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Conformal Field Theories and Twistor Diagrams

In an earlier article (TN 23) I emphasised the vital importance of
locating a prescriptive theory of fundamental physics of which twistor
diagrams could be the evaluative calculus (in analogy 1o Feynman
diagrams). | commented on the appearance of the vertices

() -\ d -\

2 =\ ’ 2 <
in twistor diagrams for massless electroweak theory, hazarding the
suggestion that such diagrams might be generated systematically by a
combinatorial rule based on such vertices. Such a rule, if it existed, should

then be derived from a deeper theory in analogy to the derivation of the
Feynman rules from an interaction Lagrangian.

Despite the suggestive features of these twistor diagrams, however,
it was not possible actually to establish any such combinatorial rule. There
is, furthermore, a prominent feature of twistor diagrams distinguishing
them from Feynman diagrams, namely that for any particular amplitude
there are many twistor diagram representations. This suggests that the
analogy with Feynman diagrams may be indirect.

As examples: even for the zero-order interaction we have

)1(=}=j... (P)
{ 5

which is enough in itself to suggest that the “order” of a diagram cannot be
defined in terms of the number of its vertices. Al the first order level we
have many equivalent forms e g.

th
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Likewise, if we consider the higher-order diagrams described in TN 25 ;
we note the equivalence of

73
All of these correspond to the Feynman diagram for second-order (f)
scattering

/

but none of them exhibit the actual symmetry of the amplitude. Reference
to that article will show many other examples.

Now R.P. did in fact suggest long ago that there was some similarity
10 be seen between twistor diagrams and the planar diagrams of the
Veneziano dual model, originally devised in the context of describing the
strong interaction. As is well known, the identity

of the planar diagrams can be interpreted in terms of siring interactions:
both are realizations of

We can therefore ask the question: is there some analogous structure in
Iwistor geometry such that the many different equivalent twistor
diagrams can be interpreted as different ways of evaluating an amplitude
properly defined on that structure? This question could have been asked at
any time in the last 15 years or so, and it is hard 10 see why we have not
addressed it before. However, our recent exposure to conformal field
theories, with its emphasis on comp/er manirfo/dsiructure, has not only
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prompted the question more acutely than before but has stimulated a
specific suggestion for what this structure could be (see Mike Singer,
Florence Tsou, Roger Penrose, this TN): namely (i) the interpolation of
complex manifolds between copies of PN and (ii) in some way specifying
free in- and out-fields on those copies of PN, (iii) in some way analytically
continuing such data across the interpolating manifolds and then combining
them to give a natural functional of the in- and out-states.

Let us adopt M.A.S.’s pictures for this structure. We shall adopt the
interpretation in which the boundaries of the picture are associated with
one-partic/e states. In the first insiance these are mass/ess fields, so
that an appropriate H' in one twistor variable is prescribed on each PN
boundary piece. [However, there is room in this scheme, following R.P.’s
suggestion, for a two-twistor or n-twistor object to be prescribed on a
boundary. This idea opens up a new view of how the twistor
represeniation of a massive one-particle state by n twistors can differ
essentially from a massiess n-particle state - a question hitherio puzzling
fro the point of view of twistor diagram theory.]

We are thus led 1o hazard the suggestion that all the inner product
diagrams (A) might be seen as different evaluations of something like

and the diagrams (B) as evaluations of something of form

(an object in which the true symmetry would be manifest, even though
thal symmetry is broken when choosing a specific evaluation v/a a twistor
diagram.)

If this were so then we would replace the idea of a sum over
graphs defined by vertices by a sum over all interpolating complex
manifolds. 7475 would become the analogy to the summing over Feynman
diagrams, and we should then go on 10 seek some fundamental theory
explaining 7475 generating rule.
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As yet we have no theory that yields a correspondence between
the Singer pictures and twistor diagrams. But there are general reasons
why one might be hopeful:

(1) Note that (at least in the first instance) we are fooking for a
twistor-based theory which gives a new description of an essentially
well-known flat-space theory of massless fields. We are translating
interactions which are described in space-time as interactions at a point.
But points are erzended objects in T. So we should always have
erpected something "stringlike” in T to emerge.

(2) Again, note that (at least in the first instance, and modulo
divergence problems), we know the functionals of free fields that we are
looking for - holomorphic conformal invariant linear functionals with
various symmetries. If we can find 22y way of deriving functionals with
these features from a theory based on Singer pictures, then there seems an
excellent chance that they will be the right ones.

