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1. Dedication

The work described here is not so close to my work in Roger’s research group where I
started as a D. Phil student in the early 1980s, though much of what I learned at that time—
and much more that I assimilated by osmosis—has inspired me, at a deeper level, throughout
my mathematical career. I count it an enormous privilege to have been Roger’s student, to
have worked with him, and to have benefitted from the many ideas revealed in a decade of
Friday meetings at Oxford.

I am also very pleased to have learned about geometric quantization in my early years
at Oxford from Nick Woodhouse, his book, and his papers. Discussions of positive/negative
frequency decompositions seem to me to have been quite frequent in Roger’s group at that
time and I am glad to have been educated about the physical importance and geometric
context of these ideas at an early stage.

The work described here sets positive/negative fequency decompositions in a geometric
context very close to the nonlinear graviton construction.

Roger and Nick: my warmest wishes for the future!

2. Disclaimer

This exegesis is based on the preprint https://arxiv.org/abs/1603.08170 by Joel Fine, Jason
Lotay and myself. Any errors, sloppiness, or failures of referencing here are mine and mine
alone. The reader is referred to the above for full details, references and greater precision.

3. HyperKähler metrics and HyperKähler triples

We are concerned with the ‘euclidean signature’ version of Roger Penrose’s famous nonlinear
graviton construction: hyperKähler metrics in dimension 4.

These have many equivalent definitions. For example (M, g) is hyperKähler if its holonomy
is (contained in) SU(2); equivalently if it is Kähler in 3 (and hence infinitely many) ways,
by which we mean that there are complex structures (J1, J2, J3) satisfying the quaternionic
relations

J2
1 = J2

2 = J2
3 = J1J2J3 = −1 (3.1)

and which are g-parallel (hence integrable). Equivalently again, we may work with the 2-
forms ωi(·, ·) = g(Ji·, ·). These are then parallel (hence closed, hence symplectic forms). The
counterpart of (3.1) for the ωi is:

ωi ∧ ωj = 2µδij . (3.2)
1
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Note that

µ =
1

6
(ω2

1 + ω2
2 + ω2

3) (3.3)

and (because the ωi are non-degenerate)

µ > 0. (3.4)

It follows that the connection induced on Λ+, the bundle of self-dual 2-forms is flat, for the
ωi give a flat basis of sections of this bundle. Hence

Ric = 0,W+ = 0 or ΦA′B′CD = 0,Λ = 0,ΨABCD = 0. (3.5)

to use the notation that I learned from Roger thirty or more years ago. These vanishing
curvature conditions are the ones appearing in the nonlinear graviton paper. If they are
satisfied, then locally at least, Λ+ has a trivialization by a flat orthonormal basis, and this
basis defines a hyperKähler triple of 2-forms.

For an analytical study of hK metrics, it is good to work with the forms rather than the
metric. Here is why this works:

3.1. Proposition. On an oriented 4-manifold, suppose given a triple of 2-forms ωi which
satisfy (3.2) (from which (3.3) follows) with µ > 0 at every point. Then there is a unique
metric g with volume form µ, and such that the ωi span the subspace of g-self-dual 2-forms
at each point. Moreover, if dωi = 0, then the ωi are parallel and g is hyperKähler.

Proof. It is well known that a positive, rank-3 subbundle of P ⊂ Λ2M defines a conformal
structure [g] in such a way that P is the bundle of self-dual 2-forms with respect to [g]. (The
notion of self-duality is conformally invariant.) We define P to be the span of the ωi, and
choose the conformal factor so that µ is the volume form of the metric. The positivity of µ
means that the ωi are independent at every point, so P is of rank 3.

Now a folklore theorem says that the connection on P , induced by the metric connection,
is determined completely by dωi. In particular, if dωi = 0, then this connection is flat, the ωi
are parallel and g is hyperKähler. �

4. HyperKähler thickenings and fillings

Suppose Σ3 ⊂ M4 and M4 has a hyperKähler triple (ω1, ω2, ω3). Let ν be the normal of
Σ, and let ηi = ινωi be the induced framing of T ∗Σ.

From the properties of ω, there is an induced metric on Σ

h =
∑

ηi ⊗ ηi (4.1)

and we have
d(∗ηη) = 0 (4.2)

(It is a co-closed co-framing!)

4.1. Remark. The same information is contained in the pull-backs to Σ of the ωi. This gives
a framing of Λ2T ∗Σ by closed 2-forms.

4.2. Question. Given a co-closed coframing (η1, η2, η3) of a 3-manifold Σ, when does it arise
from a hyperKähler triple (ω1, ω2, ω3)?

4.3. Question. Let M4 be compact, smooth (and oriented) with boundary N3. Let η be a
co-closed coframing of T ∗N . When does there exist a hyperKähler filling ω of η on M?
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4.4. Easier Question. Let (M,ω) be hK with induced co-closed coframing η of N . Which
nearby co-closed co-framings η̂ of η admit nearby hK fillings ω̂ on M?

