
Null–Kähler geometry and Twistor
Theory

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

MD. Null Kähler geometry and isomonodromic deformations.
arXiv: 2010.11216.

Tom Bridgeland, MD. Work in progress.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 1 / 15



General Relativity and Gravitation, Vol. 7, No. 1 (1976), pp. 31-52 

Nonlinear Gravitons and Curved Twistor Theory 

ROGER PENROSE 

Mathematical Institute, Oxford, England 

w Introduction 

The question of how best to quantize gravity has been the subject of many 
discussions and arguments over the years. And Peter Bergmann has repeatedly 
and tirelessly reminded us that gravitational quanta should not  be described in 
terms merely of linearized gravitation theory. I feel I have been rather slow at 
coming around to accepting this fully myself. It is, indeed, seductive to attempt 
to invoke the quantum-mechanical principle of linear superposition as an excuse 
for putting off, to a second stage of consideration, the complicated nonlinear 
nature of the gravitational self-interaction-and for putting off, perhaps indefi- 
nitely, the daunting encounter between quantum mechanics and the principles of 
curved-space geometry! If Peter Bergmann has taught us one thing above most 
others, it is surely that if we remove the life from Einstein's beautiful theory by 
steam-rollering it first to flatness and linearity, then we shall learn nothing from 
attempting to wave the magic wand of quantum theory over the resulting corpse. 

Let me put things somewhat differently. Consider the common attitude 
according to which "gravitons" are described by linearized Einstein theory 
(spin-2 massless Poincar6 covariant fields), a perturbative viewpoint being 
adopted starting from flat Minkowski space. If one such "graviton" is added to 
the vacuum (Minkowski) state the space remains flat. The null cones do not 
shift. If a second such "graviton" is added, and a third and a fourth, the space 
still remains flat, with null cones still locked in their original Minkowskian posi- 
tions. With such a perturbative viewpoint it is only after an infinite number of 
"gravitons" have been added that the space can become curved. The situation 
may be compared with a power-series expansion. For example, with any finite 
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Nonlinear graviton

Holomorphic oriented Riemannian four-manifold (XC, g).

An α–surface is a 2D surface ξ ⊂ XC s. t. ∀p ∈ XC, Tpξ is a totally
null plane with self–dual bi-vector.

Nonlinear Graviton Theorem (Penrose 1976). There exists a three
parameter family Y (a twistor space) of α surfaces iff Weyl+ = 0.

Point p ∈ XC ←→ Curve Lp = CP1 ⊂ Y
α-surface ←→ Point.

p1, p2 null separated ←→ L1, L2 intersect at one point

C
X                                    Y    

More structures on Y if g Einstein. Reality conditions (4, 0) or (2, 2).
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Twistor spaces

Penrose/Sparling: Y as a deformation of CP3 − CP1.

L

                                  U                              

U

Kodaira theorems: Normal bundle N(Lp) ≡ T (Yc)|Lp/TLp

H1(Lp, N(Lp)) = 0, H0(Lp, N(Lp)) ∼= TpXC.

Hitchin/Kronheimer: Y as a hypersurface in the total space of
O(m1)⊕O(m2)⊕O(m3)→ CP1.

Hard part: find the twistor lines.
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Heavenly equations

µ : Y → CP1. Parametrise Lp by its intersection with C2 = µ−1(0) (
coordinates (x1, x2)), and a direction (coordinates (y1, y2)).

(x1, x2)

(y1, y2)

Y

CP
1

O(2)–valued symplectic form on fibres of µ: ∃Θ = Θ(x1, x2, y1, y2)

ω1 = x1 + λy1 − λ2Θy2 − λ3Θx2 + . . . ,

ω2 = x2 + λy2 + λ2Θy1 + λ3Θx1 + . . . , where Θx1 = ∂x1Θ.

ASD Ricci–flat (complex hyper–Kähler) metric

g = dy1dx2 − dy2dx1 + Θy1y1(dx1)2 + 2Θy1y2dx
1dx2 + Θy2y2(dx2)2,

where Θx1y2 −Θx2y1 + Θy1y1Θy2y2 − (Θy1y2)2 = 0.
Heavenly equation (Plebański 1975, MD+Lionel Mason 2001).
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Parallel real spinor

Forget ASD, and Ricci flat. What is special about (2, 2) metrics of
the form

g = dy1dx2−dy2dx1+Θy1y1(dx1)2+2Θy1y2dx
1dx2+Θy2y2(dx2)2 (?).