(3) In looking for a correspondence between Singer pictures and
twistor diagrams, we might look first at the very simplest case - the inner
product diagrams (A). For a further simplification we might further look at
the analogous spinor integrals. Of these, the very simplest example is

§p(>)3m>>‘ - @ FU) 0> M 4l DI = §;mm ,u)"(,,.v)"glv) Dypv
ek. etc.

These are large-dimensional contour integrals in various products of Pls
But they could be re-interpreted as specifying the glueing together of
various pieces of P's by making the identifications Z=p, N=V ,elc,so
that each integrals is really being done on the same P! manifold, described
in different ways.

Although this is a hopeful line of thought, | must say that at
present I have no idea how it can be generalised to other homogeneities, or
to twistor space in a way that naturally brings in the dual spaces.

Lastly, I refer 1o my third article in TN 25. There it was argued
that the twistor diagrams that traditionally have been considered, and such
as have been written down above, are not the fundamental objects. They
should be thought of as persods of the more fundamental but as yet not
very well defined integrals given by (e.g.)



These are the objects which are glued together to make twistor diagrams
for higher-order amplitudes, i.e. correspond 1o the combination of the
ofl-shell Feynman propagators in Feynman diagrams. One takes various
possible periods of these integrals 10 obtain the amplitudes that arise when
the external legs are specified to correspond to /ree in- or out-fields in
the various possible channels. Thus [ suggest that zdese are the objects
that should correspond to the pieces of manifold that are in some sense
glued together to build up higher-order Singer pictures. It seems to me
therefore that a Singer picture should turn out to specify not an amplitude,
but some functional (perhaps not very well defined) whose various
periods would give the amplitudes in the various different possible
channels. Note that inhomogeneity ( the "k") and logarithmic propagators
were essential in defining these “off-shell” diagrams. I suggest that
corresponding [non-obvious] structures would have to be appear in any
theory of manifolds which makes sense of the Singer pictures.

Thanks to Mike Singer, Roger Penrose and Florence Tsou -

Andrew Hodges
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A generalised Kerr—Robinson theorem
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Abstract. The Kerr and Robinson theorems in four-dimensional spacetime together provide
the general null solution of Maxwell’s equations. Robinson’s theorem reduces the problem
to that of obtaining certain null foliations. The Kerr theorem shows how to represent such
foliations in terms of analytic varieties in complex projective 3-space. In this paper we
generalise these results to spinor fields of higher valence in spacetimes of arbitrary even
dimension. We first review the theory of spinors and twistors for these higher dimensions.
We define the appropriate generalisations of Maxwell’s equations, and null solutions
thereof. It is then proved that the Kerr and Robinson theorems generalise 1o all even
dimensions. We discuss various applications, examples and further generalisations. The
generalised Robinson theorem can be seen to extend to curved spaces which admit such
null foliations. In the case of Euclidean reality conditions, the generalised Kerr theorem
determines all complex structures compatible with the flat metric in terms of freely specified
complex analytic varieties in twistor space. Interpretations of the generalised Kerr theorem
are also provided for Lorentzian and ultrahyperbolic signatures.
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A conformally invariant connection and
the space of leaves of a shear free
congruence

Toby Bailey
February 19, 1988

Introduction

This is a report on work in progress, studying the structure of the complex
surface which is the space of leaves of a (complexified) shear free congruence.
I will show below that in conformal vacuum space-times, the surface has the
first formal neighbourhood of an embedding in a complex three manifold
(which in the flat space would be dual projective Twistor space).

In order to describe this structure, I will first show that a conformal
complex space-time with two spinor fields has a natural conformally invari-
ant connection, which is essentially given by R.P.’s ‘conformally invariant
edth and thorn operators’. This construction seems to have some geometric
interest 1n its own right.

It is hoped that these these structures will help to explain the sepa-
ration of various equations in the Kerr metric, and there may be other
applications.

The conformally invariant connection

Let M be a complex conformal space-time, with two independent spinor
fields 0# and ¢4, defined up to scale. Equivalently we have a splitting

Ot =061 (1)
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of the spin bundle.

Assume also that we are given an identification of the primed and un-
primed conformal weights

def ~
[1] = Olap) = Oarpy
This is equivalent to allowing conformal transformations only of the form
GABHQEAB CAIBIHQEAIBI

which is a natural condition if M is the complexification of a real space-
time.