4.5. Discussion. We shall see that an appropriate analogy to keep in mind is the two-
dimensional system of Cauchy–Riemann equations:

fx + ify = 0, (4.3)

where f is a complex-valued function of (x, y). For definiteness, suppose given a smooth,
complex-valued function φ(θ) on the unit circle. Then the Fourier expansion of φ may be
written

φ(z) =

∞∑
n=−∞

φnz
n, (4.4)

where |z| = 1. The function φ is real-analytic in θ if and only if the φn are rapidly decreasing,
and this is necessary and sufficient for (4.4) to converge in some thin annular neighbourhood
of |z| = 1. This convergent Laurent series gives a holomorphic function f defined near |z| = 1
and equal to φ on this circle.

For the filling problem, we need φn = 0 for all n < 0 which is a positive-frequency condition.
This is necessary and sufficient for the RHS of (4.4) to define a holomorphic function f in
|z| < 1 whose restriction to the boundary is φ.

We claim that the thickening and filling problems for hyperKähler metrics (or rather, for
triples) work in broadly the same way.

4.6. Examples. SU(2)-invariant metrics on completions of (a, b)×S3 can be readily classified
using these ideas. Here S3 is identified with SU(2) and we are interested in cohomogeneity-1
hyperKähler structures. I won’t write all the details, but note that there are two kinds of
invariant framings of S3: the ones which are rotated by the action and the ones that are not.

It is noteworthy that the (double cover of the) Eguchi–Hansen metric1

gEH = (1− c4/r4)−1dr2 + r2(1− c4/r4)e21 + r2(e22 + e23), (r > c) (4.5)

and the Taub–NUT metric

gTN =
1

4

r +m

r −m
dr2 + 4m2 r −m

r +m
e21 + (r2 −m2)(e22 + e23) (4.6)

give rise to framings of orbits which are different (because one is fixed, the other moved by)
the SU(2) action, even though the metrics (for suitable choices of r, c and m) can be made
to agree on a given hypersurface.

Also, the (double-cover of the) EH framing on S3 cannot be filled, as it would locally have
to be isometric to the double-cover of EH, which is singular at the bolt.

4.7. The thickening theorem. [LeBrun, Bryant, E. Cartan]
Let the data (Σ, η) be real-analytic. Then there exists M4 containing Σ as a real-analytic

hypersurface and a hK triple ω on M such that η = ινω. Such hK ‘thickenings’ are unique
in the sense that if (ι′,M ′) is another, then there is an isometry φ : M →M ′ (possibly after
shrinking M and M ′, such that φ ◦ ι = ι′. (And φ is the identity on ι(Σ).)

1The ei are a left-invariant orthonormal basis of 1-forms on S3
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4.8. Remark. In this way, the ‘effective local degrees of freedom’ in hK metrics are two
(real-analytic) function of 3 variables. This is calculated as follows: Each η is a 1-form on a 3
manifold, hence 3 functions of 3 variables. Coclosure cuts down to 2 functions of 3 variables.
There are thus 6 functions of 3 of variables. But one has to factor out by motions of Σ, 4
functions of 3 variables, leaving with just 2 functions of 3 variables.

5. HyperKähler Filling

For simplicity, suppose that M is topologically trivial so N is diffeomorphic to S32. Then
we may write ω̂ = ω + da, where a is a triple of 1-forms.

The perturbative problem to be solved is

Q(ω + da) = 0. (5.1)

The linearization of this is a first-order operator

D : Ω1 ⊗ R3 −→ C∞(S2
0R3), aA′APQ 7−→ ∇A

′

(Aa|A′|BPQ) (5.2)

where a is symmetric in PQ3.
This is part of a complex, because we haven’t taken into account the gauge freedom, of

which there are two types. The easier one to deal with is the freedom to add df to a, where f
is a triple of functions. On the other hand, there is the more geometric gauge freedom to act
by diffeomorphisms equal to the identity on the boundary. These act on ω by lie derivative
= d(ιvω) by Cartan’s formula. So the combined action on the a’s is:

a 7→ a+ df + ιvω (5.3)

where v is a tangent vector vanishing at N and f is a triple of functions. Morally, at least,
these additional 7 degrees of freedom make

C∞(M,TM)⊕ C∞(M,R3)→ Ω1 ⊗ R3 −→ C∞(S2
0R3) (5.4)

into an elliptic-looking complex, except for the fact that the action by v is of order 0.
Treat the above as motivation, though it is at the technical heart of our work...by pursuing

this line, we are able to prove that the moduli space of hK structures on M is a smooth
infinite-dimensional manifold. For clarity, our moduli space is the quotient

M = H /G0 (5.5)

where

H = {(ωi) : dωi = 0, ωi ∧ ωj = 2µδij , µ > 0}. (5.6)

and G0 is the group of diffeomorphisms which restrict to be the identity on N .