Theorem A (MD 2002) Let (X , g) be a (2, 2) signature Riemannian
metric which admits a parallel section of S+, where TX ∼= S+ ⊗ S−.
Then

1 Locally there exist coordinates (xi, yi), and a function Θ such that g is
of the form (?) , and conversely (?) admits a parallel spinor for any Θ.

2 If g is additionally ASD, then Θ satisfies a 4th order integrable PDE

f = Θx1y2 −Θx2y1 + Θy1y1Θy2y2 − (Θy1y2)
2

∆gf := fx1y2 − fx2y1 + Θy2y2fy1y1 + Θy1y1fy2y2 − 2Θy1y2fy1y2 = 0

3 In this case Y admits a preferred section of κ−1/4 ( where κ is a
holomorphic canonical bundle of Y), preserved by an anti-holomorphic
involution fixing a real equator of each rational curve.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 6 / 15



Parallel real spinor

Forget ASD, and Ricci flat. What is special about (2, 2) metrics of
the form

g = dy1dx2−dy2dx1+Θy1y1(dx1)2+2Θy1y2dx
1dx2+Θy2y2(dx2)2 (?).

Theorem A (MD 2002) Let (X , g) be a (2, 2) signature Riemannian
metric which admits a parallel section of S+, where TX ∼= S+ ⊗ S−.
Then

1 Locally there exist coordinates (xi, yi), and a function Θ such that g is
of the form (?) , and conversely (?) admits a parallel spinor for any Θ.

2 If g is additionally ASD, then Θ satisfies a 4th order integrable PDE

f = Θx1y2 −Θx2y1 + Θy1y1Θy2y2 − (Θy1y2)
2

∆gf := fx1y2 − fx2y1 + Θy2y2fy1y1 + Θy1y1fy2y2 − 2Θy1y2fy1y2 = 0

3 In this case Y admits a preferred section of κ−1/4 ( where κ is a
holomorphic canonical bundle of Y), preserved by an anti-holomorphic
involution fixing a real equator of each rational curve.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 6 / 15



Parallel real spinor

Forget ASD, and Ricci flat. What is special about (2, 2) metrics of
the form

g = dy1dx2−dy2dx1+Θy1y1(dx1)2+2Θy1y2dx
1dx2+Θy2y2(dx2)2 (?).

Theorem A (MD 2002) Let (X , g) be a (2, 2) signature Riemannian
metric which admits a parallel section of S+, where TX ∼= S+ ⊗ S−.
Then

1 Locally there exist coordinates (xi, yi), and a function Θ such that g is
of the form (?) , and conversely (?) admits a parallel spinor for any Θ.

2 If g is additionally ASD, then Θ satisfies a 4th order integrable PDE

f = Θx1y2 −Θx2y1 + Θy1y1Θy2y2 − (Θy1y2)
2

∆gf := fx1y2 − fx2y1 + Θy2y2fy1y1 + Θy1y1fy2y2 − 2Θy1y2fy1y2 = 0

3 In this case Y admits a preferred section of κ−1/4 ( where κ is a
holomorphic canonical bundle of Y), preserved by an anti-holomorphic
involution fixing a real equator of each rational curve.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 6 / 15



Parallel real spinor

Forget ASD, and Ricci flat. What is special about (2, 2) metrics of
the form

g = dy1dx2−dy2dx1+Θy1y1(dx1)2+2Θy1y2dx
1dx2+Θy2y2(dx2)2 (?).

Theorem A (MD 2002) Let (X , g) be a (2, 2) signature Riemannian
metric which admits a parallel section of S+, where TX ∼= S+ ⊗ S−.
Then

1 Locally there exist coordinates (xi, yi), and a function Θ such that g is
of the form (?) , and conversely (?) admits a parallel spinor for any Θ.