Given a metric in the conformal class, the splitting in equation 1 allows
us to define a one form

Qo := —20%: 98 p(0(atc)) = plla + pra — T'ma — T,

where 0, is the metric connection, and we adopt the convention that

o4t? = 1 whenever a particular metric has been chosen. Under confor-
mal transformatiom

Qi Qa— T, where T, =0719,0 (2)

The significance of @), is that it enables us to split the Local Twistor bundle
as a direct sum.

Recall the Local Twistor exact sequence

0— Oyxp — o — 04 —0
T +— (0,7m4)

(w4, Tpr) +— wA
and the conformal transformation rule

wh o wh Tar = W + 1 qw?

If we set
QA = T 4 + ’iQawA
then from equation 2 there is a conformally invariant splitting
0 = 00 (3)

(WA Ta) — WA Day



of O“ and I will use the ‘split co-ordinates’ (w?, a4/) henceforth.

The Local Twistor connection splits to give connections, which I will
denote by V,, on the various spin bundles. A brief calculation shows these
to be

OA . vbllA — ab“A + €BAQCB'#C
oYVt =0u* + e Qporp®
Oa  : Vips =Gpas— Qapps
O+ Vipar =0pa — Qparpn
Olac) : Vivac = Gywac — Qvvac

If Z* = (w, ay) is a local twistor, we can write the Local Twistor
connection as

VoZ® = (Vyw +iegtap, Vyas + 1 Dgpw?) (4)
where D, is a conformally invariant modification of P,, defined by

Dgp = Poy — Qo + QanQBar

The splitting in equation 1 allows us to define the bundles
(=, 1) :=0" QI

(note that (1,1) = {1]). The connection V, can be projected on to these.
For example, if A is a section of {(—1,0), so that Ao = 0,

Mo — 04V AC

1s a connection, and its components are given by ‘conformally invariant
edth and thorn’, in just the same way as the same expression with the
metric connection g, replacing V, has components that can be computed
with ordinary edth and thorn.

Since V, agrees with J, if you form any of the well known conformally
invariant parts of the metric connection, there is scope here for producing a
complete ‘conformally invariant G.H.P. formalism’. The expressions which
arise as curvatures when one commutes conformal edths and thorns are
components of D,;. The geometrical significance of these connections will
be discussed in a later section.
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Shear free congruences in Minkowski space

Before starting on the general case, I will review the situation in flat space-
time. In real Minkowski space, a shear free congruence of null geodesics
(hereafter SFR) is given by a spinor field satisfying

04088,05 =0 (5)

If 04 is analytic, it can be complexified, and it then determines a distri-
bution of §-planes. This distribution is integrable, and so gives a foliation
of Minkowski space by complex surfaces precisely when o, is shear free.
The space of leaves S of this foliation is the hypersurface in dual projec-
tive Twistor space P*, which describes the congruence, according to Kerr’s
Theorem.

The surface S inherits some structure from its embedding, in particular
there is the tangent bundle of P* which sits in the normal bundle sequence
and the restrictions of the line bundles O(n). The analysis in the accom-
panying article in this T.N. shows how massless fields of various orders
along the congruence are isomorphic to sections of sheaves on S. I will now
describe how this generalises to curved space.

SFRs in curved space-times

In a general space-time, an SFR is still given by a solution of equation 5,
and gives a foliation in the complexification. The space of leaves still defines
a complex surface S, but there is in general no Twistor space in which it is
embedded.

The SFR defines a Maxwell field, which in Minkowski space is the Ward
transform of the line bundle defined by S considered as a divisor. This
follows from the fact that equation 5 is equivalent to the existence of a one
form ®, with

Oar(a0By = Par(a08)
and it is easy to see that ®, has precisely the freedom to be the potential for
a Maxwell field. The left handed part ¢ 45 = aA:(AQ)g') satisfies ¥ 4gcpo? =
—¢(aBoc), and so vanishes as expected in a conformally flat space- time!.

'An SFR is thus a charged Twistor coupled to its own canonically defined Maxwell
field
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The structures I shall describe on S only exist under certain conditions.
In particular, I will say that the SFR 04 in the space-time M satisfies the
Goldberg-Sachs condition (hereafter GS) if

0*080° U 450p =0

We assume the GS condition holds henceforth, since no significant part of
the structure on S seems to exist otherwise. The Goldberg-Sachs Theorem
implies that the GS condition is equivalent to 04080¢ 08 ¥ 4pop = 0 and it
is therefore satisfied by all conformally vacuum space-times.

