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Introduction

This is a report on work in progress, studying the structure of the complex
surface which is the space of leaves of a (complexified) shear free congruence.
I will show below that in conformal vacuum space-times, the surface has the
first formal neighbourhood of an embedding in a complex three manifold
(which in the flat space would be dual projective Twistor space).

In order to describe this structure, I will first show that a conformal
complex space-time with two spinor fields has a natural conformally invari-
ant connection, which is essentially given by R.P.’s ‘conformally invariant
edth and thorn operators’. This construction seems to have some geometric
interest 1n its own right.

It is hoped that these these structures will help to explain the sepa-
ration of various equations in the Kerr metric, and there may be other
applications.

The conformally invariant connection

Let M be a complex conformal space-time, with two independent spinor
fields 0# and ¢4, defined up to scale. Equivalently we have a splitting

Ot =061 (1)
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of the spin bundle.

Assume also that we are given an identification of the primed and un-
primed conformal weights

def ~
[1] = Olap) = Oarpy
This is equivalent to allowing conformal transformations only of the form
GABHQEAB CAIBIHQEAIBI

which is a natural condition if M is the complexification of a real space-
time.

Given a metric in the conformal class, the splitting in equation 1 allows
us to define a one form

Qo := —20%: 98 p(0(atc)) = plla + pra — T'ma — T,

where 0, is the metric connection, and we adopt the convention that

o4t? = 1 whenever a particular metric has been chosen. Under confor-
mal transformatiom

Qi Qa— T, where T, =0719,0 (2)

The significance of @), is that it enables us to split the Local Twistor bundle
as a direct sum.

Recall the Local Twistor exact sequence

0— Oyxp — o — 04 —0
T +— (0,7m4)

(w4, Tpr) +— wA
and the conformal transformation rule

wh o wh Tar = W + 1 qw?

If we set
QA = T 4 + ’iQawA
then from equation 2 there is a conformally invariant splitting
0 = 00 (3)

(WA Ta) — WA Day



of O“ and I will use the ‘split co-ordinates’ (w?, a4/) henceforth.

The Local Twistor connection splits to give connections, which I will
denote by V,, on the various spin bundles. A brief calculation shows these
to be

OA . vbllA — ab“A + €BAQCB'#C
oYVt =0u* + e Qporp®
Oa  : Vips =Gpas— Qapps
O+ Vipar =0pa — Qparpn
Olac) : Vivac = Gywac — Qvvac

If Z* = (w, ay) is a local twistor, we can write the Local Twistor
connection as

VoZ® = (Vyw +iegtap, Vyas + 1 Dgpw?) (4)
where D, is a conformally invariant modification of P,, defined by

Dgp = Poy — Qo + QanQBar

The splitting in equation 1 allows us to define the bundles
(=, 1) :=0" QI

(note that (1,1) = {1]). The connection V, can be projected on to these.
For example, if A is a section of {(—1,0), so that Ao = 0,

Mo — 04V AC

1s a connection, and its components are given by ‘conformally invariant
edth and thorn’, in just the same way as the same expression with the
metric connection g, replacing V, has components that can be computed
with ordinary edth and thorn.

Since V, agrees with J, if you form any of the well known conformally
invariant parts of the metric connection, there is scope here for producing a
complete ‘conformally invariant G.H.P. formalism’. The expressions which
arise as curvatures when one commutes conformal edths and thorns are
components of D,;. The geometrical significance of these connections will
be discussed in a later section.
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Shear free congruences in Minkowski space

Before starting on the general case, I will review the situation in flat space-
time. In real Minkowski space, a shear free congruence of null geodesics
(hereafter SFR) is given by a spinor field satisfying

04088,05 =0 (5)

If 04 is analytic, it can be complexified, and it then determines a distri-
bution of §-planes. This distribution is integrable, and so gives a foliation
of Minkowski space by complex surfaces precisely when o, is shear free.
The space of leaves S of this foliation is the hypersurface in dual projec-
tive Twistor space P*, which describes the congruence, according to Kerr’s
Theorem.

