction to a supersymmetric Yang-Mills theory in ten- 
dimensional space-time. 

The goal of this paper is to classify all the possible supersymmetric Yang-Mills 
theories in both two and four dimensions. The interest in four dimensions is obvious, 
of course, as one of these schemes may be part of a correct theory. The two-dimen- 
sional cases are also emphasized because of the possibility of coupling such Yang- 
Mills multiplets to a corresponding two-dimensional supergravity theory [4] in order 
to get a modified string theory. Our technique consists of two stages. In the first 
stage Yang-Mills theories with simple supersymmetry are constructed for all space- 
time dimensions in which it is possible. Then in the second stage each of the higher- 

'~ Work supported in part by the US Energy Research and Development Administration under 
contract E(11-1)-68, and by the Swedish Atomic Research Council under contract 0310-026. 
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OK, why couldn’t this talk have been given 40 years ago?



S-Matrix	program:	New	Ingredients
Three	relatively	recent	developments	are	

crucial	ingredients:

1.	Kinematic	Variables:	momentum	twistors
[Penrose,	Hodges	2009]

2.	Integrals:	Symbol	of	an	amplitude						
[Goncharov,	Spradlin,	Vergu,	AV	2010]

3.	Integrands:	Amplituhedron
[Arkani-Hamed,	Hodges,	Trnka 2013]



Today’s	Talk

• I	will	describe	a	geometric	algorithm	to	
determine	physical	singularities	of	amplitudes	
in	N=4	Yang-Mills	from	the	amplituhedron.

• I	will	apply	the	algorithm	to	the	one- and	two-
loop	MHV	amplitudes.

• This	is	a	step	towards	translating	integrands	
directly	to	amplitudes.

Dennen,	Prlina,	Spradlin,	Stanojevic,	AV	



Plan
• Review:	Landau	equations	(ELOP)
• Landau	singularities	for	one	and	two-loop	integrals	
in	N=4	Yang-Mills

• Landau	singularities	and	amplitudes:		
physical	and	spurious	singularities

• Refined	analysis	using	Amplituhedron
• Singularities	from	Amplituhedron:	
geometric	algorithm

• Conclusions	and	open	questions



Landau	Singularities

Feynman parameters, (`µr ,↵i):
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and c a prefactor that will not enter into our discussion. Here, qµi is the momentum flowing
along propagator i, pµi are external momenta, and N is some numerator function of the
kinematic data. There are two distinct situations in which I can develop a singularity or
branch point:

1. The surface D = 0 pinches the integration contour in all (`r,↵i) simultaneously. The
kinematic locations at which this happens are called “Leading Landau Singularities”
(LLS).

2. The surface D = 0 hits the boundary of the integration contour, at ↵i = 0 for some
subset of the Feynman parameters, and pinches the contour in all other variables.
These are called “Non-leading Landau Singularities,” which we stratify into “Sublead-
ing” (SLLS), “Sub-sub-leading,” (S2LLS) and so forth, according to how many of the
↵i are vanishing.

Although we do not review the derivation here, these two situations are captured by the
following set of simultaneous equations:

X
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i ) = 0 8i. (2.4)

On the principal sheet, the integration in `µr and ↵i in (2.1) is taken over the real axis,
with ↵i � 0. Branch points on the principal sheet require the solution to (2.3) and (2.4)
to pinch this contour. When discussing symbol entries, however, we are also interested in
branch points on higher sheets, which are exposed by analytically continuing (2.1) to generic
contours. Therefore, throughout this paper we will look more generally for solutions to (2.3)
and (2.4) with `µr ,↵i 2 C.

B. One-loop Bubbles, Triangles, and Boxes

The Landau equations (2.3) and (2.4) are easily solved for one-loop bubble, triangle, and
box integrals in four dimensions. Equation (2.4) puts all of the propagators on-shell, with
no constraints on external kinematics, while the solvability of the loop rule (2.3) gives a
determinantal constraint after contracting with each of the propagator momenta qµi .

For the bubble and triangle integrals shown in Figure 1, the locations of the LLS are
given by

Bubble: 0 = x2
ij , (2.5)

Triangle: 0 = x2
ij x

2
jk x

2
ik , (2.6)

4

Landau	equations	for	a	given	Feynman	integral	are	a	set	of	kinematic	
constraints	that	are	necessary	for	the	appearance	of	a	pole	or	
branch	point	in	the	integrated		function

Landau	1959
Eden,	Landshoff,	Olive,	Polkinghorne
“The	Analytic	S-Matrix”

Landau	
Equations

Leading LS all ↵i 6= 0 LLS
Subleading LS some ↵i = 0 SLLS, S2LLS

1

etc

Landau	Singularities
locus	in	external	kinematic	data

where	Landau	equations	admit	solutions

In	this	talk:		only	focus	
on	singularities	described	
by	Landau	equation
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One-Loop	Box
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In degenerations of the triangle integral when one or more of the corners is on-shell, (2.6)and x2
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FIG. 3. The four-mass box integral.

The external legs in Figure 3 are labeled 1, . . . , n where n is the total number of particles.
The kinematic data needed to specify the scattering configuration consists of either the
collection p1, . . . , pn of (incoming) momenta of these particles, or a collection Z1, . . . , Zn of
n momentum twistors in P3. The former are related to the dual momenta by pa = xa�xa�1.
It follows that the four external face variables labeled xi, xj, xk, xl in Figure 3 are related to
the external momenta by (xi � xj)2 = (pi+1 + pi+2 + · · · + pj)2, etc. Hodges’ construction
for n-point kinematics associates the point xa in Minkowski space to the line (a, a+1) in P3

containing the two points Za, Za+1. One final standard notation worth mentioning is that ā
denotes the plane (a�1, a, a+1).

If x, y are points in Minkowski space associated to two lines (A,B), (C,D) in P3, then
their dual spacetime separation may be computed from the formula

(x� y)2 =
hAB C Di

hI ABihI C Di , (2.16)

where I is the “infinity twistor”—the line in twistor space associated to the dual spacetime
point at spatial infinity. The denominator factors are necessary in order to obtain the flat
Minkowski metric in x space, but we will henceforth ignore them as they always drop out
of any dual conformal invariant result.

To carry out the integration for the Feynman diagram shown in Figure 3 we should
associate some dual momentum x to the interior face of the diagram, and then integrate the
product of the four propagators 1/(x � xi)2, etc., over d4x. In momentum twistor space,
the point x is represented by a line (A,B), and we must integrate the product of the four
propagators 1/hAB i i+1i, etc., over the space of lines in P3. Details about how to construct
the measure of integration may be found in Ref. [13]. Note that the singularity in the
propagator 1/(x� xi)2 which arises when x becomes null separated from xi is manifested in
momentum twistor space as the singularity in 1/hAB i i+1i when the line (A,B) intersects
the line (i, i+1).

III. ONE-LOOP MHV AMPLITUDES

We now turn our attention to the chiral pentagon integral, which is the basic building
block for one-loop MHV amplitudes. This analysis is extremely simple, but it is instructive
to go through it carefully as a warm-up for the following section.
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For	generic integrals	it	becomes	a	hard	problem,	so	next	we	focus	on	specific	N=4	SYM	integrals.

Landau	1959
Eden,	Landshoff,	Olive,	Polkinghorne
“The	Analytic	S-Matrix”
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The	Landau	equations	are	easily	solved	for	one-loop	box	integrals	in	four	dimensions.

The	second	Landau	equation	puts	propagators	on-shell	(no	constraints	on	external	kinematics).	

The	solvability	of	the	first	equation	gives	a	determinant		constraint.

(and	bubbles	and	triangles)

Leading	
Landau	
Singularities

hii+ 1i hiji

{a1, a2}

a1, a2, a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2

an+1 =
1 + an

an�1

(x� xi)
2
= 0, (x� xj)

2
= 0, (x� xk)

2
= 0, (x� xl)

2
= 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS

Subleading LS some ↵i = 0 SLLS, S

2
LLS
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Momentum	Twistors

posed by Schubert in the 1870’s, and we discuss the solution of these “Schubert

problems” in detail.

In section 3 we introduce chiral integrals with unit leading singularities which

play a central role in our story. We illustrate how they work starting with the

simplest case of 1-loop MHV amplitudes.

In section 4, we discuss another feature of chiral integrals with unit leading

singularities—generic integrals of this form are manifestly infrared finite, and can

be used to express finite objects related to scattering amplitudes, such as the ratio

function [14].

In section 5, we construct a basis for all 1-loop integrands, whose building blocks

are not the familiar boxes or even pentagons, but a natural set of chiral octagons

with unit leading singularities. We also compute the finite 1-loop integrals explicitly,

and use these results to give a simple formula for the NMHV ratio-function at 1-loop,

for any number of particles.

In section 6, we discuss multi-loop amplitudes. We describe our heuristic strategy

for using leading singularities to tailor momentum-twistor integrals to the amplitude,

and show how this works for the 1-loop MHV amplitude, reproducing one of the

local forms first derived using the polytope picture of [9]. We also discuss the 1-loop

NMHV amplitudes in the same way. We then extend these methods to two loops

and beyond, and show how to “glue” the 1-loop expressions together to produce

natural conjectures for all 2- and 3-loop MHV amplitudes, as well all 2-loop NMHV

amplitudes. These conjectures are verified by comparing with the integrand derived

from the all-loop recursion relation.

A number of appendices discuss various technical points needed in the body of

the paper, including a detailed discussion of the 2-loop NMHV and 3-loop MHV

integrands.

2. Foundations

In theories with massless particles, a well-known and convenient way of trivializing

the constraint p

2
a

= 0 for each particle is to introduce a pair of spinors �

(a) and e

�

(a),

replacing p

µ

a

7! (p
a

)
↵ ↵̇

⌘ p

µ

a

(�
µ

)
↵↵̇

⌘ �

(a)
↵

e

�

(a)
↵̇

. Of course, this map is not invertible, as

any rescaling {�,

e

�} ! {t�, t

�1
e

�} leaves p invariant. This reflects that these variables

come with a new source of redundancy; in the case of particles with spin, this re-

dundancy is quite welcomed as it allows the construction of functions that transform
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with fixed projective weights as S-matrix elements under Lorentz transformations.