2 If g is additionally ASD, then Θ satisfies a 4th order integrable PDE

f = Θx1y2 −Θx2y1 + Θy1y1Θy2y2 − (Θy1y2)
2

∆gf := fx1y2 − fx2y1 + Θy2y2fy1y1 + Θy1y1fy2y2 − 2Θy1y2fy1y2 = 0

3 In this case Y admits a preferred section of κ−1/4 ( where κ is a
holomorphic canonical bundle of Y), preserved by an anti-holomorphic
involution fixing a real equator of each rational curve.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 6 / 15



Null–Kähler structures

(X , g) pseudo–Riemannian manifold of dimension 4n. A null–Kähler
(NK) structure is N : TX → TX such that

1 N2 = 0, rank(N) = 2n,
2 g(NX,Y ) + g(X,NY ) = 0,
3 ∇N = 0.

Fundamental 2–form Ω(X,Y ) = g(NX,Y )

Ω∧n := Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
n

6= 0, Ω∧(n+1) = 0.

Motivation
1 Signature of g is (2n, 2n). Pseudo–Riemannian holonomy.
2 Appearance in works of Bridgeland and Bridgeland and Strachan (in

the complexified setting, and under additional curvature assumptions).
3 Take n = 1, and impose anti–self–duality on Weyl. Dispersionless

integrable system, and connections with isomonodromy.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 7 / 15



Null–Kähler structures

(X , g) pseudo–Riemannian manifold of dimension 4n. A null–Kähler
(NK) structure is N : TX → TX such that

1 N2 = 0, rank(N) = 2n,
2 g(NX,Y ) + g(X,NY ) = 0,
3 ∇N = 0.

Fundamental 2–form Ω(X,Y ) = g(NX,Y )

Ω∧n := Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
n

6= 0, Ω∧(n+1) = 0.

Motivation
1 Signature of g is (2n, 2n). Pseudo–Riemannian holonomy.
2 Appearance in works of Bridgeland and Bridgeland and Strachan (in

the complexified setting, and under additional curvature assumptions).
3 Take n = 1, and impose anti–self–duality on Weyl. Dispersionless

integrable system, and connections with isomonodromy.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 7 / 15



Null–Kähler structures

(X , g) pseudo–Riemannian manifold of dimension 4n. A null–Kähler
(NK) structure is N : TX → TX such that

1 N2 = 0, rank(N) = 2n,
2 g(NX,Y ) + g(X,NY ) = 0,
3 ∇N = 0.

Fundamental 2–form Ω(X,Y ) = g(NX,Y )

Ω∧n := Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
n

6= 0, Ω∧(n+1) = 0.

Motivation
1 Signature of g is (2n, 2n). Pseudo–Riemannian holonomy.
2 Appearance in works of Bridgeland and Bridgeland and Strachan (in

the complexified setting, and under additional curvature assumptions).
3 Take n = 1, and impose anti–self–duality on Weyl. Dispersionless

integrable system, and connections with isomonodromy.

Dunajski (DAMTP, Cambridge) Null–Kähler Geometry RP90 July 2021 7 / 15



Interlude. Dual numbers

a+ ε b ∈ D, a, b ∈ R, and ε2 = 0.

(a1 + ε b1)(a2 + ε b2) = a1a2 + ε (a1b2 + b1a2).

In geometry (Eduard Study 1903): a ruled surface in R3 is a curve in
the space of oriented lines: a unit sphere in D3

(u + εv) · (u + εv) = |u|2 + 2ε u · v = 1.

In nonstandard analysis: 1 6= 0.999 · · · .
In algebra

a+ ε b→
(
a b
0 a

)
= a1 + bN, N =

(
0 1
0 0

)
.
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Null Kähler potential

Theorem B (MD 2020) Let (X , g,N) be a 4n–dimensional
null–Kähler manifold. There exist a local coordinate system
(xi, yi), i = 1, . . . , 2n and a function Θ : X → R such that

g =
∑
i,j

ωijdy
i � dxj +

∂2Θ

∂yi∂yj
dxi � dxj ,

N =
∑
i

dxi ⊗ ∂

∂yi
, where ωij =

(
0 In
−In 0

)
.

Conversely (g,N) is null–Kähler for any function Θ = Θ(xi, yi).

Proof

ker(N) ⊂ TX is a totally null integrable distribution.
M = X/ker(N) is a symplectic manifold, with Darboux coordinatex xi.
Frobenius theorem: ker(N) = span( ∂

∂y1 , . . . ,
∂

∂y2n ).
∇N = 0 give integrability conditions for the existence of Θ.
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Curvature

One arbitrary function Θ of 4n variables. Freedom: (4n+ 2)
functions of 2n variables.