The surface S inherits some structure from its embedding, in particular
there is the tangent bundle of P* which sits in the normal bundle sequence
and the restrictions of the line bundles O(n). The analysis in the accom-
panying article in this T.N. shows how massless fields of various orders
along the congruence are isomorphic to sections of sheaves on S. I will now
describe how this generalises to curved space.

SFRs in curved space-times

In a general space-time, an SFR is still given by a solution of equation 5,
and gives a foliation in the complexification. The space of leaves still defines
a complex surface S, but there is in general no Twistor space in which it is
embedded.

The SFR defines a Maxwell field, which in Minkowski space is the Ward
transform of the line bundle defined by S considered as a divisor. This
follows from the fact that equation 5 is equivalent to the existence of a one
form ®, with

Oar(a0By = Par(a08)
and it is easy to see that ®, has precisely the freedom to be the potential for
a Maxwell field. The left handed part ¢ 45 = aA:(AQ)g') satisfies ¥ 4gcpo? =
—¢(aBoc), and so vanishes as expected in a conformally flat space- time!.

'An SFR is thus a charged Twistor coupled to its own canonically defined Maxwell
field
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The structures I shall describe on S only exist under certain conditions.
In particular, I will say that the SFR 04 in the space-time M satisfies the
Goldberg-Sachs condition (hereafter GS) if

0*080° U 450p =0

We assume the GS condition holds henceforth, since no significant part of
the structure on S seems to exist otherwise. The Goldberg-Sachs Theorem
implies that the GS condition is equivalent to 04080¢ 08 ¥ 4pop = 0 and it
is therefore satisfied by all conformally vacuum space-times.

To construct bundles on S, we make use of V,, the conformally invariant
connection. First choose a spinor direction ¢4 to complement the SFR oy,
and deduce from the SFR and GS conditions that on all the bundles (r',r)
and O’ the part 04V, of the connection that differentiates up the leaves
of the foliation is both independent of the choice of ¢4 and flat.?

We can thus define line bundles {r’,r)s and a rank two vector bundle
O(8)* over S, whose sections are by definition sections of the corresponding
bundle on M with vanishing conformal derivitive up the foliation.

The dual Local Twistor bundle also defines a vector bundle on S§. We

have an injection of the spinors proportional to o4 into O,
0-—{0,1) — 0O, —E—0

defining the quotient E. The part 0#V, of the Local Twistor connection
preserves (0,1) and hence is well defined on E. Furthermore, it is flat on
the leaves and so defines a rank three vector bundle £ on S.

Sections of E can be realised as spinor fields ¢4’ satisfying a tangential
Twistor equation®

oAV P =0

and given that sections of O(S)*’ are spinor fields satisfying

AV 4068 =0

21t 1s helpful to note that 04Q, is independent of ¢4 if 0# is SFR.

3to see this, note that GS and SFR imply 0 0f D,y = 0 and use the conjugate version of
equation 4. When writing down the splitting and connection on the dual Local Twistors,
stimply write down the conjugate pretending that D,y and @, are real.
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we get an injection O(S)* — £ which extends to give a short exact sequence
0— O(S)Y — £ — (1,0) — 0

given, in terms of equations, by

' -] OAOBVBBIT']A =0
OAVAA’fB =0 r— OAVA(A EB) =0 — ( LAUA =0

& — 1408V ppi ¥

If 44" is a section of O4'(0, —1), a calculation reveals that the condition
04V, uB' = 0 is what is required* to make :*u4" a connecting vector to a
nearby leaf of the foliation. Thus, O(S)*'(0,—1)s can be identified with
the tangent bundle T(S) of S. The exact sequence above can be tensored
through by (0, —1)s to give what in flat space would be the normal bundle
sequence of S

0— T(S) — g<0,~1)s — (1,-—-1)3 — 0

If one is given a hypersurface in a complex manifold, then knowing the
normal bundle sequence is equivalent to knowing the first formal neigh-
bourhood of the embedding. I will now briefly describe how one can realise
the first formal neighbourhood of an embedding of S directly.

The spinor field 04 defines a natural embedding of the space-time M in
the projective spin bundle PO,4. Now realise S by choosing a two-surface
S transverse to the foliation, and note that S has a natural embedding in
the restriction of PO,4. The first formal neighbourhood of this embedding is
independent of the choice of S, and so defines a first formal neighbourhood
sheaf O on §.