This is all well-known under the name of the spinor-helicity formalism [15–19].

Amplitudes are supported on momenta that satisfy momentum conservation.

Clearly, it would be convenient to find variables where this constraint,
P

a

p

a

= 0, is

trivial. In planar theories, where color ordering is available, there is a natural way to

achieve this, by choosing instead to express the external momenta in terms of what

are known as dual-space coordinates, writing p

a

⌘ x

a

� x

a�1, [20].

To see the role played by planarity, consider the standard decomposition of scat-

tering amplitudes according to the overall color structure, keeping only the leading

color part:

A

n

= Tr(T a1
T

a2
. . . T

an)A
n

(1, 2, . . . , n) + permutations; (2.1)

here, each partial amplitude A
n

(1, 2, . . . , n) can be expanded in perturbation theory,

and we denote the L-loop contribution by AL�loop
n

. Partial amplitudes are computed

by summing over Feynman diagrams with a given color-ordering structure.

In this paper we only consider the planar sector of the theory, and therefore

AL�loop
n

will always refer to the leading-color, partial amplitude in the planar limit.

Restricted to a particular partial amplitude, say, A
n

(1, 2, . . . , n), each momenta

can be expressed as the di↵erence of two “spacetime” points. More precisely, we

make the identification p

a

⌘ x

a

� x

a�1, with p1 = x1 � x

n

. It is clear that mo-

menta obtained in this way automatically satisfy
P

a

p

a

= 0—and the redundancy

introduced in this case is a translation x

a

! x

a

+ y by any fixed vector y.

Now, the only poles that can occur in A
n

(1, 2, . . . , n) are of the form
P

b

m=a

p

m

,

i.e., only the sum over consecutive momenta can appear. In the dual variables these

become
P

b

m=a+1 p

m

= x

a

� x

b

. The same kind of simplifications happen in planar

Feynman diagrams to all orders in perturbation theory as we will describe.

Now we have the variables {�,

e

�} which make the null condition trivial while ig-

noring momentum conservation, while the dual-space variables do the opposite. It is

perfectly natural to wonder if there exists any way to combine these two constructions

which makes both the null-condition and momentum conservation trivial. It turns

out that such a set of variables does exist: they are known as momentum-twistors

and were introduced by Hodges in [13].

The standard twistor construction developed in the 1960’s [21] starts by making

a connection between points in an auxiliary space—twistor-space—and null rays

in spacetime. Likewise, a complex line in twistor space is related to a point in

spacetime. The key formula is called the incidence relation, according to which a
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Momentum	conservation

Null	momentum
Figure 1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

point x in spacetime corresponds to set of twistors Z = (�, µ) which satisfy

µ

↵̇

= x

↵ ↵̇

�

↵

. (2.2)

Twistors satisfying this relation form a projective line in CP3. Even though Z has

the components of a point in C4, the incidence relation cannot distinguish Z from

tZ, and therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—

all that is needed is a pair of twistors, say Z

A

and Z

B

, that belong to the line. Given

the twistors, the line or spacetime point is found by solving the four equations coming

from imposing the incidence relation for Z

A

and Z

B

with x. It is easy to check that

the solution is,

x

↵ ↵̇

=
�

A,↵

µ

B,↵̇

h�
A

�

B

i +
�

B,↵

µ

A,↵̇

h�
B

�

A

i . (2.3)

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors

h�
A

�

B

i ⌘ ✏

↵ �

�

↵

A

�

�

B

).

Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn

}. Using the

association x

a

$ (Z
a

, Z

a+1), n spacetime points are defined. Quite nicely, it is trivial

that p

2
a

= (x
a

�x

a�1)2 = 0 because the corresponding lines, or (CP1s), intersect. This

is illustrated in Figure 1.

Given the importance of this latter fact, it is worth giving it a slightly more

detailed discussion than we have so far. If two lines in twistor-space intersect, i.e.

share a twistor Zint, then the corresponding spacetime points, say x and y, associated

with the lines are null-separated. To see this, take the di↵erence of the incidence
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Z = (�, µ) = (�↵, x↵↵̇�
↵)

xl

xk

xi

xj

FIG. 3. The four-mass box integral.

The external legs in Figure 3 are labeled 1, . . . , n where n is the total number of particles.
The kinematic data needed to specify the scattering configuration consists of either the
collection p1, . . . , pn of (incoming) momenta of these particles, or a collection Z1, . . . , Zn of
n momentum twistors in P3. The former are related to the dual momenta by pa = xa�xa�1.
It follows that the four external face variables labeled xi, xj, xk, xl in Figure 3 are related to
the external momenta by (xi � xj)2 = (pi+1 + pi+2 + · · · + pj)2, etc. Hodges’ construction
for n-point kinematics associates the point xa in Minkowski space to the line (a, a+1) in P3

containing the two points Za, Za+1. One final standard notation worth mentioning is that ā
denotes the plane (a�1, a, a+1).

If x, y are points in Minkowski space associated to two lines (A,B), (C,D) in P3, then
their dual spacetime separation may be computed from the formula

(x� y)2 =
hAB C Di

hI ABihI C Di , (2.16)

where I is the “infinity twistor”—the line in twistor space associated to the dual spacetime
point at spatial infinity. The denominator factors are necessary in order to obtain the flat
Minkowski metric in x space, but we will henceforth ignore them as they always drop out
of any dual conformal invariant result.

To carry out the integration for the Feynman diagram shown in Figure 3 we should
associate some dual momentum x to the interior face of the diagram, and then integrate the
product of the four propagators 1/(x � xi)2, etc., over d4x. In momentum twistor space,
the point x is represented by a line (A,B), and we must integrate the product of the four
propagators 1/hAB i i+1i, etc., over the space of lines in P3. Details about how to construct
the measure of integration may be found in Ref. [13]. Note that the singularity in the
propagator 1/(x� xi)2 which arises when x becomes null separated from xi is manifested in
momentum twistor space as the singularity in 1/hAB i i+1i when the line (A,B) intersects
the line (i, i+1).

III. ONE-LOOP MHV AMPLITUDES

We now turn our attention to the chiral pentagon integral, which is the basic building
block for one-loop MHV amplitudes. This analysis is extremely simple, but it is instructive
to go through it carefully as a warm-up for the following section.
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A related construction is called dual momentum twistor space. Here ‘dual’ refers

to the usual geometric—‘Poincaré’—dual of a space. In other words, the dual space is

the space of planes in CP3. Points in the new space which is also a CP3 are denoted

by W

I

. The construction maps points to planes and lines to lines. In Hodges’

construction [13], there is a natural definition of dual points associated to the planes

defined by consecutive lines of the polygon in momentum twistor space of Figure 1.

The construction defines a dual polygon by introducing dual momentum twistors

W

a

defined by

(W
a

)
I

=
✏

IJKL

Z

J

a�1Z
K

a

Z

L

a+1

h�
a 1 �

a

ih�
a

�

a+1i
. (2.6)

This definition is made so that W

a

contains e

�

a

as two of its components.

2.1 Loop Integrals

The focus of this paper is loop integrands and integrals. Here too, it is well known

that in planar theories, loop integrals are very naturally expressed in terms of dual

spacetime coordinates. Consider a very simple 1-loop integral, known as a zero mass

integral,

1

23

4
L

=

Z

d

4
L

N

L

2(L � p1)2(L � p1 � p2)2(L � p1 � p2 � p3)2
(2.7)

where the external momentum at each of the four vertices is null (hence the name)

and N = (p1+p2)2(p2+p3)2 is a convenient normalization factor. Momentum conser-

vation gives p4 = �p1�p2�p3; and introducing the dual-coordinates p

a

= x

a

� x

a�1,

it is easy to see that the unique choice of L that makes translation invariance (in

x-space) manifest is L = x � x4. The integral becomes [20]

1

23

4

2

4

3

1 =

Z

d

4
x

N

(x � x1)2(x � x2)2(x � x3)2(x � x4)2
, (2.8)
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Going back to the loop integral in x-space (2.8), one can introduce the four mo-

mentum twistors in Hodges’ construction {Z1, Z2, Z3, Z4} to describe the external

particles. Using the relation between the Lorentz invariant separations and momen-

tum twistor invariants in (2.5), the integral (2.8) becomes

Z

AB

h1234i2

hAB 12ihAB 23ihAB 34ihAB 41i . (2.12)

where hijkli stands for the determinant of the 4 ⇥ 4 matrix with columns given by

four twistors Z

i

, Z

j

, Z

j

, Z

k

defined in (2.4).

One of the remarkable facts about (2.12) is that all factors involving the infinity

twistor have disappeared. This means that the integral is formally conformal invari-

ant under the conformal group that acts on the dual spacetime. This is why it is

said to be dual conformally invariant (DCI).

Clearly, if we had started with a triangle integral then the factor hZ1IZ2i =

h�1 �2i would not have canceled and would have remained with power one in the

denominator as if it were a propagator. Indeed, this viewpoint trivializes the sur-

prising connections made in the past between the explicit form of triangle and box

integrals. In other words, one can think of a triangle integral as a box where one of

the points is at infinity.

Once again, a careful definition of the contour which should correspond to only

points in a real slice of complexified spacetime is not needed in this paper. It su�ces

to say that on the physical contour, the integrals can have infrared divergences (IR).

This is the reason why we said that the integral was ‘formally’ DCI. We postpone a

more detailed discussion of IR divergences to section 4.

The purpose of this section is to show how momentum twistors are the most

natural set of variables to work with loop amplitudes in planar theories. In order to

do this we will first show how many familiar results can be translated into momentum

twistors. Not infrequently, momentum twistors will completely clarify physics points

which have been misunderstood in the literature.
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planar gauge theories, where (for each color-ordered partial amplitude) the particles are
endowed with a specific cyclic ordering. We will see that momentum twistors enormously
simplify the problem of analyzing the Landau equations in such theories, for the same
reason that they simplify the analysis of leading singularities of the integrand (see Ref. [13]
for several examples of such calculations).