Ricci scalar vanishes. Ricci tensor

r = 2
∑
i,j

∂2f

∂yi∂yj
dxi � dxj , where

f ≡
∑
i,j

ωij
∂2Θ

∂yi∂xj
+
∑
i,j,k,l

1

2
ωikωjl

∂2Θ

∂yi∂yj
∂2Θ

∂yk∂yl
.

Ricci flat NK: non–integrable 2nd order PDE on Θ:
Cauchy–Kowalewskaya: 2 functions of 4n− 1 variables. Example

Θ =
c

ρ2n−1
where ρ =

∑
i,j

ωijy
ixj , c = const.
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Bridgeland–Strachan arXiv:2006.13059

Complexified hyper–Kähler (XC, I, J,K). XC = TMC, where (MC, ω)
complex symplectic mfd of dimension 2n.

Null structure N = I + iJ , XC = TMC,Ω = π∗(ω). Equations on Θ

[li, lj ] = 0, li ≡
∂

∂yi
+λ
( ∂

∂xi
+
∑
j,k

ωjk
∂2Θ

∂yi∂yj
∂

∂yk

)
, i = 1, . . . , 2n.

Additional conditions (aka ‘A strong Joyce’ structure)

1 Θ is odd in the variables yi.
2 Z ≡

∑
i x

i ∂
∂xi is a homothetic Killing vector field such that

LZg = g, LZΘ = −Θ.

3 The metric is invariant under the lattice transformations

yi → yi + 2π
√
−1, i = 1, . . . , 2n.

Tom Bridgeland+MD (in progress). Lots of hyper-Lagrangian
examples: XC is foliated by 2n dimensional manifolds which are
Lagrangian w.r.t. I, J,K.
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Four Dimensions

∗ : Λ2 → Λ2. Chose an orientation s.t. ∗Ω = Ω.

Three ‘remarkable’ isomorphisms

1 Λ2(T ∗X ) = Λ2
+(T ∗X )⊕ Λ2

−(T ∗X ).
2 TX ∼= S+ ⊗ S−
3 Λ2

+
∼= Sym2(S+∗)

Null–Kähler ⇐⇒ ∃ parallel section of S+.

Theorem C (Bridgeland + MD 2021) If XC is complex HK, and
foliaded by hyper-Lagrangian surfaces, then

1 Θ is at most quadratic in one of x1 or x2, and the heavenly equation
linearise.

2 XC admits a two–paramter family of β–surfaces.
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Cohomogeneity one

X = R× SL(2,R), or XC = C× SL(2,C), and SL(2) acts
isometrically and preserves N .

Left–invariant one–forms σ1, σ2, σ3 on SL(2)

dσ1 = 2σ3 ∧ σ2, dσ2 = σ2 ∧ σ1, dσ3 = σ1 ∧ σ3

and g =
∑3

α,β=1 γαβ(t)σα � σβ + 2
∑3

α=1 nα(t)σα � dt.
Theorem D (MD 2020) SL(2)–invariant ASD, NK structure:

1 Either g conformal to Ricci–flat (all known explicitly: MD+Tod 2017).
2 Or γ(t), n(t) given by solutions to Painlevé I, II, or completely solvable.

Example

g = σ1 �
(12y2 + 2t

z
σ1 + 8σ2 − 6σ3

)
+ σ3 � (zσ3 + 2zdt),

Ω = 2σ3 ∧ σ1.

ASD Null–Kähler iff ẏ = z, ż = 6y2 + t (Painlevé I).
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Isomonodromy and twistor theory

SL(2) action on the twistor space: vector bundle homomorphism

φ : sl(2,C)× Y → TY.

(Buliding on Hitchin 1995, and Mason & Woodhouse 1993).

Ω ↔ two–parameter family of α–surfaces in XC ↔ hypersurface
N ⊂ Y. The divisor N meets each twistor line to order 4.

N preserved by the SL(2) action, so ∃τ ∈ sl(2) s. t. φ(τ) = 0.

The element τ is nilpotent for PI, and semisimple for PII.

The inverse of φ is the SL(2,C) connection with a pole of order 4 on
the divisor, underlying the isomonodromy problem for Painlevé I, II.
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Happy birthday Roger!
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