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Notes on the correspondence between Feynman diagrams and
twistor diagrams

In TN25 we established a remarkable twistor-diagrammatic
formula for second-order massless o% scattering and deduced (a) some
extensions to higher-order ¢ amplitudes and (b) a new viewpoint on the
crossing symmetry problem for the first-order ¢4 amplitude. Here are some
notes on the features that arise on attempting to develop these ideas more
generally and systematically as a "transiation” procedure.

§1. One clear feature emerging from these g diagrams is the pair of lines
|

— |

representing the "off-shell" scalar propagator A (x - y)

with the “on-shell” propagator = °_ as its "period”.

Note that this scalar propagator can be exhibited in a simpler context,
namely the [irst-order process .
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where the vertex is given by the so-called "Yukawa interaction” of massiess
fields expressed by the Lagrangian ~-A ?
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Standard arguments translate this first-order amplitude into
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One can think of the massless spin-1/2 fields as Zest-functions for the
twistor representation of Ap(x - y). It is generally useful and important to

include the conformally invariant “Yukawa" interaction along with the g*
interaction in studying the structure of higher order diagrams.
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§2. The scalar propagator then fits into a scheme together with
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for massless spin-1/2, spin-1 propagators respectively. In each case the
propagator can be regarded as an operator which projects out an eigenstate
of spin, in such a way that the operator is ide mpotent Thus:
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The contours here are consistent with
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If Feynman propagators AF are equivalent to these “chains” then how
could Feynman verilses, of essential form

A axp) Alxay Axxy) a4,

be transiated? One might expect twistor-diagram vertices of form:
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For this to be true, a necessary condition is that we can differentiate w.r.t.

Xy. X2 and x3, thus reducing each Al-‘ to the § -function, and get the right
answer - as evaluated by using six massless fields [two in x{, two in 1,
two in 13] as “test-functions”. The form of the derivatives will depend upon

which particular helicities we are looking at, but essentially the problem
boils down to establishing a twistor-diagrammatic formula, taking this
form, for the scalar @5 integral
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§3. There /s a naturally suggested structure of this form for the @
integral. It's useful here to use an abbreviated twistor diagram notation:
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Now let us begin with @3. Certainly the diagram 5,5
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(using integration
by parts)
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is valid in all channels. This would imply the (conformally invariant)
correspondence
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(again using simple integration by parts). If so we have also
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By “superimposing” these (ie. looking at period structure) we are led to
suggest the correspondence
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which is equivalent to the 8% formulas
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(by permutation symmetry). This is in turn is the key to describing all
Feynman vertices in twistorial terms, as indicated in §1.

These are only guesses, but they embody important constraints
on what formulas could possibly be correct. For any possible @5 formula
implies a formula for the Feynman diagram (*), which one would expect (at
least naively; see below) to be conformally invariant, and to have periods
related to known integrals. What we have done above is to construct
formulas which have a chance of satisfying these strong conditions.
Unfortunately they have so far proved too difficult to check explicitly.

Another highly significant constraining feature of these integrals
arises from the limiting cases in which one external massiess field is
allowed to tend towards the consiant field. In the twistor picture this is a
geometrical limit arising as the point defining an elementary state moves
towards I. [n the space-time integrals the effect is that of reducing gdto &
or 80 10 ¢4, These limits must all make sense and agree - a strong condition.



In particular we require
contours which justify:
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with the numerator factor involving l"fz “cancelling” the effect of the
external parameters tending to ‘" At first sight, this is impossible:
integration by parts seems to show that the limit has to be zero. But it does
seem to be possible if the external fields are attached in the way suggested
in TN2S, viz. as

This problem is connected with the puzzle noticed long ago by RP, namely
that one may formally deduce

for the inner product of two 2-twistor functions of mass zero, and yet
simple integration by parts shows that such an integral must vanish.

A further question concerns the assumption made above that
higher-order diagrams built out of conformally invariant interactions,
should themselves be conformally invariant functionals. In standard QFT
conformal symmetry breaking is necessary for renor malisation and so it is
possible that in the twistor picture also conformal symmetry breaking has
to play some essential role in building up diagrams.

Putting these points together, it looks very likely that the
formulae suggested above cannot actually make sense without some
modification of the geometry of twistor space at I - something expected
anyway for the description of mass (and gravity). My hope is that when
correctly interpreted, the twistor diagrams written down above will form
the basis of a systematic calculus. |

A. P. Hodges