Momentum twistors are based on the correspondence between null rays in (complexified)
Minkowski space and points in twistor space (P3); or equivalently, between (complex) lines
in P3 and points in Minkowski space. We use ZA, ZB, etc. to denote points in P3, which
may be represented using four-component homogeneous coordinates ZA = (Z1

A, Z
2
A, Z

3
A, Z

4
A)

subject to the identification ZA ⇠ tZA for any nonzero complex number t. We use (A,B)
to denote the line in P3 containing two given points ZA, ZB. Similarly, (A,B,C) denotes
the plane containing the three points ZA, ZB, ZC , and (A,B,C)\ (D,E, F ) denotes the line
where this plane intersects the plane (D,E, F ).

Treating the homogeneous coordinates of each momentum twistor as a vector in C4, there
is a natural SL(4,C) invariant denoted by

hAB C Di ⌘ ✏IJKLZ
I
AZ

J
BZ

K
C ZL

D . (2.12)

We will often be interested to have a geometric understanding of the locus where such four-
brackets might vanish, which can be pictured in several ways. For example, hAB C Di = 0
only if the two lines (A,B) and (C,D) intersect, or equivalently if the lines (A,C), (B,D)
intersect, or if the point A lies in the plane (B,C,D), or if the point C lies on the plane
(A,B,D), etc. Computations of four-brackets involving intersections may be carried out
explicitly with the rule

h(A,B,C) \ (D,E, F )GHi = hAB C GihDE F Hi � hAB C HihDE F Gi . (2.13)

This is manifestly antisymmetric under exchanging any two of the points specifying the
plane (A,B,C), or of any two in (D,E, F ), or under exchanging the two planes. In case
the two planes are specified with one common point, say F = C, it is convenient to use the
shorthand notation

hC(A,B)(D,E)(G,H)i ⌘ h(A,B,C) \ (D,E,C)GHi . (2.14)

This quantity is also manifestly antisymmetric under exchanging A $ B, D $ E, or
G $ H. Moreover, and less obviously, is also fully antisymmetric under exchange of any
of the three lines (A,B), (D,E), (G,H). This may be seen with the help of the Schouten
identity

hAB C DiZE + hB C DEiZA + hC DE AiZB + hDE ABiZC + hE AB CiZD = 0 . (2.15)

Now we turn to Hodges’ construction [12]. To gain a working understanding of this
correspondence it is instructive to take a look at an explicit example, such as the one-loop
four-mass box integral shown in Figure 3. In a Feynman diagram it is standard to label
each edge according to the momentum carried by the associated propagator: q1, q2, etc. In
a planar diagram it is equally appropriate to label the edges by dual momenta (or region
momenta): x1, x2, etc. If two faces labeled xa and xb share an edge qc, then the momentum
running along that edge is qc = xa � xb (an overall orientation must be specified so that the
sign of each q in the diagram is consistent with momentum conservation at each vertex).

6

Momentum	twistors simplify	the	problem	of	analyzing	solutions	to	Landau	equations.
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intersect, or if the point A lies in the plane (B,C,D), or if the point C lies on the plane
(A,B,D), etc. Computations of four-brackets involving intersections may be carried out
explicitly with the rule

h(A,B,C) \ (D,E, F )GHi = hAB C GihDE F Hi � hAB C HihDE F Gi . (2.13)

This is manifestly antisymmetric under exchanging any two of the points specifying the
plane (A,B,C), or of any two in (D,E, F ), or under exchanging the two planes. In case
the two planes are specified with one common point, say F = C, it is convenient to use the
shorthand notation

hC(A,B)(D,E)(G,H)i ⌘ h(A,B,C) \ (D,E,C)GHi . (2.14)

This quantity is also manifestly antisymmetric under exchanging A $ B, D $ E, or
G $ H. Moreover, and less obviously, is also fully antisymmetric under exchange of any
of the three lines (A,B), (D,E), (G,H). This may be seen with the help of the Schouten
identity

hAB C DiZE + hB C DEiZA + hC DE AiZB + hDE ABiZC + hE AB CiZD = 0 . (2.15)

Now we turn to Hodges’ construction [12]. To gain a working understanding of this
correspondence it is instructive to take a look at an explicit example, such as the one-loop
four-mass box integral shown in Figure 3. In a Feynman diagram it is standard to label
each edge according to the momentum carried by the associated propagator: q1, q2, etc. In
a planar diagram it is equally appropriate to label the edges by dual momenta (or region
momenta): x1, x2, etc. If two faces labeled xa and xb share an edge qc, then the momentum
running along that edge is qc = xa � xb (an overall orientation must be specified so that the
sign of each q in the diagram is consistent with momentum conservation at each vertex).
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From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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↵4 or ↵5 we find respectively that the SLLS lie on the loci:

(SLLS)

hj(j�1, j+1)(i, i+1)(n, 1)i = 0 ,
hj(j�1, j+1)(i�1, i)(n, 1)i = 0 ,
hi(i�1, i+1)(j, j+1)(n, 1)i = 0 ,
hi(i�1, i+1)(j�1, j)(n, 1)i = 0 ,
h̄ijihij̄i = 0 .

(3.10)

The S2LLS are given by solutions of (3.7) with only three nonzero ↵’s, which correspond
to degenerations of the pentagon to various triangles. The four non-trivial cases, arising
from three-mass triangles, are

(S2LLS)

hi�1 i j�1 jihj�1 j n 1ihn 1 i�1 ii = 0 ,
hi i+1 j�1 jihj�1 j n 1ihn 1 i i+1i = 0 ,
hi�1 i j j+1ihj j+1 n 1ihn 1 i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 n 1ihn 1 i i+1i = 0 .

(3.11)

Degenerations which lead to two-mass triangles give solutions of the Landau equations for
all kinematics, as reviewed in the previous section. These singularities, in the case of the
scalar pentagon, are indicative of the soft and collinear IR singularities of the integral. We
know however that (for generic i, j, as always) the numerator factor in (3.2) eliminates these
singularities.

We could go one step further, down to bubbles, but this provides no new information:
all bubbles are either fully singular or have Landau singularities on the vanishing loci of
brackets which already appear in (3.11).

C. Summary

We have tabulated all Landau singularities of the pentagon integral. Some su�ciently
degenerate singularities exist for all kinematics. Often such singularities are indicative of
IR divergences, but we know that for this particular integral (and for generic i, j) these are
canceled by the numerator factor in (3.2). Let us emphasize that except for appealing to
this fact, the analysis of the previous section applies to the scalar pentagon integral just as
well as the chiral integral, since the Landau equations by definition only know about the
propagator structure of a diagram.

The singularities that exist only on various nontrivial submanifolds of kinematic space
are indicated in equations (3.9), (3.10) and (3.11). Upon comparison with equations (3.5)
and (3.6) we notice a striking pattern: sub-sub-leading Landau singularities (3.11) exist
only on the loci where the leftmost symbol entries (3.5) vanish, while sub-leading singu-
larities (3.10) appear on a di↵erent set of loci corresponding to the locations where the
second-entry symbol entries (3.6) vanish. (However let us not forget that (3.6) only lists the
new letters which start to appear in the second entry.)

What about the LLS, which lives on the locus hi j n 1ihn 1 ī \ j̄i = 0? This quantity
indeed makes an appearance in the overall prefactor in the scalar pentagon integral, which
evaluates (see for example Ref. [15]) schematically to 1/� times a transcendental function
of uniform weight 2, where � / hi j̄ih̄i jihi j n 1ihn 1 ī\ j̄i. The chiral pentagon, however, is
a pure integral: as is evident from (3.3), it evaluates to a transcendental function with no
algebraic prefactor. This cancellation is achieved by the carefully chosen numerator of the
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A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop
MHV

Atree
MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:

Z

AB

j

n1

i
=

Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1) + Li2 (1� uj,n,i�1,j�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x2
ijx

2
kl

x2
ljx

2
ki

. (3.4)
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chiral	pentagon

From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l, l+1). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A2�loop
MHV

Atree
MHV

=

Z

AB

Z

CD

1

2

X

i<j<k<l<i

k

li

j

(4.1)

in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
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The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at
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according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l�, l). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.
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To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

in terms of the chiral double pentagon integrand

hi j k li
hABCDi

hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.3)
The numerator factors in (??) serve the same purpose as in the one-loop pentagon dis-

cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [? ]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (??) and (??). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [? ] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.4)

In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.5)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (??), which was determined in Ref. [? ] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.6)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (??). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [? ], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (??) plays no role in this case
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CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
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according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l�, l). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)
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So	far	we	have	produced	

a	long	list	of	Landau	singularities	for	

one	and	two-loop	N=4	SYM	integrals.
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Amplitudes:	Symbol	and	Singularities
• Many	of	the	simplest	(and	hence	best	
understood)	amplitudes can	be	expressed	in	
terms	of	a	class	of	generalized	polylogs defined	
by	iterated	integrals

• Much	of	the	information	about	the	analytic	
structure	of	such	function	is	captured	in		symbol.	
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Symbol	and	Singularities
• Much	of	the	information	about	the	analytic	
structure	of	such	function	is	captured	in		symbol.

• For	amplitudes	of	generalized	polylogarithm form	
there	should	be	a	close	connection	between	
Landau	singularities	and	symbol alphabet	of	the	
amplitude.

• We	expect	that	the	symbol	entries	appearing	in	
any	amplitude	should	be	such	that	 their	zeros	
specify	values	of	the	external	momenta	where	
solutions	of	the	Landau	equations	exist.

Maldacena,	Simons-Duffin,	Zhiboedov 2015

Abreu,	Britto,	Duhr,	Gardi,	Gronqvist 2014



A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop
MHV

Atree
MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:

Z

AB

j

n1

i
=

Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1)� Li2 (1� ui,j�1,n,i�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x2
ijx

2
kl

x2
ljx

2
ki

. (3.4)
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From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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Second	Entry

Compute	the	Symbol

Bern,	Dixon,	Dunbar,	Kosower
One-loop	n-point	MHV	in	N=4	SYM

Arkani-Hamed,	Bourjaily,	Cachazo,	Trnka

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G

+

(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)

– 14 –

In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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Summary:
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factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:

Z

AB

j

n1

i
=

Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1)� Li2 (1� ui,j�1,n,i�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x2
ijx

2
kl

x2
ljx

2
ki

. (3.4)
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From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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↵4 or ↵5 we find respectively that the SLLS lie on the loci:

(SLLS)

hj(j�1, j+1)(i, i+1)(n, 1)i = 0 ,
hj(j�1, j+1)(i�1, i)(n, 1)i = 0 ,
hi(i�1, i+1)(j, j+1)(n, 1)i = 0 ,
hi(i�1, i+1)(j�1, j)(n, 1)i = 0 ,
h̄ijihij̄i = 0 .