In slightly more detail; recall that PO4 has a naturally defined differ-
ential operator 749, which defines a two-plane distribution, the integral
surfaces of which (if it has any) are lifts of B-surfaces.

When o4 1s an SFR, there is a two complex parameter family of -
surfaces parametrised by S, and functions f on PO, which obey 748, f = 0
on the lift of M are precisely functions on S.

4The connection here is the tensor product of the conformally invariant ones on the
factors



3F

A calculation shows that, given the GS condition, there are two func-
tions of two complex variables worth of functions ¢ on PO, that obey
140,9 = 0 to first order in a neighbourhood of the lift of M. These form
the formal neighbourhood sheaf O on §.

In terms of the conformally invariant connections, a function on the first
formal neighbourhood of the lift of M can be written

g(z,7a) = f(z) + " xa%75 where o xa® =0 = xa"op

If the spinor field x4 satisfies

Veaxa? = Vauf

then it defines a section of @),

Massless fields

One result of this analysis is a minor generalisation of Robinson’s Theorem,
which states that if 04 is an SFR, then, for each helicity, there are precisely
one holomorphic function of two complex variables worth of left handed
massless fields null along it. If the field has n indicees, then remembering
that it has conformal weight —1, it is easy to check that these fields are in
one to one correspondence with sections over S of (1,n + 1)s.

In my accompanying article I show how in flat space fields of various
orders along o4 correspond to sections of sheaves over S. Provided, as
usual, that the GS condition holds, it turns out that sections of the formal
neighbourhood sheaf O ® (1,1)s on S do give left handed Maxwell fields
which have a principal null direction along the congruence. Thus there are
two holomorphic functions of two complex variables worth of such things,
just as in the flat case.

Apart from that case however, more severe curvature restrictions ap-
pear. To get three functions worth of order three Maxwell fields one re-

quires 020P ¥ 45¢p = 0 in which case it seems that S has a second formal
neighbourhood sheaf.
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Killing spinors

Suppose M admits a Killing spinor, and choose 04 and ¢4 to be along its
principal null directions. The Killing spinor equation

aAI(AwBC) — 0

then implies that both o4 and ¢4 are SFRs. The remaining parts of the
equation reduce to solving V,w = 0 where w is a section of (1,1). This is
only possible if the conformally invariant connection on (1, 1) is flat, which
implies
0aQy =0

This has a number of consequences. Firstly, it provides an isomorphism
(1,1) = (0,0) which carries over to .S, thereby giving a natural trivialisation
of (1,1)s. Secondly, the fact that @, is closed means that locally it is exact,
and equation 2 shows that it can thus be made to vanish by a conformal
transformation. In the special metric thus constructed, all the curvature
information is contained in the single line bundle (1, 0) and its (conformally
invariant) connection®. Further work is in progress on all this, since it seems
likely that, combined with the ideas in the next section, it will be possible to
explain the separation of various differential equations in the Kerr solution.

Geometrical significance

To finish, I will mention some ideas due to R.P. and K.P.T. which I have
just started to follow up in collaberation with M.A.S. The conformally in-
variant connection constructed above is an example of a unique connection
determined by a geometrical structure, and the structure one has (in the
complex space- time) seems to be that which would be obtained on the
complexification of a real four manifold X with an almost complex struc-
ture J,® and a compatible conformal Hermitian metric. The eigenspaces of
J.? are the two-plane distributions defined by o4 and ¢4 so that

. ’
Job = i(04t8 + 140P)en®

The almost complex structure will be integrable when both o4 and ¢4
are SFRs. Further, the suggestion is that the existence of a Killing spinor

Sc. f. B.P.J. in Proc. Roy. Soc. A392 p323-341 (1984)
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is equivalent to the Kahler condition on the Hermitian metric. This seems
very likely since something very similar has been given by Flaherty®, whose
view-point 1s somewhat different.

I would like to thank M.A.S., R.P., and K.P.T. for discussions and

suggestions. :

®Hermitian and K&hlerian geometry in relativity. Lecure Notes in Physics 46 (1976)