To construct bundles on S, we make use of V,, the conformally invariant
connection. First choose a spinor direction ¢4 to complement the SFR oy,
and deduce from the SFR and GS conditions that on all the bundles (r',r)
and O’ the part 04V, of the connection that differentiates up the leaves
of the foliation is both independent of the choice of ¢4 and flat.?

We can thus define line bundles {r’,r)s and a rank two vector bundle
O(8)* over S, whose sections are by definition sections of the corresponding
bundle on M with vanishing conformal derivitive up the foliation.

The dual Local Twistor bundle also defines a vector bundle on S§. We

have an injection of the spinors proportional to o4 into O,
0-—{0,1) — 0O, —E—0

defining the quotient E. The part 0#V, of the Local Twistor connection
preserves (0,1) and hence is well defined on E. Furthermore, it is flat on
the leaves and so defines a rank three vector bundle £ on S.

Sections of E can be realised as spinor fields ¢4’ satisfying a tangential
Twistor equation®

oAV P =0

and given that sections of O(S)*’ are spinor fields satisfying

AV 4068 =0

21t 1s helpful to note that 04Q, is independent of ¢4 if 0# is SFR.

3to see this, note that GS and SFR imply 0 0f D,y = 0 and use the conjugate version of
equation 4. When writing down the splitting and connection on the dual Local Twistors,
stimply write down the conjugate pretending that D,y and @, are real.
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we get an injection O(S)* — £ which extends to give a short exact sequence
0— O(S)Y — £ — (1,0) — 0

given, in terms of equations, by

' -] OAOBVBBIT']A =0
OAVAA’fB =0 r— OAVA(A EB) =0 — ( LAUA =0

& — 1408V ppi ¥

If 44" is a section of O4'(0, —1), a calculation reveals that the condition
04V, uB' = 0 is what is required* to make :*u4" a connecting vector to a
nearby leaf of the foliation. Thus, O(S)*'(0,—1)s can be identified with
the tangent bundle T(S) of S. The exact sequence above can be tensored
through by (0, —1)s to give what in flat space would be the normal bundle
sequence of S

0— T(S) — g<0,~1)s — (1,-—-1)3 — 0

If one is given a hypersurface in a complex manifold, then knowing the
normal bundle sequence is equivalent to knowing the first formal neigh-
bourhood of the embedding. I will now briefly describe how one can realise
the first formal neighbourhood of an embedding of S directly.

The spinor field 04 defines a natural embedding of the space-time M in
the projective spin bundle PO,4. Now realise S by choosing a two-surface
S transverse to the foliation, and note that S has a natural embedding in
the restriction of PO,4. The first formal neighbourhood of this embedding is
independent of the choice of S, and so defines a first formal neighbourhood
sheaf O on §.

In slightly more detail; recall that PO4 has a naturally defined differ-
ential operator 749, which defines a two-plane distribution, the integral
surfaces of which (if it has any) are lifts of B-surfaces.

When o4 1s an SFR, there is a two complex parameter family of -
surfaces parametrised by S, and functions f on PO, which obey 748, f = 0
on the lift of M are precisely functions on S.

4The connection here is the tensor product of the conformally invariant ones on the
factors
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A calculation shows that, given the GS condition, there are two func-
tions of two complex variables worth of functions ¢ on PO, that obey
140,9 = 0 to first order in a neighbourhood of the lift of M. These form
the formal neighbourhood sheaf O on §.

In terms of the conformally invariant connections, a function on the first
formal neighbourhood of the lift of M can be written

g(z,7a) = f(z) + " xa%75 where o xa® =0 = xa"op

If the spinor field x4 satisfies

Veaxa? = Vauf

then it defines a section of @),

Massless fields

One result of this analysis is a minor generalisation of Robinson’s Theorem,
which states that if 04 is an SFR, then, for each helicity, there are precisely
one holomorphic function of two complex variables worth of left handed
massless fields null along it. If the field has n indicees, then remembering
that it has conformal weight —1, it is easy to check that these fields are in
one to one correspondence with sections over S of (1,n + 1)s.

In my accompanying article I show how in flat space fields of various
orders along o4 correspond to sections of sheaves over S. Provided, as
usual, that the GS condition holds, it turns out that sections of the formal
neighbourhood sheaf O ® (1,1)s on S do give left handed Maxwell fields
which have a principal null direction along the congruence. Thus there are
two holomorphic functions of two complex variables worth of such things,
just as in the flat case.