(3.10)

The S2LLS are given by solutions of (3.7) with only three nonzero ↵’s, which correspond
to degenerations of the pentagon to various triangles. The four non-trivial cases, arising
from three-mass triangles, are

(S2LLS)

hi�1 i j�1 jihj�1 j n 1ihn 1 i�1 ii = 0 ,
hi i+1 j�1 jihj�1 j n 1ihn 1 i i+1i = 0 ,
hi�1 i j j+1ihj j+1 n 1ihn 1 i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 n 1ihn 1 i i+1i = 0 .

(3.11)

Degenerations which lead to two-mass triangles give solutions of the Landau equations for
all kinematics, as reviewed in the previous section. These singularities, in the case of the
scalar pentagon, are indicative of the soft and collinear IR singularities of the integral. We
know however that (for generic i, j, as always) the numerator factor in (3.2) eliminates these
singularities.

We could go one step further, down to bubbles, but this provides no new information:
all bubbles are either fully singular or have Landau singularities on the vanishing loci of
brackets which already appear in (3.11).

C. Summary

We have tabulated all Landau singularities of the pentagon integral. Some su�ciently
degenerate singularities exist for all kinematics. Often such singularities are indicative of
IR divergences, but we know that for this particular integral (and for generic i, j) these are
canceled by the numerator factor in (3.2). Let us emphasize that except for appealing to
this fact, the analysis of the previous section applies to the scalar pentagon integral just as
well as the chiral integral, since the Landau equations by definition only know about the
propagator structure of a diagram.

The singularities that exist only on various nontrivial submanifolds of kinematic space
are indicated in equations (3.9), (3.10) and (3.11). Upon comparison with equations (3.5)
and (3.6) we notice a striking pattern: sub-sub-leading Landau singularities (3.11) exist
only on the loci where the leftmost symbol entries (3.5) vanish, while sub-leading singu-
larities (3.10) appear on a di↵erent set of loci corresponding to the locations where the
second-entry symbol entries (3.6) vanish. (However let us not forget that (3.6) only lists the
new letters which start to appear in the second entry.)

What about the LLS, which lives on the locus hi j n 1ihn 1 ī \ j̄i = 0? This quantity
indeed makes an appearance in the overall prefactor in the scalar pentagon integral, which
evaluates (see for example Ref. [15]) schematically to 1/� times a transcendental function
of uniform weight 2, where � / hi j̄ih̄i jihi j n 1ihn 1 ī\ j̄i. The chiral pentagon, however, is
a pure integral: as is evident from (3.3), it evaluates to a transcendental function with no
algebraic prefactor. This cancellation is achieved by the carefully chosen numerator of the
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analysis. While this quantity certainly vanishes on the maximum codimension bound-

ary, we could say that it is accidentally satisfied, but not imposed. We can note, for

example, that there certainly is no Feynman diagram of the form of figure 3b. Ignoring

this ninth propagator would reduce the Landau analysis to that of a product of two

completely decoupled two-mass-easy boxes, of the type shown in figure 2, leading to

the conclusion that there are branch points on the locus where

hi j̄ih̄i ji = 0 and hi k̄ih̄i ki = 0 . (3.29)

These at least have the correct form to be valid maximal branch points of MHV am-

plitudes. Moreover, it is clear that this approach would lead to loci of the form ha b̄i
at any loop order, and would thereby provide an amplituhedrony explanation of the

MHV final symbol entry property shown in [34].

It would certainly be desirable to find a more satisfactory understanding of the

correct procedure for computing the leading Landau singularity associated to the max-

imal codimension boundary, other than choosing a prescription that happens to give

the correct known answer. We do not exclude the possibility that the Landau equa-

tions themselves require some subtle reformulation directly in momentum twistor space;

some further related comments are made in the following section.

Conclusion. In conclusion, our analysis has revealed that two-loop MHV amplitudes

have physical branch points on the loci of the form

ha b̄i = 0 ,

ha b c c+1i = 0 ,

ha a+1 b̄ \ c̄i = 0 ,

ha (a�1 a+1)(b b+1)(c c+1)i = 0 ,

(3.30)

for arbitrary indices a, b, c. Again let us note that when we say there is a branch point

at x = 0, we mean a branch cut between x = 0 and x = 1. Indeed, this result is in

precise accord with the known symbol alphabet of two-loop MHV amplitudes in SYM

theory [34].

4 Discussion

In this paper we have improved greatly on the analysis of [17] by asking the ampli-

tuhedron directly to tell us which branch points of an amplitude are physical. This

analysis requires no detailed knowledge about how to write formulas for integrands

by constructing the canonical “volume” form on the amplituhedron. We only used

– 24 –
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according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l, l+1). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A2�loop
MHV

Atree
MHV

=

Z

AB

Z

CD

1

2

X

i<j<k<l<i

k

li

j

(4.1)

in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:
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hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l�, l). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus
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The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.

13

In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

in terms of the chiral double pentagon integrand

hi j k li
hABCDi

hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.3)
The numerator factors in (??) serve the same purpose as in the one-loop pentagon dis-

cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [? ]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (??) and (??). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [? ] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.4)

In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.5)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (??), which was determined in Ref. [? ] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.6)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (??). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [? ], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (??) plays no role in this case
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third and fourth entries, letters of the form
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We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
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according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l�, l). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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Landau	Singularities and		Symbology

• All	symbol	entries	are	Landau	singularities.
• Can	we	make	a	stronger	statement?	Why	
various	other	Landau	singlularities don’t	
appear	in	the	symbol?

• SSLLS	involve	more	complicated	four-brackets	
than	those	which	appear	in	amplitudes,	but	
they	are	similar	to	cluster	A-coordinates	for	
the	Grassmannian cluster	algebra	that	it	
relevant	to	planar	SYM.

according to (2.8). Meanwhile CD is determined by the same four equations on the second
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(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l�, l). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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• We	can	try	to	explore	spurious	singularities	using	
cluster	algebras.

• All	evidence	to	date	says	that	for	the	simplest	
amplitudes	in	planar	N=4	Yang-Mills	symbol	entries	are	
cluster	coordinates	on	Gr(4,n).

Goncharov,	Spradlin,	Vergu;	Golden,	Paulos,	Parker,	Scherlis,	AV

There are also various generalizations of cluster algebras built out of more general ma-
trices Q that need not be skew-symmetric, but perhaps only skew-symmetrizable, or totally
sign-skew-symmetric [25]. So far, these generalizations play no part in the physics of scat-
tering amplitudes, and will not be discussed here. In this larger context, the cluster algebras
defined here are skew-symmetric cluster algebras of geometric type.

One generalization that will be used, however, is the idea of frozen variables. Concep-
tually, one chooses certain vertices that may not be mutated. These are carried along,
unchanged, in every quiver. See [27] for more details.

5.2 The A2 Cluster Algebra

The definition of cluster algebras is best understood through examples. The simplest non-
trivial cluster algebra is called A2 and starts from the seed

S1 = (a1, Q1) =

✓
(a1, a2),

✓
0 1
�1 0

◆◆
(5.8)

or, as a quiver,

S1 : a1 a2

There are two mutable variables, a1 and a2, and no frozen variables. Applying µ1, mutation
on the first vertex, gives a new seed

S2 : a3 a2

or

S2 := µ1(S1) = (a2, Q2) =

✓
(a3, a2),

✓
0 �1
1 0

◆◆
(5.9)

where a3 is given by Equation (5.6):

a3 := a01 =
1

a1

"Y
i!1

ai +
Y
1!j

aj

#
=

1

a1

⇥
a01a

0
2 + a01a

1
2

⇤
=

1 + a2
a1

. (5.10)

Applying µ1 to S2 just generates S1 again, which gives nothing new. Applying µ2 to S2

gives the seed

S3 : a3 a4

or

S3 := µ2µ1(S1) = (a3, Q3) =

✓
(a3, a4) ,

✓
0 1
�1 0

◆◆
(5.11)

where

a4 := a02 =
1

a2

"Y
i!2

ai +
Y
2!j

a2

#
=

1

a2
(1 + a3) =

1 + a1 + a2
a1a2

. (5.12)

After this, the cluster variables start getting simpler again. Applying µ1 to S3 gives
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a1, a2, a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2

x

(x� xi)
2
= 0

(x� xj)
2
= 0

(x� xk)
2
= 0

(x� xl)
2
= 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS

Subleading LS some ↵i = 0 SLLS, S

2
LLS

ā is the plane (a� 1, a, a+ 1)

1

A2
h1234i

h1235i h1236i h123n� 1i h123ni

h1245i h1256i h12n� 2n� 1i h12n� 1ni

h1345i h1456i h1n� 3n� 2n� 1i

hn� 4n� 3n� 2n� 1i

h1n� 2n� 1ni

hn� 3n� 2n� 1nih2345i h3456i

Grassmannian G(4,n)
Can associate a cluster algebra to the Grassmannian   

Initial cluster given by specified set of 4-brackets 

[Scott]

Gr(4, n)



• Cluster	algebras	structure	has	been	used	for	
advancing	computations	of	multi-loop	N=4	Yang-
Mills	amplitudes.

• Exploring	cluster	algebras	at	more	then	8	points	
becomes	very	hard,	and	it	will	be	interesting	to	
explore	the	connection	in	details.	