6. What does the tangent space look like?

We shall give a partial answer to the Question 4.4 by describing the tangent space T[ω]M
of the moduli space, at a typical triple ω, and then explaining how to parameterize this by
boundary data.

The linearization of the equations is the operator D mentioned above:

a 7−→ S2
0(dai, ωj). (6.1)

2These assumptions are removed in our preprint
3The symmetric PQ corresponds to having a triple of 1-forms
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It turns out that gauges can be fixed by imposing

d∗a = 0, L∗da = 0, ινa = 0. (6.2)

Here L is the operator v 7→ Lvω = d(ιvω). We have

L∗da = 0⇔ Jid
∗dai = 0 (summed). (6.3)

In our paper, we show (modulo some care with function spaces), that

T[ω]M = {da : Da = 0, a satisfies (6.2)} (6.4)

One way to satisfy the equations is to have d+ai = 0, for then all inner products in (6.1) are
completely zero. To satisfy this condition, we insist that a lie in the kernel of the D = d∗+d+

D : Ω1(M) −→ Ω0(M)⊕ Ω2
+(M) (6.5)

We note that Da = 0 implies automatically that L∗da = 0. For da is ASD and closed,
hence also coclosed. Let

ker0(D) = {a ∈ ker(D) : ινa = 0}. (6.6)

Then d maps ker0(D) bijectively on to the space of exact ASD 2-forms and hence into T[ω]M .

The other part of T[ω]M comes from the infinitesimal harmonic ‘wibbles’4. Wibbles are
the following variations. Suppose that ω is the restriction of M from some larger manifold
M ′. Then for any map Φ : M → M ′, a diffeomorphism onto its image, Φ∗(ω) will be a
hyperKaehler triple on M . For an infinitesimal diffeomorphism, generated by a vector field
v, not necessarily 0 on N , this gives the deformation a = ιvω and da = d(ιvω) = Lωv. Then
we need L∗Lv = 0 to satisfy the gauge-fixing condition. Note that

L∗Lv = 0, v|N = 0 =⇒ Lv = 0 (6.7)

by integration by parts, so that the true gauge group contributes nothing here. There are
however plenty of infinitesimal harmonic wibbles.

6.1. Theorem. (With appropriate care of the function spaces) With the above definitions,

T[ω]M = d ker0D + LW (6.8)

where
W = {v ∈ C∞(M,TM) : L∗Lv = 0}. (6.9)

6.2. Remark. The sum here is very definitely not direct!

7. Boundary values and a better description of the tangent space

The nicest statements occur when the mean curvature of N (with respect to the metric
background) is everywhere positive. (The sign is such that this condition holds if M is a ball
in R4 with the flat metric!)

Let DN be the Hodge-de Rham operator on N . Let

Gλ = ker(DN − λ) ∩ ker d∗.

Then one can show that Gλ 6= 0 only for a discrete set of λ, dimGλ <∞, and that the set of
λ with Gλ 6= 0 is unbounded in both directions5.

4This terminology is not used in our preprint
5Working with Gλ rather than Hλ is the difference between ker(D) and ker0(D). d∗a = 0 ⇒ d∗N (a|N) = 0

if ινa = 0.
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The topological assumption implies G0 = 0. Define

G− =
⊕
λ<0

Gλ, H+ =
⊕
λ>0

Hλ (7.1)

Let W+ be the subspace of W with boundary-values in H+. Then we have:

7.1. Theorem. If the hyperkaehler structure ω gives the boundary positive mean curvature,
then

T[ω]M ' G− ⊗ R3 ⊕ LW+. (7.2)

(and L is injective on W+).

7.2. Remark. The point here is that the boundary-value of any element of ker0(D) will lie
in G−⊕G+, but the part in G− will completely determine the part in G+ and is, itself, freely
specifiable. In other words, the map

ker0(D)→ Ω0(N)⊕ Ω1(N)→ G− (7.3)

is an isomorphism. Precisely which pairs (u−, u+) arise as boundary-values of elements of
ker0(D) is of course a difficult question, analogous to knowing the Dirichlet-to-Neumann map
for the Laplacian. In any case, we can count degrees of freedom:

Negative-frequency coclosed 1-forms on N should be counted as 2 negative-frequency func-
tions of 3 variables. We have a triple, giving 6 negative-frequency functions. W + is 4 positive-
frequency functions of 3 variables. To recover Cartan’s count, we should subtract the freedom
to ‘wibble’, i.e. to move the boundary within the 4-manifold. This is 4 full-frequency functions
of 3 variables. Overall we are left with 2 negative-frequency functions of 3 variables.

Thus the space of fillable deformations of a given (fillable) framing is parameterized by 2
negative-frequency functions of 3 variables, which fits well with Cartan’s local count mentioned
in Remark 4.8.
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