Apart from that case however, more severe curvature restrictions ap-
pear. To get three functions worth of order three Maxwell fields one re-

quires 020P ¥ 45¢p = 0 in which case it seems that S has a second formal
neighbourhood sheaf.
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Killing spinors

Suppose M admits a Killing spinor, and choose 04 and ¢4 to be along its
principal null directions. The Killing spinor equation

aAI(AwBC) — 0

then implies that both o4 and ¢4 are SFRs. The remaining parts of the
equation reduce to solving V,w = 0 where w is a section of (1,1). This is
only possible if the conformally invariant connection on (1, 1) is flat, which
implies
0aQy =0

This has a number of consequences. Firstly, it provides an isomorphism
(1,1) = (0,0) which carries over to .S, thereby giving a natural trivialisation
of (1,1)s. Secondly, the fact that @, is closed means that locally it is exact,
and equation 2 shows that it can thus be made to vanish by a conformal
transformation. In the special metric thus constructed, all the curvature
information is contained in the single line bundle (1, 0) and its (conformally
invariant) connection®. Further work is in progress on all this, since it seems
likely that, combined with the ideas in the next section, it will be possible to
explain the separation of various differential equations in the Kerr solution.

Geometrical significance

To finish, I will mention some ideas due to R.P. and K.P.T. which I have
just started to follow up in collaberation with M.A.S. The conformally in-
variant connection constructed above is an example of a unique connection
determined by a geometrical structure, and the structure one has (in the
complex space- time) seems to be that which would be obtained on the
complexification of a real four manifold X with an almost complex struc-
ture J,® and a compatible conformal Hermitian metric. The eigenspaces of
J.? are the two-plane distributions defined by o4 and ¢4 so that

. ’
Job = i(04t8 + 140P)en®

The almost complex structure will be integrable when both o4 and ¢4
are SFRs. Further, the suggestion is that the existence of a Killing spinor

Sc. f. B.P.J. in Proc. Roy. Soc. A392 p323-341 (1984)
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is equivalent to the Kahler condition on the Hermitian metric. This seems
very likely since something very similar has been given by Flaherty®, whose
view-point 1s somewhat different.

I would like to thank M.A.S., R.P., and K.P.T. for discussions and

suggestions. :

®Hermitian and K&hlerian geometry in relativity. Lecure Notes in Physics 46 (1976)



Relative cohomology power series,
Robinson’s Theorem and multipole
expansions

Toby Bailey
February 19, 1988

Introduction

In my original articles on the Twistor description of fields with sources on
a world-line! I gave some expressions for “multipoles” based on a world-
line. In this note, I will show how a first cohomology class, relative to a
hypersurface, can be expanded in a sort of “power series”, which seems to
be the Twistor version of the multipole expansion. The power series also
gives a precise “abstract nonsense” version of the Twistor description of

algebraically special fields.

The relative cohomology power series

Let S be a hypersurface in a complex manifold X, and let F be a locally
free sheaf of Ox modules on X. The relative cohomology group Hi(X,F)
can be described by a relative Cech cocycle, but a good intuitive picture is
as follows: Choose an open cover U; of a neighbourhood of S in X; then a
representative is given by a set f; of sections of F over U; that ‘blow up’
on S, with the restriction that f; — f; is holomorphic on all of U; N U;. The
freedom in each f; is the addition of a holomorphic section of F.

'T.N. 14,15 and Proc. Roy. Soc. A397 143-155 (1985)
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Now let ¢; be defining functions for S, then one might try and expand
the relative class defined by the f; as a power series

M 2 (n)

gi g 9

To understand this we need the divisor bundle L of S, which is defined to
be the line bundle with transition functions ¢;/g; on U;NU;. The functions

g; then give a distinguished section s of L which has a simple zero on S.
The section s gives us a map

s F—>FQLF

j o M

which induces a map on the relative cohomology.

Definition 1 The k-th order relative cohomology HLY(X, F; k) is defined by
the ezactness of

0 — HY(X, F; k) — HY(X,F) 25 HY(X,F @ L*)
The k-th order cohomology is thus the part which has a pole of order k or
less on S, and it therefore corresponds to the first k terms in equation 1
above.

If £ is a sheaf on X, and Z(P)E is the ideal of sections of £ which vanish

to p-th order on S we can define the p-th formal neighbourhood sheaf (£)¥)
by the short exact sequence

0 ZIPHE L & ()P —0 (2)
so that (£)© is just € restricted to S.
Lemma 1 There i3 a natural 1somorphism

HY(X, F; k) = I(S, (F @ L5)*)

The proof is simply to observe that in equation 1 above, the fi(k) must give
a section of F @ L¥ with the freedom as given by equation 2.