• How	can	we	get	rid	of	spurious	singularities?
• Instead	let	us	turn	to			…...

h13i h14i h15i h61i

h56ih45ih34ih23i

h12i

//
__

✏✏

��
//

__

✏✏

//
__

✏✏
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The two simplest examples relevant to SYM theory scattering amplitudes are

those for 6 or 7 points in CP3 (or, equivalently, in CP1 or CP2, respectively). For the

former it is evident from (6.6) that the principal part of the quiver is the same as the

A3 Dynkin diagram. For the latter the initial quiver is slightly more complicated:

h267i h367i h467i h567i

h456i

h345ih234i

h346ih236i

h123i

h126i

h127i

h167i

//

__

✏✏

��

//

__

✏✏

//

__

✏✏

//

__

✏✏

__

//

✏✏

//

__

✏✏

. (6.11)

If we label the vertices occupied initially by h267i, h367i, h467i, h126i, h236i, h346i
by numbers 1 through 6, then after a sequence of mutations at vertices 4, 3, 2, 5, 1,

4, 3, 4, 6, the principal part of the quiver is brought into the form of the E6 Dynkin

diagram3

h124i h247i

h256i

h5⇥6,7⇥2,3⇥4i h3⇥4,5⇥6,7⇥1i h157i
✏✏

// oooo //

(6.12)

Therefore the Gr(3, 7) cluster algebra is also called the E6 algebra.

In [17] Fomin and Zelevinsky showed that a cluster algebra is of finite type (i.e., it

has a finite number of cluster variables) if there exists a sequence of mutations which

turns the principal part of its quiver into the Dynkin diagram of some classical Lie

algebra. However, if the principal part of the quiver contains a subgraph which is an

a�ne Dynkin diagram, then the cluster algebra is of infinite type.

In ref. [38], Scott has classified all the Grassmannian cluster algebras of finite

type. This result has striking implications for scattering amplitudes in N = 4 super-

Yang-Mills theory. There, the relevant Grassmannian is Gr(4, n), for n � 6. If

n = 6 we need Gr(4, 6) = Gr(2, 6) which is of finite type A3. If n = 7 we need

Gr(4, 7) = Gr(3, 7) which is again of finite type E6. However, starting at n = 8 the

relevant cluster algebras are not of finite type anymore. This indicates that there are

infinitely many di↵erent A-coordinates which could appear in the symbol of these

3If we order them in the same way as in the initial cluster, the A-coordinates after this sequence
of mutations are h3 ⇥ 4, 5 ⇥ 6, 7 ⇥ 1i, h256i, h124i, h247i, h5 ⇥ 6, 7 ⇥ 2, 3 ⇥ 4i, h157i.

– 20 –
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Amplituhedron
• The	integrand	of	an	L-loop	MHV	amplitude	is	a	rational	
function	of	the	momentum	twistors (external	
kinematics)	and	L	loop	momenta	(each	of	which	
corresponds	to	some	line																					)	

• Amplituhedron provides	a	construction	for	amplitudes	
when							take	values	in	the	positive domain

• Each	line																				maybe	characterized	by	a	pair	of	
points

• In	the	MHV	amplituhedron,	a	pair	of	points	specifying	
each												may	be		expressed	in	the								basis	via	D-
matrix:

1.2 Positivity and the MHV Amplituhedron

In this paper we focus exclusively on MHV amplitudes. The integrand of an L-loop

MHV amplitude is a rational function of the n momentum twistors Zi specifying the

kinematics of the n external particles, as well as of L loop momenta, each of which

corresponds to some line L(`) in P3; ` 2 {1, . . . , L}. The amplituhedron [4, 5] purports

to provide a simple characterization of the integrand when the Z

I
i take values in a

particular domain called the positive Grassmannian G

+

(4, n). In general G
+

(k, n) may

be defined as the set of k⇥nmatrices for which all ordered maximal minors are positive;

that is, hai1 · · · aiki > 0 whenever i
1

< · · · < ik.

Each line L(`) may be characterized by specifying a pair of points L(`)
1

, L(`)
2

that

it passes through. We are always interested in n � 4, so the Zi generically provide a

basis for C4. In the MHV amplituhedron a pair of points specifying each L(`) may be

expressed in the Zi basis via an element of G
+

(2, n) called the D-matrix:

L(`)I
↵ =

nX

i=1

D

(`)
↵i Z

I
i , ↵ = 1, 2 . (1.4)

For n > 4 the Zi are generically overcomplete, so the map eq. (1.4) is many-to-one.

The L-loop n-point MHV amplituhedron is a 4L-dimensional subspace of the

2L(n � 2)-dimensional space of L D-matrices. We will not need a precise charac-

terization of that subspace, but only its grossest feature, which is that it is a subspace

of the space of L mutually positive points in G

+

(2, n). This means that it lives in the

subspace for which all ordered maximal minors of the matrices

�
D

(`)
�
,

✓
D

(`1)

D

(`2)

◆
,

0

@
D

(`1)

D

(`2)

D

(`3)

1

A
, etc.

are positive.

A key consequence of the positivity of the D-matrices is that, for positive external

data Z

I
i 2 G

+

(4, n), all loop variables L(`) are oriented positively with respect to the

external data and to each other: inside the amplituhedron,

hL(`)
i ji > 0 for i < j and all `, and (1.5)

hL(`1) L(`2)i > 0 for all `
1

, `

2

. (1.6)

The boundaries of the amplituhedron coincide with the boundaries of the space of

positive D-matrices, and occur for generic Z when one or more of these quantities

approach zero.
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Amplituhedron

• Inside	the	amplituhedron,	D-matrices	are	in	

• Boundaries	occur	when	one	or	more	of	these	
equalities	approach	zero.

• The	integrand	of	an	MHV	amplitude	is	a	canonical	
form	defined	by	having	logarithmic	singularities	
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< · · · < ik.

Each line L(`) may be characterized by specifying a pair of points L(`)
1

, L(`)
2

that

it passes through. We are always interested in n � 4, so the Zi generically provide a

basis for C4. In the MHV amplituhedron a pair of points specifying each L(`) may be

expressed in the Zi basis via an element of G
+

(2, n) called the D-matrix:

L(`)I
↵ =

nX

i=1

D

(`)
↵i Z

I
i , ↵ = 1, 2 . (1.4)

For n > 4 the Zi are generically overcomplete, so the map eq. (1.4) is many-to-one.

The L-loop n-point MHV amplituhedron is a 4L-dimensional subspace of the

2L(n � 2)-dimensional space of L D-matrices. We will not need a precise charac-

terization of that subspace, but only its grossest feature, which is that it is a subspace
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How	can	we	use	Amplituhedron to	
eliminate	spurious	singularities?

Use	positivity	constraints	in	the	
amplituhedron!



Example:	Spurious	Three-Mass	Box

(a) (b) (c)

Figure 1: Three examples of cuts on which MHV amplitudes have no support; these

appeared as spurious singularities in the Landau equation analysis of [17] since scalar

pentagon and double pentagon integrals do have these cuts.

Specifically, we propose a check that is motivated by the Cutkosky rules [21], which

tell us that to compute the cut of an amplitude with respect to some set of cut con-

ditions, one replaces the on-shell propagators in the integrand corresponding to those

cut conditions by delta-functions, and integrates the resulting quantity over the loop

momenta. The result of such a calculation has a chance to be non-zero only if the locus

where the cut conditions are all satisfied has non-trivial overlap with the domain of

integration of the loop momentum variables. In the present context, that domain is

the space of mutually positive lines, i.e., the interior of the amplituhedron.

In the remainder of this section we will demonstrate this hypothesis by means of

the examples shown in figure 1. The leading Landau singularities of each of these

diagrams were found to be singularities of the scalar pentagon and double-pentagon

integrals analyzed in [17], but it is clear that MHV amplitudes have no support on

these cut configurations. In the next three subsections we will see how to understand

their spuriousness directly from the amplituhedron. This will motivate us to seek a

better, more direct algorithm to be presented in the following section.

2.1 The Spurious Pentagon Singularity

The first spurious singularity of MHV amplitudes arising from the integral representa-

tion used in [17] is the leading Landau singularity of the pentagon shown in figure 1a,

which is located on the locus where

hi j k k+1ih̄i \ j̄ k k+1i = 0 . (2.1)

This Landau singularity arises from cut conditions that put all five propagators of the

pentagon on-shell:

0 = hL i�1 ii = hL i i+1i = hL j�1 ji = hL j j+1i = hL k k+1i , (2.2)
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where L is the loop momentum. The first four of these cut conditions admit two discrete

solutions [26]: either L = (i j) or L = ī \ j̄. The second of these cannot avoid lying

outside the amplituhedron. We see this by representing its D-matrix as

D =

✓
i�1 i i+1

hi j̄i �hi�1 j̄i 0

0 hi+1 j̄i �hi j̄i
◆
, (2.3)

where we indicate only the nonzero columns of the 2⇥n matrix in positions i�1, i and

i+1, per the labels above the matrix. The non-zero 2⇥ 2 minors of this matrix,

hi j̄ihi+1 j̄i, hi�1 j̄ihi j̄i, �hi j̄i2 (2.4)

have indefinite signs when the external kinematics are generic and positive, so this L
lies discretely outside the amplituhedron.

We proceed with the first solution L = (i j) which can be represented by the trivial

D-matrix

D =

✓
i j

1 0

0 1

◆
. (2.5)

Substituting this solution into the fifth cut condition in eq. (2.2) leads to the condition

hi j k k+1i = 0 . (2.6)

The locus where eq. (2.6) is satisfied lies on a boundary of the positive domain G

+

(4, n),

but as discussed in [4] it is (for generic i, j and k) a boundary of codimension higher

than one (i.e., a boundary of a boundary, or higher). Therefore, by the logic outlined

at the beginning of this section, we conclude that the amplituhedron is telling us that

the discontinuity of one-loop MHV amplitudes around these potential branch points

are zero, i.e. they are spurious singularities. Indeed this conclusion is easily verified,

for example by looking at the explicit results of [33]. Exceptions occur if j = i + 1 or

j = k � 1, in which case the locus eq. (2.6) does lie on the boundary of G
+

(4, n) and

correspond to an actual branch point of the amplitude.

2.2 The Spurious Three-Mass Box Singularity

The second spurious one-loop singularity encountered in [17] is a subleading singularity

of the pentagon which lives on the locus

hj (j�1 j+1)(i i+1)(k k+1)i = 0 (2.7)
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and arises from the cut conditions shown in figure 1b:

0 = hL i i+1i = hL j�1 ji = hL j j+1i = hL k k+1i . (2.8)

These are of three-mass box type and have the two solutions [4]

L = (j i i+1) \ (j k k+1) or L = (j̄ \ (i i+1), j̄ \ (k k+1)). (2.9)

The two solutions may be represented respectively by the D-matrices

D =

✓
i i+1 j

0 0 1

hi+1 j k k+1i �hi j k k+1i 0

◆
(2.10)

and

D =

✓
i i+1 k k+1

hi+1 j̄i �hi j̄i 0 0

0 0 �hj̄ k + 1i hj̄ ki
◆
. (2.11)

Neither matrix is non-negative definite when the Z’s are in the positive domainG

+

(4, n),

so we again reach the (correct) conclusion that one-loop MHV amplitudes do not have

singularities on the locus where eq. (2.7) is satisfied (for generic i, j and k).

2.3 A Two-Loop Example

The two-loop scalar double-pentagon integral considered in [17] has a large number of

Landau singularities that are spurious singularities of two-loop MHV amplitudes. It

would be cumbersome to start with the full list and eliminate the spurious singularities

one at a time using the amplituhedron. Here we will be content to consider one example

in detail before abandoning this approach in favor of one more directly built on the

amplituhedron.

We consider the Landau singularities shown in eq. (4.12) of [17] which live on the

locus

hj (j�1 j+1)(i�1 i) (k l)ihj (j�1 j+1)(i�1 i) k̄ \ l̄i = 0 . (2.12)

We consider the generic case when the indices i, j, k, l are well-separated; certain

degenerate cases do correspond to non-spurious singularities. This singularity is of

pentagon-box type shown in figure 1c since it was found in [17] to arise from the eight

cut conditions

hL(1)

i�1 ii = hL(1)

j�1 ji = hL(1)

j j+1i = hL(1) L(2i = 0 ,

hL(2)

k�1 ki = hL(2)

k k+1i = hL(2)

l�1 li = hL(2)

l l+1i = 0 .
(2.13)
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and arises from the cut conditions shown in figure 1b:
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It	arises	from	the	cut	conditions:

These	are	three-mass	box	type	and	have	solutions

Solutions	can	be	
represented	by	D-matrix.

D	matrices	are	not	positive	
definite	when	Z	are	positive!
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Compare:	Two-Mass	Easy	Box

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G

+

(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)
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Landau equations (1.9) and (1.10) to find potential singularities. Then, for each set of

cut conditions, we can determine whether the associated Landau singularity is physical

or spurious by asking the amplituhedron whether or not the set of loops L(`) satisfying

the cut conditions has any overlap with the amplituhedron.

In this section we propose a more “amplituhedrony” approach that does not rely on

detailed knowledge of integrands. We invert the logic of the previous section: instead

of using Feynman diagrams to generate sets of cut conditions that we need to check one

by one, we can ask the amplituhedron itself to directly identify all potentially “valid”

sets of cut conditions that are possibly relevant to the singularities of an amplitude.

To phrase the problem more abstractly: for a planar n-particle amplitude at L-loop

order, there are in general nL+L(L� 1)/2 possible local cut conditions one can write

down:

hL(`)
i i+1i = 0 for all `, i and hL(`1) L(`2)i = 0 for all `

1

6= `

2

. (3.1)

We simply need to characterize which subsets of these cut conditions can possibly be si-

multaneously satisfied for loop momenta L(`) living in the closure of the amplituhedron.

Each such set of cut conditions is a subset of one or more maximal subsets, and these

maximal subsets are just the maximal codimension boundaries of the amplituhedron.

Fortunately, the maximal codimension boundaries of the MHV amplituhedron are

particularly simple, as explained in [5]. Each loop momentum L(`) must take the form

(i j) for some i and j (that can be di↵erent for di↵erent `), and the condition of mutual

positivity enforces an emergent planarity: if all of the lines L(`) are drawn as chords on

a disk between points on the boundary labeled 1, 2, . . . , n, then positivity forbids any

two lines to cross in the interior of the disk. In what follows we follow a somewhat low-

brow analysis in which we systematically consider relaxations away from the maximum

codimension boundaries, but the procedure can be streamlined by better harnessing

this emergent planarity, which certainly pays o↵ at higher loop order [36].

In the next few subsections we demonstrate this “amplituhedrony” approach ex-

plicitly at one and two loops before summarizing the main idea at the end of the

section.

3.1 One-Loop MHV Amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur

when

L = (i j) , (3.2)

as depicted in figure 2a. On this boundary four cut conditions of “two-mass easy”

type [33] are manifestly satisfied:

hL i�1 ii = hL i i+1i = hL j�1 ji = hL j j+1i = 0 , (3.3)
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where L is the loop momentum. The first four of these cut conditions admit two discrete

solutions [26]: either L = (i j) or L = ī \ j̄. The second of these cannot avoid lying

outside the amplituhedron. We see this by representing its D-matrix as

D =
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hi j̄i �hi�1 j̄i 0

0 hi+1 j̄i �hi j̄i
◆
, (2.3)
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lies discretely outside the amplituhedron.

We proceed with the first solution L = (i j) which can be represented by the trivial
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i j
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0 1

◆
. (2.5)
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The locus where eq. (2.6) is satisfied lies on a boundary of the positive domain G

+

(4, n),

but as discussed in [4] it is (for generic i, j and k) a boundary of codimension higher

than one (i.e., a boundary of a boundary, or higher). Therefore, by the logic outlined
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the discontinuity of one-loop MHV amplitudes around these potential branch points
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j = k � 1, in which case the locus eq. (2.6) does lie on the boundary of G
+

(4, n) and

correspond to an actual branch point of the amplitude.

2.2 The Spurious Three-Mass Box Singularity

The second spurious one-loop singularity encountered in [17] is a subleading singularity

of the pentagon which lives on the locus

hj (j�1 j+1)(i i+1)(k k+1)i = 0 (2.7)

– 9 –

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G

+

(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)
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It	arises	from	the	cut	conditions:

Cut	conditions	have	a	solution:
Positive	D-matrix!!



Example:	two-loop	double-pentagon

(a) (b) (c)

Figure 1: Three examples of cuts on which MHV amplitudes have no support; these

appeared as spurious singularities in the Landau equation analysis of [17] since scalar

pentagon and double pentagon integrals do have these cuts.

Specifically, we propose a check that is motivated by the Cutkosky rules [21], which
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integration of the loop momentum variables. In the present context, that domain is

the space of mutually positive lines, i.e., the interior of the amplituhedron.

In the remainder of this section we will demonstrate this hypothesis by means of

the examples shown in figure 1. The leading Landau singularities of each of these

diagrams were found to be singularities of the scalar pentagon and double-pentagon

integrals analyzed in [17], but it is clear that MHV amplitudes have no support on

these cut configurations. In the next three subsections we will see how to understand

their spuriousness directly from the amplituhedron. This will motivate us to seek a

better, more direct algorithm to be presented in the following section.
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tion used in [17] is the leading Landau singularity of the pentagon shown in figure 1a,

which is located on the locus where

hi j k k+1ih̄i \ j̄ k k+1i = 0 . (2.1)

This Landau singularity arises from cut conditions that put all five propagators of the

pentagon on-shell:

0 = hL i�1 ii = hL i i+1i = hL j�1 ji = hL j j+1i = hL k k+1i , (2.2)
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and arises from the cut conditions shown in figure 1b:

0 = hL i i+1i = hL j�1 ji = hL j j+1i = hL k k+1i . (2.8)

These are of three-mass box type and have the two solutions [4]

L = (j i i+1) \ (j k k+1) or L = (j̄ \ (i i+1), j̄ \ (k k+1)). (2.9)

The two solutions may be represented respectively by the D-matrices

D =

✓
i i+1 j

0 0 1

hi+1 j k k+1i �hi j k k+1i 0

◆
(2.10)

and

D =

✓
i i+1 k k+1

hi+1 j̄i �hi j̄i 0 0

0 0 �hj̄ k + 1i hj̄ ki
◆
. (2.11)

Neither matrix is non-negative definite when the Z’s are in the positive domainG

+

(4, n),

so we again reach the (correct) conclusion that one-loop MHV amplitudes do not have

singularities on the locus where eq. (2.7) is satisfied (for generic i, j and k).

2.3 A Two-Loop Example

The two-loop scalar double-pentagon integral considered in [17] has a large number of

Landau singularities that are spurious singularities of two-loop MHV amplitudes. It

would be cumbersome to start with the full list and eliminate the spurious singularities

one at a time using the amplituhedron. Here we will be content to consider one example

in detail before abandoning this approach in favor of one more directly built on the

amplituhedron.

We consider the Landau singularities shown in eq. (4.12) of [17] which live on the

locus

hj (j�1 j+1)(i�1 i) (k l)ihj (j�1 j+1)(i�1 i) k̄ \ l̄i = 0 . (2.12)

We consider the generic case when the indices i, j, k, l are well-separated; certain

degenerate cases do correspond to non-spurious singularities. This singularity is of

pentagon-box type shown in figure 1c since it was found in [17] to arise from the eight

cut conditions

hL(1)

i�1 ii = hL(1)

j�1 ji = hL(1)

j j+1i = hL(1) L(2i = 0 ,

hL(2)

k�1 ki = hL(2)

k k+1i = hL(2)

l�1 li = hL(2)

l l+1i = 0 .
(2.13)
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It	arises	from	the	cut	conditions:

The last four equations have two solutions L(2) = (k l) or L(2) = k̄ \ l̄, but as in the

previous subsection, only the first of these has a chance to avoid being outside the

amplituhedron. Taking L(2) = (k l), the two solutions to the first four cut conditions

are then

L(1) = (j i�1 i) \ (j k l) = (Zj, Zi�1

hi j k li � Zihi�1 j k li) or (2.14)

L(1) =
⇣
(i�1 i) \ j̄, (k l) \ j̄

⌘
=

⇣
Zi�1

hi j̄i � Zihi�1 j̄i, Zkhlj̄i � Zlhk j̄i
⌘
. (2.15)

The D-matrices corresponding to the first solution can be taken as

✓
D

(1)

D

(2)

◆
=

0

BBB@

i�1 i j k l

0 0 1 0 0

hi j k li �hi�1 j k li 0 0 0

0 0 0 1 0

0 0 0 0 1

1

CCCA
. (2.16)

Evidently two of its 4⇥4 minors are �hi j k li and hi�1 j k li, which have opposite signs

for generic Z in the positive domain. D-matrices corresponding to the second solution

can be written as

✓
D

(1)

D

(2)

◆
=

0

BBB@

i�1 i k l

hi j̄i �hi�1 j̄i 0 0

0 0 hlj̄i �hk j̄i
0 0 1 0

0 0 0 1

1

CCCA
, (2.17)

which again has minors of opposite signs.