Thus we have strictly a filtration of the relative cohomology (rather than
an infinite direct sum), with the quotient at each stage given by the exact
sequence

0 — T(S,(F o LFH)k=2) X5 (S (FR LMY S T(S,Fe L) —0
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Algebraically special fields

The above analysis can be applied when S is a hypersurface in a region X
in projective Twistor space, corresponding to a shear free congruence. We
can define cohomology of order k on S just as for the relative case, and we
will say that a right handed massless field is of order k on the congruence
if its Twistor function is in H'(X,O(—n — 2);k). Thus, order 1 means
null, order n means the field has a pnd. along the congruence, and higher
orders correspond to certain differential relations between the field and the
congruence.

If one writes down the commutative diagram whose rows are the relative
cohomology sequences, and whose columns are induced by s* : F — FQLF,
it 1s easy to see that if H'(X, F) = 0 then there is an exact sequence

(X, F ® LY

1 . 1 k
(X, 7) — Hy(X, F;k) — H'(X,F;k) — 0

Since L has the section s which has a simple zero on S, which intersects
every line in X exactly once, we can write L = M(1) where M is a line
bundle trivial on every line in X2 Thusif k < n+ 2

DX, Lf(—n - 2)) =T(X,M*(k—n—-2))=0
and so
HY(X,0(-n —2);k) 2 HY(X,0(-n—2);k); k<n+2

The result of all this is a statement of the (generalised) flat space Robin-
son Theorem: The space of helicity n/2 right handed massless fields of order
k (k < n+2) along the congruence is isomorphic to T'(S, (L*(—n —2))F—1).
This is precisely the ‘k holomorphic functions of two complex variables’ de-
scribed by R.P. and W.R. in §S-T. (Vol. 2 p. 206).

The particular case where £k = 1 and n = 2 was examined by M.G.E.
(T.N.20 p. 31). We get that these fields are given by sections of L(—4) over
S, but O(—4) = Q° and L restricted to S is just the normal bundle. Thus

*M is the Ward bundle of the ‘Maxwell field of the congruence’ — see my accompanying
article
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L(—4) = Q%, we get an isomorphism of the null right handed Maxwell fields
with holomorphic 2-forms on S.

The null Maxwell fields inject into the order 2 fields, and give a quotient
sheaf

0 — I(S, L(=4)) — T(S8,(L*(=4))"V) — T(S, L*(~4)) — 0

The quotient corresponds in space-time to neutrino fields of order 1, coupled
to the Maxwell field of the congruence. The map onto this group is ‘helicity
lowering’, where the congruence is regarded as a charged Twistor.

Multipole expansions

If S is the ruled surface corresponding to a world-line in Minkowski space,
the first relative cohomology describes massess fields with sources on the
world-line®>. We can use the analysis given above to get a filtration of these
fields.

It seems that the first terms (eg. order 2 for right handed Maxwell
and order 3 for right handed gravity) give the fields with non-vanishing
‘charges’,and the remainder give an expansion in ‘multipoles’ where, for
example, a 27- pole for a right handed helicity n/2 field is given by

ds
(z —y(s))?

n+p P
A..NP...S-L N’
b4 K :fa TTYp - Ys Vaar...VNno
=
n

A..S

where ¢ 1s a totally symmetric spinor function of s, the proper time

along the world-line y°(s). Under conformal transformations, a 2P-pole
gets mixed with lower ordered terms, which is what one might expect given
that the Twistor space expansion is not a direct sum.

There are still many details to be tidied up here, and further work is in
progress.

[ am very grateful to M.A.S. for discussions about this work.

3and the Maxwell field of the congruence is the left handed part of the field of a unit
charge on the world-line



Abstract
The Geroch group and non-Hausdorff twistor spaces

N.M.J. Woodhouse & L.J. Mason

By reducing the Ward correspondence, we show that there is a
correspondence between stationary axisymmetric solutions of

the vacuum Einstein equations and a class of holomorphic vector
bundles over a reduced twistor space, which is a compact one-
dimensional, but non-Hausdorff, complex manifold. We show that
the solutions generated by Ward's ansatze correspond to bundles
which have a simple behaviour on the 'real axis' in the reduced
space. We identify the Geroch group (Kinnersley and Chitre's
'group K') with a subgroup of the loop group of GL(2,&) and

we describe its orbits. We also identify some of the subgroups

which preserve asymptotic flatness.
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