We conclude that the locus where the cut conditions (2.13) are satisfied lies strictly

outside the amplituhedron, and therefore that there is no discontinuity around the

putative branch point at (2.12). Indeed, this is manifested by the known fact [34]

that two-loop MHV amplitudes do not have symbol entries which vanish on this locus.

Actually, while correct, we were slightly too hasty in reaching this conclusion, since we

only analyzed one set of cut conditions. Although it doesn’t happen in this example, in

general there may exist several di↵erent collections of cut conditions associated to the

same Landau singularity, and the discontinuity around that singularity would receive

additive contribution from each distinct set of cut contributions.

2.4 Summary

We have shown, via a slight refinement of the analysis carried out in [17], that the

spurious branch points of one- and two-loop MHV amplitudes encountered in that paper
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The	last	line	can	be	solved	by
Taking	the	first	solution,	solve	the	first	line
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Minors	do	not	have	uniform	sign!



Summary	so	far
• First,	consider	a	representation	of	an	amplitude	as	a	
sum	over	particular	integrals.	Find	Landau	singularities	
of	a	generic	term	in	the	sum.	These	tell	us	potential	
singularities.

• Second,	for	each	potential	singularity	check	whether	the	
corresponding	on-shell	conditions	have	a	non-zero	
intersection	with	the	(closure	of)	the	amplituhedron.	If	
the	answer	is	no,	then	the	singularity	must	be	spurious.

• This	approach	is	straightforward	but	inefficient.
• The	most	significant	drawback	of	the	approach	is	that	it	
relies	on	having	an	explicit	representation	of	an	
integrand	in	terms	on	local	Feynman	integrals.

Dennen,	Prlina,	Spradlin,	Stanojevic,	AV	



An	Amplituhedrony Approach

• Instead	of	using	Feynman	diagrams	to	
generate	sets	of	cut	conditions	that	we	need	
to	check	one	by	one,	we	can	ask	
amplituhedron itself	directly	to	identify	all	
potentially	“valid”	sets	of	cut	conditions	that	
are	possibly	relevant	to	the	singularities	of	an	
amplitude.

• For	each	valid	set	of	cut	conditions,	solve	
Landau	equations	and	find	the	corresponding	
singularity.

Dennen,	Prlina,	Spradlin,	Stanojevic,	AV	



Plan
• Review:	Landau	equations	(ELOP)
• Landau	singularities	for	one	and	two-loop	integrals	
in	N=4	Yang-Mills

• Landau	singularities	and	amplitudes:		
physical	and	spurious	singularities

• Refined	analysis	using	Amplituhedron
à Singularities	from	Amplituhedron:
geometric	algorithm

• Conclusions	and	open	questions



One-loop	MHV

• The	maximum	codimension boundaries	for	
the	one-loop	MHV	amplituhedron occur	when

• On	this	boundary	four	cut	conditions	of	the	
two-mass	easy	type	are	satisfied

• A	leading	solution	to	the	Landau	equations	for	
two-mass	easy	box	exists	only	if

Landau equations (1.9) and (1.10) to find potential singularities. Then, for each set of

cut conditions, we can determine whether the associated Landau singularity is physical

or spurious by asking the amplituhedron whether or not the set of loops L(`) satisfying

the cut conditions has any overlap with the amplituhedron.

In this section we propose a more “amplituhedrony” approach that does not rely on

detailed knowledge of integrands. We invert the logic of the previous section: instead

of using Feynman diagrams to generate sets of cut conditions that we need to check one

by one, we can ask the amplituhedron itself to directly identify all potentially “valid”

sets of cut conditions that are possibly relevant to the singularities of an amplitude.

To phrase the problem more abstractly: for a planar n-particle amplitude at L-loop

order, there are in general nL+L(L� 1)/2 possible local cut conditions one can write

down:

hL(`)
i i+1i = 0 for all `, i and hL(`1) L(`2)i = 0 for all `

1

6= `

2

. (3.1)

We simply need to characterize which subsets of these cut conditions can possibly be si-

multaneously satisfied for loop momenta L(`) living in the closure of the amplituhedron.

Each such set of cut conditions is a subset of one or more maximal subsets, and these

maximal subsets are just the maximal codimension boundaries of the amplituhedron.

Fortunately, the maximal codimension boundaries of the MHV amplituhedron are

particularly simple, as explained in [5]. Each loop momentum L(`) must take the form

(i j) for some i and j (that can be di↵erent for di↵erent `), and the condition of mutual

positivity enforces an emergent planarity: if all of the lines L(`) are drawn as chords on

a disk between points on the boundary labeled 1, 2, . . . , n, then positivity forbids any

two lines to cross in the interior of the disk. In what follows we follow a somewhat low-

brow analysis in which we systematically consider relaxations away from the maximum

codimension boundaries, but the procedure can be streamlined by better harnessing

this emergent planarity, which certainly pays o↵ at higher loop order [36].

In the next few subsections we demonstrate this “amplituhedrony” approach ex-

plicitly at one and two loops before summarizing the main idea at the end of the

section.

3.1 One-Loop MHV Amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur

when

L = (i j) , (3.2)

as depicted in figure 2a. On this boundary four cut conditions of “two-mass easy”

type [33] are manifestly satisfied:

hL i�1 ii = hL i i+1i = hL j�1 ji = hL j j+1i = 0 , (3.3)
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(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G

+

(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)
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maximal subsets are just the maximal codimension boundaries of the amplituhedron.

Fortunately, the maximal codimension boundaries of the MHV amplituhedron are

particularly simple, as explained in [5]. Each loop momentum L(`) must take the form

(i j) for some i and j (that can be di↵erent for di↵erent `), and the condition of mutual

positivity enforces an emergent planarity: if all of the lines L(`) are drawn as chords on

a disk between points on the boundary labeled 1, 2, . . . , n, then positivity forbids any

two lines to cross in the interior of the disk. In what follows we follow a somewhat low-

brow analysis in which we systematically consider relaxations away from the maximum

codimension boundaries, but the procedure can be streamlined by better harnessing

this emergent planarity, which certainly pays o↵ at higher loop order [36].

In the next few subsections we demonstrate this “amplituhedrony” approach ex-

plicitly at one and two loops before summarizing the main idea at the end of the

section.

3.1 One-Loop MHV Amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur

when

L = (i j) , (3.2)

as depicted in figure 2a. On this boundary four cut conditions of “two-mass easy”

type [33] are manifestly satisfied:

hL i�1 ii = hL i i+1i = hL j�1 ji = hL j j+1i = 0 , (3.3)
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(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G

+

(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)
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One-loop	MHV	Amplitude
• Subleading Landau	equations	are	obtained	by	
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• These	are	precisely	the	singularities	of	the	one-
loop	MHV	amplitudes	(symbol	alphabet)!
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Two-Loop	MHV	Amplitudes:	
configurations	of	positive	lines

(a) (b)

Figure 3: (a) A maximum codimension boundary of the two-loop MHV amplituhe-

dron. (b) The corresponding Landau diagram (which, it should be noted, does not have

the form of a standard Feynman integral) depicting the nine cut conditions (3.7)–(3.9)

that are satisfied on this boundary.

for various a, b. (Note that whenever we say there is a branch point at x = 0, we mean

more specifically that there is a branch cut between x = 0 and x = 1.) Indeed, these

exhaust the branch points of the one-loop MHV amplitudes (first computed in [33])

except for branch points arising as a consequence of infrared regularization, which are

captured by the BDS ansatz [37].

3.2 Two-Loop MHV Amplitudes: Configurations of Positive Lines

We divide the two-loop analysis into two steps. First, in this subsection, we classify

valid configurations of mutually non-negative lines. This provides a list of the sets of

cut conditions on which two-loop MHV amplitudes have nonvanishing support. Then

in the following subsection we solve the Landau equations for each set of cut conditions,

to find the actual location of the corresponding branch point.

At two loops the MHV amplituhedron has two distinct kinds of maximum codimen-

sion boundaries [5]. The first type has L(1) = (i j) and L(2) = (k l) for distinct cyclically

ordered i, j, k, l. Since hL(1) L(2)i is non-vanishing (inside the positive domainG

+

(4, n))

in this case, this boundary can be thought of as corresponding to a cut of a product

of one-loop Feynman integrals, with no common propagator hL(1) L(2)i. Therefore we

will not learn anything about two-loop singularities beyond what is already apparent

at one loop.

The more interesting type of maximum codimension boundary has L(1) = (i j)

and L(2) = (i k), as depicted in figure 3a. Without loss of generality i < j < k,

and for now we will moreover assume that i, j and k are well-separated to avoid

any potential degenerations. (These can be relaxed at the end of the analysis, in
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particular to see that the degenerate case j = k gives nothing interesting.) On this

boundary the following nine cut conditions shown in the Landau diagram of figure 3b

are simultaneously satisfied:

hL(1)

i�1 ii = hL(1)

i i+1i = hL(2)

i�1 ii = hL(2)

i i+1i = 0 , (3.7)

hL(1)

j�1 ji = hL(1)

j j+1i = hL(2)

k�1 ki = hL(2)

k k+1i = 0 , (3.8)

hL(1) L(2)i = 0 . (3.9)

This is the maximal set of cuts that can be simultaneously satisfied while keeping the

L(`)’s inside the closure of the amplituhedron for generic Z 2 G

+

(4, n). We immediately

note that since only three free indices i, j, k are involved, this set of cuts manifestly

has size O(n3), representing immediate savings compared to the larger O(n4) set of

double-pentagon cut conditions as discussed at the end of the previous section.

We can generate other, smaller sets of cut conditions by relaxing some of the nine

shown in eqs. (3.7)–(3.9). This corresponds to looking at subleading singularities, in the

language of the Landau equations. However, it is not interesting to consider relaxations

that lead to hL(1) L(2)i 6= 0 because, as mentioned above, it essentially factorizes the

problem into a product of one-loop cuts. Therefore in what follows we only consider

cuts on which hL(1) L(2)i = 0.

By relaxing various subsets of the other 8 conditions we can generate 28 subsets

of cut conditions. In principle each subset should be analyzed separately, but there

is clearly a natural stratification of relaxations which we can exploit to approach the

problem systematically. In fact, we will see that the four cut conditions in eq. (3.7)

that involve the point i play a special role. Specifically, we will see that the four cut

conditions in eq. (3.8) involving j and k can always be relaxed, or un-relaxed, “for free”,

with no impact on positivity. Therefore, we see that whether a configuration of loops

may be positive or not depends only on which subset of the four cut conditions (3.7)

is relaxed.

In this subsection we will classify the subsets of eq. (3.7) that lead to valid config-

urations of positive lines L(`), and in the next subsection we will find the locations of

the corresponding Landau singularities.

Relaxing none of eq. (3.7) [figure 3a]. At maximum codimension we begin with

the obviously valid pair of mutually non-negative lines represented trivially by
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(1)

D

(2)

◆
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i j k

1 0 0

0 1 0

1 0 0

0 0 1

1

CCCA
. (3.10)
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Maximum	
codimension
boundary

On	this	boundary	the	following	nine	cut	conditions	
are	satisfied



Two-Loop	MHV	Amplitudes:
two	valid	double	relaxations

(a)

hL(2) i i+1i, hL(1) i i+1i 6= 0

(b)

hL(2) i�1 ii, hL(2) i i+1i 6= 0

Figure 5: Two valid double relaxations of figure 3. The other two possibilities are

obtained by taking i ! i+1 in (a) or L(2) ! L(1) and j $ k in (b).

Relaxing hL(1)

i�1 ii = 0 and hL(2)

i i+1i = 0 [figure 4b]. In this case the six

remaining cut conditions in eqs. (3.7) and (3.8) admit the two-parameter family of

solutions

L(1) = (↵Zi + (1� ↵)Zi+1

, Zj), L(2) = (�Zi + (1� �)Zi�1

, Zk) . (3.14)

The corresponding D-matrices
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1

CCCA
(3.15)

are mutually non-negative if 0  ↵, �  1. Imposing that the two loops intersect gives

the constraint

hL(1)L(2)i = ↵(1� �)hi�1 i j ki+(1�↵)�hi i+1 j ki+(1�↵)(1� �)hi�1 i+1 j ki = 0 ,

(3.16)

which is not satisfied for general positive kinematics unless ↵ = � = 1, which again

brings us back to the maximum codimension boundary.

Relaxing the two conditions hL(1)

i i+1i = hL(2)

i i�1i = 0, depicted in figure 4c, is

easily seen to lead to the same conclusion.

Relaxing hL(1)

i i+1i = 0 and hL(2)

i i+1i = 0 [figure 5a]. In this case there is a

one-parameter family of solutions satisfying all seven remaining cut conditions including
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hL(1) L(2)i = 0:

L(1) = (↵Zi + (1� ↵)Zi+1

, Zj), L(2) = (↵Zi + (1� ↵)Zi+1

, Zk) . (3.17)

The D-matrices can be represented as

✓
D

(1)

D

(2)

◆
=

0

BBB@

i i+1 j k

↵ 1� ↵ 0 0

0 0 1 0

↵ 1� ↵ 0 0

0 0 0 1

1

CCCA
, (3.18)

which is a valid mutually non-negative configuration for 0  ↵  1. We conclude that

these configurations represent physical branch points of two-loop MHV amplitudes by

appealing to Cutkoskian intuition, according to which we would compute the discon-

tinuity of the amplitude around this branch point by integrating over 0  ↵  1 (in

figure 5a this corresponds to integrating the intersection point of the two L’s over the
line segment between Zi�1

and Zi).

Relaxing the two conditions hL(1)

i i�1i = hL(2)

i i�1i = 0 is clearly equivalent up

to relabeling.

Relaxing hL(2)

i�1 ii = 0 and hL(2)

i i+1i = 0 [figure 5b]. The seven remaining

cut conditions admit a one-parameter family of solutions

L(1) = (i j), L(2) = (↵Zi + (1� ↵)Zj, Zk) , (3.19)

which can be represented by
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This is a valid configuration of mutually non-negative lines for 0  ↵  1 so we expect

it to correspond to a physical branch point. Clearly the same conclusion holds if we

were to completely relax L(1) at i instead of L(2).

Higher relaxations of eq. (3.7). So far we have considered the relaxation of any one

or any two of the conditions shown in eq. (3.7). We have found that single relaxations

do not yield branch points of the amplitude, and that four of the six double relaxations

are valid while the two double relaxations shown in figures 4b and 4c are invalid.
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Two-Loop	MHV	Amplitudes:
Landau	diagrams	for	each	valid	relaxation

(a) (b)

Figure 6: The Landau diagrams showing the seven cut conditions satisfied by figures 5a

and 5b, respectively.

These can be solved in two ways; either by

hi�1 i j ki = 0 (3.24)

or by solving the first condition for A = j̄\(i�1 i) and substituting this into the second

condition to find

hi�1 i j̄ \ k̄i = 0 . (3.25)

The astute reader may recall that in (2.6) we discarded a singularity of the same

type as in eq. (3.24). This example highlights that it is crucial to appreciate the

essential asymmetry between the roles of the two types of Landau equations. The on-

shell conditions (1.9) by themselves only provide information about discontinuities. We

discarded eq. (2.6) because the solution has support on a set of measure zero inside the

closure of the amplituhedron, signalling that there is no discontinuity around the branch

cut associated to the cut conditions shown in eq. (2.1). Therefore we never needed to

inquire as to the actual location where the corresponding branch point might have

been. To learn about the location of a branch point we have to solve also the second

type of Landau equations (1.10). Indeed (3.24) does correspond to a branch point that

lies outside the positive domain, but we don’t discard it because the discontinuity of

the amplitude around this branch point is nonzero. As mentioned above, according to

the Cutkosky rules it would be computed by an integral over the line segment between

Zi�1

and Zi in figure 5a. When branch points lie outside G

+

(4, n), as in this case,

it signals a discontinuity that does not exist on the physical sheet but on some other

sheet; see the comments near the end of section 1.

Additional (subk-leading, for various k) Landau singularities are exposed by setting

various sets of ↵’s to zero in the Landau equations, which essentially amounts to further

relaxing some of the cut conditions. Although these precise configurations were not
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analysis. While this quantity certainly vanishes on the maximum codimension bound-

ary, we could say that it is accidentally satisfied, but not imposed. We can note, for

example, that there certainly is no Feynman diagram of the form of figure 3b. Ignoring

this ninth propagator would reduce the Landau analysis to that of a product of two

completely decoupled two-mass-easy boxes, of the type shown in figure 2, leading to

the conclusion that there are branch points on the locus where

hi j̄ih̄i ji = 0 and hi k̄ih̄i ki = 0 . (3.29)

These at least have the correct form to be valid maximal branch points of MHV am-

plitudes. Moreover, it is clear that this approach would lead to loci of the form ha b̄i
at any loop order, and would thereby provide an amplituhedrony explanation of the

MHV final symbol entry property shown in [34].

It would certainly be desirable to find a more satisfactory understanding of the

correct procedure for computing the leading Landau singularity associated to the max-

imal codimension boundary, other than choosing a prescription that happens to give

the correct known answer. We do not exclude the possibility that the Landau equa-

tions themselves require some subtle reformulation directly in momentum twistor space;

some further related comments are made in the following section.

Conclusion. In conclusion, our analysis has revealed that two-loop MHV amplitudes

have physical branch points on the loci of the form

ha b̄i = 0 ,

ha b c c+1i = 0 ,

ha a+1 b̄ \ c̄i = 0 ,

ha (a�1 a+1)(b b+1)(c c+1)i = 0 ,

(3.30)

for arbitrary indices a, b, c. Again let us note that when we say there is a branch point

at x = 0, we mean a branch cut between x = 0 and x = 1. Indeed, this result is in

precise accord with the known symbol alphabet of two-loop MHV amplitudes in SYM

theory [34].

4 Discussion

In this paper we have improved greatly on the analysis of [17] by asking the ampli-

tuhedron directly to tell us which branch points of an amplitude are physical. This

analysis requires no detailed knowledge about how to write formulas for integrands

by constructing the canonical “volume” form on the amplituhedron. We only used
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Solving	Landau	equations	give	singularities

These	are	precisely	the	singularities	of	
the	two-loop	MHV	amplitudes	(symbol	alphabet)!



Summary:	geometric	algorithm
• Input:	list	of	the	maximal	codimension boundaries	
of	the	amplituhedron.	These	are	known	for	MHV.

• Step	1:	Identify	the	list	of	all	cut	conditions	
satisfied	on	the	given	boundary,	and	consider	all	
lower	codimension boundaries	by	relaxing	various	
subsets.	Eliminate	those	which	do	not	overlap	
with	the	closure	of	the	amplituhedron.

• Step	2:	For	each	valid	set	of	cut	conditions,	solve	
the	corresponding	Landau	equations	to	determine	
the	location	of	singularities.

• Output:	A	list	of	the	loci	in	external	kinematics	
space	where	the	given	amplitude	has	branch	
points.

Dennen,	Prlina,	Spradlin,	Stanojevic,	AV	



Conclusion	

• We	proposed	a	geometric	algorithm	to	determine	
singularities	of	amplitudes	in	N=4	SYM	from	the	
amplituhedron.

• We	applied	the	algorithm	to	the	one- and	two-loop	
MHV	amplitudes.

• This	is	a	step	towards	translating	integrands	directly	
to	amplitudes.

• Many	questions	remain:
--generalizations	to	other	cases
--relation	between	cluster	structure	and	Landau	singularities




